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ABSTRACT 

 

DETERMINATION OF THE PRESENCE OF RICKETTSIA SPP. AND BORRELIA SPP. CARRIED BY TORTOISE 

TICKS FROM MADAGASCAR 

Anna Phan 
Old Dominion University, 2021 

Director: Dr. Wayne Hynes 
 
 
 
 

Ticks were removed from three species of Malagasy tortoises, Astrochelys yniphora, A. radiata, and 

Pyxis arachnoides (comprising two subspecies P. a. arachnoides and P. a. oblonga), between 2012 and 

2015. The ticks were presumed to be from the genus Amblyomma. Ticks were morphologically identified 

and then checked molecularly to confirm their classification or identify any ticks that could not be 

morphologically identified. Molecular identification was done via end-point PCR that amplified tick 

cytochrome oxidase (CO1) and tick 12S rRNA genes. Ticks were screened via a real-time polymerase 

chain reaction assay for the presence of Rickettsia spp. and Borrelia spp., amplifying the rickettsial 17 

kDA and Borrelia 16S rRNA gene, respectively. Those positive for either pathogen were analyzed to 

determine the specific species via end-point PCR and sequencing. One hundred eighty-three ticks out of 

239 tested ticks (77%) were positive for the presence of Rickettsia spp. and/or Borrelia spp.; Rickettsia 

aeschlimannii and Rickettsia africae were sequenced from Rickettsia-positive ticks and a Borrelia species 

related to Borrelia turcica was sequenced from the Borrelia-positive ticks. The aim of this study was to 

determine the presence of Rickettsia spp. and Borrelia spp. infecting the ticks, as well as identifying the 

ticks, in order to determine veterinary and public health risks. This will help further our understanding of 

these ticks and their pathogens and their relationship to these tortoises, as well as the impact they may 

have on both human and veterinary health.
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INTRODUCTION 

 

 

Unlike other taxa such as birds and mammals, which are typically valued for food resources and 

aesthetics, reptiles are less valued and understudied (Czech et al., 1998) despite being a species rich 

group that greatly contributes to biomass and has various roles in ecosystems. Many reptiles are at an 

increased risk of extinction due in part to an increase in disease-induced declines, resulting from a 

growing risk of emerging infectious diseases that have occurred over the past 20 years (Bower et al., 

2019). 

 

Parasites are also a taxonomically diverse group of organisms whose behaviors and effects on hosts 

differ based on their host species and environment. However, they are physically dependent on other 

organisms, which may be detrimental or beneficial to their host depending on the parasite species 

(Bower et al., 2019). Parasites of reptiles are often neglected, as most reptile studies focus on the 

ecology and conservation of the reptile host, rather than a zoonotic potential of the parasite. However, 

an increase in emerging infectious diseases signifies a need for a deeper understanding of these host-

parasite interactions (Bower et al., 2017).  

 

Host-Parasite Dynamics 

Host-parasite dynamics are often influenced by environmental factors, such as temperature and climate, 

habitat changes, and anthropogenic effects. Sudden changes in environmental factors can result in 

stress-induced physiological changes in animals, resulting in a trade-off of energy between different 

biological functions. Reptiles, as ectotherms, are disproportionately affected by their external 

environment. Suboptimal conditions, such as cold temperatures, often force a re-allocation of energy to 

physiological processes such as thermoregulation from other systems such as the immune system, 

which in turn may lead to immunosuppression. For example, Kemp’s ridley sea turtles (Lepidochelys 

kempii) that were cold-stunned had an increased number of bacterial and fungal infections, suspected 

to be the result of opportunistic infections (Innis et al., 2009). The immune systems of reptiles are 

dependent on ambient temperature and environmental conditions, and changes resulting in them living 

in suboptimal conditions can put the animals at increased risk for infection. Anthropogenic effects, such 

as the introduction of contaminants and habitat loss, can also cause dramatic environmental changes 
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that influence the reptiles’ immune system. An increase in mercury concentrations in the Loggerhead 

sea turtles’ (Caretta caretta) natural habitat was correlated with an increase in viral infections, 

indicating that heavy metals, introduced into the ocean through human activity, was causing 

immunosuppression in the turtles (Day et al., 2007). Human encroachment into a habitat can also affect 

host-parasite dynamics, especially when habitat area becomes smaller. Such habitat changes often 

affect both host and parasite prevalence in an area, as the density of host individuals can determine 

parasite load (Mugabo et al., 2015). Higher host population densities often result in competition for 

food and increased stress, which may reduce immunity within the population (Bower et al., 2019), as 

seen when high densities of the lizard Zootoca vivipara were observed to have inflammation and 

increased Ixodes ricinus tick infestations (Mugabo et al., 2015).  

 

Parasite burdens can place physiological stress on reptiles. Maintaining an effective immune response 

against parasites is costly and often competes with other functions such as growth (Mugabo et al., 

2015); disruptions in other physiological functions can influence fitness and interactions both within and 

between species (Bower et al., 2019). One of the more serious effects is an increased risk of predation. 

Certain parasites, typically endoparasites, can cause abnormal cellular growth, causing physical 

abnormalities and/or muscle damage (Bower et al., 2019). Such physical abnormalities not only 

negatively influence regular functions, but they can also reduce an individual’s ability to escape 

predators. Physiological costs from parasites may also reduce the competitive ability between species; 

Schall (1992) showed an example of parasite-mediated competition in Anolis lizards of the Caribbean 

islands that determined the distribution of different Anolis populations. There are some cases where an 

individuals’ own natural processes may cause immunosuppression, putting them at an elevated risk for 

parasite infection. Olsson et al. (2000) found testosterone-treated male sand lizards (Lacerta agilis) had 

a higher tick burden than those with lower testosterone levels. The authors suggested that immune 

suppression was associated with elevated testosterone levels due to balancing the energy costs for both 

reproductive success and maintaining immune function.  

 

However, research is now shifting to analyzing host social networks to observe parasite abundance and 

distribution throughout host populations. Godfrey et al. (2006) observed that parasites with lower 

mobility, such as ticks, rely on the spatial proximity of hosts for transmission, suggesting that 

interactions between individuals can strongly affect parasite transmission. Parasites that have direct 

transmission routes of infection depend more on intra-group interactions rather than inter-group 
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interactions, while parasites carried by vectors are less dependent on social contact among hosts. 

Populations of the tuatara (Sphenodon punctatus) have increased tick infestations due to the social 

interactions among individuals. Studies on the tuatara have shown that male biased parasitism is 

common, most likely due to males overlapping with other individuals in competition for food and 

territory unlike females (Godfrey et al., 2010).  

 

While host population density plays a large role in parasite abundance and distribution, host population 

genetic diversity can also influence parasite loads and disease dynamics (Bower et al., 2010).  Studies 

have shown that host genetic variation dictate parasite susceptibility, with homogeneous populations 

often suffering from increased susceptibility, while genetically diverse populations were less susceptible 

to infection (Whiteman et al., 2006; Altermatt and Ebert, 2008). Increased susceptibility to parasites 

and/or disease correlates with a loss of genetic diversity, especially in inbred populations, resulting in 

the accumulation of potential deleterious mutations and/or the loss of resistance genes (Whiteman et 

al., 2006). One aspect of host genetic adaptation to pathogens is the Major Histocompatibility Complex 

(MHC) expression. The MHC is a highly polymorphic component of the immune system that allows 

multiple responses to different infections. Radwan et al. (2014) found a positive correlation between 

tick load on Ornate dragons (Ctenophorus ornatus) and MHC diversity, which agrees with the hypothesis 

that MHC polymorphism is driven by selective pressure associated with a given parasite (Spurgin and 

Richardson, 2010). However, more studies need to be done on population MHC diversity and parasite 

abundance as the relationship between MHC polymorphism and parasite load in reptiles is still unclear 

(Bower et al., 2019). Individual host responses to infection also differ at the gene expression level. Some 

infections cause species-specific differences in gene expression which can in turn dictate parasite 

evolutionary trajectory. More studies on genetic variation of both hosts and parasites influence rapid 

parasite evolution will contribute to a greater understanding of disease dynamics (Bower et al., 2019). 

 

Parasite-Reptile Interactions 

Parasites, ranging from viruses and bacteria to larger eukaryotic organisms, often exploit their hosts for 

survival, resulting in a variety of outcomes to host population (Bower et al., 2019). While eukaryotic 

parasites can play a role in maintaining reptile populations, when combined with other stressors, 

parasites can lead to major declines in many reptile species. Parasitic infections can affect population 

viability and increase susceptibility to other stressors, which puts reptiles at a risk of decreased 

reproduction and growth. This risk is especially important for rare and endangered species, such as the 
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Malagasy tortoises Astrochelys spp. and Pyxis sspp. While the acute stress response can aid animals in 

finding refuge for growth and/or recovery (Currylow et al., 2017a), chronic stress, especially in critically 

endangered species can be deleterious. Changes in environmental conditions, from both natural climate 

shifts and translocation from conservation efforts, can increase concentrations of the stress hormone 

corticosterone in A. yniphora and prevent breeding success for several years while the tortoises 

acclimatize to the changes (Currylow et al., 2017b). Flattened musk turtle (Sternotherus depressus) 

populations have also been experiencing major population declines due to environmental change and 

poaching. Such stress has led to a weakened immune system and consequently a higher risk for disease 

(Bower et al., 2019). Even some conservation strategies for endangered reptiles can lead to an increased 

risk of parasite spread.  

