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Time-resolved reflection high-energy electron diffraction study of the Ge„111…-c„238…– „131…
phase transition

Xinglin Zeng, Bo Lin, Ibrahim El-Kholy, and Hani E. Elsayed-Ali*
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529

~Received 5 February 1999!

The dynamics of the Ge(111)-c(238) – (131) phase transition is investigated by 100-ps time-resolved
reflection high-energy electron diffraction. A laser pulse heats the surface while a synchronized electron pulse
is used to obtain the surface diffraction pattern. Slow heating shows that the adatoms in Ge(111)-c(238) start
to disorder at;510 K and are converted to a disordered adatom arrangement at 573 K. For heating with 100-ps
laser pulses, the Ge(111)-c(238) reconstructed adatom arrangement starts to disorder at 584616 K, well
above the onset temperature of;510 K for the disordering of Ge(111)-c(238) observed for slow heating.
@S0163-1829~99!06523-6#

At room temperature, the clean unstrained Ge~111! sur-
face displays a stable centered (238) reconstructed
structure.1–3 The c(238) reconstruction is described by a
quarter monolayer of adatoms bonded onT4 sites of a bulk-
terminated Ge~111!. Scanning tunneling microscopy~STM!
studies showc(238) domains oriented along the three dif-
ferent but equivalent directions at the surface, with domain
size ranging from 200 to 2000 Å depending on the surface
preparation.4,5 The boundaries between these domains are
accommodated by the formation of local (232) adatom
structures.6 Near 573 K, the surface undergoes a reversible
phase transition in which thec(238) structure starts to dis-
order from the domain boundaries.4 As temperature is in-
creased, the disordered regions grow in size, and at;573 K
the whole adatom layer is totally converted into an apparent
(131) phase as indicated by low-energy electron diffraction
~LEED!.3 Measurements of the Ge 3d core level show that
the Ge(111)-c(238) – (131) phase transition is of the
order-disorder type.7,8 There are other techniques that have
been applied to study thec(238) – (131) phase transition
such as electron energy loss spectroscopy,9 core level
study,7,8 medium-energy ion scattering,10,11 spectroscopic
ellipsometry,12 helium atom scattering,13 and photoelectron
diffraction.14 However, none of these techniques gave infor-
mation on the temporal dynamics of this phase transition.
Molecular dynamics~MD! simulations provide a micro-
scopic description of the dynamics of the atomic system,15

however, direct experimental evidence has not been avail-
able.

We use time-resolved reflection high-energy electron dif-
fraction ~RHEED! to investigate the evolution of the phase
transition. The Ge(111)-c(238) adatom layer starts to dis-
order at 584616 K by 100-ps laser pulse heating, whereas
for slow heating it starts to disorder at;510 K. The phase
transition is observed to be reversible.

Time-resolved RHEED was described in detail
elsewhere.16 This technique was used to probe surface melt-
ing and superheating of lead and bismuth.17–21 The funda-
mental of a Nd:YAG laser~YAG denotes yttrium aluminum
garnet! @l51.06mm, full width at half maximum
(FWHM)5100 ps# is split into two beams. The first interacts

with the sample surface at near normal incidence, providing
a laser pulse heating source with a beam diameter of;9 mm
measured at FWHM. The second is frequency quadrupled to
the ultraviolet (l50.266mm) and is incident on the cathode
of a photoactivated electron gun, producing an electron pulse
synchronized with the laser and with a temporal width com-
parable to that of the laser pulse. The resulting electron beam
is incident on the surface of the sample in a glancing angle
probing the first few atomic layers. The diffracted electrons
are amplified by microchannel plate proximity focused to a
phosphor screen. The resulting RHEED pattern is lens im-
aged onto a charge coupled device camera for quantitative
intensity analysis. The energy of the electrons is 21 keV. The
pulse-to-pulse heating laser fluctuation is within610%. The
spatial nonuniformity of the beam across the sample is mea-
sured to be612%. An optical delay line sets the time be-
tween the heating laser pulse and the probing electron pulse.
This allows RHEED patterns to be monitored throughout the
laser pulse heating process. The laser is operated at 50-Hz
repetition rate. A total of 3000–5000 laser pulses were used
to acquire each datum. Pump-probe LEED with;10-ns tem-
poral resolution was previously conducted on Ge~111! to
study the melting phase transformation. Because of detector
size limitations, only a single reflection was monitored. Re-
sults were consistent with loss of surface crystal order during
laser annealing.22 Here, we study the Ge(111)-c(238) – (1
31) reconstruction phase transition with 100-ps time-
resolved RHEED.

