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ABSTRACT 

A SUBSPACE PROJECTION METHODOLOGY FOR 

NONLINEAR MANIFOLD BASED FACE RECOGNITION 

Praveen Sankaran 
Old Dominion University 

Director: Dr. K. Vijayan Asari 

A novel feature extraction method that utilizes nonlinear mapping from the origi­

nal data space to the feature space is presented in this dissertation. Feature extraction 

methods aim to find compact representations of data that are easy to classify. Mea­

surements with similar values are grouped to same category, while those with differing 

values are deemed to be of separate categories. For most practical systems, the mean­

ingful features of a pattern class lie in a low dimensional nonlinear constraint region 

(manifold) within the high dimensional data space. A learning algorithm to model 

this nonlinear region and to project patterns to this feature space is developed. Least 

squares estimation approach that utilizes interdependency between points in train­

ing patterns is used to form the nonlinear region. The proposed feature extraction 

strategy is employed to improve face recognition accuracy under varying illumination 

conditions and facial expressions. Though the face features show variations under 

these conditions, the features of one individual tend to cluster together and can be 

considered as a neighborhood. Low dimensional representations of face patterns in the 

feature space may lie in a nonlinear constraint region, which when modeled leads to 

efficient pattern classification. A feature space encompassing multiple pattern classes 



can be trained by modeling a separate constraint region for each pattern class and 

obtaining a mean constraint region by averaging all the individual regions. Unlike 

most other nonlinear techniques, the proposed method provides an easy intuitive way 

to place new points onto a nonlinear region in the feature space. The proposed feature 

extraction and classification method results in improved accuracy when compared to 

the classical linear representations. 

Face recognition accuracy is further improved by introducing the concepts of mod­

ularity, discriminant analysis and phase congruency into the proposed method. In the 

modular approach, feature components are extracted from different sub-modules of 

the images and concatenated to make a single vector to represent a face region. By 

doing this we are able to extract features that are more representative of the local 

features of the face. When projected onto an arbitrary line, samples from well formed 

clusters could produce a confused mixture of samples from all the classes leading 

to poor recognition. Discriminant analysis aims to find an optimal line orientation 

for which the data classes are well separated. Experiments performed on various 

databases to evaluate the performance of the proposed face recognition technique 

have shown improvement in recognition accuracy, especially under varying illumina­

tion conditions and facial expressions. This shows that the integration of multiple 

subspaces, each representing a part of a higher order nonlinear function, could rep­

resent a pattern with variability. Research work is progressing to investigate the 

effectiveness of subspace projection methodology for building manifolds with other 

nonlinear functions and to identify the optimum nonlinear function from an object 

classification perspective. 
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1 INTRODUCTION 

The process of learning involves such tasks as associating a name with an object 

or understanding speech or writing through examples. This is similar to the idea of 

training a machine with sample data. The process of recollection involves assigning 

the input data as one of the trained categories. Duda, Hart and Stork [1] define the 

process of pattern recognition as the act of taking in raw data and making an action 

based on the "category" of the pattern. 

Any pattern classification system consists of at least three main blocks as shown 

in Figure 1.1. A sensor converts physical input into processable data. In a human 

system various sensory organs, such as eyes for sight, perform this role. Similar to 

this is the role of a camera in case of a machine. A good sensor is important for later 

steps. For example, classification accuracy of an image would depend on the quality 

of image obtained from the camera. The initial sensing step is usually followed by 

some sort of pre-processing of data for aiding in better feature extraction. 

Sensors ^Feature extraction 3 Classification 

Figure 1.1: Pattern classification system. 

The role of the feature extractor is to identify distinguishable values for each 

category. These identified values then represent each object as its features. These 

features tend to be similar for objects in the same category and very different for 

objects of different categories. In an ideal scenario, features are selected such that 

This work is written as per the IEEE Transactions format 
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they are invariant to random noises in the input. The classifier looks at the feature 

values and tries to determine a category for the data under consideration. Some of 

the applications of enabling a machine to recognize patterns are listed in Table 1.1 

[2]-

Table 1.1: Examples of pattern recognition applications. 

Problem 
Domain 

Bio-informatics 

Data mining 

Document 
classification 

Document image 
analysis 

Industrial 
automation 

Multimedia 
database 
retrieval 

Biometric 
recognition 

Remote sensing 

Speech 
recognition 

Application 

Sequence 
analysis 

Searching for 
meaningful 

patterns 
Internet search 

Reading 
machine for the 

blind 
Printed circuit 

board inspection 

Internet search 

Personal 
identification 

Forecasting crop 
yield 

Telephone 
directory inquiry 
without operator 

assistance 

Input Pattern 

DNA/Protein 
sequence 

Points in multi­
dimensional 

space 
Text document 

Document image 

Intensity or 
range image 

Video clip 

Face, iris, 
fingerprint 

Multi-spectral 
image 

Speech 
waveform 

Pattern Classes 

Known types of 
genes/patterns 
Compact and 
well separated 

clusters 
Semantic 
categories 

Alphanumeric 
characters, 

words 
Defective/ 

non-defective 
nature of 
products 

Video genres 

Authorized users 
for access 

control 
Land use 

categories, 
growth pattern 

of crops 
Spoken words 

Feature selectors also usually play the role of reducing the dimension of data 
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under consideration. Intuition tells us that a higher number of features should lead 

to higher accuracy. This is true as long as the features are completely independent of 

each other. In practice the accuracy levels can fall off with an increasing number of 

features [1]. High dimensional data also have problems with requirement of a large 

sample base and higher computational expense. 

The simplest way to reduce the number of dimensions and choose features is to 

use a linear combination of input features. Methods like the Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) follow this strategy. These 

methods project data onto a unit vector denning each dimension. The direction of this 

unit vector is represented by a straight line, thus forming a linear constraint region 

in the lower dimension within the high dimensional data space, but images of similar 

visual perception reside in a nonlinear contraint surface in the low dimensional image 

space [3]. In the proposed work, this nonlinear region is obtained by modeling the 

direction of the unit vector as a second order polynomial curve. Thus three different 

subspaces, each corresponding to the order of the polynomial equation, contribute to 

the final shape of the constraint region. A learning algorithm to model this nonlin­

ear region based on least squares estimation approach that utilizes interdependency 

between points in training patterns is proposed in this dissertation. 

1.1 Focus and contributions 

The main focus of this research is to develop a nonlinear subspace projection 

method for projecting raw data points to feature space. From the list of problems 



given in Table 1.1, we consider the problem of biometric recognition with face images 

as the input data. Specific objectives of this dissertation research are as follows: 

1. Development of a nonlinear subspace representation for a data set based 

on a second order polynomial curve, achieving a nonlinear combination 

of principal components from different orders to obtain required optimal 

features. 

2. Development of a face recognition system based on the above approach 

for extracting facial feature components. 

3. Improvement of face recognition accuracy by following a discriminant ap­

proach to obtain distinguishable clusters in the nonlinear subspace. 

4. Application of a modular technique to better model local data using mul­

tiple nonlinear subspaces. 

5. Reconstruction of data from the feature space. 

6. Application of the phase congruent technique to extract features which 

could overcome illumination variations. 

7. Testing and validation of the above techniques on various face databases. 

1.1.1 Nonlinear subspace projection 

A linear combination of principal components fails to model the underlying non-

linearity of raw data in feature space. Many methods that do model this nonlinearity 

fail to present a simple system to project new test points to the feature space making 



them difficult to work with. These methods also fail to provide a way to recover 

original information from the transformed data. We propose here a system where a 

nonlinear combination of the principal components is used to project data onto the 

feature space as illustrated in Figure 1.2. We chose to model the data as a second 

order polynomial curve, which allows us to show the validity of combining subspaces 

to obtain the desired nonlinearity. Components in each of these subspaces is mod­

eled using a least squares estimation approach on the raw data. The three separate 

subspaces are then combined using the second order polynomial equation. 

2nd order 
components 

1st order c 
components 

0fh order 
components 

>(^H> 
Second order 
subs pace 

Figure 1.2: Nonlinear subspace combination. 

1.1.2 Face recognition system 

The face recognition task involves identifying faces in a still or video sequence 

using a stored database. There has been tremendous development in this area with 

the development of a number of methods to match one face to another. The various 

methods for face recognition mainly fall under two types - appearance based and 

geometry based. Appearance based methods depend on space transformation tech-
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niques like PCA, ICA (Independent Component Analysis) or LDA to code the faces, 

thus, in effect creating a template for each face in a database. The input test image is 

transformed to the same space model and compared to the templates in the database 

to find the closest match as shown in Figure 1.3. Subjects 2 and 3 are easily classified 

in this case, but there is ambiguity in the case of subject 1, and such cases could lead 

to incorrect classification. 

Figure 1.3: Face clusters. 

An outline of a face recognition system is shown in Figure 1.4. Face images stored 

in a database are transformed to the useful feature space, and only these transformed 

values are retained after the feature extraction process. A test input undergoes trans­

formation to the same subspace as the trained set and a feature classifier determines 

the category or the identity of the input face. 
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Figure 1.4: Face recognition flow. 

