1990

Best Quasi-Convex Uniform Approximation

S. E. Weinstein
Old Dominion University

Yuesheng Xu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs
Part of the Numerical Analysis and Computation Commons

Repository Citation
120.
https://digitalcommons.odu.edu/mathstat_fac_pubs/120

Original Publication Citation

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Best Quasi-convex Uniform Approximation

S. E. Weinstein and Yuesheng Xu*

Department of Mathematics and Statistics, Old Dominion University,
Norfolk, Virginia 23529-0077

Submitted by V. Lakshmikantham

Received August 31, 1988

1. INTRODUCTION

Let \(B = B[0, 1] \) be the linear space of all bounded real functions \(f \) on \([0, 1]\), with the uniform norm
\[
\| f \|_\infty = \sup_{x \in [0, 1]} |f(x)|.
\]

Let \(C[0, 1] \) denote the space of all continuous functions on \([0, 1]\).

Definition 1. A function \(g \in B \) is said to be quasi-convex [2] if
\[
g(x) \leq \max \{ g(s), g(t) \} \quad \text{for all } x, s, \text{ and } t \text{ such that } 0 \leq s \leq x \leq t \leq 1.
\]

Let \(K \subset B \) denote the set of all quasi-convex functions on \([0, 1]\).

Ubhaya [8] has proved that \(g \) is quasi-convex if and only if there exists a point \(p \in [0, 1] \), such that either

(i) \(g \) is nonincreasing on \([0, p)\) and is nondecreasing on \([p, 1]\) or

(ii) \(g \) is nonincreasing on \([0, p]\) and is nondecreasing on \((p, 1]\).

We call the point \(p \) (in either (i) or (iii)) a knot of \(g \). Let \(K_p \) denote the functions in \(K \) which have a knot at \(p \). Then,
\[
K = \bigcup_{p \in [0, 1]} K_p.
\]

* Current address: Department of Mathematics, North Dakota State University, Fargo, ND 58105.
In general, the set of all the knots of a quasi-convex function is a closed subinterval of \([0, 1]\).

The problem of the best quasi-convex approximation is to find a \(g^* \in K\), such that

\[
\|f - g^*\|_\infty = \inf_{g \in K} \{\|f - g\|_\infty\}. \tag{1.1}
\]

This problem is considered in [8], where a sufficient condition for a best quasi-convex approximation to a bounded function is obtained, and some structural properties of best approximations are established. Algorithms for the computation of a best discrete quasi-convex approximation are presented in [1, 7].

Throughout this paper we shall assume that \(f \in C[0, 1]\), unless stated otherwise.

Definition 2. Given \(f \in C[0, 1]\), let

\[
G = G(f) = \{g^* \in K : \|f - g^*\|_\infty = \inf_{g \in K} \{\|f - g\|\}\} \tag{1.2}
\]

the set of best quasi-convex approximations to \(f\), and let

\[
P^* = \{p \in [0, 1] : p \text{ is a knot for some } g^* \in G\}. \tag{1.3}
\]

We call \(P^*\) the set of optimal knots.

We characterize both the best quasi-convex approximations and the optimal knots. In addition we describe the construction of the set of best approximations and prove that a best quasi-convex approximation is unique if and only if \(f\) is quasi-convex.

2. Preliminaries

Similar to the development in [5] we define two functionals \(\delta_r\) and \(\delta_\gamma\), which we use to obtain the error of the best quasi-convex approximation.

Definition 3. For \(f \in C[0, 1]\) and \(p \in [0, 1]\), let

\[
\delta_r(p) = \sup_{0 < x < y < p} \frac{\left|f(y) - f(x)\right|}{2}, \tag{2.1}
\]

and

\[
\delta_\gamma(p) = \sup_{p < x < y < 1} \frac{\left|f(x) - f(y)\right|}{2}. \tag{2.2}
\]
Thus, δ_- is a measure of the "decreasingness" of f on $[0, p]$, and δ_+ is a measure of the "increasingness" of f on $(p, 1]$.