The Ge~111! single crystal was cut to 635 mm2 from a
340-mm-thick wafern doped with antimony with a resistivity
of 1.4–2.2V cm. The surface has a vicinal angle of60.5°
off ~111!, and was polished to be epitaxy ready. The sample
was heated by passing direct current through it. The tempera-
ture was monitored by a thermocouple pressed against the
surface of the sample with62 K uncertainty. The surface
was prepared by cycles of Ar1 bombarding at room tempera-
ture ~500 eV, at normal incidence! followed by annealing at
700 °C for 20 min. The surface was then found to be clean as
determined with Auger electron spectroscopy. Thec(238)
structure was clearly observed with RHEED at room tem-
perature. The experiments were performed in an ultrahigh
vacuum chamber with a base pressure in the low 10210 torr.
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Measurements of the RHEED streak intensity were per-
formed as a function of the surface temperature. An UV
lamp was used to excite the cathode of the photoactivated
electron gun to produce a continuous electron beam. The
electron beam was incident along the^11̄0& azimuth at an
angle of;2.7° from the surface, resulting in a probed depth
of ;4.2 Å, corresponding to;1.3 bilayers of Ge~111!. The
~01

2! and ~01! streaks were examined at the same time.
RHEED streak intensities normalized to that at 304 K versus
surface temperature are shown in Fig. 1. The exponential
Debye-Waller behavior of the~01

2! streak is observed below
;510 K. At higher temperatures, deviation from the expo-
nential behavior occurs, indicating the onset of adatom dis-
order in thec(238) structure. The coexistence of disordered
and ordered regions on the surface at temperatures well be-
low the 573-K transition temperature was previously ob-
served by STM.4 Our results agree with the STM observa-
tions. The Debye-Waller behavior of the~01! streak persists
above 573 K. The Debye-Waller factor is used to extract the
transient temperature on the surface during laser pulse heat-
ing, since it is not affected by the Ge(111)-c(238) – (1
31) phase transition. The MD simulation of Takeuchi,
Selloni, and Tosatti showed that the mean square displace-
ments are larger for outer atoms in the first bilayer and de-
crease for the deeper atoms.23 The effective surface Debye
temperature for the Ge~111! surface was calculated to be
Qs598 K from the Debye-Waller factor of the~01! streak,24

whereas the Ge bulk Debye temperatureQ is 370 K. This is
in agreement with results obtained from photoelectron dif-
fraction and LEED.14,25

In order to determine the laser-pulse-induced temperature
rise on the Ge~111! surface, time-resolved RHEED intensi-
ties of the~01! streak normalized to that at the base tempera-
ture of 442 K were obtained for different delay times be-
tween the heating laser pulse and the probing electron pulse.
Results are shown in the inset of Fig. 2. The transient tem-
perature rise was obtained using the Debye-Waller factor of
the ~01! streak from Fig. 1. The transient temperature evolu-
tion of the Ge~111! surface is given in Fig. 2, where the solid
line represents the prediction from a one-dimensional heat

diffusion model.26 The parameters used in this model are
heat capacity equal to 1.8443106 J m23 K21,27 thermal con-
ductivity equal to 39.8 W m21 K21,27 reflectivity equal to
0.379,28 absorption coefficient equal to 1.83106 m21,29 and
a 100-ps FWHM Gaussian laser pulse with peak fluence
equal to 1.83108 W/cm2. The experimental results agree
well with the heat diffusion model. Figure 2 also relates the
maximum transient temperature rise on the Ge~111! surface
to the peak fluence of the heating laser pulse. This is used to
determine the maximum surface temperature rise which is
proportional to the laser peak fluence.

