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ABSTRACT

ADVANCED ATMOSPHERIC WATER VAPOR 
DIAL DETECTION SYSTEM

Tamer Refaat 
Old Dominion University, 2000 
Director: Dr. Hani E. Elsyed-AIi

Measurement of atmospheric water vapor is very important for understanding the 

Earth’s climate and water cycle. The remote sensing Differential Absorption Lidar 

(DIAL) technique is a powerful method to perform such measurement from aircraft and 

space. This thesis describes a new advanced detection system, which incorporates major 

improvements regarding sensitivity and size. These improvements include a low noise 

advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a 

microcontroller for on board averaging and finally a fast computer interface.

This thesis describes the design and validation of this new water vapor DIAL 

detection system which was integrated onto a small Printed Circuit Board (PCB) with 

minimal weight and power consumption. Comparing its measurements to an existing 

DIAL system for aerosol and water vapor profiling validated the detection system.

Co-Director of Advisory Committee: Dr. Russell J. DeYoung
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I

CHAPTER I 

INTRODUCTION

1.1. Atmospheric water vapor

Water vapor is an important molecular species which is primarily located in the 

Earth’s troposphere (part of the atmosphere extending from the surface of the Earth up to 

an altitude of about 18 km). Although the distribution of atmospheric water vapor is 

highly variable in both time and location, its measurement is very important for 

understanding the Earth’s water cycle, the greenhouse effect and weather phenomena.1-2

The water cycle provides a direct way for interactions among Earth’s global 

systems, namely, the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere. 

Water is considered the main media for energy transfer between most of these systems. 

Although the amount of atmospheric water vapor represents only a small percent of the 

Earth’s water reservoir, it is very dynamic and its latent heat for transformation is 

considered the main energy source that maintains the atmospheric circulation.1-2

Water vapor and clouds affect the incident solar radiation by reflecting solar 

radiation back to space and also absorbing some of this energy within the atmosphere. 

This substantially moderates the Earth’s climate. On the other hand, water vapor and 

clouds affect infrared radiation released by the Earth’s surface. Some of this radiation is 

reflected back to the surface and some is absorbed and re-emitted at a lower temperature 

which contributes to the global warming problem or greenhouse effect.2 

Journal model used for this thesis is Optical Engineering.
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Water vapor has a direct role in most weather phenomena and natural disasters such 

as hurricanes. It was found that the latent heat of water vapor is the main energy source 

for hurricanes. The measurement of water vapor flow into a hurricane associated with 

other observations aids in estimating the hurricane strength and direction.3,4

Water vapor measurements can be obtained by balloon radio-sondes but a more 

effective method is the laser remote sensing technique onboard an aircraft or satellite. 

Such systems have the advantage of obtaining two-dimensional water vapor profiles with 

high accuracy.5,6

1.2. Water vapor measurements using lidar

Light detection and ranging (lidar) is a remote sensing technique which is currently 

used for atmospheric water vapor measurements.5,6 At NASA Langley Research Center, 

the lidar atmospheric sensing experiment (LASE) uses the differential absorption lidar 

(DIAL) technique to measure water vapor profiles using the ER-2, DC-8 or P3-B 

aircraft613 LASE consists of three main systems, the DIAL laser transmitter, the receiver 

and the control and data acquisition system.7

In a typical water vapor DIAL system two laser pulses separated by a time interval 

are transmitted into the atmosphere. The wavelength of the first pulse is tuned to the peak 

of a water vapor absorption line and is called the on-line wavelength, while the second 

wavelength is adjusted to a water vapor spectral region with no absorption and is called 

the off-line wavelength. The two wavelengths are selected close to each other, therefore, 

the scattering by other atmospheric molecules and particles is the same for both on and 

off laser wavelengths and the difference in the on- and off-line return signals will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

entirely due to the absorption by water vapor molecules. Thus, the ratio of the 

backscattered signals at the two wavelengths can be used to calculate the water vapor 

concentration profile as a function o f range.14' 16

This principle was applied to the LASE instrument which is shown in the block 

diagram of Figure l . l .  LASE is an instrument that detects water vapor using the 815-nm 

water vapor absorption line. LASE measurements were found to have an accuracy better 

than 6% or 0 .01 g/kg, whichever is greater across the entire troposphere.7' 11

Fiber Optic
Time Base

SIGNAL PROCESSOR
88%TUNABLE LASER 

SUBSYSTEM
Optics APD

FiltersLaser
Diode

Nd:YAG
Pump

MED
Microcontroller

ON/OFF
Seeds

L -  APD
12% I—

TirSapphir 
Power Oscillaor

GamCont

Recoreder
Return SignalLaser

Output

Tunable Laser

Figure l . l  LASE system block diagram.7

The LASE transmitter was designed to generate two laser pulses of 30 ns duration 

separated by 400 ps at a frequency of 5 Hz with a pulse energy output of 150 mJ. A 

Ti:Sapphire (TiiALOj) power oscillator was constructed using a NdrYAG laser as the 

pump source. Narrow linewidth and wavelength tuning of the TLAI2O3 laser is achieved
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by a continuous wave 100-mW single mode diode laser performing as an injection seed 

source. This injected seeding allows control o f the spectral linewidth to within 1 pm and 

provides wavelength tuning stability to ±0.25 pm. The diode laser wavelength is locked 

onto the selected water absorption line and tuned by passing a fraction of its frequency 

modulated light through a reference cell filled with water vapor and detecting the cell 

transmission. The tunable diode laser seeds the pulsed laser alternately between the online 

wavelength located at the center of the water vapor absorption line and the off-line 

wavelength typically located 20 to 80 pm away from the online wavelength.7

The LASE receiver has a Cassegrainian telescope with a 40-cm diameter collecting 

area. The received light is split into two channels. The two data channels use silicon 

avalanche photodiodes (APDs) in order to increase the dynamic range. The first low-gain 

channel uses 12 % of the collected light for measuring strong return signals while the 

second high gain APD channel uses 88% for low signal level detection. The APD 

detectors for both channels where manufactured by EG&G (model C30955E) with a 1.5- 

mm diameter active area.7

The APD detector output signal is applied to a trans-impedance amplifier stage 

which limits the signal bandwidth to 2.5 MHz. A 1.5 MHz low-pass filter is used to set 

the signal bandwidth, and then the signals are applied to L2-bit, 10-MHz digitizers. Both 

the amplifier and the digitizer stages are mounted in a CAMAC (Computer Automated 

Measurements and Control) crate, which communicates with an onboard computer for 

data recording. The whole system is synchronized by a time-based trigger signal.7'9

While LASE has performed well, there are several improvements in the detection 

system that could be made to reduce system mass and improve performance. Eliminating
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the CAMAC crate would reduce the system mass substantially, and using advanced 

super-low-ionization-coefficient (SLDC) APD technology could reduce the system noise, 

thus improving measurement range. These improvements are the subject of this research 

dissertation.

1.3. Research objectives

In order to obtain global atmospheric water vapor profile measurements, DIAL 

systems such as LASE should be incorporated in aircraft or satellite-based systems. This 

requires the development of DIAL systems with reduced size, mass and power 

consumption as well as increased measurement capabilities. This will require higher 

energy laser systems, but a major part of this development also must be applied to the 

detection system.

The research objective o f this dissertation was to design, build and test an advanced, 

compact, low-mass water vapor DIAL detection system that is used to increase the 

performance of the LASE instrument and also serve as a receiver prototype for future 

space missions. This new detection system increase the signal-to-noise ratio (SNR) by a 

factor of 10 compared to the current LASE receiver. Also it was integrated into a small 

size suitable for mounting directly on the receiver telescope. The system consists of an 

advanced low noise APD, an analog circuit, a 14-bit digitizer and a digital interface to a 

personal computer all on one small electronic card. These goals were achieved using 

state-of-the-art electronic components and a newly evaluated very low noise APD 

detector and constructing a 10-MHz waveform digitizer which is placed as close as 

possible to this detector on the same card.17'20 The APD is a very critical device in such
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systems, since it directly affects the water vapor measurement accuracy and range. 

Therefore, the selection of this device was obtained after modeling its performance and 

characterizing a group of APDs from different manufacturers.

The design of the new DIAL detection system, the subject of this thesis, is shown 

schematically in Figure 1.2. The design allows the placement of both analog and digital 

circuits on one small-size light weight printed circuit board which includes detection and 

digitization sections. This scheme has the advantage o f transmitting digital data for 

storage and analysis by a personal computer; therefore, analog signals do not have to be 

transmitted for long distances which reduces the system noise pick up.18'20

Dither Input —  

Marker Input —
Laser Fire 

Trigger Input

Receiver Card

Optical
Telescope Detected

Signal
Analog
Signal

Optical
SignalAtmospheric 

Return 
Ligth Signal

Digital
Data

DOoooo Interface0 0 9

APD
Detector

Digital
Circuit

Analog
Circuit

Power Supply System Clock Personal Computer

Figure 1.2 Schematic of the new DIAL receiver system.

The system design was optimized for water vapor absorption lines near 820 and 940 

nm. In the receiver system, an existing telescope was used to collect and focus the lidar 

return signal onto the APD detector sensitive area. The APD output signal was then 

applied to the analog circuit for signal conditioning which includes signal saturation
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protection, amplification, and filtering. In addition, this stage provides the APD with a 

stable bias voltage and temperature control.18'20

The analog signal is then applied to the digital circuit to be digitized and then 

processed and temporarily stored. This circuit is compatible with a parallel input/output 

computer interface for final data storage and display, and provides monitoring of the 

detector high voltage bias and temperature. The whole system card is supplied with ± 5 V 

and ± 12 V power and a 10-MHz clock signal for digitization. This new detection system 

increases the accuracy and range of water vapor measurements over the current LASE 

receiver system.18'20

The new detection system has the advantage of eliminating the CAMAC crate, thus 

reducing the mass and power consumption compared to the LASE instrument. A 

prototype receiver system was built, tested and evaluated. The prototype receiver system 

was used to measure relative aerosol profiles and actual atmospheric water vapor profiles 

to validate its performance.23
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CHAPTER II

AVALANCHE PHOTODIODE: 
THEORY AND MODEL

APDs are solid state quantum detectors suitable for low light detection in the visible 

and near infrared regions. These devices are commercially available from many 

manufacturers and are fabricated using different solid state structures. In this chapter, the 

basic APD structures will be described in order to develop a mathematical model for such 

devices. The model will be converted into an equivalent circuit and will be validated.

2.1. Avalanche photodiode structure and theory of operation

The basic structure of a PIN diode as well as three different structures of APDs and 

their electric field distribution is shown in Figure 2.1. The PIN diode shown in Figure 

2. 1a is a p-n junction with an intrinsic or lightly-doped layer sandwiched between the p 

and n layers. This structure serves to extend the width of the depletion region which 

increases the volume available for absorbing the incident photons. Also it reduces the 

junction capacitance, thereby reducing the RC time constant resulting in higher detection 

bandwidth. Thus, the response time of these devices is in the tens-of-pico-second range 

which corresponds to giga-hertz bandwidths. 24-27 A disadvantage of PIN detectors is that 

they have no internal gain mechanism which reduces signal-to-noise ratio. The APD 

structure is similar to the PIN diode structure except for an additional gain mechanism 

within the device. This gain mechanism depends on the impact ionization process in 

which the photoelectric charge carriers, due to their high energy, can impact and cause 

ionization of lattice atoms generating more carriers resulting in the internal gain.24"28
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As shown in Figure 2.1b, the beveled-edge APD has the simplest structure among 

them. It consists of a p+-n junction with a high resistivity n layer which increases the 

breakdown voltage of the device into the kilovolt range. Breakdown at the edges is 

prevented by beveling and making the junction very deep (in the range of 50 pm). 

Therefore, the dead part of the p+ layer is usually etched away to reduce the device depth. 

Because the n layer is much deeper than the p+ layer, electrons produced there are more 

likely to be multiplied than holes. This reduces the dark-current noise which is mostly 

generated by hole current. The disadvantage, however, is that only light absorbed in the p 

layer leads to effective multiplication and this layer has the lowest electric field. As a 

result, charge accumulates slowly leading to a longer response time typically in the range 

of tens of nanoseconds.28

The reach-through structure APD and its electric field distribution are shown in 

Figure 2.1c. This structure consists of an absorption region and a separate multiplication 

region. In the absorption region, the p+ layer at the active surface is followed by an 

intrinsic wide layer which increases the photon absorption depth. The emitted photo­

electrons drift and reach a constant velocity. In the multiplication region, the p-n+ layers 

form a thin junction with a high internal field which enhances the impact ionization 

process.28'30 Recently, an enhancement of the reach-through structure known as the 

“super low ionization ratio k” (SLIK) geometry has become available and is shown in 

Figure 2. Id.31 The ability of electrons and holes to “impact ionize” in order to generate 

additional charge carriers is characterized by the ionization coefficients a  and P, for 

electrons and holes respectively. The ionization coefficient represents the ionization 

probabilities per unit length. An important parameter is the ionization ratio, k, given by
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k = £ .
a

(2.1)
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(a) P-l-N diode structure and 

electric field distribution.
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i
i
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H i

i P
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A
(c) Reach through APD structure and 

electric field distribution.

r
(d) SUK APD structure and 

electric field distribution.

Figure 2.1 PIN diode and different APD structures with electric field distributions.

In APDs, it is desirable to reduce K as much as possible so the multiplication process is 

only due to electrons, since hole current leads to high dark-current noise.24 This was 

achieved in the SLUC structure by increasing the absorption region electric field and 

merging this region with the multiplication region.31 Typically, the value of k  is in the 

range of 0.02 for the reach-through structure while it is 0.002 for the SLOC structure.31
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2.2. Modeling of four layer avalanche photodiode

Large efforts were made to model the different structures of APDs, but little work 

has focused on developing an equivalent circuit for these devices.28,32 Chen and Liu 

constructed an equivalent circuit model for three layer PIN-APD and applied it to 

Ino 53Gao 47As-InP PIN-APD.33 This model was based on the study of the minority carrier 

generation, diffusion and drift through the different layers of the device, by applying both 

the rate and continuity equations. The drift-diffusion model was converted into an 

equivalent circuit. In this section the, Chen-Liu model will be extended to the case of four 

layer APDs, such as the reach-through and SLIK structures, in order to solve for the 

characteristics and response and to obtain an equivalent circuit for such devices.21 This 

APD model is capable of simulating the transient and steady state behavior of an APD 

knowing its microstructure. The model simulation results were compared to a commercial 

reach-through silicon APD in order to validate it.21,34

A schematic of the structure of a reach-through APD as well as the internal electric 

field distribution are shown in Figures 2.2a and 2.2b respectively. As discussed earlier, 

the field profile shown in Figure 2.2b distinguishes the two main regions within the 

device. The first is the absorption region which is used to absorb the incident photons to 

generate photo-charge carriers and drift these carriers into the second region. The second 

region is the multiplication region which has a relatively smaller depth with higher field. 

In this region, the photo-generated carriers produce additional carriers by the impact 

ionization process. For the sake of simplicity in this model, the electric field profile will 

be approximated by two step functions as shown in Figure 2.2c. The lower field value is 

for the absorption region that is covered by the i layer, while the higher field value is for
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the multiplication region which is almost covered by the p layer. The electric field will be 

neglected in the outer highly-doped layers since they have relatively smaller depletion 

widths. Under these approximations the device currents in the p+-i and p-n+ interfaces 

will be due to the diffusion currents of the minority carriers form the highly doped layer, 

and the drift current of the generated charge carries in the internal regions.21

G 0—

— r
i
i

G ,
L 1
V  1

1 A p

1
t G j
I
1

p+ i i P
> «•---------------W i  ---------------- ► W P |W n „ :

£ .

'pp
Depth

Ei

Depth

(a)

(b)

(c)

Figure 2.2 (a) Schematic diagram of a four layer APD showing light absorption through 
the device with (b) simulated34 and (c) approximate electric field profiles.
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The absorption profile along the device depth is also shown in Figure 2.2a. 

Considering the input optical power Pj„ at a wavelength X, the incident photon flux is

where h is Plank’s constant and c is the speed o f light in vacuum. A part of this flux will 

reflect back at the APD surface and the other part will penetrate the device and will be

given by

where R is the APD surface reflection coefficient. Since the electron-hole pair photo­

generation rate is directly proportional to the number of absorbed photons, this rate will

where ctpP, otj, otp and a™ are the absorption coefficients and Wpp, Wj, Wp and Wnn are the 

widths of the p \  i, p and n* layers, respectively.

2.2.1. Rate equations

Considering a reverse bias device, the rate of increase of the number of electrons in 

the p+ layer (minority carriers) will be proportional to the photo-generation rate and

given by

(2.2)

(2.3)

be given as (in s '1) for the p+, i, p and n+ layers, respectively, by 

G pp =G , •[l~ exp(- a ppWpp)] (2.4)

(2.5)

(2.6)

(2.7)
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opposed by the recombination and diffusion. Thus the rate equations for the electrons in

the p+ layer is given by 

dP P I
~ ~  = G pll — —  — . (2.8)

dt t  aPP* T

Similarly for the n+ layer, the rate equation of the holes (minority carriers) is given by

dP P Innh _  nnh nnh r ' j  Q \
..  nn _  * V—

dt q

where Pppe and Pn„h are the number of excess electrons and holes, Tppe and t nnh are the 

electron and hole life times for the p+ and n+ respectively, lppe is the electron diffusion 

current from the p+ to the i region, In„h is the hole diffusion current from the n+ to the p 

region and q is the magnitude o f the electron charge.

In the i region, both electrons and holes are considered as minority carriers, and the 

rate of increasing any type of these carriers will be equal to the photo-generation rate in 

this region plus the impact ionization rates initiated by any electrons or holes minus the 

recombination rate. Also, for electrons this process will be affected by the electron 

diffusion and drift from the p+ region and to the p region respectively. For holes, it will be 

affected by the hole drift from and to the p and p+ regions respectively. Therefore, the rate 

equation for electrons in the i region has the form 

dP I P P (2.io)
dt q T„ T„

where vie and vih are the electron and hole velocity in the i region, and are the 

electron and hole impact ionization rates and tier and Tjet are the electron recombination
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life-time and electron transient time in the i region respectively. For holes, the rate

equation is

where Tpht, Tjhr and Tjht are the hole transient time in the p region, hole recombination life 

time in the i region and the hole transient time in the i region respectively. It should be 

noted that equations (10) and (11) are equal due to the charge neutrality condition. For the 

reach-through APD, the impact ionization terms can be neglected and the photo­

generation and drift terms are the dominant. This assumption is not valid for the SLQC 

structure APD since the electric field in that region is relatively higher causing the impact 

ionization to occur earlier.31

Finally, since the p layer is lightly doped, both electrons and holes will be 

considered as minority carriers, and the rate equations will be similar to that of the i 

region and are given by

where ^  and £ph are the electron and hole impact ionization rates in the p region, Tjet, Tper 

and tpct are the electron transient time in the i region, recombination life-time in the p 

region and transient time in the p region respectively and xPhr is the hole recombination 

life-time in the p region. Also, due to the charge neutrality condition, equations (2.12) and

(2.11)

(2.12)

and

(2.13)
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(2.13) are equal. The dominant terms in these relations will be the impact ionization and 

the drift terms for both the reach-through and S L K  APDs, while the absorption term can 

be neglected especially for deep devices.