For $f \in C[0, 1]$ and $p \in [0, 1]$ (as in [8]), define

$$
\delta(p) = \max\{\delta_-(p), \delta_+(p)\}.
$$

(2.3)

Denote the minimum value of $\delta(p)$ on $[0, 1]$ by

$$
\delta^* = \inf_{0 \leq p \leq 1} \delta(p).
$$

(2.4)

Let

$$
P = \{ p \in [0, 1] : \delta(p) = \delta^* \}
$$

(2.5)

be the set of minima for δ, and let

$$
S = \{ s \in [0, 1] : f(s) = \inf_{0 \leq x \leq 1} f(x) \}
$$

(2.6)

be the set of minima for f.

Let $[s_\ell, s_u]$ be the convex hull of S. Then,

$$
s_\ell = \inf S \quad \text{and} \quad s_u = \sup S.
$$

(2.7)

Also, let

$$
m = \inf\{f(x) : 0 \leq x \leq 1\},
$$

and then define

$$
\eta_\ell = \inf\{ x \in [0, s_\ell] : f(t) \leq m + 2\delta^*, \text{ for all } t \in [x, s_\ell] \},
$$

(2.8)

and

$$
\eta_u = \sup\{ x \in [s_u, 1] : f(t) \leq m + 2\delta^*, \text{ for all } t \in [s_u, x] \}.
$$

(2.9)

Thus,

$$
[s_\ell, s_u] \subseteq [\eta_\ell, \eta_u].
$$

We shall prove that $P = [\eta_\ell, \eta_u]$, and that $P = P^*$, the set of optimal knots.

Next, let $f \in B$. For each $p \in [0, 1]$, similar to the definitions of U_p^- and V_p^- in [8] with θ_p^- replaced by δ^* we define the two functions

$$
g_p(x) = \begin{cases}
\sup_{t \in [x, p]} f(t) - \delta^*, & x \in [0, p] \\
\sup_{t \in (p, x]} f(t) - \delta^*, & x \in (p, 1]
\end{cases}
$$

(2.10)
and

\[g_p(x) = \begin{cases} \inf_{t \in [0,x]} f(t) + \delta^*, & x \in [0, p] \\ \inf_{t \in [x,1]} f(t) + \delta^*, & x \in (p, 1]. \end{cases} \quad (2.11) \]

Lemma 1. Let \(f \in C[0, 1] \). Then,

(i) \(|\Delta \delta^*(p)| = \frac{1}{2} \omega_f(|Ap|) \), and \(|\Delta \delta^*(p)| \leq \frac{1}{2} \omega_f(|Ap|) \) (where \(\omega_f(*) \) denotes the modulus of continuity of \(f \)). Thus, \(\delta^* \) and \(\delta \), are continuous.

(ii) \(\delta^* = 0 \) if and only if \(f \in K \).

(iii) \(S \subset P \).

Proof: (i) If \(Ap > 0 \) then

\[\delta^*(p + Ap) \leq \delta^*(p) + \sup_{0 < x < y < p + |Ap|} \frac{|f(y) - f(x)|}{2}, \]

and if \(Ap < 0 \) then,

\[\delta^*(p) \leq \delta^*(p - |Ap|) + \sup_{p - |Ap| < x < y < p} \frac{|f(y) - f(x)|}{2}. \]

It follows that

\[|\Delta \delta^*(p)| \leq \sup_{0 < y - x \leq |Ap|} \frac{|f(y) - f(x)|}{2} = \frac{1}{2} \omega_f(|Ap|). \]

Similarly, we may show the second inequality of (i).