1.1.3 Discriminant approach 

Samples from well formed clusters, when projected onto an arbitrary plane could 

produce a confused mixture of samples from all the classes leading to poor classifica­

tion. Discriminant analysis aims to find optimal plane orientations for which the data 

classes are well separated. Figure 1.5 shows the difference between PC A and LDA by 

projecting 2D points from two clusters. When projected onto the line formed using 

PCA (shown in Figure 1.5a), the clusters can result in a mixture that is now hard 

to classify. LDA projection (shown in Figure 1.5b) results in two easily separable 

clusters. 

1.1.4 Modular technique 

In modular technique, an image is divided into R sub-images, where R is a con­

stant, and weight vectors are found separately for each of the sub-images. In a global 

approach, we find one set of directions onto which we project all the face features, 
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Figure 1.5: Data cluster on first two principal components, a. PCA, b. LDA. 

but given the variability of different regions of a face image, it makes much better 

sense to divide a face image into different regions and model subspace projection di­

rections for each of them separately. Concatenation of the weight vectors of all the 

different sub-images forms a signature weight vector. The idea can be looked at from 

the point-of-view of using multiple simple directional curves to model one complex 

curve. Thus, we have an additional layer of nonlinearity in feature extraction when 

using the modular approach. 

1.1.5 Phase congruent features 

One of the key issues in face recognition is the image distortion due to varying 

illumination conditions. Recognition accuracy could be improved by using features 

that are invariant to illumination. Phase congruent features are the locations in an 

image where the frequency components are maximally in phase and these features 

are invariant to changes in image brightness and contrast. The proposed modular 

nonlinear subspace projection technique is now applied to phase congruent images. 
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1.2 Thesis outline 

This dissertation is presented in the following order. Section 2 provides an 

overview of nonlinear methods for feature extraction followed by a detailed report 

on linear feature extraction strategies. We concentrate on applying feature extrac­

tion methods for face recognition. This section also looks into issues faced in face 

recognition and how linear methods are not ideal when faced with those problems. 

Section 3 discusses nonlinear methods for feature extraction, with an emphasis on 

one key method and its extension for pattern classification. Section 4 gives a detailed 

discussion of the development of the proposed method. Section 5 details four differ­

ent standard test databases used for the purpose of testing the algorithms along with 

simulation results and discussions. Section 6 provides the conclusion and direction 

for future work. 
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2 LITERATURE REVIEW 

A review of linear and nonlinear approaches for pattern classification is presented 

in this section. The review focuses on component analysis methods especially related 

to face recognition and their weaknesses and details a brief overview of nonlinear 

manifold methods. A detailed review of the nonlinear methods will be given in Section 

3. 

High dimensional (raw) data is difficult to understand and analyze. The dimen­

sion of data is the number of variables that are measured on each observation. For 

example, an image can be considered as an observation. In this case, each pixel value 

inside the image is a variable. Thus, the number of pixels under consideration be­

comes the number of dimensions we are dealing with. In most cases not all these 

variables are needed to describe the observation efficiently. Having a large number of 

variables also requires a large number of observations to classify these variables (curse 

of dimensionality [1]). Dimensionality reduction methods aim to find compact repre­

sentations of data. Methods that try to solve this problem can be divided into linear 

and nonlinear classes. Linear methods include PCA [4], ICA [5], etc. PCA is com­

monly used to perform dimensionality reduction by projecting data into a subspace 

spanned by the eigenvectors of the covariance matrix of the data. In computer vision 

applications, the PCA method has been used for the representation and recognition 

of faces [6], image super-resolution [7], hand-print recognition [8] and facial feature 

extraction [9]. PCA is simple but efficient only for data having low dimensional linear 

structure. This approach will not work when dealing with manifolds of high curvature 
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as nonlinear structures in data sets are approximated to a linear structure in PCA. 

2.1 Overview of nonlinear methods 

A set of face images scattered randomly while represented in high dimensional 

vector form, is known to be constrained to a specific format in a much lower number 

of dimensions. The meaningful features in a face data set have been shown to lie in a 

low dimensional nonlinear manifold or constraint surface [10]. Tenenbaum et al. also 

presented a method to model the manifold based on a number of nearest neighbors and 

the geometric distance between the points in a data set (isometric feature mapping, 

known as Isomap). A comparable method is the Locally Linear Embedding [11] that 

tries to preserve the geometric properties of the data in the projected low dimensional 

space. These nonlinear methods generally unfold nonlinear low dimensional manifolds 

that cannot be modeled by linear methods. The main steps in their implementation 

can be summarized in the following three steps. 

1. Compute distances in input space and defining neighborhoods. 

2. Based on the defined neighborhood, compute a square matrix, each row 

representing an element in the input space. 

3. Low dimensional embedding of the data using eigenvectors of the above 

matrix. 

The issue here, though, is that these methods require us to compute an immediate 

neighborhood of any new point using Euclidean distances to get paths and geometric 
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properties. So with the introduction of a new point, it is required to recompute the 

neighborhoods of an entire data set as the new point could be a neighbor of one 

or several points already in the database. This batch mode of computation is not 

practical when dealing with video streams of faces and when real time recognition is 

required. Incremental modifications proposed in [12] would still require us to modify 

the neighborhood graphs before projecting the new point. Another issue with these 

methods has been the way the neighborhood is denned. There are two general ways we 

define the neighborhood, through an integer A; that specifies the number of neighbors 

or through a distance threshold e. It's been found that optimal values of either of 

these parameters vary for each database we consider and that final accuracy values 

depend greatly on the optimality of these two parameters [13]. While the concept 

of nonlinearity is important, we need to come up with a method that can model the 

low dimensional nonlinearity and can provide a direct projection to the nonlinear low 

dimensional space. 

Seow et al. [14, 15] modeled the manifold as an associative memory using a 

recurring neural network and presented the concept of representing data as lines 

instead of point representation. The idea of varying face images (of the same person) 

due to varying pose, illumination conditions or expression belonging to a curve is 

presented in [16]. Instead of presenting a face image as a single vector in the projected 

space, a face image is now represented using the coefficients of a multi-ordered curve. 

A collection of these curves models the underlying nonlinearities in the database. The 

approach proposed in this dissertation finds its base in this idea of representing data 

patterns. 
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2.2 Face recognition 

The face recognition task involves identifying faces in a still or video sequence 

using a stored database. The task is complex due to various factors such as varying 

illumination conditions, poses, expressions and variations due to aging. An ideal face 

recognition system should be insensitive to all these variations. Research on automatic 

face recognition has been pursued by several scientists all over the world for over 

three decades. Chellappa et al. [17] presented a survey on several methods for face 

recognition. Early attempts to recognize faces were conducted in the mid-1970's using 

pattern classification methods. These methods used face features from faces or face 

profiles to do the task. The survey also lists the contributions by psycho-physicists 

and neuroscientists. They have been concerned with issues such as uniqueness of 

faces, analysis of facial expressions for face recognition, how infants perceive faces, 

organization of memory for faces, etc. 

Face recognition methods mainly fall under model based or appearance based 

algorithms. Various geometrical parameters are considered in the model-based ap­

proach given in [18]. A set of geometrical features, such as nose width and length, 

mouth position, and chin shape are computed. A comparative study of this method 

with a template based method presented in [18] reported better recognition accuracy 

for the template method. Appearance based methods depend on spacial transform 

techniques like PCA, ICA or LDA to code faces, thus creating a template for each 

face in a database. The input test image is transformed to the same space model 

and compared to the templates in the database to find the closest match. The first 
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attempt at representing faces using principal components was by Sirovich and Kirby 

in 1987 [19]. This paper demonstrated that any face can be economically represented 

in terms of a best coordinate system called the eigenpictures. A face with 214 pixels 

could be characterized by 40 numbers to within a 3% error. This statistical approach 

expressed face images as a subset of their eigenvectors and are therefore called eigen-

faces. Figure 2.1 shows typical eigenfaces of the original image shown in the top-left 

corner [20]. 

Figure 2.1: Standard eigenfaces. 

The PCA method was used for face recognition in 1991 by Turk and Pentland [6]. 

The attempt was to build real time face detection and recognition system based on 

eigenfaces. This research laid down a specific process for recognition as given below: 

1. Acquire the training set of face images. Calculate the eigenface that de-
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fines the face space. 

2. Calculate the weights for the test image based on a certain number of 

eigenfaces by projecting the input image onto each of the eigenfaces. 

3. Check to see if the input image is close enough to the face space to be 

regarded as a face image. 

