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1. INTRODUCTION 

Let B = B[O, l] be the linear space of all bounded real functions f on 
[0, 11, with the uniform norm 

llfll, = SUP If(- It [O,l] 

Let C[O, l] denote the space of all continuous functions on [0, 11. 

DEFINITION 1. A function g E B is said to be quasi-convex [2] if 

gb%maxM.% g(t)) for all X, S, and t such that 

O<s<xbt61. 

Let Kc B denote the set of all quasi-convex functions on [0, 11. 

Ubhaya [S] has proved that g is quasi-convex if and only if there exists 
a point PE [IO, 11, such that either 

(i) g is nonincreasing on [0, p) and is nondecreasing on [p, 1 ] or 
(ii) g is nonincreasing on [0, p] and is nondecreasing on (p, 11. 

We call the point p (in either (i) or (ii)) a knot of g. Let K, denote the 
functions in K which have a knot at p. Then, 

K= u K,. 
Ptro.Ii 
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UNIFORM APPROXIMATION 241 

In general, the set of ail the knots of a quasi-convex function is a closed 
subinterval of [0, 11. 

The problem of the best quasi-convex approximation is to find a g* E K, 
such that 

llf-g*llm=;~~ {llf-AJ. (1.1) 

This problem is considered in [8], where a sufficient condition for a best 
quasi-convex approximation to a bounded function is obtained, and some 
structural properties of best approximations are established. Algorithms 
for the computation of a best discrete quasi-convex approximation are 
presented in [ 1,7]. 

Throughout this paper we shall assume that f~ C[O, 11, unless stated 
otherwise. 

DEFINITION 2. Given f~ C[O, 11, let 

G=G(f)={g*EK: Ilf-g*ll,=&E; {llf-gll)} (1.2) 

the set of best quasi-convex approximations tof, and let 

P*=(p~[O,l]:pisaknotforsomeg*~G}. (1.3) 

We call P* the set of optimal knots. 

We characterize both the best quasi-convex approximations and the 
optimal knots. In addition we describe the construction of the set of best 
approximations and prove that a best quasi-convex approximation is 
unique if and only if f is quasi-convex. 

2. PRELIMINARIES 

Similar to the development in [S] we define two functionals 6, and 6,, 
which we use to obtain the error of the best quasi-convex approximation. 

DEFINITION 3. For f E C[O, l] and p E [0, 11, let 

d,(p) = sup 
O<X<YGP 

[f(JJ) ;f (X)1, 

and 

[f(x) -f b)l 
d*(P)= SUP ? . 

(2.1) 

(2.2) 
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Thus, 6, is a measure of the “decreasingness” off on [0, p], and 6, is a 
measure of the “increasingness” off on (p, 11. 

For fEC[O, l] and PE [0, I] (as in [S]), define 

&P) = max{M4 UP)). 

Denote the minimum value of 6(p) on [0, l] by 

d* =,i;t 1 S(p). 
. . 

Let 

(2.3) 

(2.4) 

P= {PE [O, l] :6(p)=6*} 

be the set of minima for 6, and let 

~={.=CO,11 :f'"'=,jp~lf'"'} . . 

be the set of minima for jI 
Let [se, s,] be the convex hull of S. Then, 

s,=infS and s, = sup s. 

Also, let m = inf( f (x) : 0 Q x < 11, and then define 

qL = inf(x E [0, sc] : f (t) < m + 26*, for ail 2 E [x, s,] }, 

and 

q,=sup(xE[~,, l] :f(t)dm+26*,forall te[s,,x]} 

Thus, 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

We shall prove that P = [r],, r],], and that P=P*, the set of optimal 
knots. 

Next, let feB. For each PE [0, 11, similar to the delfinitions of U; and 
V; in [8] with 0; replaced by 6* we define the two functions 

i 

SUP f(t) - 6*, xECO,Pl 
g,(x) = rE C&PI 

SUP f(t)-a*, XE (A 11 
fE (P,Xl 

(2.10) 
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and 

i 

inf f(t) + 6*, xECO,Pl 
&gx)= If? co+1 (2.11) 

inf f(t) + 6*, XE (P, 11. 
lECX.ll 

LEMMA 1. Let f~ C[O, 11. Then, 

(i) lA6,(p)l d ia,-(IdpI), and lA6,(p)l Q $~f(l44) (where ~~(*I 
denotes the modulus of continuity off ). Thus, 6, and 6, are continuous. 