(ii) First let \(\delta^* = 0 \). By (i) \(\delta^* \) and \(\delta \), are continuous and thus so is \(\delta \), where \(\delta(p) = \max \{\delta^*(p), \delta^*(p)\} \) for \(p \in [0, 1] \). Hence, there exists a \(p_0 \in [0, 1] \), such that \(\delta(p_0) = \delta^* = 0 \). Thus, \(\delta^*(p_0) = \delta^*(p_0) = 0 \), since \(\delta^* \) and \(\delta \), are both nonnegative functions. Consequently, by the definitions of \(\delta^* \) and \(\delta \), \(f \) is nonincreasing on \([0, p_0] \), and nondecreasing on \((p_0, 1] \). Thus, \(f \in K \).

Conversely, assume that \(f \in K \). Then there exists a \(p_0 \in [0, 1] \) such that \(f \in K_{p_0} \). Therefore, \(\delta^*(p_0) = \delta^*(p_0) = 0 \), which implies that \(\delta(p_0) = 0 \). Hence, \(\delta^* = 0 \).

(iii) It is sufficient to show that if \(s \in S \), then,

\[\delta^*(s) \leq \max \{\delta^*(p), \delta^*(p)\} \quad \text{for all } p \in [0, 1] \]

and

\[\delta^*(s) \leq \max \{\delta^*(p), \delta^*(p)\} \quad \text{for all } p \in [0, 1]. \]

(2.12)
The proofs of (2.12) and (2.13) are similar; thus we only present the proof of (2.12).

If \(s = 0 \) then, since \(\delta_r(0) = 0 \), and since \(\delta_r \) and \(\delta \), are both nonnegative functions, (2.12) holds.

If \(s \in (0, 1] \), we consider two cases. First assume that \(p \geq s \). Then \(\delta_r(s) \leq \delta_r(p) \) and thus (2.12) holds.

Next, assume that \(p < s \), and \(\delta_r(p) < \delta_r(s) \). \(f \in C[0, 1] \) implies that

\[
2\delta_r(s) = f(y_1) - f(x_1) \quad \text{for some } x_1 \leq y_1 \text{ in } [0, s].
\]

It follows that \(2\delta_r(p) < f(y_1) - f(x_1) \) and \(p < y_1 \). Hence,

\[
2\delta_r(s) \leq f(y_1) - f(s) \leq \sup_{p \leq x \leq y \leq s} [f(x) - f(y)] \leq 2\delta_r(p).
\]

Therefore, (2.12) holds.

Lemma 2. \(g_p \) and \(\tilde{g}_p \) as defined by (2.10) and (2.11) have the following properties:

(i) \(g_p, \tilde{g}_p \in K_p \) for all \(p \in [0, 1] \),

(ii) if \(f \in C[0, 1] \) then

(a) \(g_p \in C[0, 1] \) for all \(p \in [0, 1] \),

(b) \(\tilde{g}_p \in C[0, 1] \) if and only if \(p \in [s_r, s_s] \),

(c) if \(p \in [s_r, s_s] \), then \(g_p(x) = \tilde{g}_p(x) \) for all \(x \in [0, 1] \).

(d) if \(p \in [0, 1] \), then \(g_p(x) \leq \tilde{g}_p(x) \) for all \(x \in [0, 1] \).

Proof. (i) follows from the definitions (2.10) and (2.11).

(ii) (a) For all \(p \in [0, 1] \), (2.10) implies that \(g_p \) is continuous at any \(x \neq p \).

Next, to prove the continuity of \(g_p \) at \(x = p \), we observe that

\[
g_p(p-) = \lim_{\epsilon \to 0^+} \sup_{t \in [p-\epsilon, p]} f(t) - \delta^* = f(p) - \delta^*
\]

and

\[
g_p(p+) = \lim_{\epsilon \to 0^-} \sup_{t \in (p, p+\epsilon]} f(t) - \delta^* = f(p) - \delta^*,
\]

since \(f \in C[0, 1] \). Thus, \(g_p(p-) = g_p(p+) = g_p(p) \), and (a) is proved.