4. If it is a face, classify the pattern as a known or unknown face. 

5. If the same unknown face is seen many times over, try to train it. 

Figure 2.2 illustrates a systematic approach to a face recognition system for general 

surveillance. The input image can be a still image or a frame taken from a video 

stream. Face detection methods try to find regions in the image that resemble a 

human face. Feature localization ranges from estimating eye and mouth edges to 

locating eye centers. There are about 150 reported face detection techniques presented 

in the literature for both gray-scale and color images [21]. Geometrical approaches 

based on facial features such as eyes, nose and mouth were implemented by Gee and 

Cipolla [22] and Horprasert et al. [23]. Various studies in this field also include the 

Radial Basis Function network estimator by Beymer et al. [24] and the neural network 

based system by Rowley et al. [25], which are capable of detecting faces with rotation 

in the image plane. OpenCV face detector based on the Viola-Jones method is used 

here for face detection [26]. Eye centers are used to normalize image positions, and 

this is found to help the recognition process. 
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Figure 2.2: Block diagram representation of face recognition system. 

2.3 Face recognition with PCA 

PCA aims to encode the relevant information of a face image as efficiently as 

possible. The variation information in a collection of face images is used to encode and 

compare individual face images. The principal components or the eigenvectors of the 

covariance matrix of the set of face images are found. Each image can be represented 

as a linear combination of the eigenvectors. Here we can approximate by using only 

the best possible eigenvectors, those corresponding to the largest eigenvalues. 

2.3.1 Training 

Consider the face images to be of size TV x TV. These images are represented 

by a vector of size TV2. Since the face images have a similar structure, the vectors 

representing them will be correlated. These vectors define the subspace of the face 
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images which is called the "face space". Due to the correlation, the images can be 

represented by a lower dimensional space. Let Ii, h, • • • IM be the training set of face 

images. The average image is found by, 

1 M 

The vector Ai = Ii — Y is the difference image of each face image. The covariance 

matrix is obtained from the difference vectors as, 

1 M 

c = jfEA^ (2-2) 
The eigenvectors of the covariance matrix are computed, and those corresponding to 

the largest d(d <§§C N) eigenvalues are selected. The weight vector for each image is 

computed using these eigenvectors, 

Wik = El.{h-Y) \/i,k (2.3) 

where, Ek are the eigenvectors corresponding to the d largest eigenvalues of C, and 

k varies from 1 to d. 

2.3.2 Testing 

The test image is transformed to weight vector form using, 

Wtestk = El(Itest~Y) Vi,k (2.4) 
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The mean weight vector is used to fit the test image to a predefined test class. A 

simple method to do this would be to find the minimum distance from the test weight 

vector Wtestk to the mean weight vector Tp. The nearest neighbor is found using, 

Dk = \\WteMt-Wik\\ Vi,k (2.5) 

2.3.3 Probabilistic classification 

The simplest way to form a similarity measure between two images I\ and Ii is 

the norm \\Ii — I2\\. The similarity measure S(Ii, h) can be set inversely proportional 

to the norm [27]. This method gives equal weight to all variations, thus ignoring 

the fact that some variations are more critical than the rest and need to be given 

more importance. A probabilistic similarity measure, based on the probability that 

the image intensity difference A = 7i — I2 denotes variation in appearance of same 

pattern, can be formulated. For the purpose of face recognition, two different types of 

variation are defined, intra-personal variations Qj and extra-personal variations QE-

A similarity measure based on the two types of variations using Bayes rule can be 

expressed as, 

s(A)-p<n MI P(A|n,)P(n,) 
S (A) - P («, I A) - p{A{ni)p{Qi) + p{AlQE)p{nE) (2-6) 

P (A I Qi) and P (A | QE) can be calculated from the training data and values for 

two P (Q) depend on some knowledge of the data under consideration. Two images 

are considered to belong to the same class if S (A) > | . 
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The parameter A has the same dimensions as the image vectors from which it 

was computed. PCA is used to obtain a principal surface whose principal components 

are used to form the low dimensional estimate using only the first d components 

b = [bi ... bd] • Each image can now be stored using weights given by, 

&n/ = A;V/7 (2.7) 

where A and V are the matrices of the largest eigenvalues and eigenvectors of ^T,i 

(covariance matrix of intra-personal variations). 

2.4 Metric Multi-dimensional Scaling (MDS) 

MDS [28] transforms a distance matrix to a set of coordinates. The distances 

recovered from these coordinates approximates the original distance. Let X be an 

AT dimensional input data matrix with M points [xi..., XM] • A between observation 

cross product matrix can be formed by, 

S = X xXT (2.8) 

A squared distance matrix can be formed from the above cross product matrix as, 

D = SaT + aST - 25 where a -> [li • • • 1M] (2.9) 

The idea behind MDS is to convert Equation 2.9 so that we have a cross product 

matrix from the distance matrix. For this a centering matrix is defined as, 
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n = I - aT (2.10) 

Then, the cross product matrix S can be obtained from the distance matrix D as, 

S=~nDQ.T (2.11) 

The eigenvectors of the above S matrix provides the projection factors required. 

2.5 Modular approach 

The classical PCA technique is not effective for face recognition in varying pose 

and illumination conditions. The weight vectors vary considerably from the weight 

vectors with frontal pose at normal illumination; hence, identification becomes diffi­

cult. The modular PCA (mPCA) [29, 30] is an approach proposed to overcome the 

low accuracy of PCA in cases of varying illumination, facial expressions and pose. In 

mPCA the image is divided into R disjoint blocks and an average sub-space from all 

the different blocks is considered. Weight vectors are formed for each image mod­

ule. The method showed improvement in cases of illumination variation but did not 

produce better results in cases of varying pose. 

2.6 Issues in face recognition 

The major problem for face recognition applications is variations in face images, 

resulting in corresponding large variations in the feature space within a class due to: 
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1. Variations in illumination, 

2. Differing facial expressions, 

3. Varying face poses, 

4. Occlusion of regions of face due to facial hair, glasses, etc., 

5. Natural variations in face due to aging or injuries. 

Figures 2.3 to 2.5 show images with varying illumination, poses and expressions. 

While a human can make out that the sequence is of the same person within each 

variation, for a machine pixel values change drastically across each change leading to 

possible errors in classification. 

Figure 2.4: Faces with varying poses 

Figure 2.5: Faces with varying expressions. 
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Figure 2.3: Faces with varying illumination. 

2.7 Summary 

The classical techniques work well in controlled environments but fail in complex 

environments with the problems listed in section 2.6. One of the goals of this re­

search is to improve the performance of face recognition systems over that of classical 

methods. Various techniques have been proposed to extend the classical methods to 

improve their recognition accuracy. The modular-PCA [29, 30] method is one such 

technique that improved the performance of classical PCA based face recognition es­

pecially in cases with varying illumination. This approach, however, could not solve 



23 

issues with pose variations. Varying illumination, pose and facial expressions induces 

nonlinearity in the face image set placing these points away from the rest of the clus­

ter. The linear methods fail to model this nonlinearity, thus projecting these points to 

an incorrect cluster in the low dimensional space. This leads to considerable research 

in methods to model nonlinearities in data to improve classification accuracy. Some 

of these methods will be discussed in Section 3. 



24 

3 NONLINEAR FEATURE SPACES 

The aim of dimensionality reduction methods is to find meaningful low dimen­

sional structures hidden in high dimensional structures of original observation data. 

Linear methods like PC A are simple to implement, computationally efficient and 

discover true low dimensional structures on or near a linear sub-space of the high 

dimensional data. The issue with using the linear methods for representing faces is 

illustrated in Figure 3.1 [10]. The images are of one face observed under different 

pose and lighting conditions. The original dimensionality of the images is 64 x 64 

leading to a 4096-dimensional input space. Within this large dimensional space, all 

the images can be represented as a 3 dimensional manifold defined by two pose angles 

and a lighting direction. Some of the methods that attempt to model this nonlinearity 

are discussed in this section. 
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Figure 3.1: Synthetic face set. 
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3.1 Kernel m e t h o d s 

Kernel methods try to solve the problem of nonlinearity by transformation from 

image space to a feature space that has a higher dimension. The two data clusters, 

as shown in Figure 3.2a are not classifiable by a linear classifier. The same two 

clusters when projected to a feature space with higher dimension, as in Figure 3.2b, 

are easily separated. The transformation can be as simple as changing the space 

representation from [xi,X2]to [xi,xi,x\ + x%\- Explicitly mapping the vectors to the 

higher dimension might be computationally expensive. A kernel "trick" is employed 

to solve this problem. 

