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1. INTRODUCTION

Let B=B[0, 1] be the linear space of all bounded real functions f on
[0, 1], with the uniform norm

Ifle= sup [f(x)I.

xe[0,1]

Let C[0, 1] denote the space of all continuous functions on [0, 1].

DEerINITION 1. A function g€ B is said to be quasi-convex [2] if

g(x)<max{g(s), g(t)} for all x, 5, and ¢ such that

O0<s<sx<r< L

Let K = B denote the set of all quasi-convex functions on [0, 1].

Ubhaya [8] has proved that g is quasi-convex if and only if there exists
a point pe [0, 1], such that either

(i) g is nonincreasing on [0, p) and is nondecreasing on [p, 1] or
(ii) g is nonincreasing on [0, p] and is nondecreasing on (p, 1].

We call the point p (in either (i) or (ii}) a knot of g. Let K, denote the
functions in K which have a knot at p. Then,

K= U K,

pe(0,1]
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In general, the set of all the knots of a quasi-convex function is a closed
subinterval of {0, 1].

The problem of the best quasi-convex approximation is to find a g* €K,
such that

Hf*g*lloo=;glf({|lf~glloo}- (1.1)

This problem is considered in [8], where a sufficient condition for a best
quasi-convex approximation to a bounded function is obtained, and some
structural properties of best approximations are established. Algorithms
for the computation of a best discrete quasi-convex approximation are
presented in [1, 7].

Throughout this paper we shall assume that fe C[0, 1], unless stated
otherwise.

DermNniTION 2. Given fe C[0, 1], let

G=G(f)={g*€K2IIf—g*lloo=;glf({||f—gll}} (1.2)

the set of best quasi-convex approximations to f, and let
P*={pe[0, 1] :pisaknot for some g*ec G}. (1.3)

We call P* the set of optimal knots.

We characterize both the best quasi-convex approximations and the
optimal knots. In addition we describe the construction of the set of best
approximations and prove that a best quasi-convex approximation is
unique if and only if f'is quasi-convex.

2. PRELIMINARIES

Similar to the development in [5] we define two functionals J, and §,,
which we use to obtain the error of the best quasi-convex approximation.

DEerFINITION 3. For fe C[0,1] and pe [0, 1], let
Lf(y)—f(x)]

3p)=_sup T (2.1)
O0<x<y<p
and
d,(p)= sup [—Ml (2.2)

p<xsys<l 2
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Thus, J, is a measure of the “decreasingness” of fon [0, p], and ¢, is a
measure of the “increasingness” of fon (p, 1].

For fe C[0,1] and pe [0, 1] (as in [8]), define

d(p)=max{d,(p), 6.(p)}. (23)

Denote the minimum value of §(p) on [0, 1] by

5*=0 inf 1 o(p). (2.4)
Let
P={pe[0,1]:6(p)=0%} (25)

be the set of minima for 8, and let

S={se[0,1] :f(s)zo.int;lf(x)} (2.6)

be the set of minima for f.
Let [s,, s,] be the convex hull of S. Then,

s,=inf S and s,=supS. 2.7)

Also, let m=inf{f(x) :0<x<1}, and then define
n,=inf{xe[0,s,]:f(1)<m+26* forallte[x,s,]}, (2.8)
and
n,=sup{xels,, 1]:f(1)<m+26* forallte[s,, x]}. 2.9)
Thus,
Lseos, 1< [nem, ]

We shall prove that P=[#,,n,], and that P=P*, the set of optimal
knots.