(b) Similarly, for all \(p \in [0, 1] \), \(\tilde{g}_p \) is continuous where \(x \neq p \). Next, if \(x = p \) and \(p \in [s_r, s_s] \), then

\[
\tilde{g}_p(p-) = \lim_{\epsilon \to 0^+} \inf_{t \in [0, p-\epsilon]} f(t) + \delta^* = f(s_r) + \delta^*
\]
and
\[\tilde{g}_p(p+) = \lim_{\epsilon \to 0} \inf_{t \in [p + \epsilon, 1]} f(t) + \delta^* = f(s_r) + \delta^*. \]

Hence, \(\tilde{g}_p(p-) = \tilde{g}_p(p) = \tilde{g}_p(p+) \).
Conversely, suppose that \(p \notin [s_r, s_s] \). If \(p < s_r \), then
\[\tilde{g}_p(p-) = \lim_{\epsilon \to 0} \inf_{t \in [0, p - \epsilon]} f(t) + \delta^* > f(s_r) + \delta^* \]
\[= \lim_{\epsilon \to 0} \inf_{t \in [p - \epsilon, 1]} f(t) + \delta^* = \tilde{g}_p(p +). \]

While if \(p > s \), then
\[\tilde{g}_p(p-) = \lim_{\epsilon \to 0} \inf_{t \in [0, p - \epsilon]} f(t) + \delta^* = f(s_r) + \delta^* < \lim_{\epsilon \to 0} \inf_{t \in [p + \epsilon, 1]} f(t) + \delta^* = \tilde{g}_p(p +). \]

(c) Let \(p \in [s_r, s_s] \). For \(x \in [s_r, p] \),
\[\tilde{g}_p(x) = \inf_{t \in [0, x]} f(t) + \delta^* = f(s_r) + \delta^* = m + \delta^*, \]
for \(x \in (p, s_s] \),
\[\tilde{g}_p(x) = \inf_{t \in [x, 1]} f(t) + \delta^* = f(s_s) + \delta^* = m + \delta^*, \]
and for \(x \notin [s_r, s_s] \),
\[\tilde{g}_p(x) = \tilde{g}_{s_r}(x). \]

Thus, \(\tilde{g}_p = \tilde{g}_{s_r} \).

(d) Assume that \(p \notin [s_r, s_s] \). If \(p < s_r \), then
\[\tilde{g}_p(x) = \tilde{g}_{s_r}(x) \quad \text{for all } x \in [0, p], \]
\[\tilde{g}_p(x) = \inf_{t \in [x, 1]} f(t) + \delta^* = f(s_r) + \delta^* < \inf_{t \in [0, x]} f(t) + \delta^* = \tilde{g}_{s_r}(x) \quad \text{for all } x \in (p, s_s) \]
and \(\tilde{g}_p(x) = \tilde{g}_{s_r}(x) \) for all \(x \in [s_s, 1] \). If \(p > s_s \), then \(\tilde{g}_p(x) = \tilde{g}_{s_s}(x) \) for all \(x \in [0, s_s] \),
\[\tilde{g}_p(x) = \inf_{t \in [0, x]} f(t) + \delta^* = f(s_s) + \delta^* < \inf_{t \in [x, 1]} f(t) + \delta^* = \tilde{g}_{s_s}(x) \quad \text{for all } x \in (s_s, p) \]
and $g_p(x) = \tilde{g}_s(x)$ for all $x \in [p, 1]$. Thus, by (c) if $p \in [0, 1]$, then $g_p(x) \leq \tilde{g}_s(x)$ for all $x \in [0, 1]$.

Theorem 1. Let $f \in C[0, 1]$, and let P be the set of minimum points for δ. Then,

$$P = [\eta_\epsilon, \eta_*],$$

where η_ϵ and η_* are defined by (2.8) and (2.9), respectively.

Proof. Assume that $x_0 \in [\eta_\epsilon, \eta_*]$. We consider three cases.