2.2.2. Continuity equations

The diffusion current from the p+ layer can be obtained by applying the continuity

equation which is given by

D d : ne (ne - n j  | gpp(*)_ 0
A ( l l 4 >dx r ppe A

where De is the electron diffusion coefficient in the p+ region, ne is the electron density 

profile, nra is the electron equilibrium density and A is the device area. The boundary 

conditions for this layer are; at x = 0, ne = n«(0) and at x = Wpp, ne = 0. If LpP is the 

diffusion depth in the p+ region, the diffusion coefficient is given by 

L;
D = S L

‘ Tdk ppe

(2.15)

and gpp(x) is photo-generation rate of the charge carriers along the depth of the p* layer. 

Referring to equation (2.3), gpp(x) is given by

gPp(x) = G 1-app-exp(-appx) ;0 < x < W p p . (2.16)

The solution of equation (2.14) is given by

nt (x) = ncu +c, ex p (-appx)+[ne(0 ) -n ro - c ,  1-

sinh
f  W - x ]

PP

L
V pp J

sinh( x

sinh
fw  )PP

~ [ n co ~ C I e x p ( - a pp Wpp )]-
sinh

W )
PP

PP

(2.17)

where ci is a constant given by
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To evaluate ne(0), equation (2.17) is applied to the condition

P PP< = A J ( n e " n » ) d X ’ <2 - 1 9 )
0

and solving for ne(0) and substituting its value in equation (2.17), the electron diffusion 

current from the p+ region can be determined from 

dn„
I™ =  + q A D — -  
ppe e dx

(2.20)
«=W„

Similarly, to evaluate the hole diffusion current I„nh from the n+ region, we apply the 

hole continuity equation which is given by

Dh£ ^ J v ^ + i » W = o , (2.2 ,,
d*" A

where Dh is the hole diffusion coefficient in the n+ region, nh is the hole density profile 

and neo is the hole equilibrium density. The boundary conditions in this region are at x = 

0, nh = 0 and at x = Wnn, nh = nj,(0). The hole diffusion coefficient can be obtained using 

the diffusion length L™ in the n+ region by

Dh = —*s-, (2.22)
"̂ nnh

and gnn(x) is photo-generation rate of the charge carriers along the n+ layer depth. 

Referring to (2.3) gnn(x) is given by

g nn (x )  = G l -eXpl-ttppWpp - « i W i - « p Wp)‘a nn *eXP(-annX) ;0 <  X < W,,, (2.23)

The solution of equation (2.21) is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ci is a constant given by

c, =-A; , ^  ""Tj^-expf-q W - a  W - a  W )p
A h c il -o iL 1. ) m  "  "  ' ' ’ ’ K

(2.25)

Similarly, to evaluate nh(0) we use 

p,mh=A j ( n h - n h0)dx. (2.26)

Substituting its value in equation (2.21), we get a complete expression for the hole 

density in the n+. The hole diffusion current will then be evaluated using

.  ^  dn.
I  nnh = - q A D h - ^

dx
(2.27)

2.2.3. Avalanche photodiode equivalent circuit

For the purpose of constructing an equivalent circuit for the APD, we assume a 

constant C0 which is equivalent to a capacitor. Referring to equations (2.4), (2.5), (2.6) 

and (2.7), equations (2.8), (2.9), (2.10) and (2.13) can be written respectively as 

P dVno Vin _  Q  PP |   Pj

f  0 dt R _opp pp

L 0 = ^ J2-  = C0— - + — + ! «  (2.28)
w  V dt R m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

dV VI = —— = C — — -t- 2S_ -u I 0  29)onn ' - o  T  nnhV _  dt R.onn nn

P dV V V.
lo, = —  = C0— 1- + —1- + — - U - L  (2.30)

V01 ° dt R ir R it

P dV v  V„
I = —!2- = C — -  + — — + — -— I - I  (2 3 1 f
09 V 0 dt R R nnh ps’op pr pi

where the excess charge carriers are converted to voltages, using C0, and are given by

V , = q i ,  V = q t k  and V„ = q ^ -  (2.32)

The rest of the parameters are given by

I P  I P  I P  I P
V = ---- -!2- V = — •—  V = — •—  and V = —•— (2 331opp n  V0| ~  ’ op ~  U  onn ~

q G „  q Gi q G p q

Rpp= ^ EL (2-34)

R nn (2.35)

R , r = 7 T - .  R « =7?" (2-36)
"̂o '-'0

l.= C „V ,(v kC . + v ^ )  (2.37)

T T
D   _ p h r  n  _  pht

pr c  ’ p* c’“' a ^ a

vm
I = —^ + 3  P +1 (2 40)PP® ^  m ppeo

(2.38)

i „ = c . v , ( v ^ + v » ^ ) -  » J 9 >

The diffusion currents Ippe and Innh will be given respectively by

kpd
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I = "" +R P +1nnh Hn in nnho ’

where

R pd - R pp

f w j
cosh pp - I

L
_ I pp .

R nd - R nn
f w  1

cosh lift - I
<L n n  >

(2.41)

(2.42)

(2.43)

R - n ^  a PP̂ PP
P" - q —

/ \ [ e x p ( - a w ) - l l
aMexp(-amWMW --pp r \  pp p p / * \  1

( X I '
cosh pp - I

pp pp L
I ) .

cosh
f w jPP

L ppV KK V

+ 1 exp(- a W  ) 
pp pp /

L._ sinh pp
PP L

V PP J

(2.44)

f w  1
cosh an + 1

I L nn

Lnn sinh
W„ ^

[ex p (-amWJ - l ]

“ nn^n
f w  1

cosh an
- l

i ,L ,m ) J

(2.45)
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p̂peo 9
AD.n.

pp

1+cosh
' w 'pp

pp

sinh
W.

pp

pp y -i

(2-46)

n̂nho = q A / " n-h°

(
I + cosh

W_

sinh
W.

(2.47)

Using equation (2.28) through (2.31) and the definition of the diffusion currents 

given in equations (2.40) and (2.41), the APD equivalent circuit can be constructed as 

shown in Figure 2.3. The APD output current, Ia p d . will be given by

Iapo = +1, + Ip + (c. +C; +Id. (2.48)

where

p R p.

(2.49)

(2.50)

and Cs and Cj are the parasitic and junction capacitance, Id is the sum of the leakage and 

tunneling currents and Vbias is the applied APD bias voltage.
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Figure 2.3 APD equivalent circuit
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2.3. Model validation

In order to validate the discussed model, a silicon reach-through APD was 

simulated. The APD is manufactured by EG&G (model number C30902E). Table 2.1 

gives some parameters of this APD as well as for silicon at a temperature of 300 K.30-35-40

Table 2.1 Silicon APD parameters at 300 K.
Parameter Value
A(mm2) 0.196
Wpp(pm) L
W,(pm) 15
Wp(pm) 4.5
Wnn(pm) 10
R 0.35
NA(cm‘3) 5 x l0 12
ND(cm'3) 5xI012
Ni(cm'3) L.5xl010
De(cm2s'’) 34.2
Dh(cm V ) 11.9
Tppe(ps) 30
fnnh(ps) 20
Tier(HS) 30
W P S ) 20

2.3.1. Model parameters

The values of the electric field were approximated by two step functions under the 

constraint of equal bias voltage for both the simulated and approximated profiles shown 

earlier in Figure 2.2b and 2.2c. The electric field step function relates to the applied bias

voltage by

E,=VB1AS/(w j+ 6.5Wp) and Ep =6.5E, ,  (2.51)
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where Ej and Ep are the electric in the i and p layers respectively. Since the device built-in 

potential is neglected, these relations are only valid near the breakdown bias voltage of 

the APD.

The impact ionization coefficients for electrons and holes as a function of the 

electric field in the range of 2x10s to 5x10s V/cm were obtained form ref. 41 and applied 

for the i and p regions.

The electron and hole drift velocity can be obtained as a function o f the electric field 

from the empirical formula37

where vs is the carrier saturation velocity, Ec is the critical field defined by the ratio of 

the carrier saturation velocity to its mobility and P is a constant. The values of the 

saturation velocity, mobility and the constant P are IxlO7 and 0.8 xlO7 cm/s, 1320 and 

460 cm2/Vs and 0.9 and 0.8 respectively for electrons and holes.

The absorption coefficients for the various layers where assumed the same. The 

absorption coefficient as a function of the wavelength of the incident light was taken from 

ref. 42 for the 800 to 1100 nm wavelength range. The data where fitted using polynomial 

fit and applied to the model.

2.3.2. Steady state performance

The spectral response of the APD under investigation was obtained form the 

manufacturer data sheet and is shown in Figure 2.4 at a temperature of 295 K.34 Also 

shown in the same figure the spectral response obtained after applying the model to the

E/Ec
(2.52)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

same device assuming a 215 V bias voltage and 300 K temperature. Comparing the two 

curves we note that the model spectral response has a lower responsivity values with a 

maximum near the 870 nm. The responsivity 91 was obtained using the relation.

^  = I apd (253)
pin

OO

C.50

Wl
® 30

o  Manufacturer Data Sheet 

—  Model Result

900800 850 950 1000 1050
Wavelength ( n m )

Figure 2.4 APD spectral response obtained from the manufacturer data sheet 
at 295 K and from the model at 300 K and 215 V.

The quantum efficiency variation with wavelength is shown in Figure 2.5 obtained 

from the manufacturer and the model.21*34 In order to obtain this relation, the model was 

run while setting the impact ionization coefficients to zero. Therefore, the responsivity 

gave a measure to the quantum efficiency q according to the relation.
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Figure 2.5 APD quantum efficiency versus wavelength at obtained form the 
manufacturer and form the model at 300 K and 215 V bias.

Although the results of figures 2.4 and 2.5 indicate the lack of accuracy in the model 

parameters, the device gain variation with respect to wavelength can be predicted at the 

given operating voltage. The accuracy of the model parameters is very critical in the 

model stability and results, especially in the multiplication region, as will be shown later.

Figure 2.6 shows the responsivity variation with bias voltage obtained form ref. 34 

and the model both assuming constant wavelength of 830 nm.21,34 The model result 

indicates that the APD bias voltage of 215 V is near-breakdown voltage which is about 8 

V less than the manufacturer corresponding voltage at similar temperature.

As shown in Figure 2.6, the large deviation between the simulated results and the 

manufacturer data at low operating bias voltage was expected. This was indicated earlier 

in equation (2.51) since the natural built-up potential is neglected. This affects the impact 

ionization rate leading to decrease o f the responsivity at lower voltage biases.
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Figure 2.6 APD responsivity variation with bias voltage at 830 nm obtained from the 
manufacturer data sheet at 293 K and from the model at 300 K.

To demonstrate the model sensitivity to the device multiplication width, Wp, 

referring to (2.13) we can define a multiplication stability constant Cms as

^ M S  -  V phCph +  V peCpc >
phr pht

(2.55)

in which the electron impact ionization and the hole transient time terms are the 

dominant. The value of this constant determines the stability of the device since it 

controls the feedback of the multiplication process. Figure 2.7 investigates the variation 

of the stability constant and the resulted responsivity with the width of the multiplication 

region Wp. The values of the multiplication stability constant shown to the left of the 

stability limit line are positive while the values to the right are negative. Wp affect the 

hole transient time according to

_ W p
pht (2.56)

ph
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It was found that any positive values of Cms causes model failure because it causes an 

unstable positive feedback. Although the magnitude of the negative values of Cms 

controls the APD gain and thus its responsivity, the practical value o f the responsivity lies 

within a small region of the multiplication width. The bias voltage is another factor 

affecting the multiplication stability constant, since it controls both the charge carrier 

velocity and impact ionization coefficients. This explains the sudden increase of the 

responsivity with bias voltage as shown in Figure 2.6.

Practically, when manufacturing these devices, it is very hard to keep the 

multiplication width consistent. This explains why similar APD part numbers from the 

same manufacturer have different operating bias voltages with different characteristics.22

The value of the responsivity is also affected by the initial doping concentration of 

the donor atoms in the n+ region. As shown in Figure 2.8, at a constant acceptor 

concentration, increasing the doping level of the donors reduces the responsivity. A 

doping level of SxlO12 is a reasonable limit for manufacturing devices with similar 

characteristics as the device under investigation. Shown in the same figure the effect of 

the acceptor atoms doping concentration in the p+ region, at constant donor concentration, 

which has a smaller effect.
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Figure 2.7 Responsivity and multiplication stability constant variation with the 
multiplication width, obtained at 800 nm wavelength and 215 V bias.
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Figure 2.8 Donor and acceptor concentration effect on the APD 
responsivity at 800 nm wavelength and 215 V bias voltage.

As pointed out by applying the continuity equation, increasing the donor

concentration increases the electron diffusion current to the absorption region. This has
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  Acceptor Level Variation

\
\
\
\
\

\
\

\
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the effect of increasing the recombination rate with holes leading to decrease the photo 

generated carries (holes) resulting in responsivity reduction. Increasing the donor level 

more, responsivity saturation will be resulted, since the diffused electrons recombined 

with all the generated holes. A similar effect occurs due to the increase o f the acceptor 

level. However, since the acceptor diffusion current take place in the multiplication 

region where the photo charge carriers got multiplied, it has a lower effect on the 

responsivity.

One application of this model is to study the effect of different APD parameters on 

its characteristics. This is demonstrated in Figure 2.9, which gives the effect of changing 

the width of the i or absorption region on the spectral response. By increasing the 

absorption depth the spectral response curve shifts to the infrared. Referring to equation 

(2.51), the degradation of the peak points is due to the considerable reduction in the 

electric field of the absorption region, Ei, since the bias voltage was assumed constant 

(215 V) for all cases. This spectral response shift is known commercially as infrared 

enhanced APDs.

The value of the absorption width, Wj, is limited by two main factors. Reducing Wj 

to a low value limits the absorption depth and the acceleration distance required by the 

charge carriers to gain sufficient energy for the impact ionization process. On the other 

hand, increasing W to large value causes losses in the carriers due to recombination.
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Figure 2.9 Spectral response variation with the width 
of the absorption region obtained at 300 K and 215 V.

2.3.3. Transient performance

To test the APD model in the transient state, an input optical pulse was simulated 

and applied to the model. This pulse had a square waveform with 100 ps duration and 1 

p.W amplitude at 800 nm. The APD output current is shown in Figure 2.10 for different 

operating bias voltage. The rise time was observed to be constant at about 80 ps. The fall 

times were 450 and 780 ps for 140 and 215 V bias voltages respectively. This indicates 

that the rise time has a negligible variation with bias voltage, while the fall time increases 

with the increase in the voltage. The rise time generally depends on the speed of the 

photon absorption process within the device; therefore, it has nothing to do with the bias 

voltage. On the other hand, the bias voltage affects the speed of the charge carriers and 

their number. That’s why it affects the fall time. The sudden changes in the APD current
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shown in Figure 2.10 at the rising and falling instances are due to the sharp edges of the 

square wave of the simulated input power.

250

200

% 150

3 100

0.20 0.4 0.6 0.8 1
Time ( n s )

Figure 2.10 APD output current with a square wave input power of 100 ps duration 
and I (iW amplitude at 800 nm, obtained at 140 and 215 voltage biases.

This model is also suitable for performing some tests to the APD which are 

practically destructive to the device. Figure 2.10 shows the simulated APD output current 

during breakdown. This was simulated assuming an applied bias voltage of 215.7 V and a 

step input power of 1 p.W as shown in the same figure. The breakdown time, shown in the 

same figure, was defined as the time interval between applying the input power and the 

rapid increase of the APD current up to 10% of its normal value at starting. The 10 % 

value was suitable enough since the APD current has a rapid increase to infinity 

indicating device damage. Figure 2.11 shows the relation between the magnitude of the
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breakdown voltage and the breakdown time indicating that increasing the applied 

breakdown voltage speeds up the breakdown time.
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Figure 2.11 APD output current during breakdown simulated with an applied 
voltage bias of 215.7 V and a step input power of 1 pW. The breakdown time is 
defined as the time interval between applying the input power and the increase 

of the APD current up to 10% of its steady-state value.
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Figure 2.12 APD breakdown time variation with breakdown voltage bias.
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For low light detection, an APD can be operated in the Geiger mode or photon 

counting.31,43'46 In this mode, the device is biased with a voltage above its breakdown 

value leading to increase the device gain. Therefore, it will be very sensitive and any 

absorption of a small amount of photons will cause avalanche breakdown which can be 

detected as current pulse. In this mode of operation, it is important to apply such over- 

breakdown bias for short time intervals known as the counting bin to control the 

avalanche breakdown. Increasing the counting bin will cause damage to the device.31

Although the switching action was assumed to the input power, the characteristics 

shown in Figure 2.11 is important for defining the bin duration for an APD operating in 

the Geiger mode. With the current model, switching the bias voltage was difficult to 

obtain. This is due to the dependence of many parameters on the bias voltage which had 

to be calculated before starting the simulation.

2.3.4. Model conclusion and limitations

A drift-diffusion model for four layer APDs has been developed. This model is a 

modification of the Chen and Liu PIN-APD model. The model was used to drive an APD 

equivalent circuit and can be used to simulate the device transient and steady state 

response. For the validation purpose the model parameters were chosen as close as 

possible to an actual device. Reasonable agreement between the model results and the 

manufacturer data sheet indicated the validity of the model. This model can be used for 

device structure modification as to enhance the spectral response of a device or for 

destructive tests such as breakdown.21
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There were many assumptions associated the construction of this model which 

make it limited. The limitations of the model include the effect o f temperature, low bias 

voltage operation, simulation of the device characteristics and response near saturation 

and noise modeling.
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CHAPTER in

AVALANCHE PHOTODIODE: 
CHARACTERIZATION AND SELECTION

A group of silicon based avalanche photodiode (APD) detectors, with different 

structures, were characterized from different manufacturers. The main concern in these 

experiments was to calibrate these APDs and to investigate the influence of their high 

voltage bias and temperature on the APD responsivity and to examine their active area 

uniformity and noise performance.22 With these results, an optimal detector was chosen 

for the new atmospheric water vapor DIAL detection system. The detection system can 

operate at 720, 820 or 940 nm wavelengths which correspond to water vapor absorption 

lines.18-22'47

The APDs that were characterized are given in Appendix A as well as a summary of 

the characterization results. The results of the reach-through structure (RTS) APD 

C30955E48 currently used in the LASE instrument and the super low ionization 

coefficient (SLIK) APD C30649E49 will be discussed in detail in this chapter. Both APDs 

are manufactured by EG&G 47'49

3.1. Experimental setup

The experimental setup for the APD responsivity calibration is shown in Figure 3.1. The 

light source was a broad-band halogen lamp supplied by a stabilized power supply to 

insure stable spectrum and intensity. The lamp output is filtered by a 600-nm long-pass 

filter to prevent higher order dispersion of shorter wavelengths from being collected in
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first-order dispersion in the range of 600 to 1100 nm. The chopper was used to modulate 

the optical signal for dc offset elimination at the detector output and to allow for phase- 

locked detection. The monochromator was used to separate the light input into its spectral 

components. An integrating sphere was used to diffuse the exiting light to insure uniform

intensity at the detector.22'45-47,50

Optical
Chopper

Integrating
Sphere

Test APD

Detector
Chamber

600 nm 
Optical Filteruonochrometer

Monochrometer Control

Synchronizing SignalRC High 
Pass Filter

Chopper
Controller

Output Signal

Lockin AmplifierTemperature Signal

o o o K
CD

0
Voltage Bias Temperature

a  o  a  □  I IQQQD ' *

Computer
Control& Power Supplies Controller Digital Voltmeter

Figure 3.1 APD experimental setup for the spectral response determination.