(ii) 6* =0 if and onZy iffe K, 

(iii) S c P. 

Proof: (i) If dp > 0 then 

h,(P + 4) 6 6,(P) + sup 
MY) -f @)I 

PaxcyGP+ldPl 2 ’ 

and if Ap<O then, 

d,(p) G h,(p - I4 I+ sup Cf (Y) -f(X)1 
P- ldpl <x<y<p 2 . 

It follows that 

IA~AP)I d sup 
[f(Y)-f(x)1 1 

ocy-x~l~pl 2 
=pCl4l). 

Similarly, we may show the second inequality of (i). 

(ii) First let 6* =O. By (i) 6, and 6, are continuous and thus so is 6, 
where 6(p)=max{6,(p), 6,(p)} for pi [0, 11. Hence, there exists a 
p. E [0, 11, such that 6(po) = 6* = 0. Thus, 6,(p,) = 6,(p,) = 0, since de and 
6, are both nonnegative functions. Consequently, by the definitions of 6, 
and. 6,, f is nonincreasing on [0, po], and nondecreasing on (po, 11. Thus, 
feK. 

Conversely, assume that f E K. Then there exists a p. E [0, l] such that 
f E K,. Therefore, 6,(p,) = 6,(p,) = 0, which implies that 6(p,) = 0. Hence, 
6* =o. 

(iii) It is sufficient to show that if s E S, then, 

6As) G max{dAp), 6,(p)) for all p E [0, 1 ] (2.12) 

and 

for all pi [0, 11. (2.13) 
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The proofs of (2.12) and (2.13) are similar; thus we only present the 
proof of (2.12). 

If s=O then, since 6,(O) =O, and since 6, and 6, are both nonnegative 
functions, (2.12) holds. 

If SE (0, 11, we consider two cases. First assume that pas. Then 
6,(s) 6 6,(p) and thus (2.12) holds. 

Next, assume that p <s, and 6,(p) < 6,(s). f E C[O, 11 implies that 

26,(s) =f(y,) -f(x1) for some xi dy, in [O, s]. 

It follows that 26,(p)<f(y,)-f(x,) and p<y,. Hence, 

26,(s) Gf(y,) -f(s) < sup U-(x) -f(Y)1 d 26,(p). 
P<XS.lJ<S 

Therefore, (2.12) holds. 

LEMMA 2. gp and g, as defined by (2.10) and (2.11) have the following 
properties: 

(i) gp, &, E K, for all P E CO, 1 I, 
(ii) iffE C[O, l] then 

(a) gpe CC& 11 for all P E CO, 11, 
(b) ~,EC[O, l] ifand onZy ifp~ [s/,s,], 

(c) zfp E [s,, s,], then g,(x) = Es,(x) for all x E [0, 11. 

(d) ifp~ [0, 11, then g,(x)<gJx) for all XE [0, I]. 

Proof: (i) follows from the definitions (2.10) and (2.11). 
(ii) (a) For all PE [0, 11, (2.10) implies that s, is continuous at any 

xfp. 
Next, to prove the continuity of gp at x =p, we observe that 

g,(p - ) = lim c-o lG;Sdl~P/llf(t)--*=f(P)-~* 

and 

_g,(p+ )lim sup f(t)-s*=f(p)-a*, 
E’O rE(p,p+E] 

since feC[O, I]. Thus, g,(p-)=g,(p+)=_g,(p), and (a) is proved. 

(b) Similarly, for all p E [0, 11, S, is continuous where x #p. Next, 
if x =p and p E [s,, s,], then 

g,(p - ) = lim inf f(t) + 6* =f (s,) + 6* 
s-0 le[O,p-El 
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and 

Hence, C,(P- ) = g,(p) = g&p + ). 
Conversely, suppose that p $ [s/, s,]. If p < sL, then 

gP( p’- ) = lim coo ,.r~~-,,-f(‘)+6*>f(S’)+6* 

= lim inf f(f)+s*=g,(p+). 
F.-o rE[p+c,l] 

While if p > s, then 

g,(p- ) = lim c-o ,.r6”,f~.,f(f)+b*=f(S,)+6* 

< lim E-O IE[$fe p+6*=&(P+). 