Case 1. $x_0 \in [\eta_\epsilon, s_\epsilon]$. Then, $\delta_\epsilon(x_0) \leq \delta_\epsilon(s_\epsilon)$. However, since $s_\epsilon \in S \subseteq P$,

$$\delta_\epsilon(x_0) = \max \left\{ \sup_{x_0 < x < y < s_\epsilon} \frac{|f(x) - f(y)|}{2}, \sup_{s_\epsilon < x < y < 1} \frac{|f(x) - f(y)|}{2} \right\} \leq \delta_*.$$

Case 2. $x_0 \in (s_\epsilon, s_*]$. Then, $\sup_{s_\epsilon < x, y < s_*} \frac{|f(y) - f(x)|}{2} \leq \delta_*$. Since $s_\epsilon \in P$,

$$\delta_\epsilon(x_0) = \max \left\{ \delta_\epsilon(s_\epsilon), \sup_{s_\epsilon < x < y < x_0} \frac{|f(y) - f(x)|}{2} \right\} \leq \delta_*,$$

and

$$\delta_\epsilon(x_0) = \max \left\{ \delta_\epsilon(s_\epsilon), \sup_{x_0 < x < y < s_*} \frac{|f(x) - f(y)|}{2} \right\} \leq \delta_*.$$

Case 3. $x_0 \in [s_\epsilon, \eta_*]$. Then $\delta_\epsilon(x_0) \leq \delta_\epsilon(s_\epsilon) \leq \delta_*$. Also, since $s_\epsilon \in P$,

$$\delta_\epsilon(x_0) = \max \left\{ \delta_\epsilon(s_\epsilon), \sup_{s_\epsilon < x < y < x_0} \frac{|f(y) - f(x)|}{2} \right\} \leq \delta_*.$$
Combining all three cases,
\[\delta(x_0) = \max \{ \delta_\epsilon(x_0), \delta_1(x_0) \} \leq \delta^*, \quad \text{for } x_0 \in [\eta_\epsilon, \eta_1]. \]

Hence, \(x_0 \in \mathbb{P} \), and thus, \([\eta_\epsilon, \eta_1] \subseteq \mathbb{P}\).

Next, assume that \(x_0 \not\in [\eta_\epsilon, \eta_1] \). If \(x_0 < \eta_\epsilon \), then by the definition of \(\eta_\epsilon \), there exists a \(t_0 \in [x_0, s_\epsilon] \) such that \(\frac{1}{2} f(t_0) > \frac{1}{2} m + \delta^* \). Hence,
\[\delta_1(x_0) \geq \sup_{x_0 \leq x \leq y \leq s_\epsilon} \frac{|f(x) - f(y)|}{2} \geq \frac{1}{2} f(t_0) - \frac{1}{2} f(s_\epsilon) > \delta^*. \]

This implies that \(x_0 \not\in \mathbb{P} \). If \(x_0 > \eta_1 \), then by the definition of \(\eta_1 \), there exists a \(t_0 \in [s_1, x_0] \) such that \(\frac{1}{2} f(t_0) > \frac{1}{2} m + \delta^* \). Hence,
\[\delta_1(x_0) \geq \sup_{s_1 \leq x \leq y \leq x_0} \frac{|f(y) - f(x)|}{2} \geq \frac{1}{2} f(t_0) - \frac{1}{2} f(s_1) > \delta^*, \]

which implies that \(x_0 \not\in \mathbb{P} \). Thus, \(\mathbb{P} \subseteq [\eta_\epsilon, \eta_1] \).

3. Duality

In this section we prove that for \(p \in [\eta_\epsilon, \eta_1] \), \(g_p \) and \(\tilde{g}_p \) are both best quasi-convex approximations to \(f \in C[0, 1] \), and that \(\delta^* \) is the error of best approximation.

Lemma 3. Let \(f \in C[0, 1] \) and \(p \in [\eta_\epsilon, \eta_1] \). Then,
\[\|f - g_p\|_\infty \leq \delta^* \quad \text{and} \quad \|f - \tilde{g}_p\|_\infty \leq \delta^*. \]

Proof. The proofs of these two inequalities are similar. Thus, we present only the proof of the second.