The APD output was filtered by a high-pass filter to eliminate dark current and 

background radiation offsets. An oscilloscope was used to check the detected signal and 

to obtain its peak-to-peak value, Vp.p, and a lock-in amplifier was used to accurately 

measure the signal rms value, Viock-m* The chopper controller adjusted the chopping 

frequency to 200 Hz and supplied synchronization signals for the other instruments.22-45

The APDs are biased using a high voltage source. The APD current variation, 

representing the change in the light intensity, was converted to a voltage signal using a
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trans-impedance amplifier (TIA).24'27'51'52 The TIA configuration is shown in Figure 3.2a, 

where Rf is the amplifier feedback resistance and R and C act as a low pass filter to 

eliminate any bias voltage ripples. The test detector was placed on a printed circuit board 

and put inside a chamber, as shown in Figure 3.2b. The chamber was located on a three- 

dimensional, computer-controlled, translation stage for alignment. Nitrogen gas flow was 

used to prevent condensation of water vapor on the detector window at low temperature 

and to avoid dust accumulation. A temperature controller and a thermoelectric cooler 

(TEC) were used to fix the temperature of the APD under test.53 Water circulation 

provided forced cooling to the TEC for low temperature settings. The APD temperature 

was measured with a temperature sensor and a digital voltmeter. A personal computer 

sent commands to the monochromater to adjust the wavelength for the spectral scan, and 

it acquired the lock-in amplifier and the temperature readings using a GPIB data 

acquisition card.22'47

Detector Chamber

O —
High

Voltage

R
ligi

ElectricalL 
Connections

NjRow

(b)

Water
Circulation

(a)

Figure 3.2 (a) APD bias circuit and the trans-impedance amplifier connection 
(b) APD chamber used to mount and stabilize the device temperatures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

The APD spectral response was measured over a 600 to 1100 nm wavelength range. 

Comparison was made with a NIST (National Institute of Standards and Technology) 

calibrated reference detector by placing each detector in the same uniform light field at 

the same position. The distance between the light outlet and the detector active area was 

150 mm. For alignment purposes, a microscope with a 200 pm  depth of focus was used to 

position all detectors as shown in Figure 3.3. Applying the inverted square function, the 

worst-case deviation of the intensity at the detector was ±0.53 %. Errors due to 

positioning of the detectors can cause absolute calibration uncertainty of less than 1%. 

The microscope was placed on a kinematic mount (1pm placement precision) so that it 

could be removed from the optical path during the wavelength scan and precisely 

replaced in the path for detector positioning.22-47

Microscope

Eye Piece
I i. I

Light I ; 5x Objective Detector

Source I Reflector lens

Optical Axis •

Intensity Adjustment i b ’t  —------ -
x Auxiliary

Figure 3.3 APD alignment setup using microscope.
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3.2. Avalanche photodiode calibration

The slits of the monochromator were adjusted to have a wavelength band-pass of 10 

nm. Because the halogen spectral maximum output was at 690 nm, the monochromator 

was set at this value and the chopping factors were determined for both the reference and 

test detectors using the relation

CF = ^ ^ .  (3.1)
\>-p

Knowing the spectral response of the reference detector, shown in Figure 3.4a, the 

responsivity of the test detectors was determined by comparison using the relation

_  d(lock-in) C F r R r A r

d "  V CF R A r 'r(lock-in) *~r d K d A d

at each wavelength increment of 10 nm, where %  and 9 ^  are the responsivity of the

reference detectors and test detector respectively, V^iod^n, and Vddoct-in) are their output 

voltages, all at the same wavelength. C F r  and C F d  are the chopping factors, Rr and Rd are 

the feedback resistors and A r and A d  are the sensitive areas of the reference and test 

detectors respectively.22'47

The spectral response of the tested detectors is shown in Figure 3.4b. To compare 

the results with the manufacturer data sheets, room temperature and manufacturer 

specified bias voltage were used. The APD responsivity is directly proportional to the 

wavelength of the incident light.24*27'54 This is true as indicated in Figure 3.4, for 

wavelengths from 600 nm to the point where the response begins to roll off. Ideally, the 

roll off point would be sharp and correspond to the energy band-gap of silicon. At this 

cutoff, the responsivity decreases sharply due to insufficient energy in the incident
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photons for the generated electrons to overcome the band-gap energy, resulting in 

reduction of the APD quantum efficiency. The deviation from the ideal cutoff found in 

our characterized APDs was mainly due to charge collection inefficiency of photons 

outside the depletion region of the APD which was dependent on the type and level of the 

doping materials used to manufacture the device.28
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Figure 3.4 Spectral response of the (a) reference detector and (b) test detectors.

3.3. Temperature dependent responsivity

At fixed bias voltage and wavelength, the responsivity of an APD detector increases 

with decreasing temperature. Low temperature operation of an APD leads to an increased 

output signal due to the increase in the device gain. Low temperature operation also 

decreases the dark current noise level, which results in increasing the detector signal-to-

26-2735-58noise ratio.

Experiments investigating the effect of APD temperature on the spectral response 

were performed. An empirical relationship for the responsivity versus temperature was
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obtained. The nitrogen gas purge and the water circulation allowed the APD operating 

temperature to be adjusted from nearly 0 °C to room temperature. It is important to 

remember that a lower operating temperature causes the detector breakdown voltage to 

decrease; therefore, the APD voltage bias must be chosen carefully while performing this 

test to avoid device destruction.” "47

The setup shown in Figure 3.1 was used but only for the test detectors in this 

experiment. During the experiment, the detector voltage bias was kept constant to insure 

that the spectral response variation is only due to changes in temperature. Using the 

alignment setup shown in Figure 3.3, the detector position with respect to the light source 

was adjusted to the same value of the responsivity calibration experiment to insure the 

same input light intensity.

The temperature controller shown in Figure 3.1 fixed the operating point for each 

spectral scan. For each temperature set point, the system was allowed to reach 

equilibrium before proceeding with the experiment. This whole procedure was repeated 

for each APD under investigation.

For each APD the following characterization results were presented:

• The APD detector output voltage variation with wavelength, {V„(X)}

• The APD temperature variation with wavelength, {T„(X)}

Ideally, the temperature should be kept constant during this experiment. This was not true 

in our case due to some deficiencies in the temperature controller used in the 

experimental setup. Therefore, we had to record the temperature for each wavelength 

increment {T„(X)}. To obtain the APD temperature, Tn, this data set was averaged 

according to22
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T . - f i M -  (3.3)

At the same temperature T„ and using the calibration data, the detector output 

voltage variation was converted to a responsivity variation with respect to wavelength. 

This procedure was repeated for every temperature setting giving the spectral response 

variation with temperature shown in Figures 3.5a and 3.5b for the C30649E and 

C30955E, respectively.
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Figure 3.5 APD spectral response and responsivity variation with temperature 
for the (a) SLIK C30649E and (b) RTS C30955E structures respectively.
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To obtain the responsivity variation with temperature, the analysis of the data starts 

by constructing a responsivity vector, |9t(T)}, and a temperature vector, {T}, at a certain 

wavelength, Xx, as shown in the following:

Applying a polynomial curve fit the responsivity variation with temperature at Xx, took

where M is the curve fit order and N is the index for maximum temperature. The 

responsivity-versus-temperature relations for the SLDC and RTS APDs are shown in 

Figures 3.5c and 3.5d. The relations for the rest of the APDs are given in Appendix A.

This experiment determines the APD temperature stability requirements by 

obtaining the responsivity partial derivative with respect to temperature which is given by

For example, a temperature deviation (AT) of 0.1 °C near an operating temperature of 10 

°C for the 820 nm wavelength at rated bias voltage will result in a responsivity deviation 

of A9\ = 0.3 and 2.2 A/W, leading to a relative error of 0.4% and 1.2% for the SLIK and 

RTS structures, respectively. This indicates that the SLDC structure is more stable with 

respect to temperature variation. This fact is clear from Figure 3.6 which shows the 

relative error in the APD responsivity as a  function of temperature at the three water 

vapor absorption wavelengths of interest, assuming a I °C temperature variation. Also

l* C r)} = { * ,M  % ( K )  -  * . ( * J  -  % ( K ) }

{T} = {T, T, -  Tn -  Tn }.

(3.4)

(3.5)

the form

M

m=0
(3.6)

(3.7)
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clear from this figure is that the responsivity relative error due to temperature variation 

does not depend that much on the operating wavelength.47
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Figure 3.6 SLIK and RTS APD structures relative error in responsivity 
due to 1 °C temperature variation obtained at 720,820 and 940 nm 

water vapor absorption wavelengths.

3.4. Bias voltage dependent responsivity

At fixed temperature and wavelength, the responsivity of an APD increases with 

increasing bias voltage up to the breakdown voltage. This is due to the increased internal 

electric field leading to the transfer of more energy to the photo-charge carriers which 

enhances the impact ionization process. Bias voltage above breakdown causes rapid 

charge carrier generation which usually leads to device damage.24'47'59

This experiment investigated the effect of the APD bias voltage variation on the 

spectral response and obtained a responsivity versus bias voltage relation at the water 

vapor DIAL wavelengths of interest. Similar to the previous experiment the setup shown
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in Figure 3.1 was used for the test APDs. During the experiment, the APD temperature 

was kept constant to insure that the spectral response variation is only due to the bias 

voltage. The detector position with respect to the light source was adjusted to the same 

value of the responsivity calibration experiment to insure the same light intensity input.

Using the high voltage supply, the detector bias is set to a certain value and the 

temperature was stabilized by the temperature controller. Then, the output peak-to-peak 

voltage was measured using the oscilloscope and its rms value was measured using the 

lock-in amplifier to calculate the chopping factor. Next, the scan sequence started from 

600 to 1100 nm with a step increment of 10 nm. For each step increment the wavelength, 

output voltage and temperature were recorded using the computer. Finally, the 

experiment was repeated for a set of different bias voltages. This procedure was repeated 

for each APD under investigation.

At the end of this experiment, each APD had a group of data files describing its 

output voltage variation with wavelength at a given bias voltage. The value of the bias 

voltage, VBn, is measured directly from the high voltage supply. For a certain APD at a 

given bias voltage the available data was as follows:

• The APD detector output voltage variation with wavelength, {Vn(A.)}

• The APD temperature variation with wavelength, {Tn(X)|

The detector output voltage variation was converted to responsivity variation with respect 

to wavelength using the calibration data. This procedure was repeated for every voltage 

bias setting giving the spectral response variation with bias voltage.
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To obtain the responsivity variation with bias voltage at a certain wavelength we 

use the spectral response variation with bias voltage to form two vectors. A responsivity 

vector {9\ (VB) } and a voltage bias vector {VB} where defined as

l» (v„)l = {* ,(* .) * , ( * , )  -  * .(X .)  ••• t t s M l  (3.8)

(V„1={V, V, V„ -  V ,} (3.9)

Using a polynomial curve fit, the responsivity variation with bias voltage is given by

W(VL , = i a™ v m' (3.10)
m=0

where M is the curve fit order and N is the index for maximum voltage bias. This analysis 

was applied to each APD at 720,820 and 940 nm wavelengths.22,47

The experimental results are shown in Figure 3.7 for the C30649E and C30955E 

APDs. For each detector, the spectral response variation with bias voltage is shown on the 

set of curves to the left and the responsivity variation with bias voltage on the right. The 

results for the rest of the APDs are given in Appendix A.

To obtain the APD bias voltage stability, the partial derivative of the responsivity 

with respect to bias voltage is obtained from

39\(V)
av = 5 > , a in,v(ra' 1)- (3.11)

For example, with both APDs operating at their rated bias voltage and for a voltage 

deviation (AV) of 1 V at 820 nm wavelength, the responsivity deviations (ASR) are 2.28 

and 1.54 A/W for the SL1K and RTS APDs, respectively, which is a relative error of 

4.6% and 2% for the SLIK and RTS structures, respectively. This indicates that the RTS 

structure is less sensitive to voltage variations. This fact is clear from Figure 3.8 which
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shows the relative error in the APD responsivity as a function of the bias voltage 

normalized to the APD rated bias. These relations are given at the three water vapor 

absorption wavelengths of interest assuming 1-V deviation in the bias voltage. Also clear 

from this figure is that the responsivity relative error due to bias voltage does not depend 

significantly on the operating wavelength.47
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Figure 3.7 APD spectral response and responsivity variation with bias voltage for the 
(a) SLDC and (b) RTS structures respectively.
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Figure 3.8 SLIK and RTS APD structures relative error in responsivity versus 
normalized bias voltage due to L-V deviation in the bias voltage obtained at 720,820 and 

940 nm water vapor absorption wavelengths.

3.5. Responsivity uniformity scan

The APD sensitive area can be considered as a group of point detectors distributed 

along its surface. Ideally, this distribution is uniform with each of these point detectors 

having the same responsivity for similar operating conditions; therefore, the overall 

responsivity distribution should be constant along the APD surface. Practically, this is not 

true due to defects in the APD manufacturing process.22,28

In this experiment, we investigated the uniformity of the APD responsivity along its 

surface and determined its active area. This can be achieved using a relatively small spot 

size light source and scan it across the detector area measuring the APD output voltage as 

a function of light spot position resulting in a responsivity map of the APD area. The 

small spot size light source was achieved using the setup shown in Figure 3.9. A 633-nm 

He:Ne laser was used to obtain a light beam which was focused by a microscope 

objective. The position of the detector was adjusted with the computer controlled three-
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dimensional translation stage. The motion of the detector was adjusted so that the focused 

laser beam spot and the APD sensitive area remained in the same plane. A neutral density 

filter was used to avoid APD saturation.

Neutral Density 
Filter

Objective
lens

APD
Detector

Optical Axis
He:Ne

B>... i

Scan
Mount

Figure 3.9 Responsivity uniformity scan setup.

The laser focusing optical system was calibrated to determine the displacement 

between the laser focus at its minimum waist and the visual focus of the microscope 

system shown in Figure 3.3. In order to obtain this calibration a pinhole was mounted on 

a three-dimension translation stage, as shown in Figure 3.10. The laser focus was 

determined by positioning the pinhole such that the maximum laser output was observed 

on the detector. The laser focus was measured with the micrometer on the translation 

stage. The visual focus was determined by viewing the best focus of the pinhole through 

the eyepiece. The test detectors were positioned by finding the visual focus of the detector 

surface and then translating to the laser focus by the calibrated displacement as described 

above.28-60

During the scan sequence, the detector moves in a two-dimension sequence with a 

fixed step size then the data is plotted and analyzed. The normalized surface scan results 

for the tested APDs are shown in Figure 3.11.
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Figure 3.11 APD surface scan for the (a) SLDC and (b) RTS APDs.

In some DIAL systems, the light intensity is focused on a small region of the 

detector. Therefore, these surface scan data can be used to calculate the responsivity 

correction factor since the calibration of the APD considers the average responsivity over 

the entire detector active area. On the other hand, the surface scan data can be used to 

determine the APD hot spots which are points on the APD surface with very high 

responsivity relative to the average. The hot spots may cause a problem since at high light 

intensities the charge carriers concentration will increase at this position leading to 

increased power dissipation at this spot possibly resulting in local damage of the APD 

area."
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The areas for the SLIK and RTS APDs were measured to be 0.238 and 1.692 mm2

uniformity of the APD surface was defined by the ratio of the standard deviation to the 

mean of the responsivity along the surface. The non-uniformity was measured to be 

14.9% and 6.1% for the SLIK and RTS APD, respectively, which indicates that this 

particular RTS device is more uniform relative to the SLDC APD.