 

The movement of reptiles in both wildlife reintroduction/translocation programs, as well as the exotic 

pet trades may inadvertently relocate parasites, which in turn can lead to parasitization of susceptible 

hosts with no immune response towards that particular parasite (Bower et al., 2019). The exotic reptile 

trade is often responsible for the introduction and spread of exotic parasites, as shown in Italy where 

the release of exotic pet tortoises was linked to an increased risk of helminth infection in native species 

(Cervone et al., 2016). In Florida, native snake species were shown to be more competent hosts of the 

parasite Raillietiella orientalis than the invasive Burmese python (Python bivittatus) host that introduced 

it to the area. This facilitated the parasite’s spread beyond the Burmese python’s range (Miller et al., 

2020). Conservation of reptiles is an important goal associated with parasite-reptile studies; more 

knowledge on how hosts and parasites interact with each other and how anthropogenic impacts affect 

such interactions is required. 

 

Tick-Reptile Interactions 

Ticks are ectoparasites and are well-known vectors of various pathogens. As vectors of many human and 

veterinary pathogens, second only to mosquitoes worldwide, ticks are often the focus of potential public 

health and veterinary implications that may arise from the pathogens they carry (Sonenshine et al., 

2002). While ticks and their pathogens are an important consideration in veterinary health, there is little 

information on the relationships between ticks and reptile hosts (Burridge, 2001). 

 

The ecology of host taxa can determine the ecology of sympatric tick species. Reptiles can undergo 

pronounced niche shifts, such as ecological divergence, seasonal activity patterns, social interactions, 
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and physiological changes such as sexual dimorphism as they mature (Shine and Wall, 2004); these shifts 

can influence the intensity and prevalence of tick parasitism (Natusch et al., 2018). For example, 

Natusch et al. (2018) found that larger snakes were positively correlated with heavy tick loads. The 

broader scale pattern and loose overlap of larger snakes provided an easier attachment surface for ticks. 

Larger snakes also tended to have larger refuge sites that overlap with other snakes, allowing for more 

interactions with other snakes and increasing the chance of contact with ticks. This supports similar 

observations in other reptiles; reptiles using the same leaf litter can increase an animal’s tick burden, as 

each individual is making frequent contact with multiple hosts infested by various tick life stages 

(Natusch et al., 2018). In some reptile species, females often have higher tick burdens than males, which 

may be due to lower immunocompetence resulting from a physiological trade-off for reproduction 

(Poulin, 2011). In other reptile species, the males have higher tick burdens as they have increased 

movement in an area as they look for mates and, in doing so, come into contact with ticks more 

frequently (Aubret et al., 2005). Ticks can also indirectly affect their own ecology depending on any 

alteration they cause to their host’s behavior. While this topic requires more research, males of some 

reptile species with tick infestations show reduced aggression and less success in territorial contests 

(Godfrey et al., 2010). This can influence the reptile host’s contact with other individuals and thus 

reduce transmission of ticks to new hosts. 

 

Reptiles have also been implicated as potential reservoirs in tick-borne pathogen cycles by maintaining 

pathogen endemicity in reptile habitats (Cervone et al., 2016). As a diverse taxonomic group, reptiles 

may play a role in the epidemiology of various tick-borne pathogens. A number of different Borrelia, 

Rickettsia, Ehrlichia, Anaplasma, and Babesia species have been reported in lizards and other reptiles. 

Ehrlichia ruminantium, a livestock pathogen, has been found in Amblyomma sparsum ticks feeding on 

tortoises, and Ehrlichia canis was identified in Amblyomma latum ticks feeding on monitor lizards 

(Varanus niloticus) (Omondi et al., 2017). In contrast to Borrelia species such as Borrelia burgdorferi, 

other tick-borne pathogens are poorly studied in reptiles (Václav et al., 2010), in part because Borrelia 

species are seen as a greater threat to public health.  

 

Overall, there is little data available on the impact of reptile ticks on their hosts; although there is some 

evidence that heavy tick loads can be detrimental to reptile health (Dunlap and Mathies, 1993). A heavy 

tick infestation can reduce hemoglobin concentrations in blood, which prevents effective oxygen 

transfer to the tissues (Bower et al., 2019). Some tick infestations may also cause respiratory distress, or 
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even death, if the ticks physically block nasal passages (Burridge, 2001). Ticks may also be vectors of 

detrimental reptile pathogens. For example, A. latum commonly infests snakes in Africa where it is a 

vector for reptile protozoal and bacterial pathogens. Amblyomma latum is also frequently reported 

outside its natural home range as a result of anthropological factors (Vercone et al., 2016); this species 

may then bring with it an increased risk of infection to native reptile species that may be detrimental to 

such hosts. 

 

Tick-Tortoise Interactions 

Tortoises are of interest in of zoonotic disease transmission because they are typically long lived and 

therefore may play a role in long-term maintenance of infectious agents (Pastiu et al., 2012). Tick-

burdened tortoises often wander near humans and livestock, increasing the potential of pathogen 

spillover. Amblyomma species are common ticks of tortoises; they are notoriously aggressive and have 

been observed to actively pursue hosts. Amblyomma hebraeum and Amblyomma variegatum, two 

common tortoise ticks in sub-Saharan Africa, can cause issues with domestic livestock. They readily feed 

on wild ungulates such as giraffes and wildebeest while maintaining pathogens in the environment that 

can spill over into human society (Jensenius et al., 2003). Juvenile stages of these ticks may be less host-

specific than adults, which could make them important in maintaining pathogens in the environment, as 

they may infest smaller animals such as birds, lizards, and small mammals (Pastiu et al., 2012).  

 

The international trade of tortoises in the exotic pet trade has played a role in the epidemiology of tick-

borne pathogens originally endemic to Africa. Many tortoises infested with ticks have been introduced 

to new locations, which can result in the exotic ticks establishing populations in new areas. In 1997, 

Amblyomma marmorerum, an African tortoise tick, was found to have become established in Florida 

near a reptile breeding facility. This particular tick can feed on a variety of reptiles, such as snakes and 

monitors, which threatens those reptile hosts that do not have resistance to novel pathogens carried by 

these ticks (Burridge, 2001). Like other reptiles, the interactions between ticks and tortoises are not well 

studied, and more research is needed to determine any pathogenic effects on the tortoises. 

 

Ticks of Malagasy Tortoises 

Very little is known about exotic reptile tick biology other than identification of host species and source 

geographic information. Knowledge on the pathogenic effects on hosts and vector potential is lacking. 
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Nine out of 29 ticks exotic to the US are known to be associated with disease (Burridge and Simmons, 

2003).  

 

Amblyomma chabaudi, a tortoise tick found in Madagascar, is not as well studied as other reptile ticks. 

The preferred host species of A. chabaudi is the spider tortoise (Pixis arachnoides arachnoides), though 

another tortoise species, the radiated tortoise (Astrochelys radiata), can also be an occasional host 

(Ehlers et al., 2016). Both tortoise host species are Critically Endangered and endemic to Madagascar. 

While the biology of A. chabaudi is not well studied, it is assumed to have similar life patterns and 

history as other tortoise-associated Amblyomma spp., with the adults feeding exclusively on tortoises 

and the juvenile stages feeding on both tortoises and other vertebrates (Klompen, 2003). Amblyomma 

chabaudi may also be a health factor for humans and livestock; it is a parasite and also a vector for 

pathogenic bacteria. Ehlers et al. (2016) found that 100% of sampled A. chabaudi ticks were infected 

with a Rickettsia spp., a bacterial genus that is pathogenic to both humans and livestock. There is also 

concern regarding the spread of A. chabaudi outside of Madagascar, as it has been found infesting 

tortoises in exotic pet trades. In 2002, it was first reported in the United States where it was found to be 

infesting other reptile hosts in the absence of its preferred host (Burridge and Simmons, 2002).  

 

African Tick-Borne Pathogens 

There are many tick-borne pathogens; one pathogen of interest found in A. chabaudi is Rickettsia 

africae, the causative agent of African tick bite fever (ATBF). It was originally thought that the disease 

resulted from infection with Rickettsia conorii, the causative agent of Mediterranean spotted fever 

(MSF) due to the similarities between the diseases. Both Mediterranean spotted fever and African tick 

bite fever present in humans with a fever, no rash, development of an inoculation eschar, and swollen 

lymph nodes (Raoult et al., 2001). Pijper et al. (1936) suggested R. africae was different from R. conorii; 

Kelly et al. (1992) demonstrated the causative role of R. africae in ATBF by isolating it from a patient.  

African tick bite fever is a milder illness with multiple eschars and swollen lymph nodes, unlike MSF 

which has only a single eschar, is more severe, and can be fatal (Jensenius et al., 2003). Treatment of 

ATBF is antibiotic therapy using doxycycline, minocycline, trythromycin, or ciprofloxacin. Rickettsia 

africae is a public health issue, and it is the second most common cause of systemic febrile illness in 

Africa. While being widespread in Africa, it has also been detected in Niger, Mali, Burundi, Sudan, South 

Africa, Guadeloupe, and the West Indies. This disease mainly occurs in tourists returning from tick 

endemic areas (Mediannikov et al., 2010). Dupont et al. (1995) found a 30-56% seroprevalence in sera 
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collected from patients in 7 different African countries. Rickettsia africae is usually transmitted by the 

tick vectors, Amblyomma variegatum and Hyalomma hebraeum (Mediannikov et al., 2010) and is 

maintained in the environment through cattle and other ungulates (Raoul et al., 2001). Though 

prevalence information of R. africae in Madagascar is still lacking, there is a link between habitat 

degradation and increased infestation of tortoises with R. africae-infected ticks (Ehlers et al., 2016). As 

human encroachment across tortoise habitat increases, more research is needed to prevent any 

negative consequences to human and livestock health. 

 

Another Rickettsia species of interest is Rickettsia aeschlimannii, one of the spotted fever group 

Rickettsiae which is normally associated with the reptile tick Hyalomma marginatum (Beati et al., 1997). 