If \(x \in [0, p] \) then \(\tilde{g}_p(x) \leq f(x) + \delta^* \). Also, for each \(\epsilon > 0 \), there exists a \(t \in [0, x] \) such that \(\tilde{g}_p(x) > f(t) + \delta^* - \epsilon \). Since \(p \in \mathbb{P} \), \(\delta(p) = \max \{ \delta_\epsilon(p), \delta_1(p) \} = \delta^* \), and thus \(\delta^* \geq |f(x) - f(t)|/2 \). Hence, \(\tilde{g}_p(x) > f(t) + \delta^* - \epsilon \geq f(x) - \delta^* - \epsilon \).

Consequently, if \(x \in [0, p] \), then \(|f(x) - \tilde{g}_p(x)| \leq \delta^* \). Similarly, we can show that if \(x \in (p, 1] \), then \(|f(x) - \tilde{g}_p(x)| \leq \delta^* \). Thus, \(\|f - \tilde{g}_p\|_\infty \leq \delta^* \).

The following theorem shows that \(\delta^* \) is the measure of the best quasi-convex approximation to \(f \in C[0, 1] \).

Theorem 2 (Duality). Let \(f \in C[0, 1] \). Then,
\[\inf_{g \in \mathcal{K}} \|f - g\|_\infty = \delta^*, \]

with \(\delta^* \) as defined by (2.4).
Proof: For each $g \in K$, there exists a $p \in [0, 1]$ such that $g \in K_p$. Hence, for $0 \leq x \leq y \leq p$ (or $0 \leq x \leq y < p$),

$$f(y) - f(x) \leq f(y) - f(x) + g(x) - g(y)$$
$$\leq |f(y) - g(y)| + |f(x) - g(x)| \leq 2 \|f - g\|_\infty,$$

and for $p < x \leq y \leq 1$ (or $p \leq x \leq y \leq 1$),

$$f(x) - f(y) \leq f(x) - f(y) + g(y) - g(x)$$
$$\leq |f(x) - g(x)| + |f(y) - g(y)| \leq 2 \|f - g\|_\infty.$$

It follows that $\delta_r(p) \leq \|f - g\|_\infty$ and $\delta_s(p) \leq \|f - g\|_\infty$. Therefore, for each $g \in K$,

$$\|f - g\|_\infty \geq \max\{\delta_r(p), \delta_s(p)\} = \delta(p) \geq \delta^*,$$

and thus $\inf_{g \in K} \|f - g\|_\infty \geq \delta^*$.

By Lemma 3 we also have $\|f - \tilde{g}_p\|_\infty \leq \delta^*$, and by Lemma 2 $\tilde{g}_p \in K_p \subseteq K$. Consequently, $\inf_{g \in K} \|f - g\|_\infty = \delta^*$.

Theorem 2 can be extended to bounded f by using Theorem 4.2 of [8] and (A) of Theorem 1 of [5].

Corollary 1. If $f \in C[0, 1]$ and $p \in P = [\eta_r, \eta_s]$, then

$$\|f - g_p\|_\infty = \|f - \tilde{g}_p\|_\infty = \delta^*.$$

Therefore, g_p and \tilde{g}_p are both best approximations to f, and

$$P \subseteq P^*.$$

4. Optimal Knots

We now characterize P^*, the set of optimal knots.

Lemma 4. If g is a best quasi-convex approximation to $f \in C[0, 1]$, and p is a knot for g, then $p \in P = [\eta_r, \eta_s]$. Thus, $P^* \subseteq P$.

Proof. Assume that $p \notin P$; then by the definition of P either $\delta_r(p) > \delta^*$ or $\delta_s(p) > \delta^*$.