Figure 3.2: Classification at a higher dimension, a. 2 dimensions, b. 3 dimensions 

3.1.1 Kernel trick 

An in-depth analysis of kernel methods is given in [31, 32]. The first step is the 

choice of the kernel function, e.g.: 

k(x,y) = (x.yf (3.1) 
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This corresponds to a dot product in the space of dth order monomials. Note that 

a value of d = 1 implements the linear form of PCA. Now we compute the kernel 

matrix, 

Kij = (k (xi, Xj))i:j = {(xi.Xj)).. (3.2) 

where, xt and Xj represent input patterns. For further analysis we want a normalized 

matrix. Normalizing in the higher feature space is not straight forward as in the input 

image space, but once we have the kernel matrix we can use the following equation 

to perform the normalization: 

Kij = K-IMK- KIM + IUKIM (3.3) 

where IM = I/M, M is the number of images under consideration. The eigenvectors 

(a1 —> ad) corresponding to the largest eigenvalues (A1 —• Xd) of the K matrix give 

us the required principal components. The eigenvectors are normalized using the 

following condition, 

1 - \k (a
k.ak) (3.4) 

Principal components of a test point corresponding to the selected kernel are extracted 

using the following, 

d 

Wn (Xtest) = ^ a?k (xi,xtest) (3.5) 
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3.1.2 Kernel functions 

Selecting an optimal kernel and setting its various parameters is a problem in 

itself. Three different kernels were tried in [27], including the one in Equation 3.1. The 

other two were a Gaussian kernel and a sigmoid kernel as in the following equations, 

k{x,y) = exp(-\\x-y\\2 /a2) (3.6) 

k (x, y) = tanh ((x.y) + b) where b —» bias (3.7) 

The limiting requirement here is that a kernel should satisfy Mercer's theorem [33], 

resulting in positive semi-definite matrices. A polynomial function based kernel face 

recognition architecture on PC A is provided in [34]. Comparison of kernel approaches 

on eigenfaces and Fischer faces on kernels is given in [35]. An intra-personal prob­

abilistic subspace [27] based approach is modified in [36] to a kernel based space to 

perform face recognition using a Gaussian kernel to project data to higher dimensional 

space. A discriminant approach on kernel space is provided in [37]. The relationship 

between kernel-PCA and MDS is explored in [38], with MDS being represented as a 

special case of kernel function. A kernel MDS approach is presented in [39], where 

MDS is applied to features extracted from FLD to form a kernel matrix. Kernels 

have also been formed from the neighborhood methods discussed below [40, 41]. 



28 

3.2 Neighborhood dependent methods 

Neighborhood dependent methods represent each input as some combination of 

its neighbors. The Isomap algorithm preserves the geometry of the data by finding the 

geodesic distance between all pairs of data points. On a nonlinear dataset, the shortest 

straight path between two points ignores the actual geometry of the dataset under 

consideration. Figure 3.3 illustrates this concept [10]. The dashed line represents the 

shortest straight distance and the solid line represents the geodesic distance. 

Figure 3.3: Illustration of geodesic distance. 

3.2.1 Isomap 

The first step in the Isomap process is to find the Euclidean distances between 

all data points and to represent these values in the form of a square matrix. Each 

value in the matrix represents the distance between the pattern indexed in the row 

to the corresponding column indexed pattern. Once the Euclidean distance matrix 

is formed out of the input data points, finding the geodesic distance [42] involves 

computing a minimal cost trajectory from each point to the other points. For a given 
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data point, length of the shortest path to another point is obtained by summing the 

length of the segments along the shortest path. This value roughly equates to true 

geodesic distance between two points. Collecting all the details together, Isomap 

goes through the following steps (Floyd's [43] algorithm is used to compute geodesic 

distances here), 

1. Euclidean distance measure, Dx, between all input points is obtained. 

2. Based on the distances dx (i,j) between points i and j a neighborhood is 

defined for each point. This could be done by defining a distance threshold 

e or, in case of k nearest neighbor method, checking if i is one of the k 

nearest neighbors of j . All the edge lengths are set to dx(i,j). 

3. Initialize the geodesic distance, dG (i,j) = dx (i,j) if i,j are linked by an 

edge, else do (i,j) — oo. 

4. Update dG (i, j) = min {dG (i, j), dG (i, j) + dG(k,j)}, l<k< M. 

5. Center the distance matrix DG, D'G = \HDGH. 

where, H = I-jf[l1... lN}T [h ... 1N] 

6. Compute eigenvalues (A) and eigenvectors (v) of the centered matrix. 

7. Define projected point as: yl = y/\vl 

M is the number of points in the dataset. The method is used for face recognition 

in [13]. Selection of neighborhood parameters given in step 2 of the Isomap algo­

rithm cannot be made arbitrarily as this affects the performance of the algorithm. 
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If the neighborhood is large, points from other branches of the manifold could be 

erroneously included, leading to the problem of short-cuts [44]. The most successful 

implementation of Isomap for face recognition is found in [45, 46], where a linear 

discriminants based analysis is used instead of PC A in the projection step. 

3.2.2 Extended-Isomap 

Isomap as applied to multiple classes may not produce the most discriminating 

features. Extended-Isomap utilizes Fischer Linear Discriminants (FLD) method to 

the Isomap method for pattern classification. The first step in this method is to 

follow the original Isomap method and find the geodesic distance of each point to 

every other point. Every point is now represented by a feature vector that is based 

on this distance measure. FLD is now applied to the feature vectors to find an optimal 

projection direction for classification. Between-class and within-class scatter matrices 

are found by, 

c 
SB = YJNi{lii-n){Hi-li)T (3.8) 

i=\ 

C 

<̂  = E E (fk-Vi)(fk-ta)T (3.9) 

where, fk are the data samples, /x is the mean of all samples of /&, \i\ is the mean of 

class Zi with JVj samples and C is the total number of classes. The optimal projection 

is found by solving the function, 
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WFLD = ar9\m$x\wTsww\) (3"10) 

by finding the generalized eigenvectors of SB and Sw, corresponding to the largest 

generalized eigenvalues. 

One of the problems that occurs here is the possible singularity of the within-

class scatter matrix. One way to overcome this is to add a multiple (e) of the identity 

matrix to this matrix (Sw + £-0- Another approach is to use PC A and work within 

a reduced dimension [47]. Combining the two methods can also result in improved 

face recognition accuracy. A theoretical base for combining PCA and LDA is given in 

[48]. A representation of face images combining FLD with MDS can be seen in [49], 

where MDS is applied to features extracted using FLD. MDS also forms the base for 

some of the nonlinear feature extraction methods discussed later. 

3.2.3 Other nonlinear approaches 

An approach very similar to using geodesic distance uses curvilinear distance 

analysis presented in [50]. Another method that tries to preserve the geometry of 

the original dataset is the Locally Linear Embedding (LLE) method given in [11], 

where a linear slope line is estimated using least squares in a specified neighborhood. 

Multiple straight lines are modeled to cover the entire dataset. A reconstruction error 

cost function defined by, 

2 

E(W) = Y! Xi-J2wvxi (3-n) 
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where, a; is a pattern vector, i, j represent the data points and Wij is the coefficient 

relating points i and j . A further illustration of nonlinearity of face images can be seen 

from Figure 3.4, where the points spread out based on pose or expression variation 

[11]. 

Figure 3.4: Faces on first two LLE coordinates. 

Laplacian eigenmaps method [51] defines relationship between neighboring points 

by edges. The edges are denned by either a 1 (connected) or a 0 (disconnected), or in 

a more complex representation by an exponential. Eigenfaces method [52] uses this 

concept of neighborhoods to model face data and applies it to face recognition. A 

comparison of Isomap, LLE and Laplacian eigenmaps methods is given in [53]. That 

paper also presents a modified Isomap method where edge weights are adjusted by 

a mean distance factor. A MDS based approach to nonlinear manifolds is presented 

in [54] where MDS is applied to obtain a reduced feature space followed be a neigh­

borhood dependent piece-wise linear approach to obtain the manifold. The principal 

curves method [55] models data as a smooth polynomial curve. The method is used 
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for face recognition in [56] illustrating the advantage of using nonlinear curves instead 

of linear slopes. 

3.3 Summary 

The issue with the nonlinear methods presented here is that the information 

content is in neighborhood defined format, disabling a way to retrieve original data 

components. Another general issue with these methods is their batch mode of oper­

ation, making them disadvantageous when it comes to fast face recognition. A new 

test point will have to go through all the steps to be projected on to the new subspace. 

Also, the introduction of the new point changes the neighborhood for points already 

in the database. For a fast face recognition system, a direct projection from the image 

space to the nonlinear subspace is needed. We move forward with the general idea 

of combining the nonlinear concepts of these methods to the direct projection ability 

of PCA to obtain a nonlinear subspace projection methodology. We propose here 

a method where these nonlinearities are modeled using a least squares estimation 

approach and the images are now projected on to a low dimensional, multi-ordered 

nonlinear region. This ensures that we retain the geometric properties of the dataset 

in the low dimensional feature space. A new pattern is classified by projecting to 

the low dimensional nonlinear region and computing shortest distances to the trained 

patterns inside the regions. The approach of using discriminants is implemented by 

using nonlinear subspace projection method to reduce the original dimensionality of 

the data and then performing discriminant projection on the resulting features. 
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4 SUBSPACE PROJECTION METHOD FOR NONLINEAR 

MANIFOLDS 

A method for obtaining the shape and structure of a nonlinear manifold in the 

feature space representing a family of patterns is presented in this section. The pa­

rameters defining the manifold are obtained by analyzing the characteristics of the 

original data. A nonlinear transformation methodology is developed to project a 

pattern in the original space on to the respective position in the feature space. A 

face recognition system is developed based on this approach for extracting facial fea­

ture components. Face recognition accuracy is improved by following a discriminant 

approach to obtain well distinguishable clusters in the nonlinear subspace. A mod­

ular technique is applied on the images to better model local data using nonlinear 

subspaces. 