It was first described in 1997 after isolation from a Moroccan H. marginatum tick (Beati et al., 1997). 

Genotypically similar organisms have been detected in other Hyalomma ticks from Africa following the 

initial characterization (Matsumoto et al., 2004). It has been suggested that R. aeschlimannii may be 

another causative agent of MSF (Raoult et al., 2002). The first documented human infection with R. 

aeschlimannii was in 2000; a patient returning from Morocco to France developed a fever, generalized 

maculopapular skin rash, and an inoculation eschar that became necrotic (Raoul et al., 2002). Infections 

caused by R. aeschlimannii are difficult to distinguish from other rickettsial infections, such as R. conorii, 

based on clinical features alone, especially in areas which have multiple rickettsial pathogens 

(Matsumoto et al., 2004). Spotted fever group rickettsioses are characterized by headache, high grade 

fever, cutaneous rash, and eschars, with other nonspecific symptoms during the early stages. 

Distinguishing characteristics may be absent or unobserved during these early stages (Tosoni et al., 

2016). The typical method of differentiation the Rickettsia sp. is testing for specific antibodies (Raoult et 

al., 2002). More severe cases of R. aeschlimannii infection are characterized by liver dysfunction and 

significant hyperaminotransferasemia, a condition in which the liver cells become too permeable and 

leak enzymes into the bloodstream (Tosoni et al., 2016). Rickettsia aeschlimannii may be an important 

area of public health because of its now broad geographic distribution, having been detected in 

southern Europe (Tosoni et al., 2016, Fernandez-Soto and Perez-Sanchez, 2003), Germany (Rumer et al., 

2011), sub-Saharan Africa (Matsumoto et al., 2004), and China (Wei et al., 2015). The spread of R. 

aeschlimannii in Europe is hypothesized to be associated with migratory birds from Africa (Rumer et al., 

2011, Matsumoto et al., 2004). Fernandez-Soto and Perez-Sanchez (2003) showed 6 tick species across 4 

genera can carry R. aeschlimannii, although H. marginatum is considered to be the main vector based on 

the highest number of infected specimens and highest infection rate.  



9 
 

 

Borrelia turcica is a reptile-associated Borrelia. Reptile-associated Borreliae do not phylogenetically align 

with either the relapsing fever Borreliae or Lyme borreliosis groups; they are in their own separate clade 

(Gofton et a., 2018). However, B. turcica does contain relapsing fever-like genes, which may allow it to 

grow to high densities in blood, similar to the relapsing fever Borreliae. Its genome also contains some 

conserved Lyme borreliosis specific orthologs. These orthologs may provide fitness advantages in the 

tick midgut environment, with maintenance pathways similar to ones found in Borrelia burgdoferi sensu 

stricto that may play a role in acquisition by, persistence in, and transmission by ticks (Gofton et al., 

2018). However, little is known about the biology, ecology, or pathogenicity of B. turcica. It has been 

isolated from tortoises exotic to the US (Takano et al., 2010), with the genus Testudo acting as a 

potential reservoir (Hepner et al., 2020). Hepner et al. (2019) confirmed the potential of tortoises acting 

as a reservoir by testing the in vitro survival of B. turcica in turtle, tortoise, human, and bird sera. 

Borrelia turcica had full resistance to tortoise sera and partial resistance to turtle sera, while there was 

no survival in human or bird sera; this suggests that B. turcica is not able to be a human pathogen. 

Takano et al (2010) experimentally infected tortoises with B. turcica and reported that the tortoises 

showed no symptoms despite developing a systemic infection, being found in skin, whole blood, and 

muscle tissue. This suggests that tortoises may play a role in maintaining B. turcica in the environment. 

Currently, there is little information on other animals that B. turcica may be able to infect.  

 

Malagasy Tortoises 

This thesis research focuses on the largest and smallest Malagasy tortoises, the Angonoka tortoise 

Astrochelys yniphora and two spider tortoise subspecies, Pyxis arachnoides oblonga and Pyxis 

arachnoides arachnoides. Astrochelys yniphora is Critically Endangered (IUCN Red List), found only in 

Baly Bay National Park in northwest Madagascar (Mandimbihasina et al., 2018). Its large size and 

“golden” coloration has made it a valuable tortoise in illegal pet trades (Mandimbihasina and Currylow, 

2014) where the price can exceed $45,000 USD per tortoise. Exploitation of this tortoise species resulted 

in a 50% population decline to around 500 breeding pairs in 2014-2015 and the loss of 2 subpopulations. 

Studies have shown no genetic bottlenecks in the remaining subpopulations, which suggests the tortoise 

populations may still be healthy. While captive breeding and conservation efforts allowed for the 

release of over 100 tortoises back into the wild in 2015, breeding is difficult due to the tortoises’ delayed 

age of reproduction of around 17 to 22 years (Mandimbihasina et al., 2019).  
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Less is known about the biology and ecology of the Critically Endangered P. a. arachnoides, spider 

tortoise, and P. a. oblonga, southern spider tortoise (Walker et al., 2008). These are endemic to the 

southern Madagascar coast, and their range is sympatric with A. radiata (Walker et al., 2012), though 

they prefer coastal spiny forests (Fritz and Havas, 2007). Their range once spanned across 555 km of 

coastline, but habitat loss has reduced population size to around 30% of historical figures (Walker and 

Rafeliarisoa, 2012). Their activity is dependent on the rainy seasons; they often go dormant during dry 

months when there is less lush vegetation. During wet months they are more active and forage, moving 

to areas of greater vegetation cover (Currylow et al., 2015; Walker et al., 2008). Reproductive behaviors 

of P. arachnoides are still undescribed (Currylow et al., 2015). With both tortoise species being critically 

endangered, studying ticks collected from them may provide insight into factors that could be 

detrimental to these tortoises.  
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METHODS 

 

 

Tick Collection 

From 2012 through 2015, ticks were collected from free-ranging, opportunistically encountered, or 

radiotracked tortoises during fieldwork on other studies (Currylow, 2016). Ticks were removed from 

tortoise limbs and scute sutures with a plyer and immediately deposited into a 1.5 mL snap cap 

microcentrifuge tube filled with 70-91% alcohol. Associated data recorded at the time of collection 

included tortoise species, tortoise morphometrics, tortoise demographics, tortoise behavior, body 

location of tick removal, weather, general habitat, date, time, and GPS location. A total of 14 A. 

yniphora, 45 Pyxis a. arachnoides, 13 Pyxis a.s oblonga, one A. radiata were sampled from various 

locations (Fig. 1 and Fig. 2). All samples were stored at room temperature and transported from 

Madagascar to the U.S. for analysis. Fieldwork was conducted under the Malagasy Ministry of the 

Environment and Forests permit numbers 008/13, 009/13, 214/13, 271/13, 112/14, 023/12, 129/14, 

005/15, 006/15 and 035/16. All animal-related activities were compliant with University of Southern 

California IACUC #12046. DNA extracted from Amblyomma chabaudi ticks were also received from 

Germany (generous gift from Julian Ehlers and Professor Jörg Ganzhorn [Universität Hamburg, Hamburg, 

Germany]). 

 

DNA Extraction 

Prior to extraction, adult ticks were cut bilaterally, with one half stored at -80°C and the other half 

pulverized for extraction. Juvenile ticks were pulverized and extracted whole. Each tick was pulverized 

using 1 mm glass beads and one 5 mm glass bead in a Mini Beadbeater (Biospec, Inc. Bartlesville, OK, 

USA) with extractions done using the GeneJET Genomic DNA Purification Kit (ThermoFisher Scientific, 

Waltham, MA, USA) according to manufacturer’s instructions. Extracted DNA was eluted in 100 µL 

elution buffer. 
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Fig 1. Heat map of the northern Madagascar tortoise sampling locations. Sample density color gradient 
indicates the overlap of individual tortoise observations in an area.   
 
 
 
 
Molecular Tick Identification 

Ticks that could not be morphologically identified were identified using PCR assays that amplified the 

tick cytochrome oxidase (CO1) and tick 12S rRNA genes (Table 1). Malagasy Amblyomma chabaudi tick 

DNA donated from Germany were also amplified using the aforementioned genes for comparison. 

Reactions carried out in 25 µL volumes and consisted of 12.5 µL of 2X EconoTaq PLUS master mix (Lugien 

Corp., Middleton, WI), 1.25 µL of each primer (10 µM concentration), 5 µL of water, and 5 µL of 

template DNA. Thermocycler conditions for both CO1 and 12S rRNA were described by Kushimo (2013). 

PCR products were visualized using gel electrophoresis on a 1.5% agarose gel. Samples that generated a 

visible band of the correct size were purified using the DNA Wizard Preps Kit according to manufacturer 

instructions (Promega Corporation, Madison, WI) and sequenced using the BigDye Terminator v.3.1 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) using the aforementioned primers. DNA 

sequences were assembled in Geneious (Biomatters, San Diego, CA, USA) and compared against known 

sequences using NCBI BLAST.  
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 Fig 2. Heat map of the northern Madagascar tortoise sampling locations. Sample density color gradient 
indicates the overlap of individual tortoise observations in an area.   
 
 
 
 
Table 1. Primers and probes used to determine tick species 

Primer/Probe Primer/Probe Sequence Reference 

Tick 12S rRNA gene   

T1B 5’- AAACTAGGATTAGATACCCT -3’ Kushimo (2013) 

T2A 5’- AATGAGAGCGACGGGCGATGT -3’ Kushimo (2013) 

Tick CO1 gene   

F1 5’- TACTCTACTAATCATAAAGACATTGG -3’ Kushimo (2013) 

R1 5’- CCTCCTCCTGAAGGGTCAAAAAATGA -3’ Kushimo (2013) 
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Rickettsia spp. Testing and Sequencing 

Samples were screened for Rickettsia spp. using a real-time PCR assay that amplifies and detects the 

rickettsial 17 kDA gene (Table 2). Reactions were carried out in 25 µL volumes with 12.5 µL of 2X 

EconoTaq PLUS master mix (Lugien Corp., Middleton, WI), 1.25 µL of each primer (10 µM 

concentration), 1 µL of probe (10 µM concentration), 3.5µL of MgCl2 (25 µM concentration), 0.5 µL of 

water, and 5 µL of template DNA. Real-time thermocycler conditions were: 50°C for 2 min and 95°C for 2 

min, followed by 45 cycles of 95°C for 15 sec and 60°C for 30 sec (Jiang et al., 2012). 