If $\delta_r(p) > \delta^*$, then there exist $x_1 < y_1$ in $[0, p]$ such that $\frac{1}{2}|f(y_1) - f(x_1)| > \delta^*$. Since g is a best approximation, it follows from Theorem 2 (duality) that

$$-\delta^* \leq g(x_1) - f(x_1) \leq \delta^*.$$
Hence,
\[g(y_1) - f(y_1) \leq g(x_1) - f(y_1) \]
\[= g(x_1) - f(x_1) + f(x_1) - f(y_1) \]
\[< \delta^* - 2\delta^* = -\delta^*. \]

Similarly, if \(\delta_1(p) > \delta^* \) then there exist \(x_2 < y_2 \) in \((p, 1] \) such that \(\frac{1}{2}[f(x_2) - f(y_2)] > \delta^* \) and, as above, \(g(y_2) - f(y_2) > \delta^* \). Consequently, \(g \) is not a best quasi-convex approximation to \(f \). This contradiction implies that \(p \in P \).

Combining Corollary 1 and Lemma 4 we have the following:

Theorem 3. If \(f \in C[0, 1] \) then,
\[P^* = P, \]
where \(P^* \) is the set of optimal knots and, \(P = [\eta, \eta] \) is the set of minimum points for \(\delta \).

5. The Characterization of the Best Approximations

In this section we present a characterization of best quasi-convex approximations to \(f \in C[0, 1] \).

Lemma 5. Let \(f \in C[0, 1] \) and let \(g \) be a best quasi-convex approximation to \(f \). Then, there exists a \(p \in [\eta, \eta] \) such that
\[g_p(x) \leq g(x), \quad \text{for all } x \in [0, 1]. \]

Proof. By Lemma 4, if we let \(p_0 \) be a knot of \(g \), then \(p_0 \in [\eta, \eta] \). Next, we show \(g_{p_0}(x) \leq g(x) \) for all \(x \in [0, 1] \). Assume, to the contrary, that there exists an \(x_0 \in [0, 1] \) such that
\[g(x_0) < g_{p_0}(x_0). \]

If \(x_0 \in [0, p_0] \), then \(g(x_0) < g_{p_0}(x_0) = \sup_{t \in [x_0, p_0]} f(t) - \delta^* \). Hence, there exists a \(t_0 \in [x_0, p_0] \) such that \(g(x_0) < f(t_0) - \delta^* \). Thus,
\[g(t_0) \leq g(x_0) < f(t_0) - \delta^*. \]

If \(x_0 \in [p_0, 1] \), then \(g(x_0) < g_{p_0}(x_0) = \sup_{t \in [p_0, x_0]} f(t) - \delta^* \). Hence, there exists a \(t_0 \in [p_0, x_0] \) such that
\[g(x_0) < f(t_0) - \delta^*. \]
Thus, there exists a \(t_0 \in [0, 1] \) such that
\[
g(t_0) < f(t_0) - \delta^*. \]

Hence, \(g \) cannot be a best approximation to \(f \) (contra).

Theorem 4 (Characterization of Best Approximation). Let \(f \in C[0, 1] \). Then, \(g \) is a best uniform quasi-convex approximation to \(f \) on \([0, 1]\) if and only if there exists a \(p \in [\eta_*, \eta_+] \) such that
\[
g_p(x) \leq g(x) \leq \tilde{g}_s(x), \quad \text{for all } x \in [0, 1]. \tag{5.1} \]

Proof. Necessity. Let \(g \) be a best approximation to \(f \) from \(K \). The first inequality follows from Lemma 5. It remains to show that \(g(x) \leq \tilde{g}_s(x) \), for all \(x \in [0, 1] \).