(cl Let P E tI+, s,l. For x E [s,, PI, 

g,(x) = ,,i& f(t) + b* =f(se) + 6* = m + 6*, 

for x E (P, s,l, 

l?,(x) = ,,y, f(t) + 6* =f(s,) + 6* = m + 6*, 

and for x $ [s,, s,], 

ii,(x) =&,(x). 

Thus, gP = &, 

(d) Assume that p $ [s/, s,]. If p < sp, then 

E,(x) = ‘k,(x) for all XE [O, p], 

&A4 = ,Eig, f(f) + 6* =“I$,) + 6* 

< ,e$ f(t) + a* =kT,,(x) for all x E (p, sp) 

and gP(x) =g,,(x) for all XE [IS,, 11. If p >.s,, then g,(x) =gJx) for all 
XE co, s,l, 

g,(x) = rEi:of,, f(t) + J* =fb,) + a* 

< re$ f(t) + a* = SJX) for all x E (s,, p) 
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and gp(x)=g,(x) for all XE [p, 1 J. Thus, by (c) if PE [0, 11, then 
g,(x) <-<Jx) for all x E [O, I]. 

THEOREM 1. Let f E CEO, 11, and let P be the set of minimum points for 
6. Then, 

p = Crl?, ?,I, 

where r~( and q, are defined by (2.8) and (2.9), respectively. 

Proof. Assume that X~E [q,, q,]. We consider three cases. 

Case 1. .x0 E [vc, s,]. Then, 6/(x,) < 6,(s/). However, since sc E S c P, 

6,(x,) = max 
i 

sup U(x) -f(Y)1 sup vlx) -f(Y)1 
xg < .r g .I’ < .s/ 2 ’ S( $ .-T < y s 1 2 ’ 

Cf(x)-f(Y)1 
X SUP 

.q < Y < s/ < 1’ < 1 2 

= max 
{ 

sup J‘(x) f(+) 
“0 g .r < s, 

--yj-‘6,(S,) ,<6*. 
2 I 

Case 2. X~E (s/, s,). Then, supsr 4r,YGs, ([f(y) -f(x)l/2) < 6*. Since 
S,EP, 

6f(xo) = max d,(s,L 
sup U(Y) -f(x)1 

‘f < .x 6 .” s x0 2 ’ 

X SUP 
0 i .x < s/ r: J < 10 

and 

~d.4 = max 
i 
b,(sJ, s”p U(x) -f(Y)1 

X”GXC.V<A, 2 ’ 

X sup 
[S(x) -f(Y)1 d 6*. 

ro < x c St c J’ < 1 2 1 

Case 3. X~E [s,, q,]. Then 6,(xo)<6,(s,)<6*. Also, since s,eP, 

6Axo) = max 
i 
Sh,), sup Cf(Y 1 -f(x)1 

s, G * < y G so 2 ’ 

X SUP 
D-(J) -S(x)1 

0 c .x s St c y G X” 2 > 

= max 
{ 

d,(s,), f 6*. 
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Combining all three cases, 

6(x,) = max{~Ax,), 6,(x0)} G 6*, for x0 E Cb rJ 

Hence, x~EP, and thus, [r],, q,] r P. 
Next, assume that x0$ [qe, q,]. If x,<r~,, then by the definition of qe, 

there exists a to E [x0, s,] such that $f(to) > irn + 6*. Hence, 

6,(x0) 2 sup [f(x)-f(y)l>if(to)--lf(s,)>fi*. 
XOCXCY<S( 2 ‘2 2 

This implies that x0 4 P. If x0 > ql, then by the definition of qz, there exists 
a toe [s,, x0] such that $(to)> km +6*. Hence, 

6,(x0) B 
sup ~f(y)-~(x)‘>lfcr,)-If(s )>J* 

S,CX<YGXO 2 ‘2 2”’ 

which implies that xo$P. Thus, PE [Iv!, r,]. 