 

Samples positive for Rickettsia spp. were amplified using standard end-point PCR for the Rickettsia spp. 

citrate synthase gene (gltA) and a nested end-point PCR for the outer membrane protein A gene (ompA) 

(Table 2). Reactions for gltA were carried out in 25 µL reactions with 12.5 µL of 2X EconoTaq PLUS 

master mix (Lugien Corp., Middleton, WI), 2 µL of each primer (10 µM concentration), 3.5 µL of water, 

and 5 µL of template DNA. Thermocycler conditions were: 95°C for 3 min, then 40 cycles of 95°C for 15 

sec, 48°C for 30 sec, and 72°C for 30 sec, followed by 72°C for 7 min and an indefinite hold at 4°C 

(Labruna et al., 2004). Outer reactions for ompA were carried out in 20 µL volumes with 10 µL of 2X 

EconoTaq PLUS master mix (Lugien Corp., Middleton, WI), 1 µL of each primer (10 µM concentration), 6 

µL of water, and 2 µL of template DNA. Thermocycler conditions were: 95°C for 5 min, then 40 cycles of 

95°C for 30 sec, 57°C for 30 sec, and 72°C for 1 min, followed by 72°C for 10 min and an indefinite hold 

at 4°C. Inner reactions for ompA were carried out in 20 µL volumes with 10µL of 2X EconoTaq PLUS 

master mix (Lugien Corp., Middleton, WI), 1 µL of each primer (20 µM concentration), 7 µL of water, and 

1 µL of the outer reaction product. Thermocycler conditions were the same as the outer reaction 

(Regnery et al., 1991).  
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Table 2. Primers and probes used to identify Rickettsia spp. 

Primer/Probe Primer/Probe Sequence Reference 

Rickettsia 17kDA   

R17K128F2 5’- GGGCGGTATGAAYAAACAAG -3’ Jiang et al. (2012) 

R17K238R 5’- CCTACACCTACTCCVACAAG -3’ Jiang et al. (2012) 

R17K202TaqP 5’- 6FAM- CCGAATTGAGAACCAAGTAATGC- 3IABkFQ -3’  Jiang et al. (2012) 

Rickettsia gltA   

CS-239 5’- GCTCTTCTCATCCTATGGCTATTAT -3’ Labruna et al. (2004) 

CS-1069 5’- CAGGGTCTTCGTGCATTTCTT -3’ Labruna et al. (2004) 

Rickettsia ompA   

RR190.70 outer 5’- ATGGCGAATATTTCTCCAAAA -3’ Blair et al. (2004) 

RR190.701 5’- GTTCCGTTAATGGCAGCATCT -3’  Blair et al. (2004) 

RR190.70 inner 5’- ATGGCGAATATTTCTCCAAAA -3’ Regnery et al. (1991) 

RR190.622n 5’- AGTGCAGCATTCGCTCCCCCT -3’ Regnery et al. (1991) 

 

 

Borrelia spp. Testing and Sequencing 

Samples were screened for Borrelia spp. using a real-time PCR assay that amplifies a fragment of the 

Borrelia 16S rRNA gene as described in Graham et al. (2018). Reactions were carried out in 20 µL 

reactions with 10 µL of 2X EconoTaq PLUS master mix (Lugien Corp., Middleton, WI), 1.2 µL of each 

primer (10 µM concentration), 0.4 µL of probe (10 µM concentration), 2.2 µL of water, and 5 µL of 

template DNA. Thermocycler conditions were 95°C for 3 min, followed by 40 cycles of 95°C for 10 sec 

and 60°C for 45 sec.  

 

Samples positive for Borrelia spp. were amplified using nested standard end-point PCR for the Borrelia 

spp. housekeeping genes uvrA and rplB (Table 3) and the Borrelia flagellin gene flaB (Table 3). Outer 

reactions for both housekeeping genes were carried out in 20 µL reactions with 10 µL of 2X EconoTaq 

PLUS master mix (Lugien Corp., Middleton, WI), 2 µL of each primer, 5 µL of water, and 1 µL of template 

DNA. Thermocycler conditions were: a touchdown PCR starting with 95°C for 15 sec followed by 8 cycles 

of 94°C for 30 sec, 55°C for 30 sec decreasing by 1°C every cycle, and 72°C for 30 sec. An additional 20 

cycles were run at 94°C for 30 sec, 48°C for 30 sec, and 72°C for 30 sec, followed by 72°C for 5 min and 
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an indefinite hold at 4°C (Margos et al., 2008). Inner reactions for the housekeeping genes are identical 

to the outer reaction using 1 µL of product from the outer reactions. Thermocycler conditions for the 

inner reactions were: 95°C for 7 min, followed by 35 cycles of 94°C for 30 sec, 50°C for 30 sec, and 72°C 

for 30 sec, followed by 72°C for 5 min and an indefinite hold at 4°C (Margos et al., 2008). Outer reactions 

for flaB were carried out in 25 µL reactions with 12.5 µL of 2X EconoTaq PLUS master mix (Lugien Corp., 

Middleton, WI), 0.5 µL of each primer (10 µM concentration), 0.75 µL of MgCl2 (50 µM concentration), 

5.7 µL of water, and 5 µL of template DNA. Thermocycler conditions were: 94°C for 2 min, followed by 

35 cycles of 94°C for 30 sec, 52°C for 30 sec, and 72°C for 45 sec, followed by 72°C for 7 min and an 

indefinite hold at 4°C (Johnson et al., 1992). Inner reactions were carried out in 25 µL reactions with 12.5 

µL of 2X EconoTaq PLUS master mix (Lugien Corp., Middleton, WI), 2 µL of each primer (10 µM 

concentration), 3.5 µL of water, and 5 µL of outer reaction product diluted 1:10. Thermocycler 

conditions were: 94°C for 2 min, collowed by 35 cycles of 94°C for 30 sec, 55°C for 30 sec, and 72°C for 

45 sec, followed by 72°C for 7 min and an indefinite hold at 4°C (Johnson et al., 1992).  

 

Sequence Curation and Phylogeny Analysis 

Consensus sequences were generated for each sample from chromatograms with bidirectional coverage 

of the tick, Borrelia, and Rickettsia genes of interest. Nucleotide sequences were aligned and curated 

using Geneious Prime 2020 (https://www.geneious.com). Consensus sequences were compared against 

known sequences from the NCBI database using BLAST to match identical sequences. Using Geneious 

Prime 2020, consensus sequences of the flaB gene from 6 individual samples were aligned and trimmed 

to the same length to generate an overall consensus sequence for analysis of other samples. The flaB 

sequences of 4 samples that matched the consensus sequence were concatenated with the uvrA and 

rplB sequences for analysis. The uvrA and rplB sequences of each sample were trimmed to the same 

length. The flaB, uvrA, and rplB sequences for Borrelia miyamotoi, Borrelia afzelii, Borrelia lusitaniae, 

Borrelia valaisiana, Borrelia bissetti, Borrelia garinii, Borrelia burgdorferi, Borrelia coriaceae, Borrelia 

parkeri, Borrelia hermsii, and Borrelia turcica were also concatenated to provide comparison to the 

samples. A phylogenetic tree was then generated using the Tamura-Nei distance model and neighbor-

joining build method.  

 

The consensus sequences of the 12S rDNA and CO1 genes of 5 ticks were trimmed to the same length 

and concatenated to form a phylogenetic tree along with the same regions from 16 previously identified 



17 
 

A. chabaudi generously provided by Julian Ehlers and Professor Jörg Ganzhorn (Universität Hamburg, 

Hamburg, Germany). 

 

 

Table 3. Primers and probes used to identify Borrelia spp. 

Primer/Probe Primer/Probe Sequence Reference 

Borrelia 16S   

16S-F 5’- AGCYTTTAAAGCTTCGCTTGTAG -3’ Kingry et al. (2018) 

16S-R 5’- GCCTCCCGTAGGAGTCTGG -3’ Kingry et al. (2018) 

16S-probe 5’-FAM-CGTTCAATACACACATCAAACCACT-3IABkFQ-3’ Kingry et al. (2018) 

Borrelia flagellin   

flaB outer 1 5’- AAGTAGAAAAAGTCTTAGTAAGAATGAAGGA -3’ Johnson et al. (1992) 

flaB outer 2 5’- AATTGCATACTCAGTACTATTCTTTATAGAT -3’ Johnson et al. (1992) 

flaB inner 1 5’- CACATATTCAGATGCAGACAGAGGTTCTA -3’ Johnson et al. (1992) 

flaB inner 2 5’- GAAGGTGCTGTAGCAGGTGCTGGCTGT -3’ Johnson et al. (1992) 

Borrelia uvrA   

uvrF1408 5’- GAAATTTTAAAGGAAATTAAAAGTAG -3’ Margos et al. (2008) 

uvrR2318 5’- CAAGGAACAAAAAACATCTGG -3’ Margos et al. (2008) 

uvrF1434 5’- GCTTAAATTTTTAATTGATGTTGG -3’ Margos et al. (2008) 

uvrR2111 5’- CCTATTGGTTTTTGATTTATTTG -3’ Margos et al. (2008) 

Borrelia rplB   

rplF2 5’- TGGGTATTAAGACTTATAAGC -3’ Margos et al. (2008) 

rplR760 5’- GCTGTCCCCAAGGAGACA -3’ Margos et al. (2008) 

rplF40 5’- CGCTATAAGACGACTTTATC -3’ Margos et al. (2008) 

rplR760 5’- GCTGTCCCCAAGGAGACA -3’ Margos et al. (2008) 
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RESULTS 

 

 

Tick infestation of tortoises 

Ticks were sampled from a total of 72 tortoises: 14 A. yniphora, 44 P. a. arachnoides, 13 P. a. oblonga, 

and one A. radiata. One hundred ninety-one ticks were removed from A. yniphora, 84 from P. a. 

arachnoides, and 21 from P. a. oblonga, one from A. radiata, and one from the grass. This resulted in a 

mean of 13.6 ticks per infested A. yniphora, 1.9 ticks per infested P. a. arachnoides, and 1.6 ticks per 

infested P. a. oblonga, one tick per infested A. radiata. 