For each \(t \in [0, 1] \), \(-\delta^* \leq f(t) - g(t) \leq \delta^* \). By the definition of \(\tilde{g}_s(x) \), for \(x \in [0, s_*] \) and for all \(\varepsilon > 0 \) there exists a \(t \in [0, x] \) satisfying \(\tilde{g}_s(x) > f(t) + \delta^* - \varepsilon \). Also, for \(x \in (s_*, 1] \) and for all \(\varepsilon > 0 \) there exists a \(t \in [x, 1] \) satisfying \(\tilde{g}_s(x) > f(t) + \delta^* - \varepsilon \). Let \(p_0 \) be a knot for \(g \). If \(p_0 \leq s_* \), then \(g(x) < g(t) \) for \(0 \leq t \leq x < p_0 \) (or \(0 \leq t \leq x < p_0 \)), and moreover \(g(x) \leq g(t) \leq f(t) + \delta^* < \tilde{g}_s(x) + \varepsilon \), for \(x \in [0, p_0] \) (or \(x \in [0, p_0] \)). It follows that \(g(x) \leq \tilde{g}_s(x) \) for \(x \in [0, p_0] \) (or \(x \in [0, p_0] \)). Also, \(g(x) \leq g(t) \) for \(s_* < x \leq t < 1 \) (or \(s_* < x \leq t < 1 \)), and \(g(x) \leq g(t) \leq f(t) + \delta^* < \tilde{g}_s(x) + \varepsilon \), for \(x \in (s_*, 1] \) (or \(x \in (s_*, 1] \)). Thus, \(g(x) \leq \tilde{g}_s(x) \), for \(x \in (s_*, 1] \) (or \(x \in (s_*, 1] \)). In either case \(g(s_* +) \leq \tilde{g}_s(s_* +) \). Hence for \(x \in (p_0, s_*] \) (or \([p_0, s_*] \)), by Lemma 2,
\[
g(x) \leq g(s_* +) \leq \tilde{g}_s(s_* +) = \tilde{g}_s(s_*) \leq \tilde{g}_s(x). \]

Therefore, if \(p_0 \leq s_* \), then \(g(x) \leq \tilde{g}_s(x) \), for all \(x \in [0, 1] \).

If \(p_0 > s_* \), then we can similarly prove that
\[
g(x) \leq \tilde{g}_s(x), \quad \text{for all } x \in [0, 1]. \]

Sufficiency. If \(g \in K \) and there exists a \(p \in [\eta_*, \eta_+] \) such that (5.1) holds, then by Corollary 1, \(\| f - \tilde{g}_p \|_\infty = \| f - \tilde{g}_s \|_\infty = \delta^* \). Thus, \(\| f - g \|_\infty = \delta^* \), and \(g \) is a best approximation to \(f \).

The following corollary gives the structure of \(G \), the set of best approximations:

Corollary 2. Let \(f \in C[0, 1] \), then
\[
G = \bigcup_{p \in [\eta_*, \eta_+]} \{ g^* \in K : g_p(x) \leq g^*(x) \leq \tilde{g}_s(x), \text{ for all } x \in [0, 1] \}. \]
THEOREM 5 (Nonuniqueness of the Best Quasi-convex approximation). Let $f \in C[0,1]$. Then f has a unique best uniform quasi-convex approximation if and only if f is quasi-convex.

Proof: If $f \in K$ then f is its own unique best approximation from K.

Next, assume that G has a unique element. Then by Corollary 2 for all $p \in [\eta, \eta]$, $g_p(x) = \bar{g}_s(x)$, for all $x \in [0,1]$. In particular, we find that $g_{s_i}(s_i) = \bar{g}_{s_i}(s_i)$. Hence, by the definitions of g_{s_i} and \bar{g}_{s_i}, $f(s_i) - \delta^* = f(s_i) + \delta^*$. Hence, $\delta^* = 0$, and by Lemma 1, $f \in K$.

Theorem 5 can also be derived from Theorem 5.1 of [8].

REFERENCES

3. J. J. Swetits, S. E. Weinstein, and Yuesheng Xu, On the characterization and computation of best monotone approximation in $L_p[0,1]$ for $1 \leq p < \infty$, J. Approx. Theory 60 (1990), 58–69.