Next, let fe B. For each pe [0, 1], similar to the delfinitions of U, and
V, in [8] with 6, replaced by 6* we define the two functions

sup f(t)_5*7 XE[O, p]
go(x) =4 'etxrl (2.10)
Sup f(t)'_é*a xe(p, 1]

te(p,x]
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and

inf f(t)+ 0%, xe[0, p]
g,(x)=4 "< (2.11)
inf f(1)+6*  xe(p 1]

te[x,1]

LeMMA 1. Let fe C[0, 1]. Then,
(i) 140,(p)l <30.14pl), and |45,(p)| <30,(14pl) (where w(*)
denotes the modulus of continuity of ). Thus, 6, and 0, are continuous.
(i) 0*=0if and only if feK,
(iii) Sc<P.
Proof. (1) If 4p>0 then

L) —f(x)]

0,p+A4p) <o p)+ sup 3

psx<y<p+|4p|
and if 4p <0 then,

() =/ (x)]

0,p)<o,(p—Ildpl)+ sup 2

p—ldpl<sx<y<p

It follows that

|46,(p)l < sup LI =1 _

1
0<y—x<|dp| 2 2

wf(|AP|)-

Similarly, we may show the second inequality of (i).

(ii) First let 6* =0. By (i) 4, and 4, are continuous and thus so is &,
where d(p) =max{d,(p), ,(p)} for pe[0,1]. Hence, there exists a
Po€ [0, 1], such that §(py)=*=0. Thus, é,(p,)=6,(p,) =0, since §, and
0, are both nonnegative functions. Consequently, by the definitions of &,
and d,, fis nonincreasing on [0, p,], and nondecreasing on (p,, 1]. Thus,
fekK.

Conversely, assume that fe K. Then there exists a pye [0, 1] such that
feK, . Therefore, 6,(po)=0,(po) =0, which implies that §(p,)=0. Hence,
0*=0.

(i) It is sufficient to show that if s€S, then,

o,(s)<max{d,(p), d,(p)} forall pe [0, 1] (2.12)
and

d,(s)<max{d,(p), d,(p)} forall pefl0,1]. (2.13)
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The proofs of (2.12) and (2.13) are similar; thus we only present the
proof of (2.12).

If s=0 then, since J,(0)=0, and since 6, and J, are both nonnegative
functions, (2.12) holds.

If se(0,1], we consider two cases. First assume that p>s. Then

d,(s)<d,(p) and thus (2.12) holds.
Next, assume that p <s, and é,(p) < d,(s). fe C[0, 1] implies that

25,(s)=f(y1)—f(x;) forsome x; <y, in[0,s].
It follows that 26,(p)<f(y,)—f(x,) and p <y,. Hence,
20,()<f(y)—fls)< sup  [f(x)—f(»)1<26,(p)

PEXSYSS

Therefore, (2.12) holds.

LEMMA 2. g, and g, as defined by (2.10) and (2.11) have the following
properties:
(i) g, &,€K, for all pe[0,1],
(il) i fe C[0, 1] then
(a) g,€Cl[0, 1] for all pe[0, 1],
(b) gpeC[05 1] ifand only l_’fpe[S/,S,,],
(c) ifpels,, s, ], then g,(x)=g (x) for all xe [0, 1].
(d) ifpel[0,1], then g,(x)<g,,(x) for all xe [0, 1].
Proof. (i) follows from the definitions (2.10) and (2.11).
(i) (a) For all pe[0, 1], (2.10) implies that g, is continuous at any

X#p.
Next, to prove the continuity of g, at x =p, we observe that

gp—)=1lm sup f(1)—6*=f(p)—o*

e—>0 re[p—e¢p]
and

g(p+)lim  sup f()—d*=f(p)—d%
e—>0 re(p,p+e]
since fe C[0, 1]. Thus, g,(p—)=g,(p+)=g,(p), and (a) is proved.
(b) Similarly, for all pe [0, 1], g, is continuous where x # p. Next,
if x=pand pe[s,,s,], then

g,(p—)=Ilim inf ]f(t)+5*=f(s/)+(5*

e—0 te[0,p—c¢
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and
g,(p+)=1lim inf . f()+0*=f(s,)+ %

e—0 re{p+e,

Hence, g,(p—)=g,(p)=g,(p+)
Conversely, suppose that p¢ [s,,s,]. If p<s,, then

g(p—)=1lim inf f(6)+0%*>f(s,)+0*

e—=0 1e[0,p—e]