3.6. Noise measurement

The APD noise measurements were performed using a spectrum analyzer with a one 

Hz normalized spectrum at 10 kHz. Appropriate care was taken to insure that the detector 

dark current was the dominant noise source. The measured power spectral noise, n (in 

dBm), was converted to the APD noise current spectral density, I„, by the equation

where Rl is a 50 Q APD load resistance. Table 3.1 gives the noise current spectral

The NEP for both SLIK and RTS APDs is shown in Figure 3.12. The SLIK structure 

shows a lower noise than the RTS. This might be due to the smaller detector area; thus, 

the figure-of-merit (D*) was obtained for the tested detector at its responsivity calibration 

bias voltage and temperature using the relation25'27-58

which is close to the manufacturer values of 0.25 and 1.5 mm2, respectively. The non-

(3.12)

density. The noise equivalent power (NEP) was obtained using the relation24"47

(3.13)

(3-14)
NEP
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This confirmed the fact that the SLIK structure has lower noise at shorter wavelengths up 

to about 950 nm. The results of this experiment are very important since it directly 

indicates that the SLIK would be the best detector for the water vapor DIAL detection

system based on its lower noise.47

Table 3.1 APD noise measurement results.
APD X I. NEP D’

Nm A/Hz172 fW/Hzw cmHzl/2/W
720 1.8 2.77xl013

C30649E 820 2.3xl0'13 1.7 2.90xl013
940 3.1 l.57xl013
720 28.0 4.75xl012

C30955E2 820 l.7 x l0 12 22.2 5.99xl012
940 19.4 6.84xl012

x 10
■*70

* NEP for SUK APD 
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x Figurfrol-memforSUKAPOO 
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Figure 3.12 SLIK and RTS APD structures noise-equivalent-power and 
figure-of-merit measurements as a function of wavelength obtained 

with rated bias voltage at room temperature.
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3.7. Frequency response

This experiment required the investigation of the responsivity variation of the SUK 

APD with respect to the frequency o f the input signal and to determine its cutoff 

frequency. This was done to check the manufacturer stated bandwidth and compare this 

bandwidth to the whole system bandwidth according to the Nyquist criterion.51 APDs 

have a very wide bandwidth in the order of giga-hertz, but due to the existence of the TIA 

in the APD package, the frequency response will be limited by the internal amplifier 

bandwidth which will be on the order of tens mega-hertz.24'27,39'40

The experimental setup of Figure 3.1 was modified for the APD frequency response 

and shown in Figure 3.13. It consists of a 720-nm laser diode controlled by a pulse 

generator. The power supply is used to bias the laser diode driver circuit consisting of a 

buffer amplifier and a voltage-to-current converter. The output laser beam was split in 

order to apply part of the optical signal to the reference detector while the other part was 

applied to the test APD. The reference detector bandwidth was used to measure the input 

signal applied to the APD under test. Next, the output of both detectors was measured by 

a digital oscilloscope and a spectrum analyzer. The function of the oscilloscope was to 

check the magnitude of the output signal while the spectrum analyzer measured the 

frequency spectrum. When necessary, a neutral density filter was used to reduce the light 

intensity to avoid saturating the test APD. The electronic high pass filter was used to 

eliminate dc offsets in the detector output.22

Using the setup discussed above and after aligning the optics, we set the APD bias 

voltage to its manufacturer specified value at room temperature. Then, we applied an 

optical signal to the detectors after choosing a suitable neutral density filter and checked
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their output using the oscilloscope. Next, setting the frequency of the input optical signal 

to a certain value fj, by using the pulse generator the amplitude of the fundamental 

frequency components of the APD input and the output signals, Rj and Q  respectively, 

are recorded in dBm using the spectrum analyzer. This corresponds to one data point in 

the frequency domain. By changing the frequency setting of the pulse generator and 

repeating the same procedures, we obtained the complete frequency scan starting from 

100 kHz to 1 MHz, with frequency increments of 100 kHz for frequencies lower than 1 

MHz, and a 1-MHz step for frequencies up to 20 MHz. The spectrum analyzer was set to 

a frequency range from 50 kHz to 20 MHz with each data point averaged 30 times.
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Figure 3.13 Frequency response experimental setup.

After collecting the data in the frequency range of interest, the analysis was done 

using MATLAB.61 First, the data was stored in three vectors, {f}, {C} and {R},
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equivalent to the frequency increments and the corresponding outputs and inputs. Then, 

the gain vector {G}, in dBm, was calculated for each frequency setting from

G, = C 8 - R j .  (3.15)

The gain-frequency relation was obtained by applying a polynomial curve fit to the gain 

vector with respect to the frequency vector. By plotting this relation, we can obtain the 

cut-off frequency from the intersection between the curve and the -3dB line drawn from 

the low frequency gain.

The previous experiment was used to obtain the frequency response for the SLIK 

APD as mentioned above. The actual data and the curve fit of the frequency response are 

shown in Figure 3.14. The measured cutoff frequency was 12.75 MHz which is close to 

the manufacturer value (12 MHz).

3.8. Avalanche photodiode selection results

A group of APDs were characterized in order to chose a suitable detector for the 

new water vapor DIAL detection system. The characterization focused on two main APD 

structures, the reach through structure which is currently used in the LASE detection 

system and the newer SLIK structure. The SLDC structure APD showed better 

performance due to its lower noise, which will lead to an increase in the signal-to-noise 

ratio of the detection system by at least a factor of 10 over the current system.17 The 

EG&G SLIK APD package C30649E was selected because of the following advantages:

• Built-in, low noise, trans-impedance amplifier.

•  Built-in thermoelectric cooler and thermistor for APD temperature control.
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• The trans-impedance amplifier feedback resistance is cooled along with the 

detector, reducing the Johnson noise.

•25 -

8c
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■48

-50

Frequency In Hz

(a) (b)

3
s
I

16 -

14

Frequency in Hz

(C)

Figure 3.14 SLIK APD (a) input and (b) output variation with frequency and (c) 
frequency response obtained at 336V bias and 23 °C temperature.

A drawback in the selected APD arises from its small area (0.24 mm2) compared to 

the LASE APD (1.7 mm2) which might produce alignment difficulties. However, its 

lower noise strongly recommends it for the development of the new system.
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CHAPTER IV

DETECTION SYSTEM DESIGN 
AND LABORATORY PERFORMANCE

The main goal of this research effort is to increase the signal-to-noise ratio (SNR) of 

the water vapor DIAL detection system by a significant factor compared to the LASE 

instrument.718 Also, it is required to design the system to a compact size suitable for 

mounting directly on the receiver telescope with output data compatible with a simple 

computer interface. In this chapter, the design details of the water vapor DIAL detection 

system will be discussed, as well as its laboratory performance.18'20'62

4.1. Detection system design

A block diagram of the new water vapor DIAL detection system is shown in Figure

1.2. The APD detected light signal is applied to the analog circuit shown in the block 

diagram of Figure 4.1. The analog circuit is designed to control the operation of the APD 

package and to condition its output signal in preparation for the 14-bit digitizer.

The laser return signal is focused onto the 0.5-mm diameter APD sensitive area. 

The APD output signal is applied to the signal conditioning stage, which consists of three 

substages. In DIAL applications, the transmitted laser pulses might hit a large amount of 

water vapor or aerosol layer, such as clouds, resulting in high levels of backscattered light 

which could overload the system. These overload signals are a major problem since they 

saturate the detector and cause “hanging” of the digitizer, which leads to loss of some 

data words. The clipping circuit is used to protect the digitizer by clipping these overload
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signals to a predefined level. For normal signals the clipping circuit acts as a voltage- 

follower amplifier. The APD overload is prevented using a current limiting resistor R as 

shown in Figure 4 .1.62

High Voltage 
Bias Cuircuit Controller

Signal Conditioning Stage

SummerClipping
CircuitAPD Bessell Filter

O ptical
Signal

Detected  i 
Signal *

Analog
SignalBuffer Amplifier

Dither Input

Temperature
Conroller

Marker Input

Figure 4.1 Block diagram of the analog circuit.

Following this stage is a summer and buffer amplifier, designed to provide an 

additional gain to the detected signal in order to achieve a 2-V maximum peak-to-peak 

value which is compatible with the digitizer maximum input range. Also, it adds a marker 

and dither signals to the detected signal. The marker signal is used to mark the beginning 

of the useful data, while the dither is used to add a low level sinusoidal signal for better 

digitization performance.18-62

Finally, the signal is applied to a Bessell filter, with a 2.5-MHz cutoff frequency. 

This filter limits the system bandwidth in order to reduce the high frequency noise and 

restrict the signal frequency with respect to the digitizing frequency according to the 

Nyquist criterion.39-51
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Since the APD responsivity is a strong function of its voltage bias and temperature, 

two proportional integral (PI) controllers were used. The first is a voltage controller 

which can be adjusted manually to apply a constant bias to the APD. The second is a 

temperature controller with a fixed set point. This controller is used to cool the detector 

with respect to the ambient temperature.68

The output, detected signal from the analog circuit is applied to the digital circuit. 

The digital circuit was designed mainly to operate as a waveform digitizer but also 

performs some simple data processing such as averaging DIAL lidar return signals 

(hardware averaging) and monitoring the detection system performance. Figure 4.2 shows 

a block diagram of the main components of the digital circuit. The 14-bit, 10-MHz 

analog-to-digital converter (ADC) is used to convert the analog lidar signal from the 

detector to a digital format. The dual-port RAM is used for temporary data storage and it 

also isolates the 10-MHz digitizer frequency from the 16-MHz microcontroller 

frequency.19'20-62

Clock Input Trigger Input

16 Bit 8 Bit
t6 BitU B il

Analog
Signal To Computer 

Interface16 Bit 8 Bit

2x» Ml, 8k
FIFO

16 Bit, 16k 
Dual Port 

Sialic RAM

16 Bit, 16 MHz14 Bit, 10 MHz 
Analog to Digital 

Convartar

Figure 4.2 Block diagram of the digital circuit.

Approximately 400 ps before the DIAL laser fires, a trigger pulse is generated and 

is used as a precursor that informs other systems that the laser is about to fire. This pulse 

is sensed by the microcontroller and acts to synchronize the detection system with the
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laser transmitter. A 10-Hz maximum laser firing frequency is assumed in this design, 

although a higher repetition rate could be accommodated. Also, the microcontroller will 

be used for on-line data averaging and house keeping.20

Finally, the first-in-first-out (FIFO) memory is used to output the final data to the 

recording system. Again, the FIFO separates the 16-MHz microcontroller operating 

frequency from the output data transfer rate which is dependent on the computer 

interface. The computer interface used with the detection system was a parallel input- 

output interface with a maximum of 20 MSPS data transfer rate. This interface is fully 

controllable by C** software. The final data is stored in an output file which is accessible 

with any other software package.

4.1.1. Analog circuit

The signal conditioning stage is the most critical stage in the whole detection 

system since any noise contribution from this stage to the detected signal will directly 

affect the useful data. Figure 4.3 shows the circuit diagram of this stage. In the text the 

various components of the system are referred to by their letter designation. Details of 

circuit schematics are given in Appendix B, and the component listing is given in 

Appendix C. Operational amplifier U7 is a clipping op amp which operates as a voltage 

follower for the detected signal provided that the signal lies within the clipping limits. 

The upper clipping limit is set to 2.5 V using R24 and R25. This limit is chosen only for 

the op amp stability and has no influence on the output since the detected signal coming 

from the APD package is always negative with a maximum theoretical value of zero. The 

lower clipping limit is set by a -1 .5  V reference voltage (Appendix B). Resistor R26 acts
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as the load resistance for the op amp as recommended by the manufacturer. The output of 

the clipping op amp is then applied to U8 which is a gain and summer amplifier. Using 

this op amp the signal gain is set to 3 using R27 and R26. Another gain of 0.5 is applied 

to the signal using the R30 and R31 voltage divider, leading to a total end-to-end gain of 

1.5 which was chosen so that the maximum APD output fit the maximum digitizer limit. 

This voltage divider is used for termination according to the maximum power transfer 

condition of Thevenin’s theorem.51 The summation of the marker and the dither inputs to 

the detected signal is obtained using R28 and R29, respectively.40,52,63-64

R»
too

R2S R23
140

R29100

R30
U9

QUO

•SV

•5V

JP3

rat

ret

Figure 4.3 Circuit diagram of the signal conditioning stage.

The final output is then filtered using U9 which is a 3 pole, 2.5-MHz, low-pass 

Bessell filter. The Bessell filter was selected due to its excellent performance regarding
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the phase shift for real time data. In order to check the output signal from this stage, the 

voltage across R31 can be accessed using an external connector. Also, this connector can 

be used to inject an external voltage to the digitizer according to the JP3 and JP4 jumper

settings.65

Figure 4.4 shows the circuit diagram of the APD high voltage bias controller. The 

APD voltage bias is supplied from U4, a high voltage module. The control of the high 

voltage was obtained using U3, a dual op amp chip, with one op amp acting as the 

proportional controller set to a gain of 4 using R3 and R4 and the other as the integral 

controller set to an RC time constant of 0.04 s using R5 and CS. Diode DL is used to 

ensure positive control voltage to U4. Potentiometer R7 is used to set the APD high 

voltage between 292 and 365 V. The output high voltage is applied to a low-pass filter 

formed by R8 and C8 to eliminate any bias ripples. In addition, R8 limits the APD current 

for overload protection, and C9 supplies it with instantaneous in-rush current. A potential 

divider formed by R9 through R13 is used as the voltage feedback to the controller. 

Voltage monitoring is obtained after the proportional controller with a voltage reading 

V b m  related to the high voltage bias V b i a s  by the equation66,67,51

Vbm = ^ 1 - 2 0 .  (4.1)
BM 14.91

The APD package was supplied from the manufacturer with a built in TEC cooler 

and a thermistor. The temperature status of the detector is sensed by the thermistor by 

placing it in an arm of a Wheatstone bridge formed by R15, R16, R17 and RI8, as shown
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200k
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200k
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AO706R7
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1N4148

•12V
R12
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R11
2.55M

RIO
2.SSM 255M

R13
22k

Figure 4.4 APD voltage bias controller circuit diagram.

in the circuit diagram of Figure 4.5. The value of RI8 determines the balance condition of 

the bridge therefore setting the detector temperature. Since the thermistor resistance Rt is

given by,49

39̂oT  ---------

R T =104 -e '-™ T 29

and the bridge balance condition is'51

R15 R t = 1
R16 R17 + R18

Therefore, the temperature setting, in Kelvin, will be given by

T =

In
^R18 + 33xlOn

104
3940 298

-i

(4.2)

(4.3)

(4.4)

Equation (4.4) indicates that the minimum temperature setting is selected by R17 (33 k£) 

and is equal to 0.3 °C with R18 short-circuited. Temperatures lower than this value 

usually cause problems due to condensation of water vapor on the detector window.
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Zener diode D2 is used to supply the bridge by its zener voltage Vz equal to 5.1 V. The 

zener current limit is set by R14.53

M  +12V

C10
1uF

R14

 »  THERMISTOR 1

 »  THERMISTOR 2R15
33k

R32
2.5.10W

1N751 R17
33k

USA
A0706 R20

10kR16
33k TIP110

R18
TBO

-»TECUSB 
AD 706

Figure 4.5 APD temperature controller circuit diagram.

The bridge balance is sensed by an instrumentation amplifier formed by the dual op 

amp U5,52 with one op amp acting as a voltage follower for the temperature monitor and 

the other acting as both the proportional integral controller with RC time constant of 0.02 

s set by R 19 and CIO. The controller output is applied to a potentiometer R20 to set the 

TEC current by controlling the collector emitter current of the Darlington transistor Q l.68 

Resistor R32 is a 10 W resistor used to set the maximum TEC current to 2 A according to 

its manufacturer specification. The temperature monitor voltage reading Vtm will be 

given in terms of the zener voltage by53

V = __ R17 + R18 y  (4 5)
™ R17 + R18 + R T z '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

After starting the circuit when the detector temperature reaches its steady state value the 

monitor voltage will be simply given by

This voltage can be read directly using an output connector to indicate the temperature 

stability of the APD.53

Referring to Figure 4.3, the conditioned analog signal “SIGNAL” will be applied to 

the digitizer, provided that both jumpers are shorted. A high input impedance instrument, 

such as an oscilloscope, can access this signal using the “CHECK” terminal.

4.1.2. Digital circuit

The conditioned analog signal was applied to a 14-bit, 10-MHz ADC, as shown in 

the block diagram of Figure 4.6. The input digitizer range was set to be from 0 to 2 V. 

Therefore, the maximum allowable output signal from the detector package is given by

2 x  ADC Upper Limit . 2 x j .  = . u 3 v  (47)
Signal Conditioning Gain - 3

while the clipping op amp U7 lower limit was set to -1 .5  V. This was done to insure the 

linearity of the signal conditioning stage by avoiding the non-linear knee between the 

linear and clip regions in the op amp input-output characteristics.

A 10-MHz clock signal was externally applied to the ADC. Therefore, it 

continuously digitizes the analog signal during each clock cycle. The digitized data was 

buffered and stored in a certain memory location in a 16-bit, 16 k, dual-port RAM. The 

data storage location or address was set by a 13-bit counter formed by cascading three 4- 

bit binary counters and a JK flip flop. The counter and the RAM share the same 10-MHz

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

clock in order to synchronize them with the ADC. Connecting the most significant bit 

(MSB) of the left RAM address to the supply enables the counter only to access its upper 

half while the lower half of the RAM is kept for data averaging proposes. Thus, the 

maximum real time window for the digitized data can be obtained by

Storage Space _  16x1024/2 
Clock Frequency lOx 106

Data Time Window = S  , l  = - - -  " H  = 8 19-2 Usee (4.8)

which is enough to record both the on and off line DIAL laser signal returns.

13 Bit Countar
LOAD

CLK

ENABLE

Clock input

ADC

Clear Counter 

Start Counter 

End of count

113 BIT Laft RAM

Buffar
CLK

OTR

BIT 1-12

12 BIT

AO-12

1/00-12

13 BIT

Figure 4.6 Block diagram of the data collect and store circuit.

The counter operation is controlled by the microcontroller. At the beginning of the 

circuit operation, the microcontroller sends a clear signal to the counter resetting its 

output to the left address 2000H equivalent to the right address COOOH which is the first 

storage location in the RAM, as shown in Figure 4.7. The ADC output will be 

continuously stored in this location until the trigger signal is received.
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FFFFH
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1FFFH
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BFFFH
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6000H

NOT USED
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4000H

Internal Program 
Storage EPROM

3FFFH

2080H

NOT USED

Register File
OOFFH
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Figure 4.7 System memory map.

When the microcontroller senses the trigger signal, it sends a start count or “counter 

enable” signal to the counter causing it to address successive memory locations in the 

RAM in order to store the useful data. After scanning half the memory, when the counter 

reaches its maximum count of 1FFFH, which is equivalent to memory in the address of 

3FFFH, an “end-of-count” signal will be sent back to the microcontroller indicating the 

end of the time window record. Therefore, the useful data will be available to the 

microcontroller in the address range from C000H to FFFFH, as shown in the memory 

map in Figure 4.7.69'73
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The 16-MHz, 87C196KB-16 microcontroller is shown in the block diagram of 

Figure 4.8. The memory map o f the microcontroller and the RAM is shown in Figure 4.7. 

The microcontroller address and data are shared on the same bus using address latching. 

The microcontroller address is decoded to access the right address o f the RAM, a FIFO 

and a dip switch. The memory section, starting with the nibble 7, is reserved to access the 

FIFO as will be discussed in the output stage. While the memory section, starting with the 

nibble 6, was reserved for the control word, set by on-board 8-bit dip switches SI, the 

“not used” address range from 4000H to 5FFFH can be used for system upgrades to the 

87C196KC microcontroller.74"78

After storing the ADC data in the RAM, the counter sends an “end-of-count” signal 

to the microcontroller. The microcontroller starts to transfer and add the data from the 

upper half of the RAM to its lower half for averaging. At the end of each averaging cycle, 

the data will be transferred to the FIFO which is waiting to transfer data to the reading 

device. The dip-switch output is buffered and was used to give the microcontroller a 

control word to indicate the averaging times required with a maximum of 4 averages. 

Also, it indicates the record length which could be 1, 2, 4 or 8 k words corresponding to 

102.4, 204.8, 409.6 or 819.2 ps, respectively. (In case of record length less than 8k, the 

ADC data will still be stored in 8k and the first 4k, 2k or lk  will be considered and the 

rest of the data will be neglected.)62

One advantage of the selected microcontroller is its built-in 8 channel 10-bit ADC, 

two channels of which are reserved for the detector bias voltage and temperature monitor 

readings.75'76
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13 BIT
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Control Word
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Figure 4.8 Microcontroller connection block diagram.