3. DUALITY 

In this section we prove that for pi [ye, q.,], gp and g, are both best 
quasi-convex approximations tofe C[O, 11, and that 6* is the error of best 
approximation. 

LEMMA 3. LetfE C[O, l] andp~ [q(, q,]. Then, 

IV-g,/l co G a* and llf-&II cc G 6*. 

Proof: The proofs of these two inequalities are similar. Thus, we present 
only the proof of the second. 

If XE [0, p] then g,(x) <f(x) + 6*. Also, for each E >O, there exists 
a te [0,x] such that g,(x)>f(t)+b*-E. Since PEP, 6(p) = 
max(b,(p), 6,(p)) = 6*, and thus 6* > [f(x) -f(t)]/2. Hence, g,(x) > 
f(t) + a* - & >f(x) - is* -&. 

Consequently, if x E [0, p], then If(x) - g,(x)1 d 6*. Similarly, we can 
show that if XE (p, 11, then If(x)-g,(x)1 <6*. Thus, Ilf-g,/l <6*. 

The following theorem shows that 6* is the measure of the best quasi- 
convex approximation to f~ C[O, 11. 

THEOREM 2 (Duality). Let f~ C[O, 11. Then, 

j’E’f Ilf-gll m = a*, 

with 6* as defined by (2.4). 
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Proof: For each g E K, there exists a p E [0, l] such that g E K,. Hence, 
for O<x<y<p (or O<xQy<p), 

f(Y) -f(x) Gfb) -f(x) +g(x) -g(Y) 

G If(Y) -dY)l + If(x) -g(x)1 G 2 Ilf-$41 co2 

and forp<xdydl (orpdx<<<l)), 

f(x) -f(Y) <f(x) -f(Y) +gb) -g(x) 

d I.f(x)-&)I+ If(Y)-dY)l~2 IV-slim. 

It follows that 6,(p) < /If--gll cc and b,(p) d ilf-gll oo. Therefore, for each 
gEK, 

Ilf-Al a 3 max(6hL d,(p)1 = J(P) 2 d*, 

and thus infgEK llf-g/ln, >6*. 
By Lemma 3 we also have Ilf-gJm 66*, and by Lemma 2 ~,EK~cK. 

Consequently, inf,. k IIf--g/l o. = 6*. 

Theorem 2 can be extended to bounded f by using Theorem 4.2 of [S] 
and (A) of Theorem 1 of [S]. 

COROLLARY 1. Zff~ C[O, l] and p E P = [qI, q,], then 

llf-&II 03 = IV-&II cc = h*. 

Therefore, gp and gp are both best approximations to f, and 

P&P*. 

4. OPTIMAL KNOTS 

We now characterize P*, the set of optimal knots. 

LEMMA 4. If g is a best quasi-convex approximation to f E C[O, 11, and 
p is a knot for g, then p E P = [qc, q,]. Thus, P* G P. 

ProoJ Assume that p $ P; then by the detintion of P either 6,(p) > 6* 
or 6,(p) > 6*. 

If d,(P) > d*, then there exist x1 < y, in [0, p] such that 
$[f(y,)-f(x,)] > S*. Since g is a best approximation, it follows from 
Theorem 2 (duality) that 
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Hence, 

g(y,)-f(yl)~g(x,)-f(yl) 

=g(xI)-f(x,)+f(x,)--f(yl) 
<6”-26”= -c5*. 

Similarly, if 6,(p)>6* then there exist x,<y2 in (p, l] such that 
i CfW -fbdl ’ 6* and, as above, g( y2) -f( vZ) > 6*. Consequently, g is 
not a best quasi-convex approximation toJ This contradiction implies that 
PEP 

Combining Corollary 1 and Lemma 4 we have the following: 

THEOREM 3. ZfftzC[O, l] then, 

P*=P, 

where P* is the set of optimal knots and, P = [qe, q,] is the set of minimum 
points for 6. 

5. THE CHARACTERIZATION OF THE BEST APPROXIMATIONS 

In this section we present a characterization of best quasi-convex 
approximations to f E C[O, 11. 

LEMMA 5. Let f E C[O, 1 ] and let g be a best quasi-convex approxima- 
tion to J: Then, there exists a p E [q/, q,] such that 

gp(4 G g(x), for all XE [0, 11. 