 

Borrelia and Rickettsia Screening 

Two hundred thirty-nine ticks were screened for the presence of Borrelia spp. and Rickettsia spp.; 29 

ticks were set aside for archival purposes. One hundred thirty-seven (57.30%) ticks were infected with 

only Rickettsia spp., and 3 (1.39%) were infected with only Borrelia spp. Another 43 (18.00%) ticks were 

co-infected with both Borrelia spp. and Rickettsia spp. This results in a total of 180 Rickettsia spp. 

infected ticks (75.30%) and a total of 46 Borrelia spp. infected ticks (19.30%) (Fig. 3). 

 

 

 
Fig. 3. Number of ticks positive for Borrelia spp. and/or Rickettsia spp. out of a total of 239 ticks. Results 
were grouped based on numbers of samples positive for Rickettsia spp., Borrelia spp., or co-infected 
with both genera and number of samples negative for bacterial presence. 



19 
 

 
Identification of Rickettsia spp. 

To determine the Rickettsia spp. present in the ticks, the gltA gene was sequenced from 11 Rickettsia-

positive ticks. BLAST search for similar sequences revealed a 99.7-100% identity, over 686 nucleotides, 

to R. africae isolate HuAvRcgltA (GenBank accession MT905433) for 4 samples. Seven samples had a 

99.7-99.8% identity, over 810 nucleotides, to R. aeschlimannii isolate Raeschlimannii_Tick15 (GenBank 

accession MH267736).  

 

Borrelia Genetic Diversity 

Ticks positive for Borrelia spp. had the flaB gene amplified and sequenced; 45 ticks had a 95-98% 

identity, over 427 nucleotides, to Borrelia turcica flaB. One sample was unable to have its flaB gene 

amplified. The uvrA housekeeping gene was amplified for 20 ticks; all had 94-95% identity, over 844 

nucleotides, to the B. turcica IST7 strain. Nine samples were sequenced for the rplB housekeeping gene 

and had a 94-95.3% identity, over 508 nucleotides, to the B. turcica IST7 strain. A phylogenetic analysis 

for 5 samples that amplified all 3 genes, based on a concatenation of the genes, showed one tick 

(TC0164813MC301) associated with the relapsing fever group, one (TC02371415MC402) was in between 

Borrelia miyamotoi and the Lyme borreliosis group, and 3 (TC0156918MC401, TC0327515MC401, 

TC03172214MX401) had a close relationship with B. turcica (Fig. 4). Based on the concatenation of only 

2 genes, the flaB and uvrA, 6 samples showed a close relationship to B. turcica (Fig. 5). Individual 

phylogenetic analysis of all 3 genes was done on a small number of samples. Analysis showed that 6 

samples sequenced for flaB showed a close relationship with B. turcica (Fig. 6), and 6 samples 

sequenced for uvrA showed a close relationship with B. turcica (Fig. 7). Four samples were used to 

create individual rplB phylogenetic trees. Three samples (TC02371415MC402, TC0327515MC401, 

TC03172214MX401) had a close relationship with B. turcica and one sample (TC0164813MC301) 

clustered with the relapsing fever group (Fig. 8).  
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Fig. 4. Phylogenetic analysis based on the concatenation of flaB, uvrA, and rplB of the genus Borrelia. 
This analysis shows one tick (TC0164813MC301) associated with the relapsing fever group, one 
(TC02371415MC402) in between Borrelia miyamotoi and the Lyme borreliosis group, and three 
(TC0156918MC401, TC0327515MC401, TC03172214MX401) with a close relationship to B. turcica. 
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Fig. 5. Phylogenetic analysis based on the concatenation of flaB and uvrA of the genus Borrelia shows a 
close relationship to B. turcica. 
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Fig. 6. Phylogenetic analysis based on the amplification of flaB of the genus Borrelia shows a close 
relationship to B. turcica.  
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Fig. 7. Phylogenetic analysis based on the amplification of uvrA of the genus Borrelia shows a close 
relationship to B. turcica.  
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Fig. 8. Phylogenetic analysis based on the amplification of rplB of the genus Borrelia. This analysis shows 
one tick (TC0164813MC301) clustered with the relapsing fever group and the three others 
(TC02371415MC402, TC0327515MC401, TC03172214MX401) with a close relationship to B. turcica. 
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Tick Identification 

A total of 83 ticks were morphologically identified as A. chabaudi, 5 as A. geochelone, 2 as A. 

variegatum, and 208 as unknown. Sixty-two of the morphologically identified A. chabaudi ticks were 

collected from 33 P. a. arachnoides tortoises, 15 were collected from 10 P. a. oblonga tortoises, 4 were 

collected from one A. yniphora tortoises, and one collected from one A. radiata. Three of the 

morphologically identified A. geochelone ticks were collected from 2 different A. yniphora tortoises and 

the other 2 were collected from one P. a. arachnoides tortoise. The two A. variegatum ticks each came 

from a different P. a. arachnoides tortoise.  

 

Twenty-eight samples, including both morphologically identified ticks and unknown ticks, were 

sequenced for the 12S rRNA gene. Of the 28 samples, 20 were sequenced in both directions while 7 

were sequenced in either the reverse or forward direction. A BLAST search for similar sequences 

revealed a 92-94.1% match to Amblyomma sp. B MDL (GenBank accession KC817417) for all samples 

that were sequenced. The 16 samples provided by the German group, that were previously identified as 

A. chabaudi, also had approximately a 92% match to Amblyomma sp. B MDL. An alignment of the 16 

German-provided samples with 12 of this study’s samples for 12S rRNA showed that 5 of this study’s 

samples differed from the German-provided samples by only 2 nucleotides over 355 nucleotides. The 

other 7 samples had only a 60.8% match to the other 5 samples (Table 4), which was confirmed via 

phylogenetic analysis (Fig. 9).  
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Fig. 9. Phylogenetic analysis based on tick 12S rRNA. The phylogenetic tree was generated using the 
Tamura-Nei distance model and neighbor-joining build method and confirms that 5 of this study’s 
samples differed from the German-provided samples by only 2 nucleotides over 355 nucleotides while 
the other 7 samples had only a 60.8% match to those 5 samples. The bar indicates scale of sequence 
divergence. Ixodes scapularis (HG918113.1) was used as the outgroup. 
 
 

 

Only 6 samples were sequenced using the CO1 gene; a BLAST search revealed an 85.3-86.4% match to 

Amblyomma marmoreum clone 1M_14677_125 (GenBank accession KY457516). An alignment of the 

CO1 sequences showed that this study’s samples differed from each other by only 2 nucleotides, over 

552 nucleotides, and the consensus sequence differed from the German-provided samples by only 2 

nucleotides, over 552 nucleotides. 
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Tick-Pathogen-Tortoise Relationship 

The 46 Borrelia-positive ticks were collected from 37 tortoises. Seven of these ticks were collected from 

7 different A. yniphora tortoises; one tick was morphologically identified as A. chabaudi while the other 

6 were unknowns. Thirty-three ticks were collected from 24 different P. a. arachnoides tortoises; 

twenty-four of these ticks were morphologically identified as A. chabaudi while the other 9 were 

unknowns. Six ticks were collected from 6 different P. a. oblonga tortoises; four were morphologically 

identified as A. chabaudi and the other 2 were unknowns (Appendix).  

 

The 180 Rickettsia-positive ticks were collected from 63 tortoises. One hundred twenty-one of these 

ticks were collected from 26 different A. yniphora tortoises; one tick was morphologically identified as A. 

chabaudi, one morphologically identified as A. geochelone, and the other 119 were unknown. Forty-six 

ticks were collected from 27 different P. a. arachnoides tortoises; thirty-one ticks were morphologically 

identified as A. chabaudi while the other 15 were unknowns. Eleven ticks were collected from 8 

different P. a. oblonga tortoises; nine ticks were morphologically identified as A. chabaudi while the 

other 2 were unknowns. One morphologically identified A. chabaudi tick was collected from one A. 

radiata tortoise, and one unknown tick was collected from grass (Appendix). 

 

Forty-three of the infected ticks were co-infected with both Borrelia spp. and Rickettsia spp.; these ticks 

were collected from 31 tortoises. Six of these ticks were collected from 5 different A. yniphora tortoises; 

one tick was morphologically identified as A. chabaudi and the other 5 were unknown. Thirty-three ticks 

were collected from 22 different P. a. arachnoides tortoises; twenty-four ticks were morphologically 

identified as A. chabaudi while the other 8 were unknowns. Four ticks were collected from 4 different P. 

a. oblonga tortoises; three ticks were morphologically identified as A. chabaudi while the remaining tick 

was unknown (Appendix). 
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DISCUSSION 

 

 

Madagascar is unique in its biological diversity and level of endemism due to its isolated island habitat. 