Figure 4.9 shows the block diagram of the output stage of the digital circuit. The 

FIFO is formed by a parallel connection of two 8-k, 9-bit FIFO’s memories to form an 

18-bit word to handle the 16-bit data.77 The output data was buffered and applied to four 

4-channel, TTL-compatibie optical isolators. These isolators are used to isolate the circuit 

and the reading device grounds.79 Finally, the data was read using a SCXI connector. The 

FIFO write and reset operations are controlled by the microcontroller, while the FIFO 

read is controlled by the reading device.80 In order to check the correct sequence of data 

handling, the empty flags of both FIFOs are read by the microcontroller. Any unequal 

state of these flags indicates a FIFO failure or data crash.

After the microcontroller sends the complete data set to the FIFO, it sends a “FIFO 

ready” signal to the reading device to synchronize it with the system. Both the FIFO ready 

and FIFO read signals are also optically isolated by U37 which are opto-couplers with 

dual separate channels, once again to separate the grounds to minimize noise pick up.
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Finally, the microcontroller controls the FIFO reset signal in order to reset the FIFO 

before the first writing operation.62

Microcontrolter FIFO Buffer Isolation

16 BITI6BIT 16 BIT

Port 1 0

Figure 4.9 Block diagram of the output stage.

4.2. Detection system settings

This detection system was built on one 312-gm, 15x9 cm2 printed circuit board 

using surface-mount technology. This was very challenging because of the sensitivity of 

the different elements to the board layout, since analog signals were subjected to different 

noise pick-up sources from the high switching frequency digital signals. The board layout 

was carefully designed to separate the analog and digital circuits on the two board sides 

with ground isolation between them. The whole detection system is optically isolated 

from any external instrument such as the clock generator, trigger input and computer. The 

only electrical connection between the detection system and any external device will be 

through the power supplies that had proper filtering and isolating the power grounds from 

the circuit grounds. The calculated power consumption of the card is 21.1 W (see 

Appendix Q . 18*20-62
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4.2.1. Microcontroller program

Figure 4.10 shows the flowchart of the microcontroller program. After switching on 

the power supplies, the start sequence begins by resetting the microcontroller chip and 

configuring its port, as shown in Figure 4.11. Port I is used for the counter and FIFO 

control and monitoring, while port 2 is used for sensing the trigger input and serial 

communication if used.74

The microcontroller then reads the control word from the dip switch for averaging 

and record length settings, as shown in Figure 4.12. Then, it starts an infinite loop by 

clearing the counter in order to address the first data storage location in the RAM (2000H 

as shown in Figure 4.7). The microcontroller then enters a waiting loop for the trigger 

input. This trigger comes from the lidar transmitting system. If the trigger signal is 

sensed, the microcontroller starts the counter in order to store the output digitized data 

from the ADC. During this time, the microcontroller waits for the “end-of-count” signal 

from the counter.

If the microcontroller sensed the end of count signal, indicating the storage of the 

useful data, it starts transferring the data. The amount o f the transferred data is 1 ,2 ,4  or 8 

k words depending on the record length setting. If averaging was not used, the data will 

be transferred directly to the FIFO, and the data ready signal will be transmitted to the 

reading device. The sequence will be repeated in the next cycle. If averaging was used, 

the data will be transferred to the averaging memory locations as indicated in Figure 4.7; 

then, the cycle will be repeated to acquire additional data to be added to the previous data. 

After completing the number of averages, the final averaged data will be sent to the FIFO, 

and a ready signal will be transmitted to the reading device and the sequence repeated.
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Figure 4.10 Howchart of the microcontroller program.

Input /  Output Port 1_______________

TTTTTTTT
CC CE EOC UOEF U E E

RF Reset FIFO
FR : FIFO is Ready
LBEF Lower Byte Empty Flag
UBEF Upper Byte Empty Flag
EOC : End Of Counting
CE Counter Enable
CC : Clear Counter

Input/Output Port 2

TTTTTTTT
mo *o si

SI : Serial Communication Input 
SO : Serial Communication Output 
TRG : Trigger Signal

Figure 4.11 Microcontroller ports 1 and 2 configuration.
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Figure 4.12 Dip switch configuration.

4.2.2. Data acquisition card

The final data stored in the FIFO is transferred to a personal computer using the 

PCI-DIO-32HS parallel input-output data acquisition card manufactured by National 

Instruments, Inc.80 The PCI-DIO-32HS is the state-of-the-art input-output data acquisition 

card which can be software configured using C** language and can acquire data with up 

to a 20-MHz data transfer rate.81 The flowchart of the card program is shown in Figure 

4.13 while the card connection to detection system is shown in Figure 4.14.

The card waits for the microcontroller data ready signal which is sensed by an 

acknowledge pin (ACK). If this signal is set, the card will start a pattern of data request 

signals (REQ) which will be used to read the FIFO using two parallel ports. This data set 

will be stored in a vector. Successive data sets will be added to this vector according to 

the number of the software averaging setting. The final averaged data is stored in an 

output file representing the DIAL detected signal.
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Figure 4.13 Flowchart of the PCI-DIO-32HS data acquisition card.
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Figure 4.14 PCI-DIO-32HS data acquisition card connection to the detection system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

The whole system operation is summarized in the data flow diagram of Figure 4.15. 

The limitations of the averaging time T a, transfer to FIFO time, T f, and the external 

transfer time, Te, are given in table 4.1.

Trigger

ISignal Processing Data Transfer

Digitization

819.2)is

Averaging

Transfer to FIFO External Transfer

L----------Tf — J I----------TE ---------- J

Figure 4.15 Detection system data flow diagram.

Table 4.1 Timing intervals for different record lengths.
Record Length Ta Tr Te Laser Frequency

k word \ts Ms ms ms Hz (maximum)
1 k 102.4 10.3 11 0.6 90.1
2k 204.8 20.5 22 1.2 45
4k 409.6 41 44 2.5 22.5
8k 819.2 82 88 4.9 11.3

4.3. Laboratory performance testing

The laboratory performance testing was performed on the individual circuits and for 

the whole system. The setup of the detection system performance testing is shown in 

Figure 4.16. The DIAL return signal was simulated using a 788-nm wavelength laser 

diode. A diffuser and neutral density filter (NDF) with variable settings were used to
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condition the optical signal in terms of uniformity and intensity. The check point was 

used to either observe the analog circuit output or to inject an external signal to the digital

circuit.

Oscilloscope Powsr Supply

! S  I 1OO O I 1

0 0 0 0

CLK

Pulse Generator
TRG r*\

0000 H  -

Pulse Generator

o o o o 0

DIAL
Detection
System

Delay

o rzi
1 i ii i \

Check m BM
<

Laser
Diode

APD I H -«
NDF Diffuser

Data ^ PCI-DIO-32HS
Interface r■a —

Personal

Optical 
'  Axla

Pulse Generator

Figure 4.16 Experimental setup for detection system laboratory performance testing.

4.3.1. Temperature and bias voltage controllers performance

The APD temperature was set to 0.3 °C by setting R18 equal to zero. For an initial 

APD temperature of 23.6 °C, Figure 4.17 shows the transient response of the APD 

temperature monitor voltage Vjm, the thermistor resistance, the APD temperature and the 

TEC current. The rise time is approximately 5 s, and the 5-percent settling time is 

approximately 50 s with about 2 °C of overshoot. The steady-state temperature was 

0.3+0.3 °C. The temperature measurement is obtained by converting the temperature 

monitor voltage to a thermistor resistance according to equation (4.5), and then this is
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further converted into temperature according to equation (4.4). From Figure 4.17a and c, 

it is interesting to note a linear relationship between the APD temperature, T, and the 

temperature monitor voltage, Vtm over a 30 °C operating range which is approximated by 

T = 17.2-V ™ -4 3 .6 . (4.9)
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Figure 4.17 APD temperature controller response (a) temperature monitor, (b) thermistor 
resistance variation, (c) temperature variation and (d) TEC current.

Figure 4.l7d shows a steady-state TEC current of approximately 0.35 A which 

corresponds to a steady state TEC input power of 174 mW. For successful temperature
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controller operation, the maximum ambient temperature is 27 °C. Since the controller was 

designed to cool the detector, the minimum ambient temperature is theoretically equal to 

the controller temperature setting.53

The APD voltage bias controller was set to produce a bias voltage of 336 V. This 

value was chosen to avoid breakdown at low operating temperature. Figure 4.18 shows 

the tum-on transients APD voltage bias monitor and its bias voltage obtained using 

equation (4.1). The measured steady state bias is 336.6±0.6 V with a settling time of 1.3 s 

and rise time of 75 ms with an undershoot of 297.4 V.
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(a) Bias voltage monitor transient (b) APD bias voltage transient

Figure 4.18 APD voltage bias monitor and bias voltage transients.

4.3.2. Signal conditioning circuit performance

In order to evaluate the signal conditioning stage gain, the APD output was replaced 

by a calibrated voltage input, and the output was then measured. Figure 4.19 shows the 

normalized gain versus the input voltage. The mean gain along the input range of the 

signal conditioning stage was measured to be 1.52 with 0.2 % standard deviation. The
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clipping action of this stage is clear and starts at an input signal of 1.33 V corresponding 

to an output of 1.99 V which is compatible with the ADC. The frequency response of the 

signal conditioning stage is shown in Figure 4.20. This was measured by applying a 

known sinusoidal input and measuring the change in the amplitude and phase due to the 

change in the frequency. The input frequency was varied from 1 kHz to 3 MHz. The 

cutoff frequency at -3 dB is 2.4 MHz which is compatible with the digitization frequency 

of 10 MHz.82
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Figure 4.19 Signal conditioning stage normalized gain versus input voltage.

Figure 4.21 shows the APD and the signal conditioning stage noise spectrum 

obtained with no input (dark conditions) using a spectrum analyzer with 400 averages. 

This measurement suggested the use of batteries instead of power supplies to eliminate 

the power frequency harmonics noise pickup shown in the figure. The battery operation
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spectrum shows the 1/f noise with a knee at 3 kHz. Pickup noise at the fundamental 

power frequency is clear from the figure and can be eliminated by proper shielding in the 

final packaging. The average integrated noise was found to be 150 nV/Hz1/2 in the 

operating frequency range which indicates that the APD noise contribution is the 

dominant source. Considering the 2.5 MHz system bandwidth and the APD responsivity, 

this corresponds to a minimum detectable signal level of 1.5xl0's W/m2.
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Figure 4.20 Signal conditioning stage frequency response 
for the (a) gain and (b) phase shift.

4.3.3. Digitizer performance

Several operational tests were performed to check the operation of the digital 

circuit. These tests included the following:

• The microcontroller ability to access the dip-switch, RAM and FIFO.
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• The counter ability to address the RAM.

• The interface card ability to read the FIFO.
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Figure 4.21 APD and signal conditioning stage low frequency noise spectrum 
using (a) power supplies and (b) batteries.

In order to test the performance o f the whole digitizer circuit, a histogram test was 

applied to check for any missing codes. In the histogram test, a sine-wave is applied to the 

digitizer input with a non-coherent frequency with the sampling rate of the digitizer. The 

amplitudes of this signal must be selected slightly out of the digitizer range to insure the 

coverage of all possible codes. Several samples of the input signal were taken and the 

occurrence of every possible ADC output is counted.83 The selected sine-wave for this 

test had a 4.95-kHz frequency with 2.03 V peak-to-peak and 997.3 mV offset levels, 

shown in Figure 4.22a. The over and under range data shown in the figure insures that the 

input signal covers the whole digitizer range; therefore, all codes must be present in the
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histogram plot. The histogram plot is shown in Figure 4.22b for 500 cycles. The height of 

each point is proportional to the total number of times that code occurred. Missing codes 

would appear at zero height. Figure 4.22b indicates no missing codes.
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(b) Histogram plot

Figure 4.22 (a) Input sine-wave signal to the digitizer and (b) the histogram 
plot which indicates no missing codes.

4.3.4. Overall system performance

Testing of the whole detection system was performed in order to characterize its 

gain and SNR. The input optical signal was obtained from a 788-nm laser diode 

corresponding to an APD responsivity of 117.5 A/W at a bias voltage of 336 V and 0.3 °C 

operating temperature. The laser diode current and temperature were kept constant using 

a driver circuit and a temperature controller to stabilize its operation. Single-shot pulsed 

signals with 100 ps duration and variable intensities were obtained to measure the gain 

and SNR. Neutral density filters were used for changing the laser input intensity. Using 

the setup shown in Figure 4.16, the experimental intensity level was varied between a
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minimum of 8.5xl0'5 W/m2 to a maximum of 8.42xl0'2 W/m2 to insure the linearity of 

the system. Figure 4.23a shows the system output in counts versus the input light intensity 

which indicates a linear relation with a constant total gain of 183,960 counts/(W/m2) over 

the characterized range. Figure 4.23b shows the SNR versus the input laser intensity. The 

SNR was obtained by squaring the ratio of the detected pulse mean value to its standard 

deviation. A minimum SNR of 2.7 was obtained in this experiment.

15000 X10'

Gain = 183960 Counts/fW /m1

5  10000 '

CC
z(O

3- 5000

10
Intensity (W/m1)

(a) (b)

Figure 4.23 (a) System output in counts versus input light intensity obtained with no 
averaging at 788 nm and (b) the corresponding signal-to-noise ratio.

In order to determine the minimum measurement capabilities of the system, the 

lidar return signals were simulated in order to obtain the minimum water vapor detection 

capabilities of the system. To convert the lidar detected signals into a water vapor number 

density profile the DIAL equation is used which is given by

N(R) =
I

2 •AR•Act
In P o ffN -P o n (R ,)  

PqFf(Ri ) ■ PqN (R2)
(4.10)
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where N is the water vapor number density, AR is the range cell, Act is the differential 

absorption cross section and P on and P off are the DIAL on-line and off-line return 

signals, respectively. Ideally, if the on-line and off-line return signals are identical, the 

water vapor number density should be zero, as indicated in the above equation.

Applying this concept to the detection system, one can estimate the minimum 

detectable water vapor number density, which is determined by the system noise as 

shown in Figure 4.24. Therefore, the laser diode was configured to give two identical 

exponential decaying pulses with a 30 ^  time constant as shown in Figure 4.24a. The 

first pulse was to simulate the on-line return while the second pulse was to simulate the 

off-line pulse.

Figures 4.24b and c show the single shot water vapor number density obtained for 

the lower and upper troposphere, respectively, with no averaging. The DIAL calculations 

were performed using a range cell of 300 m and water vapor differential absorption cross 

section of lOxlO'24 cm2 and I50xl0'24 cm2 for the lower and upper troposphere, 

respectively, as specified by the LASE detection system. The DIAL calculation indicated 

a minimum detectable water vapor number density of 6 .7xl016 cm'3 for the lower 

troposphere and 4 .5xl015 cm'3 for the upper troposphere. These water vapor number 

densities are comparable to those for the LASE instrument which are 5 x l0 17 cm'3 and 

5 x l0 14 cm'3 for lower and upper troposphere, respectively, with 1000 shot averages. This 

indicates the improved water vapor detection capabilities of the new system by a factor of 

9 for the upper troposphere measurements.20
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Figure 4.24 (a) Simulated lidar return signals, (b) Water vapor number density noise 
floor for the lower troposphere and (c) for the upper troposphere.
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CHAPTER V 

THE LIDAR THEORY

In this chapter, the derivation of the backscattering lidar equation will be discussed. 

The modification of the equation to include the absorption and the geometry of the 

receiver system also will be given. Based on the backscattering-absorption lidar equation, 

the differential absorption lidar (DIAL) equation will be derived. Finally, application of 

the backscattering lidar equation for measuring aerosols will be discussed as well as the 

application of the DIAL equation for water vapor measurement.

5.1. The Lidar Equation

The scattering form of the lidar equation defines the received atmospheric 

backscattered laser power in terms of laser pulses propagated into the atmosphere and 

collected by the receiver that is located near the laser transmitter. The variation in the 

received intensity is used to determine the density profile of atmospheric molecules and 

aerosols as a function of the altitude.

Under the assumption of a pulsed lidar, the variation in the signal power AP(X,R) 

received by the detection system in the wavelength range (X,X+AX) from the range 

element (R,R+AR) is given by5

AP(X,R) = Ji(X ,R,r)-AX -AR-p(X ,R,r)dA (R,r), (5.1)

where J(X,R,r) is the laser-induced spectral radiance at wavelength X, at position r in the 

range R per unit range interval, p(X,R,r) is the probability that radiation of wavelength X
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scattered from position r at range R will be detected and dA(R,r) is the element of the 

target area at position r and range R.

The target spectral radiance J(A,R,r) depends on the nature o f the interaction 

between the laser radiation and the target medium. For elastic or inelastic scattering 

medium, J(X,R,r) will be given by5

j(X, R, r) = P ( \L, X, R, r) • l(R, r ) , (5.2)

where I(R,r) is the laser intensity at position r and range R and P(A.L,A,R,r) is the volume 

backscattering coefficient given by5

|3(XLX R ,r) = £ N ,(R ,r ) - j^ 2 !k ij  (5.3)

where N j(R ,r) is the number density of scatterer species i, {do(XL)/d&} is the differential 

scattering cross section under irradiation with laser radiation at wavelength XL and 3i(X ) 

is the fraction of the scattered radiation that falls into the wavelength interval (A,X+AA.). 

The probability p(A.,R,r) will be affected by several factors which are included in the

equation5

p(?i,R,r) = -^ -T (X ,R K (X )-5 (R ,r) , (5.4)

where Ao/R2 is the acceptance solid angle of the receiver optics with A<, being the area of 

the telescope mirror, T(A.,R) is the atmospheric transmission factor at wavelength A. over 

the range R, £(X) is the spectral transmission factor of the receiver which includes the 

effect of any spectral selecting elements such as filters and ^(R,r) is the overlap factor or 

the geometrical form factor defined as the probability of radiation from position r at the 

range R being detected based on geometrical considerations. In this section, £(R,r) will be
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assumed dependent only on the overlap area between the transmitted laser beam and the 

receiver telescope field of view. In sections 5.1.1 and 5.1.2, this term will be discussed in 

detail in terms of the receiver optics.