4.1 Projection to a curved manifold 

The basis for the proposed method lies in the work done by Seow et al. [14], where 

memory association is represented using lines of attraction. The memory is modeled 

using a recurrent neural network and stored memory is obtained by convergence. We 

extend this idea onto classical component analysis. 

Consider a neural network with two layers of neurons as shown in Figure 4.2. 

Each neuron is considered as a nonlinear combiner. The relationship of each neuron 

with respect to every other neuron is expressed as a &-order polynomial for stimulus-

response pair as, bs corresponding to the sth pattern given by: 
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j=l m=0 

(4.1) 

where, L = N2 for N x N image, w^^ is the mth order weight value between neurons 

i and j as shown in Figure 4.1. 

tf, 

a, 

a, 

m = 0,l...it 

Figure 4.1: Output neuron model. 

The resulting mth order weight matrix is expressed as, 

Ws = 

Wm,n ' - ' Wm,lL 

w: 771, L I w. 771,LL 

(4.2) 

The above discussion leads to modification of the covariance between the variables 

by representing them as coefficients of a kth order curve instead of a linear slope value, 

resulting in multiple covariance matrices Cm. 
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a, 

a. 

Input layer of 
source nodes 

a; 

Output layer 

Figure 4.2: Memory model. 

C i i cm,lL 

for 0 < m < k (4.3) 

Cm,Ll ' ' ' Cm,LL 

Covariance is a measure of how much two variables change together. Covariance 

is positive when two variables change together. Now in this particular case, each 

image is an observation and each pixel in an image is a variable under consideration. 

The covariance matrix is a collection of covariances between all the variables under 

consideration. So define an image vector / in a set of M images as, 

*i 

lN2 

(4.4) 

where ij is an image pixel. The mean image vector of all the M images in the set can 

be found by, 
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1 M y 4& -Y= 
3 = 1 

Vi 

UN* 

The centered image A can be obtained as, 

A=I-Y= 

ai 

a^2 

Define a product matrix P as, 

(4.5) 

(4.6) 

js _ ASAST (4.7) 

where A is the centered image vector of size L = N2. Combining the product matrices 

of Equation 4.7 to form k covariance matrices boils down to a curve fitting problem. 

The least squares estimation method finds the values of the constants in the chosen 

equation that minimize the sum of the squared deviations of the observed values from 

those predicted by the equation. This can be represented in equation form as, 

M 

J (c) — J (co,jj, Citij . . . , Ck,ij) — 2_^ 

s=l 
ph-j2c^(a^y 

m=0 

(4.8) 

where M is the number of patterns and pij are elements of the product matrix P. 

The elements of product matrices given by Equation 4.7 form the observed values. 

The necessary conditions for Equation 4.8 to minimize are that the partial derivatives 
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-J^- = 0 for m = 0, 1, . . . , k. This gives us k+1 equations to find the k + 1 coefficients 

of the kth order polynomial, 

UCm
 S = l 

P t j - E ^ i ^ ) ' 
m=0 

(4.9) 

The above set of Equations 4.9 result in a unique solution which gives a minimum 

for J(c). Coefficients cm^ approximate a curve on M pattern points. This method 

is illustrated in Figure 4.3 where product matrix coefficients relating positions 1, L of 

different samples from the same class are combined using least squares estimation to 

obtain the covariance values at position 1, L. 

r 
r 

V ^ 
L 

& 

j 

• # 

J 

V. J 
Figure 4.3: Fitting curves to product matrix data. 

The discussion so far has dealt with face images still being considered as a high 

dimensional vector. Our main aim, though, is to project this image onto a lower 

dimensional nonlinear manifold. A set of matrices Em consisting of eigenvectors that 

diagonalize the set of covariance matrices Cm is computed; thus, 

E^CmEm = DmforO<m<k (4.10) 
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where Dm is the diagonal eigenvalue matrix of Cm. The subset of eigenvectors corre­

sponding to the largest d(d <C N2) number of eigenvalues is selected as the basis of 

the data. The d dimensional data can be expressed as, 

K 

«, 

E, fc,n 

Ek 41 

• • • E , 

• • • Ei 

\,1L 

\,dL 

(«l) f e 

. {aL)k . 

+ • • + 

E, 0,11 ••• E, 0,1L 

E041 • • • E0tdL 

(ai)C 

Mc 

(4.11) 

The effect of the projection is illustrated in Figure 4.4 in a two dimensional 

sense. Compared to a line as in classical linear methods, projection onto a curve is 

expected to give a more accurate representation of the position of an image in the 

low dimensional space. 

Component 1 

Figure 4.4: Projection to curve. 

The linear PCA method is considered here as a starting point. PCA aims to 

encode relevant information in a face image and represent the image as a low di-
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mensional vector. The variation information in a collection of face images is used to 

encode and compare individual face images. The principal components or the eigen­

vectors of the covariance matrix of the set of face images are found. Each image in 

the data set is now represented using a linear combination of the principal compo­

nents. Here we can approximate the set by using only the best possible eigenvectors 

corresponding to the first few of the largest eigenvalues. Consider the face images to 

be of size N by TV. These images are represented by a vector of size N2. Since the 

face images have similar structures, the vectors representing them will be correlated. 

These vectors define the subspace of the face images which is called the "face space". 

Due to the correlation, the images can be represented in a lower dimensional space. 

The covariance matrix of a set of M images of size N x N is formed by finding an 

average product matrix as, 

1 M 

C=MT.PS (4-12) 

The point representation or the linearity of the method is a result of this averaging. 

By using a mean value strategy to combine the various patterns, we are forcing one 

value to represent the connection between pixels which is representative of the slope 

of a line. 

The variance between the first two pixels can be calculated as, 

c12 = E((ii - y i ) ( « 2 -2/2)) (4.13) 
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M 

C* = MT,44 (4-14) 

We can see where the average product matrix in Equation 4.12 comes from. Equation 

4.14 can be looked at from another point of view, as the slope for a straight line. The 

best way to put this would be to describe cyi as the slope of the line through which 

the two variables vary. Thus, the covariance matrix C is a collection of slopes that 

defines how variables change together. This idea can be made clearer using the 

following discussion [1]. 

The main idea behind component analysis is to find a single vector representation 

for all the M images. The simplest representation is the mean of all images, but this 

just gives another point in the image space and fails to show any variability in the 

image data. Variability can be obtained by projecting the data onto a line running 

through the sample mean. Let E be & unit vector in the direction of the line. The 

equation of the line can now be written as, 

I = Y + aE (4.15) 

where the scalar a is a real value and corresponds to the distance between the mean 

Y and any image / . Equation 4.15 can be generalized as, 

Ij = Y + ajE (4.16) 

An optimal set of values for the coefficients «j can be found by minimizing the squared 
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error criterion, 

M 

J (a, £) = £ 1 1 ^ + 0 ^ ) - / J 2 (4.17) 
fc=i 

This gives the solution for aj as, 

aj = ET(Ij-Y) (4.18) 

How does all this relate to the covariance matrix though? This can be seen by 

expanding Equation 4.17 as, 

M M M 

J(a,E) = ^a*\\E\\2-2y£ajE
T(Ij-Y) + J2\\Ij-Y\\2 

M M M 

M M 

j= i j = i 
M M 

= -Y/E
T(Ij-Y)(Ij-YfE + ^2\\Ij-Y\\2 

j=i j=i 

M 

= -METCE + Y^ Pi ~ y\f (4-19) 
3=1 

Any vector E that minimizes Equation 4.17 also maximizes ETCE in Equation 4.19. 

This criterion sets E to be the eigenvectors corresponding to the largest eigenvalue of 

the covariance matrix. Thus, we are projecting the images to a line, passing through 

the mean, corresponding to the largest eigenvalue. This is only a one dimensional 
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representation. The idea can be extended to d dimensions by selecting d eigenvectors 

corresponding to the largest d eigenvalues, where d <C N2. 

A linear discriminant function on vector A can be written as, 

B = u0+ WTA (4.20) 

where W is the weight vector and u/o the bias. The equation B = 0 defines a 

decision surface that separates points assigned to two classes. The surface formed 

here is a hyperplane. Figure 4.5 shows a linear classifier having N input units, each 

corresponding to the values of an input vector. Each input value is multiplied with 

its corresponding weight Wij, 1 <i,j < N (jth input to the ith neuron). The variable 

s is an index to represent input training patterns. Multiple classes can be handled 

by having multiple linear discriminants leading to a more generalized equation, 

k = tji0 + Wt
TA where 1 < i < N (4.21) 

The above equation divides the region into N regions. 

The discriminant function given in Equation 4.21 can be expanded as, 

N 

k = Uio + ^2 Wiiai (4.22) 

where the coefficients Wij are the components of weight vector W. A quadratic 

discriminant function can be obtained by adding additional terms to Equation 4.22: 
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bs 

Figure 4.5: Linear discriminant. 