New species continue to be discovered, but human encroachment has the potential to disrupt the 

natural ecosystem balance by bringing new fauna and flora to this island. Ticks, such as Amblyomma 

variegatum, native to the African mainland, have been reported in Madagascar (Barré et al., 1995). Ticks 

are an important vector for many zoonotic pathogens, such as Rickettsia africae, the causative agent of 

African tick-bite fever (Mediannikov et al., 2010). While tick-transmitted pathogens pose a health threat 

to humans, they may also pose a threat to the Malagasy tortoises, P. arachnoides and A. yniphora. These 

tortoises are Critically Endangered, making them an important focus for conservation. Studying the 

relationship of the tortoises with ectoparasites can help determine any infection risk.  

 

This study focused on the relationship between ticks, their pathogens, and tortoises found in 

Madgascar. In the sampled tortoises, tick infestation rates were higher in A. yniphora (13.6/tortoise) 

than the other tortoise hosts (1.20-1.61/tortoise). However, the body condition of the tortoises was not 

available, so conclusions on the effect of high tick infestations on host health could not be drawn.  

 

Morphological identification based on the scutum ornamentation of the collected ticks determined that 

59 were the tortoise tick Amblyomma chabaudi, a common ectoparasite of the endemic spider tortoise 

P. arachnoides (Ehlers et al., 2016). However, many samples were marked unknown due to deterioration 

of the scutum ornamentation, most likely caused by prolonged exposure to the alcohol the samples 

were stored in. Molecular analysis of 12 ticks and DNA from 16 previously identified A. chabaudi ticks 

showed that there was no good match for comparison in the NCBI GenBank database. According to the 

phylogenetic tree generated by the 12S rRNA gene sequences of these 28 samples, there was a clade of 

7 samples that clustered in a different branch than the German-provided samples, suggesting that they 

may not be A. chabaudi, despite 2 of them being previously as A. chabaudi following the description of 

Uilenberg (1965). Other ticks in that clade were morphologically identified as Amblyomma geochelone 

by comparing them to inked drawings of Durden et al. (2002). In the phylogenetic tree generated by the 

12S rRNA gene sequences, 3 of the morphologically identified A. geochelone ticks clustered with the 

previously identified A. chabaudi ticks from Germany. This result agrees with those of Kushimo (2013), 
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who had found that A. geochelone and A. chabaudi grouped together in a clade with a bootstrap value 

of 100, indicating that these two species may belong to a single taxon. However, due to a lack of 

sequences for the tick 12S and CO1 genes for these species in GenBank as well as the lack of sufficient 

morphological descriptions of A. chabaudi, the identity of many samples is still unknown.  

 

Amblyomma chabaudi have been reported to feed exclusively on the spider tortoise (Klompen, 2003, 

Ehlers et al., 2016). A majority of the morphologically identified A. chabaudi ticks from this study were 

collected from both subspecies of P. arachnoides (91.5%), however this study found that A. chabaudi, 

similar to the German A. chabaudi clade, can also feed on A. yniphora, indicating that knowledge on the 

life history of A. chabaudi remains incomplete. One A. chabaudi was also collected from one A. radiata 

tortoise, verifying that A. chabaudi can feed on A. radiata in the wild; however, the number is too low to 

make an estimate of A. chabaudi infestation of A. radiata. It can be hypothesized that migratory birds 

may play a role in the spread of these ticks, as P. arachnoides and A. radiata are endemic to the 

southern region of Madagascar, while A. yniphora is endemic to a small section of northern Madagascar. 

Anthropogenic effects, such as agricultural encroachment onto tortoise habitats and human travel, may 

also play a role in the movement of ticks between the 3 tortoise species. Other tortoise-associated 

juvenile ticks are not as host specific as adults, feeding on both small and large mammals (Pastiu et al., 

2012); small mammals and birds may be potential hosts to these juvenile ticks if their life history is 

similar to that of other tortoise-associated ticks (Klompen, 2003). 

 

The ticks’ potential as a vector for pathogens was investigated by using two pathogens commonly found 

in ticks, Borrelia and Rickettsia. In contrast to a study done by Ehlers et al. (2016) who reported only 

Rickettsiae, this study found both Borreliae and Rickettsiae. A high prevalence of Rickettsia spp. 

(75.31%) was found in the ticks tested compared to the prevalence of Borrelia spp. (19.25%). Ehlers et 

al. only screened for relapsing fever Borreliae, which may be why no Borrelia spp. were detected. The 

Rickettsia spp. found in this study were Rickettsia africae and Rickettsia aeschlimannii; both species 

belong to the pathogenic spotted fever group of Rickettsia (Kelly et al., 1997, Beati et al., 1997). The high 

prevalence of Rickettsia spp. was expected, as Ehlers et al. (2016) also found a high prevalence of 

Rickettsia spp. (100%).  

 

A phylogenetic tree generated by the concatenation of the genes flaB, uvrA, and rplB surprisingly 

showed 2 of the Borrelia-positive ticks used clustered with B. turcica while the other 2 clustered with 
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the relapsing fever group, despite having a similar percent match to B. turcica (94-97%) for all 3 genes. 

The phylogenetic tree generated by the concatenation of just the flaB and uvrA genes showed that all 

samples used clustered with B. turcica, as expected. Differences in the phylogenetic trees may be due to 

the smaller number of rplB sequences available, as many samples failed to initially amplify rplB. 

Individual phylogenetic trees generated for each gene revealed a more distinct difference between B. 

turcica and the samples, the relapsing fever group, and the Lyme borreliosis group. The tree generated 

by flaB sequences (Fig. 6) showed the 6 samples that were included were closely related to B. turcica, 

although they formed their own clade, which was expected due to the 95-98% similarity to B. turcica 

flaB. The tree generated by the uvrA (Fig. 7) sequences of 6 other samples showed similar results, with 

the samples forming their own clade though still closely related to B. turcica. The tree generated by rplB 

sequences (Fig. 8), however, did not distinguish between the relapsing fever group and B. turcica as well 

as the other trees. Two of the relapsing fever rplB sequences, Borrelia hermsii and Borrelia miyamotoi, 

formed a different clade from the other two relapsing fever Borreliae, Borrelia coriaceae and Borrelia 

parkeri. According to the rplB phylogenetic tree (Fig. 8), both B. hermsii and B. miyamotoi were more 

closely related to B. turcica, which was on its own branch. That tree showed similar results to the tree 

based on the concatenation of all 3 genes (Fig. 4); three samples clustered with B. turcica while one 

clustered with relapsing fever Borreliae. Differences between the rplB and the uvrA and flaB trees may 

be due to the small sample size.   

 

The relationship between ticks, their pathogens and tortoises is poorly studied. Though A. chabaudi was 

expected to be commonly found on the spider tortoises P. a. arachnoides and P. a. oblonga (91.5%), the 

majority of the unknown ticks were collected from A. yniphora (71.3%). Human encroachment and 

proximity to tortoise habitat may factor into the increase of ticks infesting A. yniphora. Ehlers et al. 

(2016) found that tick prevalence on P. arachnoides positively correlated with tortoises in disturbed 

habitats. Baly Bay National Park, the natural range of A. yniphora, has been increasingly impacted by 

anthropogenic bush fires set for cattle grazing (Kiester et al., 2013). This current study finds no obvious 

relationship between tortoise species and the number of infected ticks collected from the tortoises. 

Ticks infected with Rickettsia spp. and/or Borrelia spp. were found on 3 of the 4 tortoise 

species/subspecies, with 87.5% of A. yniphora, 87.1% of P. a. arachnoides, and 76.9% of P. a. oblonga 

carrying infected ticks. Conclusions on the relationship between tick species and presence of Rickettsia 

spp. and Borrelia spp. could not be made due to the high number of unidentified ticks.   
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Although tortoises are not seen as a significant reservoir of human pathogens, the ticks they carry can 

carry a variety of human and livestock pathogens (Ehlers et al., 2016). Many ticks collected from 

tortoises in this study were infected with pathogenic Rickettsia spp. While there is little knowledge on 

the effects of rickettsial pathogens on tortoises, these tortoises may carry infected ticks into areas 

where contact with other vertebrates occurs; this may be important as juvenile tortoise ticks are not as 

host specific as adults (Pastiu et al., 2012). This presents both a public health and veterinary health issue 

since infected ticks may transmit R. africae and R. aeschlimannii to either livestock and/or humans.  

 

There was a much lower prevalence of Borrelia spp. than Rickettsia spp. in tortoises tested in this study; 

but again there is little knowledge on the effects of Borrelia spp. on tortoises. Though a reptile-

associated pathogen, there is little definitive knowledge on the ecology and pathogenicity of B. turcica in 

tortoises. Phylogenetic analysis in this study indicates that B. turcica may be similar to relapsing fever 

Borreliae, as they seem to have diverged from a common ancestor. Kalmar et al. (2015) isolated B. 

turcica from Hyalomma aegyptium ticks collected from the tortoise Testudo graeca. Blood samples 

taken from T. graeca showed an absence of B. turcica in tortoise blood, suggesting that the natural host 

of B. turcica may be something else, such as small mammals, rather than the tortoises. However, this 

conflicts with the results from Takano et al. (2010) who showed that B. turcica was able to be isolated 

from T. graeca tortoises. Takano et al. (2010) also showed the absence of B. turcica in mice and 

asymptomatic systemic infection in Geochelone sulcate tortoises, further conflicting with the results of 

Kalmer et al. (2015). In this current study, observations of tortoise health and blood samples were not 

included, so conclusions could not be drawn on bacterial levels and the manifestation of any 

symptomatic infection in Rickettsia and/or Borrelia-positive tortoises.  