To evaluate the total power of the return signal collected by the receiver at the 

instance t (where t = 2R/c represents the time interval between the propagation of the 

laser pulse to the range R and the returned radiation to reach the receiver), equation (5.1) 

must be integrated with respect to both the received wavelength and the range R.The 

range integral is to account for the radiation reaching the receiver from any position along 

the path of the laser pulse from which scattering occurs. The wavelength integral is to 

consider the total receiver spectral window AX0 centered at A., which is usually defined by 

the optical filter. Therefore, equation (5.1) can be expressed in the form5

R=«/:
P(X,t)= jd R  JdA.j‘j(A .,R ,r)p(A ..R ,r)dA (R ,r). (5.5)

0 Aam

Substituting equations (5.2) and (5.4) into equation (5.5) yields:

P(A.,t)= A0 ] / ^ - J ^ ) - d > . J p ( X L,A.,R,r)-T(A.,R).4(R,r).l(R,r) dA(R,r)

(5.6)

The assumption that the observed radiation from the scattering medium is as narrow as 

that of the laser radiation and that both are much smaller than the receiver spectral 

window AA.0, suggest that both 3i(A.) and P can be treated as delta functions. Furthermore, 

assuming that the scattering medium is homogenous over the overlap between the field of 

view and the laser beam results in equation (5.6) being written in the form:
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R=ct/2 i p

P(X,t) = A0£(X) J  P(XL,X,R).T(XfR )~ J§ (R ,r).l(R ,r).dA (R ,r). (5.7)
0 ”

As mentioned above, the assumption that the probability £(R,r) is unity where the field of 

view of the receiver overlaps with the laser beam and zero elsewhere, and that the lateral 

distribution of the laser pulse is uniform over an area Al(R) at the range R, results in 

J^ (R ,r)-l(R ,r)d A (R ,r) = ^ (R )-l(R ).A L(R). (5.8)

Equation (5.7) can be written as

R=£>/- flD
p M = a „ $ . )  J  « x l.i , r ) .t M ) - $ ( r )- i(r )-a l(r )St . <5-9>

0 ”

For simplicity, assume that the temporal shape of the laser pulse is a rectangle of the

duration Tl. Then, the limits of the range integration of equation (5.9) are c(t-ti.)/2 to ct/2.

Furthermore, the range of interest is much larger than the pulse duration. Thus, the range

dependent parameters can be treated as constants over the small interval of the range

integration. Then, the total received power can be expressed by

P(X,t) = A0̂ ) - P ( > .L,X ,R )-T (X ,R )^(R )-[(R ).A L( R ) ^ ^ .  (5.10)
K

For a rectangular laser pulse of duration Tl, the intensity is given by

r ( p \ _  E l T ( ^ l > R )  / c  i , \

,(R )-  tlA l(R) ' (5-M)

where El is the output energy of the laser pulse and T(Xl,R) is the atmospheric 

transmission factor at the laser wavelength to range R. From the Beer-Lambert law, the 

transmission factors in equations (5.10) and (5.11) are given by
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T(XL,R ) = exp -Jic(XL,R)dR (5.12)

and

T(X,R) = exp! -  J ic(X,R)dR (5.13)

where k(Xl,R) and k(X,R) are the atmospheric attenuation coefficients at the laser and 

detected wavelengths, respectively. Combining equation (5.12) and (5.13) leads to the 

total atmospheric transmission factor

f  R

T(R) = T(X,R)-T(XL,R ) = exp -  J {k(X L, R ) + k(X, R )]dR (5.14)

The increment of radiation energy at wavelength X received by the detector during

the interval (t,t+td), where Td is the integration period for the detector, is given by

t a *2R/c

E(X,R) = JP(X,t)dt.
: r / c

(5.15)

combining equations (5.10), (5.11), (5.14) and (5.15) yields the scattered laser energy 

received within the detector’s response time, td:

E (X ,R )= E L5(A .)-T (R )-5 (R )|f-P (X L,A . .R ) ^ - .

This is known as the basic scattering lidar equation.

For more general laser pulse shape, the average radiation power is given by

p
L T ,

(5.16)

(5.17)

and equation (5.16) will be modified to
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P(X,R) = PL^ ^ )-4 (R )-P (X L,X ,R )^ .ex i|- |K (R )d R

where from equation (5.14) 

k(R) = k(A.l,R ) + k(X,R).

(5.18)

(5.19)

In the case of elastic (Mie or Rayleigh) scattering, the detected wavelength will be equal 

to the laser wavelength and will be given by

A„
P(X,R) = PL ^5(X).5(R).p(>.L, R ) ^ . e J  -2jK(2.L,R)dR (5.20)

Equation (5.18) is the scattering lidar equation, while equation (5.20) is a special case 

which is often used in the differential absorption lidar technique.

5.1.1. Receiver optics geometry

In the development of the scattering lidar equation the geometrical probability factor 

£(R,r) was assumed unity wherever the field of view of the receiver optics overlaps the 

laser beam and zero elsewhere. Also, the distribution of the laser intensity was assumed 

uniform across the target plane. These assumptions are practical for long range 

measurements. For short range measurements these factors must be considered.

A more general form of the laser intensity at the range R given in equation (5.11) is

l(R ,r.¥ ) = P^ R̂ F (R ,r,¥ ), (5.21)

where r is the radial displacement of the point of interest in the target plane from the 

telescope axis and \|r is the corresponding azimuth angle from a vertical plane passing 

through this axis. As shown in Figure 5.1, W(R) is the radius o f the laser pulse in the
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target plane, and F(R,r,\|t) is the distribution of the laser power over the target plane at the 

instant of interest. The Gaussian distribution is common in this case and therefore

F (R ,r,y) = exp
(  f  r- '

*> \

W(R)
(5.22)

where

r ‘ = (r: + d : - 2 r d c o s \ j f ) 'ii/i (5.23)

and d represent the separation of the laser beam and telescope axis. Assuming a TEMoo 

mode laser, the radius of the laser beam is given by

W(R) = (w ;+ 0 -R  (5.24)

where W0 is the laser output aperture radius and 6 is half of the laser divergence angle. 

Also, the radius of the field of view of the telescope at range R is given by

rx(R) = r0 +«t)R, (5.25)

where r0 is the effective radius of the telescope mirror and 0 is half of the field of view 

angle of the telescope.

W(R)

Target Plane

Telescope Axis

Figure 5.1 Geometry of the target plane at range R.
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Substituting equation (5.21) in equation (5.7) will yield the total scattered laser 

power received by the detection system in the temporal duration Tl and is given by

P (M  = PL5M r; " f  1 JS(R,r,v>)F(R.r.i)r) r dnl»|>.
R = c ( t-T L ) / :  w  \ K / K  r = o ^ = o

(5.26)

This equation can be further simplified considering that the range R is much greater than

the laser pulse length; therefore, the range dependent functions can be considered

constants in the small integration period. Thus, equation (5.26) can be written as

pM  = Pl ^ W £ P ( * . lA R ) - 3 ^ = < ?  W r , i |> )  F(R,r,v>) r drdv.
^  r=0 y=0

(5.27)

In this case, the telescope effective area can be defined as

A(R ) = - S 7 7 ^ x 1 (5.28)
TCW \R) r=0v=0

where A0 = 7tr02. Therefore, the scattering lidar equation (5.18) can be re-written as

P(A.,R)=PL^ |l5 (X )P (A .L,X ,R )2 !-ex p f-}K (R )llR  (5.29)

in which A(R) in equation (5.29) has replaced AJ;(R) in equation (5.18).

5.1.2. Geometrical form factor for simple overlap

Using equation (5.28), the definition of the geometrical form factor £(R) is given by

= I  ]W .< l< )  F(R.r,i),).r.drd<il. (5.30)
n w -(R ) ^
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Assuming a uniform intensity distribution over the area of illumination at the range R and 

considering a biaxial receiver system in which the laser axis is separated from the 

telescope optical axis by a distance d, the geometrical form factor can be taken as a 

simple overlap factor and can be written as

where A is the area overlap function. The separation between the laser and telescope axes 

in the target plane is

where do is the separation at the lidar receiver and 5 is the inclination angle between the 

laser and the telescope axes.

The area overlap function assumes three cases as indicated in Figure 5.2. The first 

(a) in which the telescope field of view does not overlap with the laser, the second (b) in 

which there will be a partial overlap and the third (c) will be for full overlap. Therefore, A 

will be given by5,84'85

d = d0 -R S , (5.32)

0

A = W :\|/w + rp y r -  rTdsin v
  i
7tT-p

d > rT + W 

|rT -  W| < d < rT + W , 

d < |rT -  W|

(5.33)

where

\|/w = cos (5.34)
2Wdv /

and

\|/r = cos -i (5.35)
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The situation of partial overlap is shown in Figure 5.3.

(b)(a)

Figure 5.2 The three possible cases for telescope field of view and laser overlap 
functions, (a) no overlap (b) partial overlap and (c) total overlap.

0"

L aser

Telescope

Figure 5.3 Geometry of the biaxial lidar illustrating the condition of partial overlap.

Introducing non-dimensional parameters as

z = — , A = - ^ - T D = — , p(z,0) = — = l-t-z<J>, s(z,5) = — = D - z 5 ,
ro W„ r0 r0 r0
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raM )= i?r  = {i+z2e 2A2}1/\  and y(z,Q,<l>)= v, ,
p-(z,«»A-W.

the overlap factor £(R) can be expressed by51,84-85

S(R) =
V w ( z ) + . 1

71 7ty(z)
¥ r(z ) - ^ r s in v r(z) 

P(z)
rT2(R )/W 2

d > rT + W 

|rT -  W| < d < rT + W , 

d < |rT -  w |

(5.36)

where

\j/w(z) = cos'
S2(z)+ y(z)p~ (z) — p 2 (z) 

2s(z)p(z)>/y(z]
(5.37)

and

\|/r(z) = cos'
s2(z )+ p 2(z)-y (z )p 2(z)

2s(z)p(z)
(5.38)

5.2. The DIAL Equation

Differential absorption lidar (DIAL) is a powerful technique to selectively measure 

the density of molecules in the atmosphere as a function of altitude. It involves using two 

laser pulses of slightly different wavelength. One is chosen to coincide with a strong 

absorption feature of the specific molecular o f interest and is known as the on-line 

wavelength XQn. The other is tuned to the side of the absorption feature where there is no 

absorption and is known as the off-line wavelength Xoff as illustrated in Figure 5.4.

The derivation of the DIAL measuring technique starts by considering the scattering 

lidar equation (5.20) and modifying the total attenuation coefficient K(X,R)to

k(X,R) = k (X,R)+N(R)o(X), (5.39)
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where k’(X,R) is the attenuation coefficient exclusive of the absorption contribution from 

the molecular of interest, N(R) is the number density of the molecular species at range R 

and o(X) is the absorption cross section at wavelength X. Therefore, applying the lidar 

equation (5.20) at both the on and off-line wavelength respectively, we get

-2 /W X „ ,R )+ N (R )o „ (X „)]d R
0

(5.40)

• R ) =  Pl . R ) ^ e * p |

(  R
- 2 / [ k(A .„,R )+N (R )o„ (> .„ )] i«

(5.41)

=  100 pm8O
&sA
<ueas>b4)
8
£

Wavelength

Figure 5.4 DIAL on-line and off-line wavelengths relative to water vapor absorption line.

Then, the ratio of the return signals at the two wavelengths is obtained by dividing 

equation (5.40) by (5.41) to obtain
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pf r - R) - cr.B
P f r „ .R )  P

-2jN(R)AodR (5.42)

where the difference between the on and off-line wavelengths is less than 0.1 nm. 

Therefore, one can assume that the receiver spectral transmission factor is independent of 

wavelength over this small interval and similarly for the volume backscattering 

coefficients and atmospheric attenuation coefficients. Also, the output laser power is 

assumed equal for both wavelengths, and Ao = (WOofr is the differential absorption cross 

section.

To evaluate the integration in equation (5.42), we use two successive ranges, R| and 

R: respectively, to obtain

Pfr„.R.)

Pfr.rr.Ri)
= expj -  2J* N(R)AodR

Pfr...R=) .

p f r  O f f .  R : )

= exp
R .

- 2 j , N(R)AadR

(5.43)

(5.44)

Therefore,

R ,

2Aa [N(R)dR = In (5.45)

The number density function can be assumed constant in the small interval AR=Ri-Ri 

which defines the range cell. Hence, we get

'Pfr„.R,)Pfr.ff.R!)'N(R) = — !— In 
v ' 2ActAR P ^ R j P ^ . R , )

(5.46)

Equation (5.46) is known as the differential absorption lidar or DIAL equation, and it is 

used to obtain the number density of a specific molecular species as a  function of range.
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5.3. Applied Lidar Measurement Technique

In a typical lidar system, the return scattered radiation is collected by the receiver 

telescope and then applied to a detector using focusing optics in order to convert the 

optical signal into an electric one. Furthermore, the electric signal is digitized and stored 

in digital form in a storage device. The stored data is available in the form of digitizer 

counts versus number of samples, as shown in Figure 5.5. Knowing the digitization 

frequency fs and considering the speed of light in air, the sample intervals can be 

transformed into altitude or range using the range cell Rc relation

loil-off point

C(i)
Rise time effectto

c3o
O

C(i+1)

C(i+2)

Background

Samples

Figure 5.5 Ideal lidar return signal as obtained from the digitizer output.

The roll-off from the peak count in the return signal defines the beginning of the 

useful data. The maximum altitude or range is obtained by considering the minimum 

count, which corresponds to the receiver system signal-to-noise ratio, after subtracting the 

signal background.
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5.3.1. Aerosol measurement

To measure the aerosol density as a function of altitude, the visible and infrared

04L
laser beams are used. These wavelengths are not absorbed but scattered by the 

molecular and aerosols species; thus, we can use the backscattering lidar equation (5.20). 

The atmospheric volume backscattering coefficient has the form of

P(Xl,R ) = P (R )= N (R )^ & 1 . (5.48)
471

To obtain the aerosol profile (relative measurements) equation (5.20) can be simplified to 

P(R) = (constant) • ’ 0 T, (5.49)

where the geometrical probability factor £(R) is considered unity for full overlap and O r 

is the optical thickness defined by the exponential term of equation (5.20) considering the 

atmospheric attenuation coefficients of scattering species87. Comparing the aerosol profile 

to the standard atmospheric number density N std(R )88. results in the aerosol scattering 

ratio expressed by

N (R )= N std(R )-N sr(R). (5.50)

Considering the digitizer gain Gd expressed in counts/(W/m2), the digitizer counts, Cd, 

can be converted to the return signal power and the aerosol scattering ratio can be

obtained by

NSR(R) = — r - i - d.(l)R (5.5D
G d (constant) O tN std(R)

and

R  = i ' T T - >  ( 5 - S 2 )
- ‘s
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where i is the sample number. To avoid the complexity of evaluating the constant term of 

equation (5.51), the scattering ratio is usually normalized to the standard atmospheric 

number density at a chosen altitude.

5.3.2. Water vapor measurement

Using the DIAL equation (5.46), the water vapor number density Nwv(R) can be 

obtained from the digitizer data according to

where Con and C0ff are the on- and off-line return signal in counts. In order to smooth the 

water vapor profile, averaging can be used for M data points where

i c„(i+0-c..(i)
2AOAR C0„(i)-C„(i + l)

(5.53)

and

(5.54)

M

SCO)
c (i) =

M
(5.55)

In this case, the range cell given in equation (5.47) will be modified to

(5.56)
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CHAPTER VI 

VALIDATION OF THE DETECTION SYSTEM

The validation of the new water vapor detection system is discussed in this chapter. 

The new detection system was connected to a telescope with focusing optics and filter to 

construct a lidar receiver system. This receiver system was used to measure the 

atmospheric return signals for relative aerosol and absolute water vapor density 

measurements as a function of altitude. The aerosol measurement was obtained 

simultaneously with NASA Langley Research Center ozone and aerosol DIAL system.6 84 

The water vapor measurement was obtained by using a telescope and a laser transmitter 

manufactured by Science and Engineering Services, Inc. (SESI).89'92 The measured water 

vapor profile was compared with profiles obtained from Dulls Airport and Wallops Island 

radiosondes.93

6.1. Receiver system setup

The new water vapor DIAL detection system was attached to a telescope and 

focusing optics in order to build a lidar receiver system. The receiver is compatible with 

radiation in the visible for aerosol measurement and near infrared region for water vapor 

density measurements. A schematic diagram of this receiver system used for both aerosol 

and water vapor measurements is shown in Figure 6.1.

Both 30.5 cm and 35.6 cm diameter telescopes were used to collect backscattered 

radiation for aerosol and water vapor measurements respectively. These telescopes had a 

Newtonian design with parabolic mirrors to focus the radiation and a flat mirror to turn
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the focus on an optical fiber. A mechanism was used to allow the telescope to move in 

two-dimension plane to focus the backscattered signal. The optical fiber had a I mm dia- 

silica core and a doped silica clad of 1.1-mm with a 0.28 numerical aperture. This optical 

fiber was custom designed by Cerme Optic, Inc. with an operating wavelength range of 

200 to 1200 nm. The use of the optical fiber eliminates the need to align the focusing 

optics with the telescope for compact receiver systems.

Figure 6.1 Water vapor DIAL detection system as a part of the receiver.

The focusing optics consists of a plano-convex lens LI, a narrow-band interference 

filter F and another plano-convex lens L2, as indicated in Figure 6.1. The filter was 

changed according to the wavelength of the transmitted laser. The output beam is aligned 

with the APD sensitive area using a three-dimension translation-stages mechanism to 

move the detection system. Assuming a Gaussian beam distribution and considering the 

diffraction effect, the light spot diameter at the focus dA containing 84% of the total 

energy (Airy disk diameter) is defined by

LI F

Detection
System

d A = 2.44 (6.1)
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where F and D are the focal length and the diameter o f the focusing lens L2. The focal 

spot diameter was checked for every operating conditions in order to insure that the APD 

sensitive area is not over-flown by the incoming light.

The alignment of the focusing optics with the APD sensitive surface was tested by 

simulating the lidar return using a stroboscope as a light source as shown in Figure 6.2. 

The telescope collects the reflected light signal from the ceiling and the focusing optics 

focuses the optical signal onto the APD. The trigger generator is used for synchronizing 

the detection system with the stroboscope optical signal. This was done by triggering both 

devices simultaneously with the delay unit used to adjust the collected signal in the 

digitizer time window. The alignment was obtained by moving the detection system in 

three-dimensions to give the optimum output signal from the detection system as shown 

in Figure 6.3.

Power
Supply

Poetising Optics

Clock

Detection
System

Stroboscope

Telescope

^  — aa

° G3

oooo

OOOO 0000
Delay Trigger Computer

Figure 6.2 Focusing optics alignment setup with the detection system.
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Figure 6.3 Detection system output corresponding to the best alignment.

6.2. Detection system validation with NASA airborne DIAL system

Simultaneous measurements of aerosol profiles were obtained using both the new 

detection system and the NASA Langley Research Center airborne DIAL system, as 

shown in Figure 6.4. The measurements were obtained during ground testing of the 

system carried out on October 7,1999.

Power
NASA Langley Research Center Airborne DIAL System  Supply

r
Focusing Optics

Data Acquisition 
System Detection

System

Laser
Transmitter

oooo
ClockDetector

System
Precursor Signal oo

Computer
Delay

Figure 6.4 Detection system validation setup with NASA Langley Research Center
airborne DIAL system.
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The NASA DIAL system consists of a laser transmitter, a receiver with a telescope 

and a data acquisition system. The DIAL system measured aerosol backscattered profiles 

at 598-, 622- and 1064-nm wavelengths. The visible wavelengths were compatible with 

the new detection system and were used to validate it. The visible wavelengths were 

separated by 300 (J.s with pulse energies of about 50 mJ for both wavelengths and a pulse 

duration of 15 ns. The laser fire frequency was 30 Hz while the receiver digitization rate 

was 1 MHz.