We next raised the sample temperature close to the onset
temperature of the reconstruction phase transition and used a
fixed laser fluence to further raise this surface temperature in
a transient manner. The time-resolved RHEED intensity was
monitored by fixing the delay time at the time at which the
RHEED intensity is minimum, which is temporally close to
the time of maximum surface temperature rise. RHEED
streak intensity of the~01

2! streak normalized to that at the
base temperature was obtained for various peak laser flu-
ences. Results are shown in Fig. 3 for three pump-probe
scans representing base temperatures successively closer to
510 K. In each of these scans, the exponential behavior with
temperature remains for lower laser peak fluences with a
corresponding surface Debye temperatureQs of 110, 109,
and 87 K for base temperatures of 442, 473, and 507 K,
respectively. This is within612% ofQs598 K observed for
the slow heating. Deviation from exponential behavior oc-
curs at higher peak laser fluences depending on the base
temperature, indicating that the adatoms are no longer
bonded to theT4 sites by a harmonic oscillator and start to
diffuse as the temperature is increased. From Fig. 1, we see
that this starts at;510 K, which is well below the thermo-
dynamic transition temperature of 573 K. This behavior was
explained as premelting,4 or as a result of surface strain.12 A
MD simulation showed that the energy barrier for the adatom
diffusion is decreased when surface vacancies are present.30

It is reasonable to expect that adatom diffusion starts at a
lower temperature than the thermodynamic transition tem-
perature, because surface vacancies are always present on a

FIG. 1. Normalized RHEED intensities,I /I (T5304 K), of the
~01

2! and~01! diffraction streaks versus temperature are plotted on a
semilogarithmic scale. The~01! streak~n! shows the Debye-Waller
behavior over 300 K to 650 K, with an effective surface Debye
temperatureQs598 K. The ~01

2! streak~j, with temperature de-
crease; s, with temperature increase! shows the reversible
Ge(111)-c(238) – (131) phase transition.

FIG. 2. Transient temperature rise on the Ge~111! surface dur-
ing laser pulse heating with a peak fluence of 1.83108 W/cm2 and
the surface maintained at a base temperature of 442 K. The experi-
mental results~d! were obtained from the~01! streak using the
Debye-Waller factor of the~01! streak in Fig. 1. The solid line is
the prediction of a one-dimensional heat diffusion model. The inset
shows the corresponding normalized RHEED streak intensity
I /I (T5442 K) versus delay time.
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real Ge~111! surface. STM observations showed that the dis-
order starts from the domain boundaries where surface va-
cancies are present.4

In Fig. 3, the deviations from exponential Debye-Waller
behavior occur at laser peak fluences of 13.461.6
3107 W/cm2 for a base temperature of 507 K, and 17.3
62.13107 W/cm2 for a base temperature of 473 K. The in-
dicated errors are due to nonuniformity of the laser beam
across the probed sample area. These two fluences corre-
spond to maximum transient temperature rises of 82610 and
106613 K, respectively. Therefore, for 100-ps laser heating,
the Debye-Waller behavior of thec(238) lattice remains up
to 589610 and 579613 K for the two curves showing re-
construction in Fig. 3, giving an average of 584616 K. For
slow heating, thec(238) lattice starts to disorder at;510
K. For both slow heating and 100-ps laser heating, the
Ge(111)-c(238) – (131) phase transition occurs over a
temperature rangeDT, which we define as the interval be-
tween the onset temperature of the phase transition and the
temperature at which the RHEED intensity is 10% of that at
the onset temperature. The onset temperature of the phase
transition is that when the RHEED intensity deviates from
the Debye-Waller behavior. For 100-ps laser heating, Fig. 3,
the Ge(111)-c(238) – (131) phase transition starts at 584
616 K and spreads over a temperature rangeDT of 58 K,
whereas for slow heating, Fig. 1, the phase transition starts at
510 K and spreads over a temperature range of 55 K. There-
fore, we conclude that thec(238) structure is overheated by
74616 K above the onset temperature of adatom disordering
observed under thermodynamic equilibrium conditions of
slow heating. MD simulations showed that the
Ge(111)-c(238) structure survives for 3 ps at 1200 K,31

whereas our experimental results show that thec(238) lat-
tice persists up to 584616 K for 100-ps laser pulse heating.
However, the MD simulation assumes an ideal step heating
which brings the surface to high temperature instantaneously
and keeps it at that temperature thereafter; while in our ex-
periment, the sample is heated to a high temperature in a
time comparable to the laser pulse width and the temperature

decreases after that by heat diffusion to the bulk.
Further experiments were performed to examine the tem-

poral behavior of the Ge(111)-c(238) – (131) phase tran-
sition. The normalized RHEED~01

