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1. INTRODUCTION 

Let C[a, b] be the space of continuous functions on [a, b] endowed 
with the uniform norm llfll m = sup{ If(x)1 :XE [a, b]}. Let K be the set of 
convex functions defined on [a, b]. A function g* E K is said to be a best 
uniform convex approximation to fe C[a, b] if 

(1.1) 

The existence of a best uniform convex approximation to a bounded 
function was demonstrated in [3], where an algorithm for the computation 
of a best approximation by means of linear programming was also pre- 
sented. The characterization of alternant-type is a special case of a result 
announced in [l] and proved in [8]. In this paper, the term “best 
approximation” means best uniform convex approximation unless stated 
otherwise. We establish a duality theorem that expresses the error of the 
best approximation in terms of the supremum of a linear functional off 
and use this duality to investigate the properties of best approximations. 
We use this duality result to obtain bounds for the error of best 
approximation, to give an alternative proof to the characterization of the 
best approximation, and to characterize the set of linear negative alter- 
nants. We also define a “functional interval” (similar to that defined in [4] 
for monotone approximation) which we show is a necessary condition for 
best convex approximation. 

A similar duality approach has been used in [4, 73 to investigate best 
monotone approximation and best quasiconvex approximation, respec- 
tivcly. 
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2. DUALITY 
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Define 

S={(x,y;~):x,yE[a,b],Ob;161}. (2.1) 

S is a compact set in R3. For f~ C[a, b], define the function F on S by 

F(x,y, A)= (-1/2)[Af(x)-f(Jvx+ (1 -Jb)y)+(l -i)f(y)]. (2.2) 

Let 

6 =6(f)= sup{F(x, y, 1):(x, I’; i) E S}. (2.3 

6 is a measure of the convexity of the function .fi We see in Lemma 1 that 
6 = 0 is equivalent to f being convex. Let 

A={(x,y;1)~S:F(x,y,i)=6}. (2.4) 

Since f is continuous on [a, b], F is continuous on S. Thus, F assumes its 
maximum on S, and therefore A is nonempty. For f~ C[a, h], define the 
greatest convex minorant or lower convex envelope off by 

envf(t)=sup(g(t):gEKandf3gon [a,b]}, t E [a, hl, (2.5) 

where f> g on [a, h] means that f(s) > g(s) for all s E [a, b]. We remark 
that envf is the largest continuous convex function that does not exceed .f 
at any point in [a, b] (see [2]). 

LEMMA 1. Let .f E C[a, b]. Then, 6 = 0 if and only if,f is convex. 

Proof: If f is convex, then for all (x, y; 2) E S, F(x, y, A) < 0. Hence, 
6 =O. Conversely, if f is not convex, then there exists (x, y; 1) ES with 
x # y and 0 < ,? < 1 such that F(x, y, 1%) > 0. Thus, 6 > 0. 

LEMMA 2. LetfEC[a,b]-K.Zf(x,y;E.)EA, thenx#yandO<i<l. 

Prooj Assume to the contrary that one of the following statements 
is true: x = y, 1. =O, or 3, = 1. Thus F(x, y, i) =O. Since (x, y; 2)~ A, 
6 = F(x, y, i) = 0. By Lemma 1, f is convex. This contradicts the hypothesis. 

The following lemma was basically proved in [3]: 

LEMMA 3. Let f E C[a, b]. Then, f(a) = envy(a) and f(b) = envy(b). 

Now we can establish a duality theorem showing that S(f) is the error 
of best approximation. 
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THEOREM 1 (Duality). Let f E C[a, b]. Then, 

W Ilf- gll m : .krE K) = W). 

Proof: For any (x, y; 2) E S and all g E K, 

Mx) - g@x + (1 - A) Y) + (1 - 2) g(y) 2 0, 

and thus 

(2.6) 

m, Y, A) < w, Y, 1) + (lP)Ckzg(x) - gw + (1 - l)Y) 
+(1-~)g(Y)l~Ilf-gll,. 

Consequently, S(f) < inf{ Ilf- gll o. : gE K}. 
To complete this proof, let 

k!(t) = envf(t) + W), for all t E [a, 61. (2.7) 

Since envf<f, on [a, b], we have g(t)<f(t) + S(f), for all t E [a, b]. 
Assume that there exists an x,, E (a, b) such that 

./l-d - Kf) > d-d = env.fhJ + Nf). (2.8) 

By virtue of the continuity off- envf, there exists some open interval 
I-c [a, b] such that 

f(t) - envAt) > 2Wl for all t E I. 

Lemma 3 then implies that there exist xi, x2 E [a, b] with Zc (xi, x2) such 
that 

fh)=ewfhh fh) = ewf(-d 

and 

f(t)-envf(t)>O for all t E (xi, x2). 

By a similar reasoning as in [3], we can show that envf is linear on 
(x,,x,).Therefore,forsome~,~(0,1),x,=Il,x,+(l-~,)x,and 

envf(&x, + (1 - 44 4 = &f(x,) + (1 - Mf(xJ. 