=lim inf f()+3*=g,(p+).

e—>0 re[p+e 1]

While if p > s, then

gp—)=lim inf f(1)+6*=f(s)+*

e—0 ref0,p—¢]

<hm inf f()+6*=g,(p+).

e—=0 re[p+el]

(C) Let pe [s{” Sz]‘ For X€ [S/, p]’

g{x)= inf f(t)+*=f(s,)+*=m+ %,

te {0,x]

for xe(p, 5,1,

gy(x)=inf f(1)+6*=f(s,)+6*=m+5*,

relx1]
and for x ¢ [s,,s,],
gp(x)=g,(x).
Thus, g, =¢,,.
(d) Assume that p¢ [s,,s,]. If p<s,, then

&x)=g,x) Torall xe[0,p),
gx)= inf f(1)+5*=(s)) +5*

s

< inf f(ry+6*=g,(x) forall xe(p,s,)

te[0,x]

and g,(x)=g,,(x) for all xe[s,, 1]. If p>s,, then g,(x)=g,,(x) for all
xe[0,s,],

g,(xy= inf f(1)+86*=f(s,) + 6*

te[0,x]

< inf f(1)+0*=g,(x) forall xef(s,, p)
refx.1]

409:152/1-17
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and g,(x)=g,(x) for all xe[p,1]. Thus, by (c) if pe[0, 1], then
g,(x)<g, (x) for all xe [0, 1].

THEOREM 1. Let fe C[0, 1], and let P be the set of minimum points for
o. Then,
P=[n;n.]

where 1, and 1, are defined by (2.8) and (2.9), respectively.
Proof. Assume that x,e [#,, n,]. We consider three cases.

Case 1. xq,e[#,,s:]. Then, §,(x,)<d,(s,). However, since s,eSc P,

5,(x0)=max{ sup M, sup M,

XQ< XK Y8, 2 ysxgysl 2

«  sup [f(X)~f(y)]}

xo<xEsr<yrsl 2

1) _ 160 :
0180 5 50f <o

= max { sup

XpE XK S/

Case 2. xo€(s,,s,). Then, sup,, <. <, ([/(¥)—f(x)]/2)<o* Since

s,eP,
d/(xo) = max{é,,(s,), sup M(l)_ziﬂi)l
x  sup LJ:(J_)_;M} < %,

O yss,<y=<x0

and

WACI LSO
3 ,

[f(x)~f(y)]}
2

5,(xo) = max {rwz), sup

XNEX<YSS,

X sup < 6%

xEx<s<ys]

Case 3. x,€ls,,n,1 Then 8,(xy)<d,(s,) < d6* Also, since 5, P,

s i), s LI

SHRXE YL X 2

Lf(y) ~f(X)J}

P sup 3

Oy <5, €y

= max {@(s,), sup %ﬂ ﬂZ%L)} < o*.

5 ExE X
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Combining all three cases,
d(xo) =max{5z(xo), 51(350)} < 0%, for xoeln,,n.].

Hence, x,€ P, and thus, [y,,7,]<P.
Next, assume that xq¢ [1,,1,]. If xo<n,, then by the definition of 7,,

there exists a o€ [x,, 5,] such that i f(z,) > 3m + 6*. Hence,
Lfx)-f(]_1

0(x0)= sup —————"2=

1
T2 5 f(0) — 5. £(s0) > %

XoSX<ySsy

This implies that x, ¢ P. If x,>#,, then by the definition of #,, there exists
a toe[s,, xo] such that L f(z)> m+ 6* Hence,
- 1 1
s> sup  HUIZTONS L gy pisy>om
CxLypsx

which implies that x, ¢ P. Thus, P< [7,,7,].