ProoJ: By Lemma 4, if we let p,, be a knot of g, then p0 E [r~,, r,]. Next, 
we show gPO(x) <g(x) for all x E [0, 11. Assume, to the contrary, that there 
exists an X~E [0, l] such that 

&o) <g&o). 

If xo E CO, ~01, then dxo) < gPobo) = supIs cxo.Pol f(t) - a*. Hence, there 
exists a to E [x,, po] such that g(xo) <f (to) - 6*. Thus, 

Ato) G&o) <f (to) - 6*. 

If XO E [I PO, 1 I, then g(h) < gPO(xo) = suprc cPO,XO1 f(t) - 6*. Hence, there 
exists a toe [po, x0] such that 

dxo) <f (to) - d*. 
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Thus, there exists a t, E [O, 1 ] such that 

g(b) <f(b) -ij*. 

Hence, g cannot be a best approximation to S (contra). 

THEOREM 4 (Characterization of Best Approximation). Let f E C[O, 11. 
Then, g is a best uniform quasi-convex approximation to f on [0, 11 if and 
only if there exists a p E [qc, s,] such that 

g,(x) G<(x) G&,(X)> for all xE [O, 11. (5.1) 

Proof Necessity. Let g be a best approximation to f from K. The first 
inequality follows from Lemma 5. It remains to show that g(x) < gs,(x), for 
all XE [0, 11. 

For each tE[O, 11, -d*<f(t)-g(t)<6*. By the definition of 2$,(x), 
for XE [0, s,] and for all E > 0 there exists a t E [0, x] satisfying 
ES,(x) >f(t) + 6* - E. Also, for x E (s,, 1 ] and for all E > 0 there exists a 
t E [x, l] satisfying gJx) > f (t) + S* - E. Let p,, be a knot for g. If p,, G s,, 
then g(x) <g(t) for 0 d t< x <pO (or 0 d t d x <pO), and moreover 
g(x) <g(t) <f(t) + 6* <g$,(x) + E, for XE [O, pO] (or x E [0, pO)). It follows 
that g(x) <g,,(x) for x E [O, pal (or x E CO, po)). Also, g(x) <g(t) for 
s,<x<t<l (or s,<x<t<l), and g(x)dg(t)6f(t)+S*<gSS(x)+&, 
for XE(S,, l] (or XE [s,, I]). Thus, g(x)<g,,(x), for XE(S,, l] (or 
x E [s,, 11). In either case g(s, + ) <g,,(s, +). Hence for XE (po, s,] (or 
Cpo, s,)), by Lemma 2, 

g(x) G As, + 1 G&b* + ) = &,(sJ G k%,(x). 

Therefore, if p0 < s, then g(x) <g,,(x), for all x E [0, 11. 
If p0 > s,, then we can similarly prove that 

g(x) G t%,(x), for all XE [0, 11. 

Sufficiency. If gE K and there exists a PE [vc, v,] such that (5.1) 
holds, then by Corollary 1, l(f--g,,lloo= JJf-gs,ljoo=6*. Thus, [If-g/l,= 
6*, and g is a best approximation to f: 

The following corollary gives the structure of G, the set of best 
approximations: 

COROLLARY 2. Let f E C[O, I], then 

G= u (g*EK:gp(x)~g*(x)~~gs,(x),forallxEIO, l]}. 
PE C4c.vtl 



UNIFORM APPROXIMATION 251 

THEOREM 5 (Nonuniqueness of the Best Quasi-convex approxima- 
tion). Let fE C[O, 11. Then f has a unique best uniform quasi-convex 
approximation if and only if f is quasi-convex. 

Proof If f 6 K then f is its own unique best approximation from K. 
Next, assume that G has a unique element. Then by Corollary 2 for all 

PE [Iv/, ~~1, g,(x) =2,,(x), for all x E [0, 11. In particular, we find that 
gS,(s,)=g,Y,(s,). Hence, by the definitions of g,, and g,,, f(sl)--6* = 
f(s,) + 6*. Hence, 6* = 0, and by Lemma 1, f E K. 

Theorem 5 can also be derived from Theorem 5.1 of [S]. 
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