N N N 

j=l J = l 1=1 

(4.23) 

where w^ is the weight value from j t h and Ith input combination to ith neuron. 

The quadratic function has additional coefficients to create complicated surfaces. 

Arbitrary terms from Equation 4.23 can be chosen to form polynomial discriminant 

functions. The quadratic equation can be expanded to higher dimensions. 

The weight coefficients can be calculated using learning rules. The simplest form 

of weight selection is the Hebbian learning described as [1], 

wH = JfJ2^ai (4.24) 
s = l 

Equation 4.24 is very similar to Equation 4.14 for covariance. The weight coefficients 

and the covariance coefficients are related by a scalar, showing the relation between 

the two methods. 
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4.2 Modular approach 

The modular approach works by dividing the images into a number of sub-images. 

Projection weight vectors are computed for each of the sub-images and concatenated 

to form the representative weight vector for the original image. When there is a 

variation in illumination or expression, only some of the sub-images vary, and the 

rest of the face regions will remain the same as the original image [29]. This was 

modified to consider each of the sub-images separately and have separate covariances 

and thus, projections to separate image spaces in [30, 57]. Both approaches were 

found to result in improved accuracy over global approaches. Each image in the 

training set is divided into R sub-images of size N/VR X N/VR. The j t h sub-image of 

the image U can be obtained as, 

f N N \ N 
Iij(m,n) = Iil-j={j-l)+m,-==(j-l) + nj forl<m,n<-= (4.25) 

where, 1 < i < M and 1 < j < R. The average image (Yj) for each sub-image is 

computed and each sub-image is normalized (Aij) as, 

1 M R 

Aij = Iij-Yj (4.27) 

Separate covariance matrices are obtained for each sub-image set as, 
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Cs = 

"mj, 11 umj,l(L/R) 

(4.28) 

Lmj,(L/R)l " ' ' Cmj,(L/R)(L/R) 

The idea can be grasped from Figure 4.7, where the network is modified for modularity 

with 4 sub-images. The number of nodes is now reduced by a factor of 4 by increasing 

the number of networks to 4. Eigenvectors corresponding to d largest eigenvalues are 

computed for each of the covariance matrices. 

Figure 4.6: Sub-image formation. 

m = 0A...k m = 0,l...k 

Figure 4.7: Modular network. 

Weight vectors are computed for each sub-image as, 

Bij = zZ Emj (hi - YjY 
m=0 

(4.29) 

where, Emj are the eigenvectors corresponding to the d largest eigenvalues of Cmj and 
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m represents the order of the polynomial. A test image can be transformed to the 

feature space as, 

fc 

Btestj = Y,EZj(Itestj-Yj)
m (4.30) 

m=0 

4.3 Discriminant analysis 

Components found by PCA might not be the most useful in discriminating data 

in different classes [1]. Samples from well formed clusters, when projected onto an 

arbitrary line, can produce a confused mixture of samples from all the classes leading 

to poor recognition performance. Discriminant analysis aims to find an optimal line 

orientation for which the data classes are well separated. Discriminant analysis is 

widely applied for face recognition and has been found to perform better or as well 

as PCA [58]. The discriminant method has been applied to the manifold model in 

the extended Isomap method [45] and resulted in improved accuracy over a straight 

Isomap implementation that was based on PCA. Fischer Linear Discriminants (FLD) 

considers maximizing the following objective, 

WTSRW 

where SB is the between-class scatter matrix and Sw is the within class scatter matrix. 

These scatter matrices can be defined as, 
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SB = Yl (JH ~ /*) (Mi - M)3 

c 

1=1 /€C| 

(4.32) 

where / is an image vector of size N2, \x is the mean of all data, \i\ is the mean of 

the Ith class Ci and C is the total number of classes. The within-class scatter matrix 

gives the covariance of data in each class. This matrix can now be modified for the 

Ith class by using the b o r d e r polynomial representation to get, 

qi _ 

>m,ll 

bm,Ll 

I1 bm,lL 

bm,LL 

where 0 < m < k, L = N2, 1 < I < C (4.33) 

The least squares equation now looks like, 

M, 

J (,S0,ij>Sl,ij>- • -'Sk,ij) — 2-^1 
s = l 
C 

^ - E « m . « W ) r 

m=0 

(4.34) 

so,tj, shij,..., skjij = ] T sl
04j, sl

hij ..., sl
k4j for 1 < i, j < L (4.35) 

where Mi is the number of images in the Ith class. The product matrix is given by, 
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P ' = ( / ' - W ) ( / ' - w ) T (4-36) 

During the implementation of the method, there were issues with the dimension­

ality of the data used and the number of samples available. To solve this, a method 

similar to the one followed in [59] was used, where the image was first projected on to 

the face subspace using PCA and FLD was used to obtain a linear classifier. Instead 

of linear methods, nonlinear manifold based projections were used in both cases. 

4.4 Phase congruency 

Image features like edges result in points where the frequency components are 

maximally in phase. Phase congruency features have been used to good effect for 

face recognition in [60] by following a modular approach on feature images. The 

technique followed by Kovesi in [61] is used here. The phase congruency function is 

defined as, 

PC[x) = max S n A . c o ^ x + ^ - g ) 

where An is the amplitude of the nth Fourier component, a; is a constant (usually 

2n) and the value of 9 that maximizes Equation 4.37 is the weighted mean of all the 

Fourier terms at the point being considered. To actually compute the features, peaks 

in a local energy function are considered. 
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where H (x) is the Hilbert transform of F (x). This function is related to PC (x) as, 

E(x) = PC(x)ZnAn (4.39) 

Thus, the local energy function is directly proportional to the phase congruency func­

tion, so, local energy peaks should relate to peaks in phase congruency. Instead of a 

direct computation, the local energy of an input image can be calculated by convolv­

ing with a pair of filters in quadrature. The signal F is obtained by removing the DC 

component of input image / . The new image is saved and convolved with another 

filter that is in quadrature with the first filter. The result of the two convolutions 

are squared and saved. Another way to do this is to use log Gabor functions. Two 

wavelets are defined, one odd (M°) and one even (M^). These are obtained by mod­

ulating sine and cosine waves by a Gaussian. All three signals involved are shown in 

Figure 4.8, the sine and cosine signals in Figure 4.8a are modulated by the Gaussian 

in Figure 4.8b to get the odd and even wavelets in Figure 4.8c. 

The amplitude and phase component of the Fourier component at a given scale 

n are, 

An(x) = ^ ( / ( s ) * M « ) 2 + ( / ( x ) * M # 2 (4.40) 

4>n{x) = tan"1 (/ (x) * MeJI (x) * M°) (4.41) 

where, " * " represents convolution. The signals F and H can be obtained by, 



(a) (b) 

(c) 

Figure 4.8: (a)Sine and cosine waves, (b)Modulating Gaussian, (c)Symmetric 
wavelets. 

F(x) = ZnI(x)*M* 

H(x) = HnI(x)*M° 

(4.42) 

(4.43) 

Thus, the sum of amplitudes of the frequency components is given by, 

J2 ^ (X) = J2 JV (*) * Mnf + (I (*) * M°f (4.44) 
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The expression for phase congruency is slightly modified adding a small positive 

constant to the denominator to prevent the Equation from becoming unstable when 

~%2n An (x) and E(x) becomes small. Thus we have, 

pcw = Fr!3b) (445) 

One dimensional analysis is carried out over several orientations, and the results are 

combined to obtain a two dimensional image. Some images together with their phase 

congruent output are shown in Figure 4.9. 

(a) 

Figure 4.9: (a) Original images, (b)Phase congruent images. 

Phase congruent features are dimensionless quantities and are invariant to changes 

in image brightness and contrast [62]. This enables phase congruent features to bet­

ter represent the features in an image. This better representation of an image should 

help in an application like face recognition where we are trying to classify faces based 

on the detected features. The approach should particularly help in overcoming prob­

lems with illumination variations. The obtained edge images are now used to train 

the nonlinear subspace components. A new input image is transformed to the phase 

congruent edge image and projected on to the feature space before classification. 
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4.5 Reconstruct ion from nonlinear principal components 

Recovering the original image from the principal components is important to 

emphasize the authenticity of the image representation method presented in this dis­

sertation. An attempt is made to reconstruct the original image from the average 

image and the principal components obtained by the proposed dimensionality reduc­

tion technique. For a kth polynomial based nonlinear function, we can reconstruct 

the image as, 

fc 

I = Y + Y,I%Bm (4.46) 
TO=0 

where, E is the set of eigenvectors corresponding to a few of the largest eigenvalues, 

B is the reduced dimension weight vector for the image under consideration and m 

denotes the order of the component. 

Figure 4.10: Face reconstruction from nonlinear space. Top row: Reconstructed faces, 
Second row: Original faces. 