3. DuALITY

In this section we prove that for pe[#n,,1,], g, and g, are both best
quasi-convex approximations to fe C[0, 1], and that 8* is the error of best
approximation.

LEmMMA 3. Let fe C[0,1] and pe[n,,n,). Then,
If—glesd* and  |f—g,le<0*

Proof. The proofs of these two inequalities are similar. Thus, we present
only the proof of the second.

If xe[0, p] then g,(x)<f(x)+d* Also, for each £>0, there exists
a te[0,x] such that g,(x)>f(f)+0*—¢ Since peP, (p)=
max{d,(p), d,(p)} =% and thus 6*>[f(x)—f(1)]/2. Hence, g,(x)>
f()+*—e=f(x)—6*—e

Consequently, if xe [0, p], then |f(x)—g,(x)| <dé*. Similarly, we can
show that if xe (p, 1], then |f(x)—g,(x)| <é* Thus, | f—g,| <6*.

The following theorem shows that 6* is the measure of the best quasi-
convex approximation to fe C[0, 1].

THEOREM 2 (Duality). Let fe C[0, 1]. Then,
inf || f—gll,=20%
gekK

with 8* as defined by (2.4).
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Proof. For each geK, there exists a pe [0, 1] such that ge K. Hence,
for0sx<y<p (or0<x<gy<p),

SO)=fx)<fy)—f(x)+g(x)—gl(y)
<) —g)+1f(x)—g(x) <2 | f—gllw,

and for p<x<y<1 (or p<x<y<l),

S =f)<f(x)—f(y)+g(y)—gx)
<f(x)=gON+ 1) —gN <2 f~ gl -

It follows that J,(p) < ||f—gl« and 8,(p) < | f—gll .. Therefore, for each
gek,

If—gll.. =max{d,(p), 6,(p)} =d(p)=d*,

and thus inf, . | f— gl = d*
By Lemma 3 we also have || f—~g,/l ., <6* and by Lemma 2 g,eK,cK.
Consequently, inf, . g [| f— gl = *.

Theorem 2 can be extended to bounded f by using Theorem 4.2 of [8]
and (A) of Theorem 1 of [5].

CoroLLARY 1. If feC[0,1] and peP=[#,,1n,], then
If=8plle =1f—8&pllc =8
Therefore, g, and g, are both best approximations to f, and

PcP*

4. OpTiMaL KNOTS
We now characterize P*, the set of optimal knots.

LEmMMA 4. If g is a best quasi-convex approximation to fe C[0, 1], and
p is a knot for g, then peP=1[n,,n,]. Thus, P*<P.

Proof. Assume that p ¢ P; then by the defintion of P either J,(p) > 6*
or 8,(p)>d*

If 3,(p) > 6% then there exist x, <y, in [0, p] such that
SLA(y)—f(x,)]1>8* Since g is a best approximation, it follows from
Theorem 2 (duality) that

—0%* <g(x,) —f(x)) < 0%
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Hence,
gy —f(y)<glx))—f(y1)
=g(xy) —f(x1) +f(x1) = f(y1)
<O* —20% = — 5%,

Similarly, if J,(p)>0* then there exist x,<y, in (p,1] such that

$[f(x2)—f(y,)]>6* and, as above, g(y,) —f(y,) > 6*. Consequently, g is
not a best quasi-convex approximation to f. This contradiction implies that
peP

Combining Corollary 1 and Lemma 4 we have the following:

THEOREM 3. If fe C[0, 1] then,
P* =P,

where P* is the set of optimal knots and, P=[n,,n,] is the set of minimum
points for 6.

5. THE CHARACTERIZATION OF THE BEST APPROXIMATIONS

In this section we present a characterization of best quasi-convex
approximations to fe C[0, 1].