It follows that 

f(&x, + (1 - 44 x2) - envf(&xl + (1 -M 4 

= &ml) +f(&x, + (1 -&I x2) - (1 -Mm,) 

’ 2W). 
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This last inequality contradicts the definition of S(f). This contradiction 
implies that (2.8) cannot hold. Thus 

i?(f) 3f(t) - S(f), for all t E [a, b]. 

Hence, 

.f(t) - S(f) d k?(t) <.f(t) + S(f)> for all t E [a, h]. 

Since g E K, we have established Eq. (2.6). 

COROLLARY 1. Let f E C[a, b]. Then, 2 = env,f + S(f) is a best convex 
approximation to f 

THEOREM 2. Let p(f)=inf(Ilf-gll,:gEK). 

(i) Let .f E C’[a, b]. Then, 

p(f)< [(b-a)/81 sup{f’(x)-f’(y):a6xdydh). 

(ii) Let ,f E C2[a, b]. Then, 

p(f) G C(b - a?/161 sup{ C -f “(x)1 + 1-x E CQ, bl 1, 

(2.9) 

(2.10) 

where 

Cal+= II 
1 

if a<0 
if a>o. 

Pro@ (i) Note that for (x, y; 2) ES, 

F(x,Y,~)=(1/2){aCf(nx+(l -A)Y)-f(x)1 

+(l-n)Cf(Jx+(l -J)Y)-f(Y)]). 

Since f E C’[a, b], 

%Y, A)= (l/2) 41 -~)(Y-x)IIf’(tI)-.f’(t*)l? 

for some t, E [x, Ix + (1 -1) y] and rz E [ix + (1 - 2) y, y]. Therefore, 

d(f)<[(b-a)/8]sup{f’(x)-f’(y):adxdy<b}. 

(ii) If f E C2[a, b] and ( x, y; %) E S, for some t E [x, y], 

F(x,y,%)==(-1/2)~(1-R)(y-x)2[x,I”x+(1-~)y,y]f 

= ( - l/4) A( 1 - A)( y - x)Z,f”( t), 
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where [tl, t,, t3] f denotes the second divided difference off at t,, t,, t,. 
Hence, inequality (2.10) follows. 

As another application of Theorem 1, we provide an alternative proof 
of the characterization of best convex approximation to a continuous 
function, which was announced in [ 1 ] and proved in [S]. 

CHARACTERIZATION THEOREM. Let feC[a,b]- K. g*EK is a best 
convex approximation to f if and only if there exist x < y in [a, b] and 
IIE (0, 1) such that g* is linear on [x, y] and satisfies 

f(x)-g*(x)=f(Y)-g*(Y)= -Ilf -g*llm, 

and 

Proof: (Necessity) By the hypothesis and Theorem 1, 11 f - g*ll m = 
S(f ). In view of the continuity of S, A is nonempty. Assume (x, y; A) E A. 
Then by Lemma 2, x < y and 0 <1< 1. Since g* E K, the following 
inequality holds: 

G(x, y,~)~(1/2)C~g*(x)-g*(~x+(l-~)y)+(l -l)g*(y)lBO. 

If G(x, y, A) > 0, then 

S(f) = F(x, Y, 2) 