 

The results of this study and other studies indicate that tick-pathogen-tortoise interactions require more 

investigation. In this study, no significant relationship was observed between the rate of tick infestation 

and tortoise species. However, disturbance of natural tortoise habitats from human agricultural 

activities have impacted the rate of contact between native species and domestic animals (Ehlers et al., 

2016). The habitats of P. arachnoides and A. yniphora are especially threatened by cattle grazing (Ehlers 

et al., 2016; Kiester et al., 2013), and increased contact with humans may be linked with increased tick 

infestation of both tortoises and livestock. The ticks in this study have the potential to carry both 

Rickettsia spp. and Borrelia spp., which presents as risk to humans and livestock, as these are known to 

be pathogenic. However, little is known about the effects of these pathogens on tortoises and more 
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investigation is needed, especially with regards B. turcica since its pathogenicity in different tortoises 

and therefore zoonotic potential is unknown. Further investigation on the pathogenicity of both B. 

turcica and rickettsial pathogens would especially be useful in the conservation of Malagasy tortoises. 
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CONCLUSION 

 

Despite being a species rich and diverse taxon important to various ecosystems, reptiles are 

understudied (Czech et al., 1998). Many species are at risk for extinction in part to disease-induced 

declines resulting from emerging diseases (Bower et al., 2019). Ticks, common ectoparasites and well-

known vectors of various pathogens, are often focused on in public health and veterinary implications 

that can arise from the pathogens they carry (Sonenshine et al., 2002). However, there is little 

information on the relationship between reptiles and ticks and their parasites (Burridge, 2001). Three 

species of Malagasy tortoises, A. yniphora, A. radiata, P. arachnoides, are Critically Endangered (IUCN 

Red List) and at risk from habitat loss (Walker and Rafeliarisoa, 2012) and illegal pet trade 

(Mandimbihasina and Currylow, 2014). This study focused on ticks collected from observed tortoises 

and the pathogens carried by these ticks. 

 

Ticks were morphologically identified and then checked molecularly to confirm identification or identify 

any ticks that could not be morphologically identified. Molecular identification was done by end-point 

PCR that amplified two tick genes, CO1 (cytochrome oxidase) and 12S rRNA. Tick gene sequences were 

analyzed alongside morphologically confirmed A. chabaudi ticks. Ticks were also screened for the 

presence of Rickettsia spp. and Borrelia spp. through 2 real-time PCR assays, amplifying the rickettsial 17 

kDA and Borrelia 16S rRNA genes. Ticks positive for either pathogen were analyzed by end-point PCR 

sequencing to determine the species, using the rickettsial gltA and Borrelia flaB, uvrA, and rplB genes.  

 

Two hundred ninety-eight ticks were collected from 72 different tortoise hosts. Eighty-three ticks were 

morphologically identified as A. chabaudi, 5 as A. geochelone, 2 as A. variegatum, and 208 unknowns. A 

group of morphologically identified ticks and unknowns were sequenced alongside the German-

provided samples, although no definite identification was made through BLAST results. A phylogenetic 

tree based on the 12S rRNA sequences of 12 samples plus the 16 German-provided samples showed 

that 3 A. geochelone ticks clustered with the German samples while 2 A. chabaudi ticks formed a 

different clade with 5 other unknowns. Two hundred thirty-nine ticks were screened for the presence of 

Rickettsia spp. and Borrelia spp., with 183 ticks positive for either one or both pathogens. Rickettsia 

aeschlimannii and R. africae were sequenced from the Rickettsia-positive ticks, and a Borrelia species 

related to B. turcica was sequenced from the Borrelia-positive ticks. Phylogenetic analysis of the flaB 
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and uvrA sequences showed that the samples clustered with B. turcica; rplB sequences showed that 3 

samples clustered with B. turcica and one sample clustered with the relapsing fever Borreliae.  

 

Amblyomma chabaudi is reported to feed exclusively on P. arachnoides (Klompen, 2003). In this study, 

however, while a majority of the morphologically identified A. chabaudi were collected from P. 

arachnoides, there were a number of A. chabaudi that were collected from A. yniphora and one from A. 

radiata. Information on the life history of A. chabaudi is lacking, but the loss of tortoise habitat for 

agriculture and human travel may play a role in the spread of ticks between these 3 tortoise species. 

This creates a potential health issue for both humans and livestock, as human and agricultural 

encroachment into tortoise habitat increases the rate of contact between native animals and domestic 

animals. The ticks in this study have the potential to carry both Rickettsia spp. and Borrelia spp., which 

can present an issue to human and veterinary health, as infected ticks can transmit these pathogens into 

humans and livestock. However, the information on the relationship between tortoises and tick 

pathogens is lacking, as little is known about the effects of rickettsial infections on tortoises and B. 

turcica infections vary between tortoise species. Further investigation on tick-pathogen-tortoise 

interactions are needed to better understand the relationship between ticks and tortoises and how that 

knowledge can be used in the conservation of Malagasy tortoises.  
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APPENDIX 

 

Ticks tested for the presence of Rickettsia spp. and Borrelia spp. and the tortoise host they were collected from 

Sample ID Host Borrelia Rickettsia Morphological Tick ID 

TC02351415MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0241715MC403 P. arachnoides arachnoides Y Y A. chabaudi 

TC0230712MC403 P. arachnoides arachnoides N Y A. chabaudi 

TC0232715MC301 P. arachnoides arachnoides Y Y A. chabaudi 

TC0233913MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0230712MC302 P. arachnoides arachnoides N Y A. chabaudi 

TC0148515MC401 A. radiata N Y A. chabaudi 

TC0241715MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC01521013MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0157813MC301 P. arachnoides arachnoides Y Y A. chabaudi 

TC0443712MC301 P. arachnoides arachnoides Y Y A. chabaudi 

TC02351415MC404 P. arachnoides arachnoides Y Y A. chabaudi 

TC04471215MC301 P. arachnoides oblonga Y Y A. chabaudi 

TC04491215MC401 P. arachnoides oblonga N Y A. chabaudi 

TC0459913MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC0459913MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0236715MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0155913MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0154813MC301 P. arachnoides arachnoides Y Y A. chabaudi 

TC01532014MC401 A. yniphora Y Y A. chabaudi 

TC02341012MC401 P. arachnoides oblonga Y Y A. chabaudi 

TC0156918MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0444712MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC04461613MX301 N/A- in grass N Y unknown 

TC01421713MX401 A. yniphora N Y unknown 

TC01601713MX402 A. yniphora N Y unknown 

TC01601713MA201 A. yniphora N N unknown 

TC0241715MX301 P. arachnoides arachnoides Y Y unknown 

TC01621215MA202 A. yniphora N N unknown 

TC01601713MX406 A. yniphora N N unknown 

TC0216712MX301 P. arachnoides arachnoides Y Y unknown 

TC01515013MX401 A. yniphora N Y unknown 

TC01501315MX403 A. yniphora N N unknown 

TC01601713MX407 A. yniphora N Y unknown 

TC01601713MX405 A. yniphora N N unknown 

TC01611215MX402 A. yniphora N Y unknown 
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Sample ID Host Borrelia Rickettsia Morphological Tick ID 

TC01501315MX402 A. yniphora Y Y unknown 

TC01581215MX301 A. yniphora N Y unknown 

TC01581215MA202 A. yniphora N Y unknown 

TC01601713MX404 A. yniphora N N unknown 

TC0218712MX301 P. arachnoides arachnoides N Y unknown 

TC0215712MX401 P. arachnoides arachnoides N Y unknown 

TC01611215MX301 A. yniphora N Y unknown 

TC01621215MX401 A. yniphora N Y unknown 

TC01601713MX403 A. yniphora N Y unknown 

TC01454913MX301 A. yniphora N Y unknown 

TC0216712MX401 P. arachnoides arachnoides N Y unknown 

TC03172214MX401 P. arachnoides oblonga Y N unknown 

TC02291112MX301 P. arachnoides arachnoides Y Y unknown 

TC01501315MX301 A. yniphora N Y unknown 

TC01651215MX301 A. yniphora N Y unknown 

TC01651215MX402 A. yniphora N Y unknown 

TC01651215MB304 A. yniphora N N A. geochelone 

TC01651215MX407 A. yniphora N Y unknown 

TC01651215MX408 A. yniphora N N unknown 

TC01651215MX409 A. yniphora N N unknown 

TC1651215MX408 A. yniphora N N unknown 

TC01651215MB406 A. yniphora N Y A. geochelone 

TC01651215MX405 A. yniphora N Y unknown 

TC01651215MX403 A. yniphora N Y unknown 

TC04631213MC401 P. arachnoides oblonga N Y A.  chabaudi 

TC0164813MC301 P. arachnoides arachnoides Y Y A. chabaudi 

TC01651215MX410 A. yniphora N Y unknown 

TC03232114MC401 P. arachnoides oblonga Y Y A. chabaudi 

TC0225812MX202 P. arachnoides arachnoides Y Y unknown 

TC0231812MX204 P. arachnoides arachnoides N Y unknown 

TC03264413MX201 P. arachnoides oblonga N N unknown 

TC03264413MX203 P. arachnoides oblonga N N unknown 

TC03204413MX204 P. arachnoides oblonga N Y unknown 

TC0215712MC301 P. arachnoides arachnoides N Y A. chabaudi 

TC03192114MC401 P. arachnoides oblonga N N A. chabaudi 

TC02371415MC404 P. arachnoides arachnoides Y Y A. chabaudi 

TC02291112MX402 P. arachnoides arachnoides Y Y unknown 

TC03264413MX202 P. arachnoides oblonga N N unknown 

TC0228812MX301 P. arachnoides arachnoides Y Y unknown 

TC0327515MC401 P. arachnoides oblonga Y N A. chabaudi 
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Sample ID Host Borrelia Rickettsia Morphological Tick ID 