LEMMA 5. Let fe C[0, 1] and let g be a best quasi-convex approxima-
tion to f. Then, there exists a pe [n,,n,] such that

g,(x)<g(x), forall xe[0,1]

Proof. By Lemma 4, if we let p, be a knot of g, then pye [#,, n,]. Next,
we show g, (x) < g(x) for all xe [0, 1]. Assume, to the contrary, that there
exists an x,€ [0, 1] such that

2(xo) < gp(Xo)-

If xq€ [0, po], then g(xo) < g,(xo) =SUP, c 11001 f(t) — 6*. Hence, there
exists a ty € [xq, po] such that g(x,) <f(t5) — 6*. Thus,

8(to) <g(xo) <f(10) — ™.

If xo€ [ po, 1], then g(xo) < g,,(X0) =SUP,c [, 503 f() —*. Hence, there
exists a tyo€ [ po, Xo] such that

g(xo) <f(to)—0*.
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Thus, there exists a t5e [0, 1] such that
glto) <f(15) — o*.

Hence, g cannot be a best approximation to f (contra).

THEOREM 4 (Characterization of Best Approximation). Let fe C[0,1].
Then, g is a best uniform quasi-convex approximation to f on [0, 1] if and
only if there exists a pe [n,,n,] such that

gr(x)<glx)<g, (x), forall xe[0,1]. (5.1)

Proof. Necessity. Let g be a best approximation to f from K. The first
inequality follows from Lemma 5. It remains to show that g(x) < g, (x), for
all xe [0, 1].

For each te[0,1], —6*<f (1) —g(t)<d*. By the definition of g, (x),
for xe[0,s5,] and for all £>0 there exists a re[0, x] satisfying
g (x)>f(t)+ 6* —e. Also, for xe(s,, 1] and for all £>0 there exists a
te [x, 1] satisfying g, (x) > f(#) + 6* —e. Let p, be a knot for g. If p,<s,,
then g(x)<g(t) for 0<r<x<p, (or 0<r<x<py), and moreover
g(x)<g() <f(1)+0* <8, (x) +¢ for xe [0, po] (or x€ [0, po)). It follows
that g(x)<g,(x) for xe[0, po] (or xe[0, py)). Also, g(x)<g(t) for
5, <x<t<1 (or s5,<x<t<1), and g(x)<g(t)<f(1)+0*<g,(x)+e,
for xe(s,,1] (or xe[s,, 1]). Thus, g(x)<g,(x), for xe(s,,1] (or
xe[s,, 1]). In either case g(s, +)<g, (s, +). Hence for xe(p,,s,] (or
[po, 5,)), by Lemma 2,

g(x)<gls, +)<8, (s, +)=8,(5,) <& (x)-

Therefore, if py<s, then g(x) < g, (x), for all xe [0, 1].
If po>s,, then we can similarly prove that

g(x)<g, (x), forall xe[0, 1]

Sufficiency. If geK and there exists a pe{#n,,#n,] such that (5.1)
holds, then by Corollary 1, || f—&,ll o = | f— &, o = 0% Thus, || f—gll, =
o*, and g is a best approximation to f.

The following corollary gives the structure of G, the set of best
approximations:

COROLLARY 2. Let fe C[O0, 1], then

G= |J {g*eK 1 8,(x) <g*(x) <&, (%), forall xe [0, 1]}

pelnsml
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THEOREM 5 (Nonuniqueness of the Best Quasi-convex approxima-
tion). Let feC[0,1]. Then f has a unique best uniform quasi-convex
approximation if and only if f is quasi-convex.

Proof. 1f feK then fis its own unique best approximation from K.

Next, assume that G has a unique element. Then by Corollary 2 for all
peln,nl, gx)=g,(x), for all xe[0,1]. In particular, we find that
g,(s,)=g,(s,). Hence, by the definitions of g, and g, f(s,)—d*=
f(s,)+ 6* Hence, 6* =0, and by Lemma 1, feK.

Theorem 5 can also be derived from Theorem 5.1 of [8].
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