The first row in Figure 4.10 shows the result of face reconstruction from the 

nonlinear face subspace of the original images from the ORL face database [63] (shown 

in Figure 4.10 second row). Image features in the nonlinear subspace lie inside a region 
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defined by the nonlinear function selected to model the space. A polynomial function 

is used in this dissertation. To reconstruct the data, we use the same nonlinear 

function. Feature components from each separate ordered space are now multiplied 

with the principal components to obtain the high dimensional representation for that 

particular subspace. This representation gives only centered values which are now 

integrated with the mean image (Y) obtained during training to obtain the final 

reconstructed face. 
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5 EXPERIMENTAL RESULTS AND DISCUSSION 

Four different face databases covering four different criteria are considered for 

testing the proposed subspace based methodology for feature extraction. The Yale 

face database [64] contains images with varying expressions and lighting conditions. 

Performance of the algorithms on a large set of faces can be tested using the FERET 

database [65, 66]. FERET also provides a standard testing protocol and previously 

reported set of images for training and testing purposes. The effects of varying illu­

mination are noted using a subset from the illumination set of the PIE face database 

[67]. The effect of varying expressions are illustrated using the CMU expression vari­

ant face database [68]. The testing environment used for evaluating the proposed face 

recognition technique is illustrated in Figure 5.1. The various steps in the process 

can be listed as, 

1. Face images are divided into training and testing sets. The specific way 

in which this was done for each database is given in the respective sub­

sections. The selected trained images undergo histogram equalization as 

a pre-processing step. 

2. Images are divided into four subimages in the modular approach, and the 

manifold projection technique is applied to each subimage. 

3. Each image is represented in vector form by appending subsequent row 

pixels. 

4. A mean image vector of all the training image vectors is obtained. The 
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training images are now centered by subtracting the mean from each im­

age. For the discriminant approach, class means are also calculated by 

rinding means of images in the same class. 

5. Covariance matrices corresponding to a second order polynomial function 

are obtained using Least Squares Estimation (LSE). 

6. Principal components are obtained by eigen analysis of the covariance ma­

trices. Eigenvectors corresponding to the first few largest eigenvalues are 

selected. The number of eigenvectors selected determines the dimension 

of the feature space. 

7. Representative feature vectors are now obtained for each training image 

by transformation using the second order polynomial equation. Between-

class and within-class scatter matrices are determined in this reduced 

dimension space. Discriminant features are obtained by eigen analysis of 

these two matrices and projecting the data using these components. 

8. Test images are centered using the mean image. Four subimages are 

formed for the modular approach. A test image feature vector is formed 

by using the trained principal components or discriminant components. 

9. Euclidean distances are found between feature vectors of the test image 

and those of the training images. A nearest neighbor strategy is used for 

determining the identity of the test face. 
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Figure 5.1: Test system block diagram. 

5.1 Yale face database 

The proposed algorithm was run on the Yale face database containing 165 images 

of 15 individuals. The images are taken under a set of varying illumination conditions 

and expressions. There are images with normal, sad, happy, surprised and winking 

expressions. There are also images where the position of the light source is at the 

center, right or left. The presence of eye glasses in some images also gives variability 

in occlusion. Figure 5.2 gives some sample images from the dataset. Each image was 

of size 64 x 64 pixels, and no modifications were made to the images. A leave one 

out testing strategy was followed. One image of each person is left out of the training 

sample. The images that were left out are then used as test images. This enables us 

to test the effect of each variation on the accuracy of the method. 

Figure 5.3 shows the results obtained for the proposed method versus results 

for baseline PCA for this database. The number of dimensions of the feature space 

was varied and recognition accuracy for each dimension was noted. The two values 

were then plotted against each other to obtain the curves. The proposed method 
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showed improved accuracy in all dimensions while large improvement in accuracy 

was obtained in lower dimensions. This illustrates the better ability of the approach 

to model variations in the input image data. Prom Figure 5.3, we can see that the 

recognition rate goes flat above 20 dimensions. 

9@$ 
Figure 5.2: Yale face database sample images. 

'"'Klonlinear Manifold 

j i_ _i i_ 
10 15 20 25 30 35 40 

Dimensions 

Figure 5.3: Accuracy curve for Yale database. 

Table 5.1 compares recognition accuracy for the proposed nonlinear subspace 

method with results for other nonlinear manifold based methods (Isomap, LLE and 

Extended-Isomap presented in [45]). The leave-one-out testing strategy is followed 

in all the methods. PCA results are shown as a baseline to account for variations 
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occurring due to the image sizes considered and normalizing steps involved. We can 

see that the results from the proposed method are better than straight nonlinear 

manifold approaches like Isomap and LLE. The accuracy for Isomap and LLE based 

methods is also dependent on the size of the neighborhood selected, as can be seen 

from the two results for the Extended-Isomap method. Further results presented in 

[45] for varying neighborhood sizes strengthen this view, the results provided here 

being the ones reported as the best. Among the proposed methods, the nonlinear 

discriminant approach gave the best results, illustrating the advantage of using class 

information. 

Table 5.1: Accuracy values on Yale database. 

Method 

PCA, 30 dimensions 

PCA [45], 30 dimensions 

Isomap, k = 50 

LLE, k = 10 

Extended-Isomap, k = 25 

Extended-Isomap, e = 12 

Nonlinear subspace approach 

Modular approach 

Nonlinear discriminants 

Accuracy(%/#) 

68.4(113/165) 

71.51(118/165) 

71.51(118/165) 

73.93(122/165) 

78.8(130/165) 

90.3(149/165) 

79.39(131/165) 

82(135/165) 

84(138/165) 
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5.2 CMU PIE face database 

A sub-set of 11 images of 15 individuals for varying illumination from the CMU 

Pose, Illumination and Expression (PIE) [67] database is considered in this experi­

ment. Sample images from the subset considered are shown in Figure 5.4. 

Figure 5.4: Sample images from the PIE illumination database. 

The position of the light source varies from left to right in several steps. This 

database provides a much more detailed illumination variation as compared to the 

above Yale database. Also there is no variation in expression of the individual. This 

gives a better idea of accuracy of each method relative to illumination variation. The 

face images were cropped and resized to 64 x 64 pixels. The subset of images is 

divided into two groups based on brightness levels. All the dark images were grouped 

into one and the rest formed the other group. One set is used for training and the 

other is used for testing purposes. The procedure is repeated by interchanging the 

training and testing sets. The number of dimensions in the feature space is set to 20 

and the result is shown in Table 5.2, illustrating the ability of the proposed method 

to model varying illumination better than the classical PCA method. 

An increase in accuracy was found by following histogram equalization on both 

training and testing images as illustrated in Table 5.3. Enhancement of the set of 

images reduces variability of the face images due to illumination thus enabling simpler 
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Table 5.2: Accuracy values on PIE illumination database. 

Method 

PCA 

Nonlinear Discriminants 

Accuracy(%/#) 

83.6(138/165) 

94.54(156/165) 

curves to model the data. Enhancing the test images enables reduced variability of 

the test faces from the trained samples, leading to better positioning in feature space 

near to their respective classes. This further leads to easier classification and better 

accuracy. 

Table 5.3: Effect of histogram equalization on nonlinear discriminants. 

Method 

Histogram equalized 

Raw images 

Accuracy(%/#) 

98.1(162/165) 

94.54(156/165) 

5.2.1 Effect of normalizing factor 

During the training process, a small normalizing factor was introduced and was 

found to have a good deal of influence over final accuracy values. A repeat of the 

above experiment was done without using the normalizing factor to obtain the values 

in Table 5.4. The images used for training and testing were not histogram equalized 

in this case. The normalizing value was obtained by finding the trace of the centered 

image matrix. The centered image matrix was further modified by dividing this 

value. During the testing phase, centered test images were normalized further using 
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this value and then projected onto the nonlinear subspace. The values shown in Table 

5.2 were obtained using this normalizing factor. 

Table 5.4: Effect of normalizing value. 

Method 

Normalizing factor 

Without factor 

Accuracy(%/#) 

94.54(156/165) 

70.9(117/165) 

5.2.2 Importance of training parameters 

It was also found that blindly applying the above factors to images resulted in 

decreased accuracy. The above tests were conducted such that all factors were used 

consistently during calculation of the features and during the projection phase. Now 

we set up the tests such that the normalizing factor is used during only one phase 

of the procedure. Table 5.5 consolidates results from all the combinations we tested. 

The best possible result was obtained when the images were histogram equalized and 

normalized during both phases of the procedure. The worst possible combination 

was when histogram equalized and normalized images were used for computing the 

nonlinear components and original images were projected using these components as 

shown in row 4. Not using the two steps in both phases resulted in comparatively 

better accuracy as shown in row 5. By creating this artificial variability we show the 

possibility of incorrect projection if the data lies far away from the modeled curve, 

leading to possible wrong classification. 
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Table 5.5: Training parameter variations. 