2! streak intensities were
obtained at various delay times between the arrival of the
heating laser pulse and the electron probe pulse at the surface
of the sample. Results for different incident laser peak flu-
ences are shown in Fig. 4. The base temperature of the
sample is 507 K. The solid line is from a one-dimensional
heat diffusion model, converting the obtained temperature
rise to normalized~01

2! streak RHEED intensity using the
Debye-Waller factor of that diffraction order obtained at
temperatures below the phase transition. Deviation of the
experimental data from the solid line is due to adatom disor-
dering. In Fig. 4~a!, the sample was heated to a maximum
surface temperature of 56967 K when subjected to a laser
peak fluence of 10.261.23107 W/cm2. For this case, the
Ge(111)-c(238) lattice is overheated in the Debye-Waller
region without disordering. This set exhibits qualities consis-
tent with laser heating and cooling as predicted from heat
diffusion. In Figs. 4~b!, 4~c!, and 4~d!, sufficient laser peak
fluences were provided to heat the sample to maximum sur-
face temperatures of 593610, 607612, and 619613 K, re-
spectively, which are above the onset temperature of 584 K
for the Ge(111)-c(238) – (131) phase transition observed
for 100-ps laser heating. For these sets, the~01

2! streak inten-
sity exhibits an initially fast decrease within;200 ps. For
the set~b!, some limited Ge(111)-c(238) disordering is
observed. For the sets~c! and ~d!, the disordering is clearly
observed and is maintained for the duration of the probed
time, which is;4.5 ns from the time of the peak laser flu-
ence on the surface. For the lower fluence of Fig. 4~c!, the
c(238) shows only partial disorder. The lack of complete

FIG. 3. Time-resolved RHEED intensities of the~01
2! streak

normalized to those at base temperature~s, 507 K; m, 473 K; h,
442 K! versus laser peak fluences are plotted on a semilogarithmic
scale. RHEED intensities are obtained at a time near which the
surface temperature is maximum. The maximum temperature rise
on the Ge~111! surface is;110 K for a laser peak fluence of 1.8
3108 W/cm2. Deviations from Debye-Waller behavior occur at
higher temperatures compared to that in Fig. 1 for slow heating.

FIG. 4. Time-resolved normalized RHEED intensity of the
~01

2! streak of the Ge(111)-c(238) surface subjected to varying
laser peak fluences (I p). The solid line is from a one-dimensional
heat diffusion model, and converting the temperature rise to
RHEED intensity of the~01

2! streak using the Debye-Waller factor
of that order. The surface is kept at a base temperature of 507 K.~a!
I p510.261.23107 W/cm2, consistent with that expected from heat
diffusion. ~b! I p514.261.73107 W/cm2 and ~c! I p516.362.0
3107 W/cm2 deviate from that expected from heat diffusion, indi-
cating partial disordering of Ge(111)-c(238). ~d! I p518.362.2
3107 W/cm2, near total conversion to Ge(111)-(131) structure.
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extinction of the~01
2! RHEED intensity is thought to be due

to the combination of the effects of the growth of the disor-
der from domain boundaries, and perhaps microscopic laser
fluence variation at the surface beyond that measured by
scanning the laser beam profile. The decrease in the surface
temperature by heat diffusion results in a surface temperature
of 55966 and 56667 K, respectively, for~c! and ~d! at
;4.5 ns from the time of the peak laser fluence. For these
temperatures the surface disorder persists. The
Ge(111)-c(238) structure is observed, however, to fully
recover before the next laser pulse for 50-Hz repetition rate.
In all of the experiments reported here, no surface damage
was observed.

In summary, we have investigated the dynamic behavior
of the Ge(111)-c(238) – (131) phase transition. For slow

heating, our RHEED results show that the adatoms in the
Ge(111)-c(238) reconstruction state start to disorder at
;510 K and are converted to a disordered adatom arrange-
ment at;573 K. This is consistent with previous LEED and
STM observations.3,4 However, by 100-ps laser pulse heat-
ing, time-resolved RHEED measurements show that the dis-
order starts at 584616 K, 74616 K above the onset tem-
perature for the disordering under thermodynamic
equilibrium. This result is in qualitative agreement with the
overheating of Ge(111)-c(238) which was previously pre-
dicted from MD simulations.31

This work was supported by the U.S. Department of En-
ergy, Division of Material Sciences, under Grant No. DE-
FG02-97ER45625.
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