The new detection system was synchronized with the NASA DIAL system through 

the laser precursor signal which defines the time duration between the two laser pulses. 

This signal was applied to a delay stage, the output of which was used to trigger the new 

detection system. This delay was applied in order to adjust the backscattered return 

signals with the digitizer time window. The measured return signals from the new DIAL 

detection system are shown in Figure 6.5a and b for the 589- and 622-nm wavelengths 

respectively. The signals were obtained using 24 shot averages with 5-MHz digitization 

frequency applied using a separate clock generator. The digitization frequency was 

reduced in order to extend the time window to 1.64 ms. The 622-nm return signal shown 

in Figure 6.5 indicates an over-load which resulted in clipping of the return signal. As a 

result of the clipping stage, this over-load did not affect the measurement. This was 

indicated in Figure 6.6a which shows the aerosol profiles obtained from both systems 

compared to the atmospheric standard molecular density. The large aerosol return at 

lower altitude is due to the atmosphere boundary layer. The disagreement between the 

measurements at lower altitude may be due to the telescope misalignment in the near field 

region. Figure 6.6b shows similar profiles obtained at the-598 nm wavelength. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

aerosol profiles of the new detection system where calculated by applying equations 

(5.51) and (5.52) using a 300 m range cell.
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Figure 6.5 New detection system return signal obtained at (a) 598 nm and (b) 622 nm 
with 24 shot average and 5 MHz digitization frequency.
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Figure 6.6 Aerosol profiles obtained from the NASA DIAL system and 
the new detection system at (a) 622 nm and (b) 598 nm 

compared to the atmospheric standard molecular density.
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6.3. Water vapor DIAL detection system validation

Science and Engineering Services, Inc. of Burtonsville MD, has developed a 

compact diode-pumped CrtLiSAF tunable laser to be used as the transmitter for water 

vapor DIAL measurements from robotic aircraft. This system operates at 8I6-nm 

wavelength with a maximum laser pulse energy of 25 mJ and a repetition rate of 5 Hz.

The new water vapor DIAL detection system was used with this transmitter. The 

optical fiber cable and the focusing optics were used in conjunction with a 30 cm 

diameter telescope to form a coaxial DIAL transmitter-receiver system. On November 5, 

1999, this DIAL system was used to measure the atmospheric water vapor profile. The 

return signals for the on- and off-line are shown in Figure 6.7 for a 1000 shot average and 

10-MHz digitization frequency. The on- and off-line wavelengths are 815.3251 and 

815.3278, respectively, and the corresponding differential absorption cross-section is 

5x 1024 cm2. The laser energy was about 20 mJ per pulse. The water vapor profile was 

compared to profiles obtained from radiosonde data from both Dulles Airport near 

Washington, D.C., and NASA Wallops, Wallops Island VA, as given in tables 6.1 and 

6.2 respectively. Figure 6.8 shows the water vapor profiles from the radiosondes and the 

DIAL system obtained using a 600 m range cell. The water vapor mass mixing ratio, r, 

obtained from the radiosonde data where converted to number density, n, according to the 

relation

N a
n = - r r r p s . (6.2)

M

where NA is Avogadro’s number, M is the molecular weight of water which is equal to 18 

kg/kmole and ps is the air density. According to the ideal gas law, since the air density is
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a function of both temperature and pressure, its value was obtained as a function of 

altitude referring to the standard atmospheric data of the United States at zero altitude, 

where the air pressure, temperature and density are 1.01325X103 mBar, 288.15 K and

1.225 kg/m3 respectively.87

Counts vs Altitude
10'

On-line signal

200 400 600 800 1000 1200 1400 1600 1800
Altitude [1 sample = 30 m Alt]

Figure 6.7 On and off-line return signals.

Water Vapor # density from OLS & WLPS sondes
1800

1600

1400

1200

|  1000 ■

|  800 ■

<  600 •

400

200

-0.5 I 0.5 1 1.5
Water Vapor Number Density in partide/cm*3 x10'

3.5
.17

2.5
in

Figure 6.8 Water vapor profiles obtained from the new system and radiosondes.
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Table 6. L Du les Airport water vapor profile clata on November 5,1999 at 12:00 pm.
Altitude Temperature Pressure Density Water Vapor

M °C mBar kg/m3 gm/kg Cm’3
82 -2.3 1020 1.31193 2.89 1.3xl0n

242 9.2 1000 1.23382 1.55 6.4xl016
309 L3.8 992 1.20432 1.39 5.6xl016
893 9.2 925 1.14128 1.31 5.0xl016
1587 4.0 850 1.06842 1.00 3.6xl016

Table 6.2 Wa lops Island water vapor profile ata on November 5,1999 at 12:00 pm.
Altitude Temperature Pressure Density Water Vapor

M “C mBar kg/m3 gm/kg cm
16 8.6 1030 1.2735 4.81 2.0xl017
80 9.8 1022 1.2483 4.58 l.9x l016
195 13.8 1008 1.2237 2.38 9.7xl016
262 13.4 1000 1.2157 2.33 9.5xl016
664 11.0 953 1.1684 1.47 5.7xl016
911 9.2 925 1.1413 1.20 4.6xl016
1606 4.0 850 1.0684 0.71 2.5xl016

Figure 6.8 indicates a good agreement between the DIAL system and the radiosonde 

systems specially in the near-field. The deviation in the far-field might be due to the 

difference in measurement location and time. Therefore, the expected return signal had to 

be calculated using the lidar equation.

The measured return signals were compared to the expected return signal, calculated 

from the lidar equation (5.16). Both signals are shown in Figure 6.9. To obtain this 

profile, the geometrical form factor was considered for total overlap condition and was 

calculated using equation (5.36). The transmitted laser beam had a 2-mm diameter with 

I O'3 radian divergence angle and 3xlO'3 radian telescope field of view. The total 

atmospheric transmission factor was calculated considering the optical thickness and the 

standard atmospheric number density given in equations (5.49) and (5.50) respectively.
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Good agreement between the measured and calculated profiles, as shown in Figure 6.9, 

indicates the validity of the new DIAL detection system.
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9

8

7 Calculated return signal

6

5
Off-line return signal
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On-line return signal

0 500 1000 1500 2000
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Figure 6.9 Measured and calculated return signals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

CHAPTER VII 

CONCLUSIONS

In this dissertation, an advanced water vapor DIAL detection system was designed, 

constructed and evaluated. The system consists of an advanced APD detector, an analog 

circuit and a digital circuit all on one, small size low mass, printed circuit board. The 

system was interfaced to a personal computer. Both atmospheric aerosol and water vapor 

concentration profiles were measured using this system.

The optical detector is a critical device in this system. A drift diffusion model was 

developed for the APD to better understanding the device operation. This model is 

suitable to solve for the device transient and steady-state operation assuming a four-layer 

structure such as the reach-through and SLIK APD structures. An equivalent circuit was 

also presented in order to model these devices in circuit simulation packages.

The APD choice was based on characterizing a group of such devices with different 

structures from different manufactures. The characterization results indicate the better 

performance of the SLQC structure over the reach-through structure in terms of noise and 

device stability with respect to temperature. The selected advanced APD package had the 

advantages of a built-in TEC and thermistor for temperature control and built-in trans­

impedance amplifier for direct current to voltage conversion.

The new detection system consists of an analog circuit and a digital circuit. The 

analog circuit was designed using state-of-the-art electronics and controlled the APD in 

terms of operating temperature and bias voltage. Also, it consists of a signal conditioning 

stage, which adjusted the APD output to be compatible with the digitizer circuit.
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The digital circuit consists of a digitizer, microcontroller and output circuit. The 

digitizer was constructed using a state-of-the-art 14-bit, 10-MHz ADC, a dual port RAM 

and a 13-bit counter to address the storage locations o f the ADC output. The 

microcontroller was used to synchronize the detection system with the laser fire pulse. 

Also, it can perform real time averaging of the recorded data and monitor the APD 

operating bias voltage and temperature. The output stage consists o f a FIFO which is used 

to collect the digital data and transfer it to a personal computer for storage.

The system design assumes an external power supply, clock and trigger signals. The 

whole system was integrated onto one small printed circuit board suitable to be mounted 

directly on the lidar receiver telescope. The final digital data is read using a parallel input- 

output interface with up to a 20 MHz data transfer rate. The operation of this interface is 

completely controllable using software. The final data is stored in an ASCII file which is 

accessible with any data handling software. The summary of the detection system 

performance parameters is given in table 7.1.

The detection system validation started by reviewing the theory of the lidar remote 

sensing technique with a special focus on the DIAL measuring technique. The 

transformation from raw data representing the detection system output into a meaningful 

atmospheric water vapor profile was also discussed. The integration of the detection 

system into a complete receiver, using focusing optics and a telescope allowed the 

validation of the system experimentally. One validation experiment was obtained by 

measuring relative aerosol profiles simultaneously with the NASA Langley Research 

Center airborne aerosol and ozone DIAL system. The other validation experiment was 

obtained by integrating the new receiver system with a laser transmitter manufactured by
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Science and Engineering Services Inc., and measuring water vapor profile which were 

compared to Dulles Airport and Wallops Island water vapor radiosonde results. Both 

experiments demonstrated the capability o f the system in terms of range and measuring 

atmospheric species other than water vapor.

Table 7.1 DIAL detection system performance summary.
End-to-end gain 183,969 counts/(W/m2)
Maximum output 16383 counts
Minimum detectable signal @ 820 nm 0.85 pW/m2
Maximum detectable signal @ 820 nm 0.84 mW/m2
Dynamic range 1000
Maximum digitization frequency 10 MHz
Maximum time window 819.2 jis
Maximum repetition rate (8 k word) 10 Hz
Total Noise Equivalent Power (NEP) 212 fW/Hz1/2
Power consumption 21.1 W
Card size 15x9 cm2
Card weight 312 gm
Power supplies ± 5 V and ± 12 V
APD Sensitive area 0.238 mm2

Although the system performance is acceptable, future research is required for 

additional improvements. One such improvement would be to replace the current ADC 

with a 16-bit, 20-MHz ADC. The availability of fast computer interfaces suggests 

omitting the microcontroller, which would result in even a more compact system. Also, 

more effort is needed in developing the SLIK structure APDs with larger sensitive areas.

The good performance of the system suggested its application in aircraft based 

water vapor DIAL systems such as the LASE instrument and space based DIAL systems 

such as the visible channel of the Ozone Research with Advanced Cooperative Lidar 

Experiment (ORACLE).
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APPENDIX A

APD MANUFACTURER DATA 
AND CHARACTERIZATION RESULTS

A.I. APD designator and m anufacturer data

APD M anufacturer S tru c tu re1
Model Number d 2 <R3 VB4 In /  V„5 B W ‘
Serial Number T 7 X 8 Vbd* Id'* N E P 11

APD 12 EG&G SLIK
C30649E 0.5 50MV/W 349 150 nV/Hz172 11
147 25 820 356 7 0.003

APD 11 EG&G SLIK
C30649E 0.5 50MV/W 431 150 nV/Hz172 12
148 25 820 440 8 0.003

APD 10 Electron Tubes, Inc. RTS
SSO-AD-2500 2.52 45 A/W 110 2.2xl03
#8-12 21.5 880 161.7 30 0.4

APD9 Electron Tubes, Inc. RTS
SSO-ADH-500 0.5 45 A/W 150 l.3xl03
#10 21.5 880 1.5 0.2

APD8 EG&G RTS
C30646E 0.5 20MV/W 217 78 nV/Hz172 9.4 M
CD2507 22 850 228 0.004

APD7 EG&G RTS
C30646E 1.5 6MV/W 384 120 nV/Hz1/2 9.5 M
CD2508 22 1064 443 0.02

1 “SLIK" for super low k structure, “RTS” for reach through structure and “BE” for beveled edge structure.
2 Diameter of the sensitive area in mm.
5 APD responsivity.
4 Bias Voltage in V.
5 Spectral noise current and voltage density in nA/Hz172 and nV/Hz172 respectively.
6 Bandwidth in MHz.
7 Testing temperature in °C.
8 Testing wavelength in nm.
9 Breakdown voltage in V.
10 Dark current in nA.
11 Noise equivalent power in pW/Hz172.
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APD6 EG&G RTS
C30659E 0.15 50MV/W 420.4 110 nV/HzI/2 15
CD2472 830 427 36 0.002

APD5 Advanced ’hotonix, Inc. BE
197-70-71-520 5 108 A/W 2 pA/Hzl/2 43

22 840 2450 160 0.014

APD4 EG&G RTS
C30950E 0.8 0.5MV/W 275 15 nV/Hz1* 50

25 830 425 0.029

APD2 EG&G RTS
C30955E 1.5 70 A/W 275 2 pA/Hz171 ---

1647 900 390 200 ---

A.2. SLIK APD package

C3T h e r m a l
S u b s c r a c e
RT

cs

RS

R3
S lK 02

03
2N 2M 7

N672000

APD SLIK

RS

YOOOpF

ia :>

Detector Sensitive Area 0.24 mm2 (measured)
Trans-Impedance Amplifier Feedback Resistance 560 k£2
Detector Maximum Power Loss 50 Mw
TEC Maximum Current 1.8 A
TEC Rated Current @ 0 °C 0.5 A
TEC Area 3.96x3.% mm2
Thermistor Resistance Lain/1 L

R t =104 e^ 298
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A.3. APD calibration results
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Fig.8 APD spectral response calibration.
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Fig.8 (continue) APDs spectral response calibration.

A.4. APD surface scan results

APD Active Area
mm'

Area
non-uniformity

APD 11 0.2376 14.96%
APD 10 4.9550 18.76 %
APD9 0.1800 11.27%
APD8 0.1820 16.62 %
APD7 1.5970 15.50 %
APD6 0.0148 17.64 %
APD5 18.88 7.40%
APD4 0.5464 6.02%
APD2 1.6920 6.10%
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A.5. APD responsivity variation with temperature

APD12 Bias Voltage: 336 V Condition: -3<T<25°C
720 nm 116.3 -8 .69T +0.43T 2 -8 .3 x l0 _3T 3 A/W
820 nm 113.8-8.23T+0.41T2 - 7 .9 x l0 '3T 3 A/W
940 nm 57.2 -3 .65T +0.18T 2 - 3 .6 x l0 '3T 3 A/W

APD11 Bias Voltage: 415 V Condition: -3<T<25°C
720 nm 130.02-9.63T +0.45T 2 - 8 .3 x l0 '3T 3 A/W
820 nm 136.19-9.85T +0.46T 2 -8 .6 x lO ’3T 3 A/W
940 nm 73.14-4.99T  +0.24T2 -4 .4 x lO _3T 3 A/W

APD10 Bias Voltage: 110 V Condition: 6 J < T < 2 2 J°C
720 nm 3.85x l03 -9 .6 5 x 102T +90.53T2 -3 .71T 3 +0.0557T4 A/W
820 nm 4 .22x l03 -1 0 .6 2 x l0 2T+99.88T2 -4 .0 9 T 3 +0.0617T4 A/W
940 nm 2 .17x l03 -  5 .47xI02T + 51.55T2 -2 .1 2 T 3 +0.0319T4 A/W

APD9 Bias Voltage : 150 V Condition: 10.4 <T< 21.9 °C
720 nm 58.9 -  2.92T + 8.82x 10‘2T 2 -  1.33x 10'3T 3 A/W
820 nm 66.8-3 .53T + 9.96xl0":T 2 -1 .1 5 x 10'3T 3 A/W
940 nm 35.2-1.96T  + 5.75xl0_2T 2-6 .3 5 x l0 '4T 3 A/W

APD8 Bias Voltage: 190 V Condition: 5<T <23°C
720 nm 1.5xl07 -4 .9 x l0 3T + 7 .6 x l0 3T 2 V/W
820 nm 1.6xl07 - 4 .9 x 105T +7.58x 103T 2 V/W
940 nm 8.95x 107 - 2 .6 x 103T + 4 .2 x 103T 2 V/W
APD7 Bias Voltage: 380 V Condition: 13J< T < 24^°C
720 nm 2 .2 4 x l0 l° -3 .2 6 x 109T + 1.63x 108T 2 -2 .7 7 x I06T 3 V/W
820 nm 3 .06x l0 ‘° -4 .4 6 x l0 9T + 2 .24xl0sT 2 -3 .7 9 x 106T 3 V/W
940 nm 3.88x 10'° -5 .6 7 x 109T + 2.86x 10sT 2 -  4.85x 106 T 3 V/W

APD6 Bias Voltage: 410 V Condition: 1.1 <T< 21.9 °C
720 nm 2.91xl08 -  4.63x 107T + 3 .07 x 106T 2 - 6 .8 x 104T 3 V/W
820 nm 2.81x 108 -  4.53x 107T + 3 .0 4 x l0 6T 2 -6 .7 9 x l0 4T 3 V/W
940 nm 1.78xl08 -  2.89x 107T + 1.96x 106T 2 - 4 .4 x 104T 3 V/W

APD2 Bias Voltage : 317 V Condition: 5.7 <T< 23.1 Bc
720 nm 928.5-189.9T + 17.1T2 -0 .6985T3 +0.01 IT4 A/W
820 nm 1043.2-192.3T + 15.8T2 -0.6005T3 +0.0086T * A/W
940 nm 1093.9 -  185.9T + 14.1T2 -0 .4956T 3 +0.0066T4 A/W
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a .6 . APD responsivity variation with bias voltage

APD12 Temperature: 25 °C Condition: 320 < V< 351V
720 nm 1.88xl07 -2 .25x10s V + lx l0 3V 2 -2 .0 2 V 3 + 2x lO '3V4 A/W

820 nm l.8 9 x l0 7 -  2.27x10s V + lx l0 3V2 -2 .04V 3 + l.5xlO _3V4 A/W

940 nm l.OlxlO7 -1 .2 2 x l0 s V + 5 .4 7 x l0 2V 2 -1 .09V 3 + 8.2xlO*4V4 A/W

APD11 Temperature: 23 °C Condition: 390 < V< 430 V
720 nm -  2.76 x 10s + 2.06 xlO3 V -  5 .12V2 + 4.25x 10‘3 V3 A/W

820 nm -2 .91x10s + 2 .l7 x l0 3 V -5 .41V 2 +4.49xlO"3V3 A/W

940 nm -1.65x10s + l.2 3 x l0 3V -3 .0 7 V 2 + 2.54x 10"3V3 A/W

APD10 Temperature: 20.9°C Condition: 80<V<I15V
720 nm -9 .1 x l0 3 + 296.7V -3.19V 2 +1.14x 10"2V 3 A/W