TC03264413MX204 P. arachnoides oblonga Y Y unknown 

TC0225812MX201 P. arachnoides arachnoides N Y unknown 

TC02371415MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC02371415MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0238715MC401 P. arachnoides arachnoides Y Y A. chabaudi 

TC0231812MC401 P. arachnoides arachnoides N Y A. chabaudi 

TC0230712MX301 P. arachnoides arachnoides N Y unknown 

TC0231812MX203 P. arachnoides arachnoides Y Y unknown 

TC02351415MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC02401415MX301 P. arachnoides arachnoides Y Y unknown 

TC0238715MC402 P. arachnoides arachnoides N Y A. chabaudi 

TC0231812MX302 P. arachnoides arachnoides Y Y unknown 

TC01921215MX402 A. yniphora N Y unknown 

TC01851215MX402 A. yniphora N Y unknown 

TC01894913MX203 A. yniphora N Y unknown 

TC018913MX202 A. yniphora N Y unknown 

TC01841215MX409 A. yniphora N Y unknown 

TC01931215MX303 A. yniphora N Y unknown 

TC01901215MX304 A. yniphora N N unknown 

TC01871215MX402 A. yniphora N Y unknown 

TC01894913MX201 A. yniphora N Y unknown 

TC01871215MX408 A. yniphora N N unknown 

TC01841215MX402 A. yniphora N N unknown 

TC01841215MX406 A. yniphora N Y unknown 

TC01781613MX201 A. yniphora N Y unknown 

TC01894913MX405 A. yniphora N Y unknown 

TC01871215MX401 A. yniphora N N unknown 

TC01901215MX403 A. yniphora N Y unknown 

TC01931215MX404 A. yniphora N N unknown 

 TC01791215MX101 A. yniphora N Y unknown 

TC01921215MX403 A. yniphora N Y unknown 

TC01871215MX301 A. yniphora N Y unknown 

TC01771613MX401 A. yniphora N Y unknown 

TC01931215MX301 A. yniphora N Y unknown 

TC01881215MX401 A. yniphora N Y unknown 

 TC01851215MX304 A. yniphora N Y unknown 

TC01781613MX406 A. yniphora N Y unknown 

TC01871215MX201 A. yniphora N Y unknown 

TC01861215MX301 A. yniphora N Y unknown 

TC01851215MX202 A. yniphora N Y unknown 
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Sample ID Host Borrelia  Rickettsia Morphological Tick ID 

TC01921215MX409 A. yniphora Y N unknown 

TC019111215MX201 A. yniphora N N unknown 

TC01894913MX401 A. yniphora N Y unknown 

TC01931215MX401 A. yniphora N Y unknown 

TC01851215MX203 A. yniphora N N unknown 

TC01781613MX403 A. yniphora N N unknown 

TC01781613MX405 A. yniphora N Y unknown 

TC01881215MX403 A. yniphora Y Y unknown 

TC01851215MX302 A. yniphora N Y unknown 

TC01771613MX403 A. yniphora N N unknown 

TC01894913MX301 A. yniphora N Y unknown 

TC01791215MX201 A. yniphora Y Y unknown 

TC01901215MX302 A. yniphora N N unknown 

TC01791215MX204 A. yniphora N Y unknown 

TC01901215MX303 A. yniphora Y Y unknown 

TC01881215MX406 A. yniphora N N unknown 

TC01771613MX402 A. yniphora N N unknown 

TC01911215MX301 A. yniphora N Y unknown 

TC01851215MX403 A. yniphora N Y unknown 

TC01841215MX408 A. yniphora N Y unknown 

TC01791215MX404 A. yniphora N Y unknown 

TC01931215MX202 A. yniphora N Y unknown 

TC01921215MX401 A. yniphora N N unknown 

TC01791215MX402 A. yniphora N Y unknown 

TC01824913MX401 A. yniphora N Y unknown 

TC01824913MX402 A. yniphora N Y unknown 

TC01781613MX404 A. yniphora N Y unknown 

TC01881215MX405 A. yniphora N Y unknown 

TC01841215MX404 A. yniphora N Y unknown 

TC01791215MX403 A. yniphora N Y unknown 

TC01894913MX402 A. yniphora N Y unknown 

TC01931215MX201 A. yniphora N Y unknown 

TC01931215MX304 A. yniphora N Y unknown 

TC01901215MX401 A. yniphora N Y unknown 

TC01861215MX405 A. yniphora N Y unknown 

TC01871215MX202 A. yniphora N Y unknown 

TC01871215MX403 A. yniphora N Y unknown 

TC01831215MX306 A. yniphora N Y unknown 

TC01841215MX403 A. yniphora N N unknown 

TC01861215MX402 A. yniphora N Y unknown 
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Sample ID Host Borrelia Rickettsia Morphological Tick ID 

TC01911215MX203 A. yniphora N Y unknown 

TC01831215MX201 A. yniphora N Y unknown 

TC01861215MX403 A. yniphora Y Y unknown 

TC01831215MX303 A. yniphora N N unknown 

TC01861215MX408 A. yniphora N Y unknown 

TC01894913MX404 A. yniphora N Y unknown 

TC01841215MX407 A. yniphora N Y unknown 

TC01871215MX404 A. yniphora N Y unknown 

TC01841215MX401 A. yniphora N Y unknown 

TC01861215MX407 A. yniphora N Y unknown 

TC01921215MX406 A. yniphora N N unknown 

TC0176813MC401 P. arachnoides arachnoides N Y A. chabaudi 

TC01851215MX401 A. yniphora N Y unknown 

TC01861215MX404 A. yniphora N Y unknown 

TC04801213MC302 P. arachnoides oblonga N Y A. chabaudi 

TC01811215MX403 A. yniphora N Y unknown 

TC01901215MX402 A. yniphora N Y unknown 

TC01881215MX301 A. yniphora N Y unknown 

TC01824913MX301 A. yniphora N Y unknown 

TC01851215MX201 A. yniphora N Y unknown 

TC04801213MC401 P. arachnoides oblonga N Y A. chabaudi 

TC0175813MC401 P. arachnoides arachnoides N Y A. chabaudi 

TC01921215MX405A A. yniphora N N unknown 

TC01824913MX302 A. yniphora N Y unknown 

TC01861215MX406 A. yniphora N Y unknown 

TC01911215MX204 A. yniphora N Y unknown 

TC01831215MX202 A. yniphora N Y unknown 

TC04801213MC303 P. arachnoides oblonga N Y A. chabaudi 

TC01824913MX201 A. yniphora N Y unknown 

TC01861215MX401 A. yniphora N Y unknown 

TC01881215MX404 A. yniphora N Y unknown 

TC01871215MX407 A. yniphora N N unknown 

TC01831215MX302 A. yniphora N N unknown 

TC01791215MX405 A. yniphora N Y unknown 

TC01851215MX404 A. yniphora N Y unknown 

TC01811215MX402 A. yniphora N Y unknown 

TC01871215MX405 A. yniphora N Y unknown 

TC01901215MX405 A. yniphora N N unknown 

TC01931215MX406 A. yniphora N N unknown 

TC01901215MX301 A. yniphora N Y unknown 
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Sample ID Host Borrelia Rickettsia Morphological Tick ID 

TC01781613MX402 A. yniphora N N unknown 

TC01931215MX302 A. yniphora N N unknown 

TC01911215MX302 A. yniphora N N unknown 

TC01861215MX302 A. yniphora N Y unknown 

TC01811215MX401 A. yniphora N N unknown 

TC01894913MX403 A. yniphora N Y unknown 

TC01871215MX406 A. yniphora N Y unknown 

TC01921215MX410 A. yniphora N N unknown 

TC01831215MX305 A. yniphora N Y unknown 

TC01921215MX407 A. yniphora N Y unknown 

TC01831215MX301 A. yniphora N Y unknown 

TC01771613MX404 A. yniphora N Y unknown 

TC01931215MX403 A. yniphora N N unknown 

TC04801213MC301 P. arachnoides oblonga N Y A. chabaudi 

TC01811215MX405 A. yniphora N Y unknown 

TC01921215MX404 A. yniphora N N unknown 

TC01921215MX405B A. yniphora N N unknown 

TC01931215MX402 A. yniphora N Y unknown 

TC01841215MX405 A. yniphora N N unknown 

TC01811215MX406 A. yniphora N N unknown 

TC01921215MX411 A. yniphora N N unknown 

TC01881215MX402 A. yniphora N Y unknown 

TC01901215MX404 A. yniphora N N unknown 

TC01791215MX401 A. yniphora N Y unknown 

TC01831215MX304 A. yniphora N N unknown 

TC01851215MX303 A. yniphora N Y unknown 

TC01911215MX206 A. yniphora N N unknown 

TC01931215MX405 A. yniphora N N unknown 

TC01824913MX303 A. yniphora N N unknown 

TC01811215MX404 A. yniphora N N unknown 

TC01831215MX203 A. yniphora N N unknown 

TC01911215MX205 A. yniphora N N unknown 

TC0175813MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC01791215MX205 A. yniphora N Y unknown 

TC01781613MX401 A. yniphora N N unknown 

TC0176813MC402 P. arachnoides arachnoides Y Y A. chabaudi 

TC01921215MX301 A. yniphora N Y unknown 

TC01791215MX203 A. yniphora N N unknown 

TC01791215MX202 A. yniphora N Y unknown 

TC01851215MX301 A. yniphora N Y unknown 
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Sample ID Host Borrelia Rickettsia  Morphological Tick ID 

TC01824913MX403 A. yniphora N Y unknown 

TC01901215MX406 A. yniphora N Y unknown 

TC01911215MX202 A. yniphora N Y unknown 
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