< F(x, y, A) + G(x, Y, A) 

~~~/~)C~llf-g*ll,+Ilf-~*Il,+~~-~~Ilf-g*Il,l 

= llf -g*llco. 

This contradicts Theorem 1. Thus G(x, y, 2) = 0. It follows from this 
equation and the convexity of g* that g* is linear on [x, y]. Therefore, 

S(f) = F(x, Y, 1) + (3x7 Y, 1) 

=w){~cg*(~)-f(~)l+ rfW+(l -A)Y)-g*w+ (1 -A)Y)l 

+ (1 - A)cg*(Y) -f(Y)1 1. 

However, from Theorem 1, we have 

-S(f) <f(t) - g*(t) G 4f )3 for all to [a, b]. 



UNIFORM CONVEX APPROXIMATION 319 

If g*(x) -f(x) <S(f), then 

(1-~/2)6(f)<(1/2){Cf(~x+(l-i)y) 
- g*tix + (1 - 2) Y)l + (1 - J*)cg*(Y) -f(Y)1 : 

<(l-G) Ilf-g*/lm~ 

and thus WI < IV- g* II 3cy which is a contradiction. This contradic- 
tion implies that g*(x) -f(x) = S(f). Similarly, we can show that 
f(Ax+(l-A)y)-g*(lx+(l-A)y)=&f) and g*(y)-f((y)=&f). 
These three equations and Theorem 1 establish the necessity of the charac- 
terization. 

(Suj,Eciency) From the assumptions we have 

WY 2 e, Y, 1.1 
= IF g*ll3c + (1P)C -k*(x) 

+ g*(;lx + (1 - A) y) - (1 - 1”) g*(y)] 

= llf-g*llm, 

where the last equality holds because of the linearity of g* on [x, y]. 
Hence, by Theorem 1, g* is a best convex approximation to f on [a, h]. 

3. SOME PROPERTIES OF BEST CONVEX APPROXIMATIONS 

In this section, we characterize the set of linear negative alternants of 
f- g*, where g* is a best convex approximation tofe C[a, b] and identify 
two functions which are respectively a lower bound and an upper bound 
of any best approximation toJ: 

For a real-valued function h defined on [a, b], a < x, <x2 < x3 d h is 
said to be a negative ulternunt of h, if -h(x,) =h(x2) = -h(xj)= Ilhll,. 
For f E C[u, b] - K and ge K, define the set of linear negative alternants of 
f-g'v 

A(f’-g)= {(x,y;A)~S:gislinearon [x,4’] and 

x < Ax + (1 - 3,) y < y is a negative alternant of ,f - g}. 

The following theorem characterizes the set of linear negative alternants of 
f-g*, where g* is a best convex approximation to f: 
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THEOREM 3. Let f E C[a, b] - K and let g* be a best convex approxima- 
tion to f on [a, b]. Then, 

A(f- g*) = A. 

ProojI Let (x, y; 2) E A. By a similar reasoning as in the proof 
of the characterization of best convex approximation, we find 
(x, y; 1) E A(f- g*). This gives A G A(f- g*). Conversely, assume 
(x, y; 1) E A(f- g*). Then, g* is linear on [x, y] and satisfies 

f(x) - g*(x) =f(y) - g*(Y) = - IV- g*II’x = -w)> 

and 

Hence, 

W) 2 m YT 1) 
=(1/2){-~[g*(x)-qf)l+Cg*(~x+(1--)Y)-~(f)l 

- (I- n)Cs*(Y) - w-)1 > = w-). 

This implies that F(x, y, A) = S(f), and thus (x, y; I) E A. Accordingly, 
A(f- g*) = A. 

COROLLARY 2. Let f EC[~, b] - K and let g* be a best convex 
approximation to f on [a, b]. Then, for all (x, y; 1) E A with x < y, g* is 
linear on [x, y] and 

g*(~x+(l--)Y)=~f(x)+(l--)f(Y)+6(f), PE co, 11. 

Proof: For (x, y; A) E A, by Theorem 3, (x, y; n)~A(f-- g*). Hence, g* 
is linear on [x, y], and g*(x) =f(x) + S(f) and g*(y) =f(y) + S(f). 
Therefore, by linear interpolation, for all p E [0, 11, 

g*w+ (1 -PL)Y) 

=g*(x)c~~+(1-~)Y-Yll(x-Y) 

+g*(Y)C~x+(l--)Y--ll(Y--x) 

=.0x) P +f(y)(1 -PI + W). 

Now we identify two functions which bound any best approximation. 
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For (x, y; A)EA, denote the linear interpolant to (x,f(x) +8(f)) and 
(xf(.v) + &f)) on [a, bl by 

Q-G yl(t) =.f(x)(t - YYb - Y) +f(.YNt- XMY - XI + WI, t E [a, b]. 

Let 

and 

Define 

L= {4x,yl:ky;4E~}, 

G = {envf- S(j)} u L. 

(3.1 ) 

(3.2 ) 

gW=w{gWg~G), t E [a, b]. (3.3) 

It is easy to verify that g is a convex function on [a, b] and if f is convex 
then g=f: The next theorem shows that this convex function is a lower 
bound of the best approximations toJ: 

THEOREM 4. Let f E C[a, b]. If g* E K is a best convex approximat;on 
to,f, then, 

g(t) d g*(t) G 2(t), for a& t E [a, b], (?.4) 

where g was defined in (2.7). 

Proof In [3], it has been proved that g*(t) denvf(t) + jlf - g*llm. By 
replacing If - g*l/ o3 by S(f ), we obtain the upper bound. To show the 
lower bound, assume to the contrary that there exists some ZE [a, b] such 
that g(z) > g*(z). Define 

P’U {Cqvl:(X,Y;qq. (3.5) 

By the definition of g, 

g(t) = g*(t), for all t E P. 

Hence z is not in P. If g(z) = env f(z) -S(f), then 

f((z) -S(f) 3 envf(z) - S(f) > g*(z), 

which contradicts the hypothesis that g* is a best convex approximation 
to ,f: Therefore, there exists (x, y; A) E A, such that /[x, y](z) > g*(z). This 
contradicts the convexity of g*. It follows that g(t) Q g*(t), for all 
t e [a, b]. 
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As shown in Corollary 1, g is a best convex approximation to J: Hence 
it is the greatest best convex approximation to J However, g may not be 
a best convex approximation tof: 

It is shown in [4,6] that if f is continuous but not nondecreasing on 
Ln. b], then there exists a best monotone approximation tofthat is in C”. 
However, an analogous statement is not true for best convex approxima- 
tion. To see this, let us consider the following example: Assume 

i 

-6x+ 1 O<xd l/8 
4x - l/4 l/8 <x < l/4 

f(x)= 
-3x-1- 312 l/4 < x < l/2 
3x - 312 1/2<x<3/4 
-4x + 174 314 < x Q l/0 
6x-5 1/8<xdl. 

Then f is continuous but is not convex on [0, 11. S(f) = & and 

d = {UP, l/2; l/2), (U&7/8; l/2)}. 

Hence, every best convex approximation has a knot at x = 4, and thus is 
not differentiable at 4. 
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