820 nm -9 .5 x l0 3 +308.6V -3.32V 2 +1.19x 10'2V 3 A/W

940 nm -5 .2 x l0 3 + 167.7V-1 .8  IV2 +6.46x l0"3V 3 A/W

APD9 Temperature: 22 °C Condition: 125 < V< 150 V
720 nm -3 .2 x l0 3 + 73 .4V -0.55V 2 + 1 .4 x l0 '3 V3 A/W

820 nm -3 .6 x l0 3 +80.5V -0.61V 2 + l.5 x lO '3V3 A/W

940 nm - l .9 x l0 3 + 42 .6V -0.32V 1 +8x10“* V3 A/W

APD8 Temperature: 19.9 °C Condition: 100 < V< 215 V
720 nm -2 .1x10’ + 3 .98x l07V -2 .5 x l0 sV2+ 5 x l0 2V3 V/W

820 nm -  2.25 x 10’ + 4.2x 107 V -  2.6 x  10s V2 + 5.35 x  102 V3 V/W

940 nm -1 .4x10’ + 2 .69x l07V -1 .6 6 x l0 3V 2 +3.4x 102V3 V/W

APD7 Temperature: 22.1 °C Condition: 100 < V< 380 V
720 nm 3.81X107 -9 .1 9 x 106V +7.83 x 103V 2 -27 .1V 3 + 3 .3 3 x l0 '2V4 V/W

820 nm 5.07x 107 -1 .2 2 x l0 6V + l.0 4 x l0 4V 2 -36 .1V 3 + 4 .4 5 x l0  2V4 V/W

940 nm 6.28 x 107 - 1.52 x  106 V +1.29 x  104 V2 -  44.7 V3 + 5.52 x  10'2 V4 V/W

APD6 Temperature: 22.6°C Condition: 100<V<350V
720 nm 4.02x10s -8 .7 7 x 106V + 6 .80 x 104 V 2 -222 .5V 3 +0.263V4 V/W

820 nm 4.61x10s -10 .02 x 10‘ V + 7.75x 104V 2 -253.2V 3 +0.299V4 V/W

940 nm 2.96x10s -6 .3 5 xlO‘ V + 4.89x l0 4V2 -159.4V 3 +0.188V4 V/W

APD5 Temperature: 20 °C Condition: 2050 < V< 2350 V
720 nm -1 .7 3 x l0 4 + 24.54V -0.012V 2+ 0 .184x l0 ‘sV3 A/W

820 nm - l .7 5 x l0 4 + 24.79V -0.012V 2 +0.186xl0"sV3 A/W

940 nm -0 .9 4 x l0 4 + 13.25V-0.006 V 2 + 0 .099x l0”sV 3 A/W

APD2 Temperature: 23.1 °C Condition: 310 < V< 340 V
720 nm -1 .7 1 x  104 + 1.68 x  102 V -0 .5 5  IV2 + 6.05 x  10-4 V3 A/W

820 nm -3 .2 8 x l0 4 + 3 .1 6 x l0 2V - l .0 l8 V 2 + l.0 9 5 x l0 ‘3V 3 A/W

940 nm -4 .4 4 x 104 + 4.25x 102V -1 .36V 2+ 1.45x 10'3V3 A/W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

A.7. APD noise measurement

APD k I. NEP D*
nm fW /Hz1/2 cmHz1/2/W

1 720 1.9 2.87xl0 '5
APD12 820 2 .2 x l0 13 A/Hz1/2 1.9 3.05xl013

940 3.9 l.63x l013
720 1.8 2.77xl0l5

APD11 820 2 .3 x l0 13A/Hz,/2 1.7 2.90xl013
940 3.1 l.57x l013
720 74.3 2.99xl013

APD 10 820 2.5x1 O'12 A/Hz1/2 69.3 3.21xl012
940 129.4 l.72x l012
720 80.7 5.26x10“

APD9 820 l.9xl0"12 A/Hz1/2 74.9 5.67x10“
940 141.8 2.99x10“
720 11.8 3.62xlOu

APD8 820 9.3xl0‘8 WHz,/2 11.0 3.88x012
940 17.7 2.41xl012
720 28.0 4.75xl012

APD2 820 l.7 x l0 '12 A/Hz1/2 22.2 5.99xl012
940 19.4 6.84xl012
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APPENDIX B 

DETECTION SYSTEM APPLIED CIRCUITS

B .l. Analog-to-digital converter circuit

The AD9240 is a 10-M sample per second, 14-bit ADC. It has an on-chip low noise 
sample and hold amplifier and a programmable voltage reference. Figure B l shows the 
associated programming circuit in our application. C32, C33, C34, C35 and Ca35 are 0.1- 
(J.F bypass capacitors between each supply and its corresponding ground pin. The 
AD9240 maximum conversion rate can be controlled by R34. VINA and VINB are two 
analog inputs for either a differential input mode or single-ended mode. By connecting 
VINB to VREF and SENSE via R33, the second mode is selected with a common mode 
at I V with 2 V input range. The chip internal reference, which appears on CAPT and 
CAPB, is used in this connection. C28, C29, C30 and C31 form the recommended 
decoupling network to insure a stable reference. It should be noted that this device 
provides the only connection between the analog and the digital grounds.
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A a3 333
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COO 
0  lu t

Ca35 = C 3 5
0 .1  u l
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a iu f

£
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10uf*<
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£
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Figure B 1 Analog to digital converter circuit.

B.2. Data collect and store circuit

The data collect and store circuit acts as a single shot transient recorder. The 
operation of this circuit is fully controlled by the microcontroller through the “counter 
enable” signal, applied by the two input NAND gate U15A. A microcontroller “clear 
counter” signal clears the contents of all three, four bit binary counters and the J-K flip 
flop. The maximum count is detected by four input NAND gate, U14A, which
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automatically stops the counting operation through U1SA and sends an “end-of-count” 
signal to the microcontroller.

To reduce pick-up noise, the inverter U20A enables the data conversion by the ADC 
in a different half cycle than that of the counter. Connecting the MSB of the RAM left 
address to supply enable the data to be stored only in the lower half of the memory.

a x »
{ (O a a r C o n o r

§VINA a t ?

o r  to

BIT 12
} )E n d  of Court

A3 
A t

ST U

« C ouri«rE naC M  SIGNAL

Figure B2 Data collect and store circuit.

B.3. Microcontroller connection circuit

The 80C196KB-16 microcontroller shares the data and address on one 16 bit bus. 
The address latch, formed by U24 and U25, is used to distinguish and separate the 
address and the data words. The inverter U20B is used to divide the microcontroller 
memory into two sections. One section accesses the right address of the dual port RAM, 
while the other section is sub-divided into two sub-sections. The two sub-sections are 
decoded to access the FIFO using the four input AND gate U26A, while the other is used 
to access the 8-bit dip-switch using the four input AND gate U26B and the inverters 
U20C and U20D. The control of the FIFO and counter operations is obtained using the 
microcontroller port 1. Port 2 is used to sense the “trigger” signal and for serial 
communication if applied. Port 0 is set as analog channels to the internal analog to digital
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converter in order to read the APD temperature and bias voltage values. Each monitor 
channel is protected using the interface circuit shown in figure B4a. Figure B4b shows the 
microcontroller reset circuit.
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Figure B3 Microcontroller connection circuit.
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Figure B4 Microcontroller (a) ADC interface and (b) reset circuit.

B.4. O utput stage

The FIFO output data is buffered using U29 and U30, the output of which is applied 
to the four channel opto-couplers U3I-U34 for ground optical isolation. The FIFO control 
signals “FIFO ready” and “read FIFO” are also optically isolated using the dual separate 
channels U37 optocouplers.

021

iOL

^a.

Figure B5 Microcontroller connection circuit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L36

B.5. Chip power supply bypassing

Generally, bypass or coupling capacitors are used with every supply pin of any 
device. It is used to supply the device with inrush current required at switching instants. 
Figure B6 shows the used power supply bypassing for an op amp, for both the positive 
and the negative supplies. Inductors Lxl and Lx2 are used for smoothing the device bias 
current. As a layout restriction, ceramic capacitors (Cx3 and C xi are 0.1 pF) must be 
located less than 0.3 cm away from the supply pin. Cx2 and Cx4 are 10 pF electrolyte 
capacitors. For all devices other than op amps, 0.1 pF capacitors are only in use to couple 
every supply pin to the ground.

Lx2

INPUT 1 I >

INPUT 3 I >
<  IOUTPUT

Uxx
Op Amp

Lxl
-5V

BLM41A151S

Figure B6 Op amp connection to power supplies.

B.6. Clock and trigger isolation

U38, the HCPL-2430, is a dual channel, TTL compatible optocoupler. It is used to 
optically isolate the clock and the trigger inputs as shown in Fig.D5. Resistors R41 and 
R42 are 50£2 termination resistors. R40 and R43 are used to limit light emitting diode 
current.

R40
62S

CLOCK1 n >

•5VO
B41

VCC
OP1 -» C L K

-» T R IG

CLOCK2 I >

TRIGGER 1 I >

R42

R43
625

Figure B7 External clock and trigger isolation circuit.
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APPENDIX C

ELEMENTS OF THE NEW DETECTION SYSTEM

C .l. Detection system components

Referring to Chapter 4 and Appendix B, this appendix gives the component list of 
the new detection system along with the description of these component, the 
manufacturer and the number of parts used.

Component Part Reference Description Manufacturer #of
Parts

AD586BR U1 Reference Voltage Analog Devices I
AD706AR U2.U3.U5 Dual Op-Amp Analog Devices 3
521-5-M U4 High Voltage Supply Analog Modules I
C30649E U6 Avalanche Photodiode EG&G I
AD8036AR U7 Clipping Amplifier Analog Devices I
AD8041AR U8 Buffer Amplifier Analog Devices 1
B3LL31-25-P/P U9 Output Filter Microwave Inc. I
74F191SC U10,Ull,Ul2 4 Bit Counter FAIRCHILD 3
TC74AC112FN U13 Dual JK Flip Flop TOSHIBA I
TC74VHC20FT U14 Dual, 4 input NAND TOSHIBA I
TC74VHC2IFT U26 Dual, 4 Input AND TOSHIBA 1
TC74VHCT00AFT U15 Quad,2 Input NAND TOSHIBA I
AD9240AS U16 14 Bit, 10 MHz ADC Analog Devices 1
TC74VHCT541AF
T

U17.U18.U29.U30 Octal Buffers TOSHIBA 4

IDT7026L20J U19 Dual Port RAM IDT I
TC74VHC04FT U20 Hex Inverters TOSHIBA I
TC74VHC573FT U21.U22.U24 8 Bit, Address Latch TOSHIBA 3
N87CI96KB-16 U23 Microcontroller INTEL 1
IDT7205LI5J U27.U28 8k, 9Bit» FIFO IDT 2
HCPL-6650 U31.U32.U33.U34 4 Channel Optocoupler Hewlett Packard 4
HCPL-6630 U37 2 Channel Optocoupler Hewlett Packard I
HCPL-2430#300 U38 2 Channel Optocoupler Hewlett Packard 1
766-163-R(lk) U25 Ik, 2%,160mW, 

Resistor Network
CTS 1

766-163-R(270) U35.U36 270,2%.160mW, 
Resistor Network

CTS 2

LL4148DICT DIJ)3JD4J)5JD6 Diode, 1N4148 VISHAY 6
BZX84C5V1DICT D2 5.1V,Zener Diode VISHAY 1
TIPI 10 Qi Darlington Transistor Texas Instrument 1
NFM46P11C155 L1X2X4X5X16 Line Filter MURATA 5
BLM41A151S L3X6X7X8X9. 

L10XI1X12X13. 
L14X15

Chip Ferrite Bead 
Inductors

MURATA 11
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Component Part Reference Description Manufacturer #of
Parts

1812Y104JXE C8 O.lpF, 500 V, 5% 
Ceramic Capacitor

VISHAY 1

VJ1812Y105JXXM C2,C10,C5,C5a IpF, 25V, 5% 
Ceramic Capacitor

VISHAY 4

PCC472BCT C39.C40 5nF, 50V. 10%. 
Ceramic Capacitor

Panasonic 2

PCS1226CT C38 22uF, 6.3 V 
Tantalum Capacitor

Panasonic 1

PCC200CCT C36,C37 20pF, 50V, 5% 
Ceramic Capacitor

Panasonic 2

PCC220JCT C9 22pF, 3kV, 5% 
Ceramic Capacitor

Panasonic 1

PCS3106CT C 14,C 17.C2 L,C23,C 
25, C29,C3u23

lOpF, 16V 
Tantalum Capacitor

Panasonic 6

PCC103BCT Cu3l.Cu32.Cu33. 
CU34.C 1 u37.C2u37 
Clul9,C2ul9, 
C3ul9,Clu23

O.OlpF, 50V, 10% 
Coupling Capacitor

Panasonic 6

PCC104BCT C1.C3.C4.C6.C7.
C11.CI2.C13.C15.
C16.C18.C19.C20.
C22.C24.C26.C27.
C28.C30.C3l.C32.
C33.C34.C35.Cu 10.
Ca35,Cull,Cul2,
Cul3.Cul4.Cul5,
Cul7.Cul8.Cu20,
Cu2l.Cu22.Cu24,
Cu26.Cu27.Cu28.

0.1HF.50V, 10% 
Coupling Capacitor

Panasonic 42

895-0205 R32 5 £2, 1% Resistor Dale 2
P33ECT R33Jta33 33£2,5% Resistor Panasonic 2
P50FCT R21.R30.R31.R41,

R42
49.9 £2, 1% Resistor Panasonic 5

TNPW1206100B R26 100 £2,1% Resistor VISHAY 2
P130FCT R22 130 £2,1% Resistor Panasonic 1
P140FCT R23 140 £2,1% Resistor Panasonic I
P270ECT R35.R36,R44,R45 270 £2,5% Resistor Panasonic 4
TNPW120630 IB R27.R28.R29 301 £2,1% Resistor VISHAY 3
P499FCT R6 499 £2,1% Resistor Panasonic I
P620ECT R40.R43 620£2,5% Resistor Panasonic 2
P2KZCT R14.R34 2 k£2,0.1% Resistor Panasonic 2
P3KZCT R2 3 k£2,0.1% Resistor Panasonic 1
P10KZCT RlJl8Jt24Jt25 10 k£2,0.1% Resistor Panasonic 4
P22KZCT R13 22 k£2,0.1% Resistor Panasonic L
P33KZCT R17JU5,R16,R37 33 k£2,0.1% Resistor Panasonic 4
P49.9KFCT R3 49.9 k£2,1% Resistor Panasonic I
P82KZCT R12 82 k£2,0.1% Resistor Panasonic 1
P200KFCT R4.R5.R19 200 k£2,1% Resistor Panasonic 3
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Component P art Reference Description M anufacturer # o f
Parts

R9.R10.Rll 2.55 MQ Resistor 3
R18.R38.R39 TBD

SM4W103 R7.R20 10 kQ, POT, 10% Philips 2
SPE1211 JP1JP2JP3JP4 Jumpers Specialty Elec.Inc. 2
777600-01 Jl 68 Pin Connector AMP 1
AFR09G J2 9 Pin D Connector AMP 1
AMR09G J3 9 Pin D Connector AMP I
CT2198MST SI 8 Pin, Dip Switches CTS I
P8087SCT S2 Push Button Switch Panasonic I
XC550CT Yl 16 MHz Crystal ECS I
SK-PLCC68-S01 68pin, PLCC Socket Ironwood Elec. 1

C.2. Detection system power consumption

The steady state maximum power consumption of the individual components of the 
detection system and the total power for each section are given as follows:

Reference Voltage
PU1 500.00 mW
PU 2 650.00 mW
PR1 2.50 mW
PR 2 0.75 mW

Total power PI 1153.25 mW (I)
Signal Conditioning

PU 6 250.00 mW
PU 7 900.00 mW
PU 8 900.00 mW
PR21 45.00 mW
PR24 0.70 mW
PR25 0.70 mW
PR26 22.50 mW
PR27 67.50 mW
PR28 67.50 mW
PR29 67.50 mW
PR30 101.30 mW
PR31 101.30 mW

Total power P2 2524.00 mW (2)
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Voltage Controller
PU 3 650.00 mW
PU 4 480.00 mW
PR 3 0.50 mW
P R 4 2.00 mW
PR 5 2.00 mW
P R 6 50.00 mW
PR 7 2.50 mW
PR 8 0.10 mW
PR9-11 20.70 mW
PR12 0.20 mW
PR13 0.10 mW

Total power P3 1208.10 mW (3)
Tem perature Controller

PU 5 650.00 mW
PR14 24.50 mW
PD 2 16.70 mW
PR15 0.40 mW
PR16 0.40 mW
PR17 0.40 mW
PR19 0.20 mW
PR20 14.40 mW
PR T 0.40 mW

Total power P4 707.40 mW (4)
PR32 625.00 mW
PQ1 1875.00 mW
PTEC 125.00 mW

Total power P5 2625.00 mW (5)
Data Collect and Store

PUIO 100.00 mW
PU11 100.00 mW
PU12 100.00 mW
PU13 180.00 mW
PU 14 180.00 mW
PU15 180.00 mW
PU 16 285.00 mW
PU17 180.00 mW
PU18 180.00 mW

Total power P6 1485.00 mW (6)
M icrocontroller C ircuit

PU19 750.00 mW
PU20 180.00 mW
PU21 180.00 mW
PU 22 180.00 mW
PU23 1500.00 mW
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P U24 180.00 mW
PU25 181.80 mW
PU26 180.00 mW

________________ Total power P7______________ 3331.80 mW____________(7)
O utput Stage

PU27 770.00 mW
PU28 770.00 mW
PU29 180.00 mW
PU30 180.00 mW
PU31 800.00 mW
PU32 800.00 mW
PU33 800.00 mW
PU34 800.00 mW
PU35 800.00 mW
PU36 800.00 mW
PU37 400.00 mW
PU38 700.00 mW
PR40 10.00 mW
PR41 125.00 mW
PR42 125.00 mW
PR43 10.00 mW

Total power P8_____________ 8070.00 mW____________(8)

Total Power for Analog Circuit from ±5 V Supply
=P2+P5= 2524.00+2625.00 =5149.00 mW

Total Power for Analog Circuit from ±12 V Supply
=P1+P3+P4= 1153.25+1208.10+707.40 =3068.75 mW

Total Power for Analog Circuit
=P 1+P2+P3+P4+P5= 5149.00+3068.75 =8217.75 mW

Total Power for Digital Circuit from +5 V Supply
=P6+P7+P8= 1485.00+3331.80+8070.00 =12886.80 mW

Total Power for the Card 
=P 1+P2+P3+P4+P5+P6+P7+P8= 8217.75+12886.80 =21104.55 mW
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