Feature extraction 

Histogram 

equalized/Normalized 

Histogram 

equalized/Normalized 

Histogram 

equalized/Normalized 

Histogram 

equalized/Normalized 

Not equalized/Not 

normalized 

Projection 

Histogram 

equalized/Normalized 

Not equalized/Normalized 

Histogram equalized/Not 

normalized 

Not equalized/Not 

normalized 

Not equalized/Not 

normalized 

Accuracy(%/#) 

98.1(162/165) 

69.69(115/165) 

83.3(137/165) 

41.8(69/165) 

70.9(117/165) 

5.3 CMU expression variant face database 

A set of images from the CMU expression variant face database [68] is consid­

ered to illustrate the efficiency of the proposed method for expression invariant face 

recognition. The database consists of face images of 13 different individuals with 75 

different images for each individual. The images are taken under constant illumi­

nation condition and from the same pose and vary only in facial expressions. The 

first two components of the nonlinear subspace approach for 3 of the individuals from 

the database are plotted against each other and shown in Figure 5.5. While we can 

observe a definite arrangement, the patterns are not well separated in this approach. 

Figure 5.6 shows the result for the nonlinear discriminant approach. We can observe 

that by using this method, we are able to separate individuals into well defined and 
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Figure 5.5: Projection of multiple persons to first two nonlinear components. 
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Figure 5.6: Projection of multiple persons to first two nonlinear discriminant compo­
nents. 

Within each separate cluster in the 2D feature space, face images show a defi­

nite arrangement with varying expressions as is observable in Figure 5.5. A similar 

approach can be found in [3] where a nonlinear manifold approach is used to model 
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face expressions. Weight values from the first two principal components are plot­

ted against each other to obtain a distinct cluster for each expression as illustrated 

in Figure 5.7. Face recognition accuracy for this database is tested by varying the 

number of dimensions and checking the number of correct classification in each di­

mension. The whole dataset was divided into two groups: the training set containing 

25 images, and the test set containing the remaining 50 images. Figure 5.8 compares 

the accuracy values across varying dimensions of the feature space for PCA and the 

proposed discriminant approach. 
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Figure 5.7: Illustration of face expression cluster formation. 

5.4 FERET database 

FERET was a general evaluation designed to compare performance of algorithms 

on the FERET database [65], [66]. Different categories of images are provided to test 

the robustness of algorithms. Categories differed in lighting changes, people wearing 
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Figure 5.8: Recognition accuracy on CMU expression variant face database. 

glasses and time and date of image acquisition. Algorithms that can be applied to 

this database are broadly divided into two categories: fully automatic algorithms that 

incorporate face localization and normalization and partially automatic algorithms 

that use eye center data provided with the database to perform localization and 

normalization. Performance results for both cases are distinguished and compared 

separately. The proposed algorithm falls into the latter category. We use the eye 

center data to localize the face image and each image is resized to a size of 64 x 64 

pixels. The main issue we had with this database is the absence of multiple images 

for training purposes. The gallery and probe consists of only one image of each 

individual. Hence, a generalized set from the Yale face database described above was 

used to train the feature components. These components are now used to project 

images on to the feature space. 

3 3.5 4 
Dimensions 
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5.4.1 FERET testing strategy 

The algorithm is given two sets of images: the target set and the query set. 

Images in the two sets are distinct. The target set consists of a set of known facial 

images. Images in the query set consist of unknown facial images to be identified. 

For each image (& in the query set Q, we compute a similarity Sj(fc) between <& and 

each image tk in the target set T. For each qi, target images tk are sorted by the 

similarity scores s (•). 

The following method, as given in [65], is used to compute the similarity score. Let 

P = {pi, • • • ,PN} denote a probe set and N be the number of images (individuals). 

This is matched against a gallery G = {gi, • • • 3 M } by comparing the similarity scores 

Si (•) such that Pi E P and j j 6 G. A smaller similarity score implies a closer match. 

Let id (i) denote the index of the gallery image of the person in probe Pi. A probe p, 

is correctly identified if Sj (id (i)) is the smallest score for g^ E G. A probe pi is in the 

top n if Si (id (i)) is one of the nth smallest scores of Si (•) for gallery G. Now if Rn 

denotes the number of probes in the top n, the rank (or cumulative match score) of 

the probe set is defined as, 

rank = -rr- (5.1) 

5.4.2 FERET face datasets 

Three different set probes are used here for testing purposes. All three use the 

same gallery of 1196 individuals for training. For the first test, the target and query 
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sets contain frontal images (fa and fb) taken in the same session. The F B probe 

set contains the fb images that are taken the same day under the same illumination 

conditions as the gallery images (fa). The second probe category contains all duplicate 

frontal images in the FERET database for the gallery images. This is referred to as 

the duplicate set of probe (duplicate I) and contains a set of 722 images. The third 

category contains 234 fc probe images. These are images taken the same day as the 

fa images but with a different camera and lighting. A sample image from each of the 

datasets is shown in Figure 5.9. 

fa fb duplicate I fc 

Figure 5.9: FERET images. 

The result from the F B probe set is given in Figure 5.10. The nonlinear manifold 

method with modularity performed the best. The poor performance of the nonlinear 

discriminant method can be attributed to the absence of well defined class information 

in this case. The phase congruent approach did not perform as well as expected, 

scoring only marginally better than the baseline PCA method. The score for the 

modular approach is better than the baseline PCA and compares well with most 

methods listed in [65], but in cases where the classification strategy varies, like the 

probabilistic subspaces instead of the nearest neighbor approach, the results are better 

than the proposed method. Figure 5.11 shows the result for the duplicate I probe 

set and Figure 5.12 shows results for the fc probe set with baseline PCA method for 



1 

0.95 

0.9 

s 0-85 
o u 
£ 0.8 
u 
•<5 
E 0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

* * * • • * * * * * * ! ! * * - " « . « « * * • — * * * * * * * * 
- * * * : > * ; ; ; : ^ w * * 

- - -

+ 

/ 
/ 

/ * Modular nonlinear 
- / + PCA 
/ - Discriminant nonlinear 

"' x Modular phase congruent " 
• i i i i i i • i 

10 15 20 25 30 35 40 45 
Rank 

50 

Figure 5.10: FERET result for F B probe set. 

0.65 

0.6 

0.55 

I " 

i-
3 0.35 

0.3 

0.25 

0.2 

.++ +++"" 

***** 

i + + + + 

**** 

+++ + f++++++ ++++t 

»»#»***** «**** ' * * f 

»*** 

** 
+ # ' 
* + Modular nonlinear 

* PCA 

0 5 10 15 20 25 30 35 40 45 50 
Rank 

Figure 5.11: FERET result for duplicate I set. 



70 

0.9 

0.8 

0.7 

l'u 
I -

l: 
0.2 

0.1 

-n r- -i 1 1 1 

„***** 

,*** 
»**** 

******* ***** 
**** 

** 
**** 

++++"*" 
+++++++ 

.++++ +
+t 

,++ 
.++++"r 

,+++ 

. + + +
+ 

* Modular nonlinear 
+ PCA 

_! I I I I I I I L. 
0 5 10 15 20 25 30 35 40 45 50 

Rank 

Figure 5.12: FERET result for fa-fc set. 



71 

6 CONCLUSION AND FUTURE WORK 

A nonlinear subspace projection methodology for extracting key feature compo­

nents for pattern classification was presented in this dissertation. Data covariance in 

a class was represented as a nonlinear function by using a second order polynomial 

curve equation. Least squares estimation was used on centered data values to find co-

variance components in each order. Eigen decomposition of these covariance matrices 

gave the required Principal Components. The original data pattern was projected to 

the feature space by multiplying with these features. By choosing only a select num­

ber of eigenvectors (those corresponding to the largest eigenvalues) corresponding to 

each order, each data pattern was projected on to a low dimensional feature space. 

The proposed method was used to extract face image features and the extracted 

features were classified using a nearest neighbor strategy. In a multi-class problem 

such as face recognition, a polynomial curve was modeled for each class. A mean 

curve was then obtained by averaging curves from all the classes. Eigen decomposition 

was then applied to these mean covariance matrices (multiple orders) to obtain the 

required features. This strategy allowed us to project patterns onto one global feature 

space to make meaningful comparisons. 

A modular approach was followed to improve the accuracy of our system. This 

approach used multiple curves to represent each data pattern, possibly allowing for 

simpler curves. To do this, each image was divided into sub-images and nonlinear 

principal components were extracted for each of these sub-images. These values were 

then concatenated to form a signature vector. The approach was better able to 
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represent local information and thus lead to better accuracy values. 

The proposed method was further extended to improve face recognition accuracy 

by incorporating class information thus leading to better discriminating features. To 

this end, a Fisher Linear Discriminant (FLD) based algorithm was developed by 

computing within-class and between-class scatter matrices. One issue that we faced 

was the singularity problem of the within-class scatter matrix due to small number 

of training samples. To solve this issue, the discriminant method was applied on a 

reduced feature space obtained by the nonlinear subspace method. 

The proposed methods were tested on four different databases. The discriminant 

approach gave the best results in the Yale, PIE illumination and CMU expression 

variant face databases. The approach, though, was found to work well only if we have 

well defined classes as it gave poor results in the FERET database, which provided 

only one image of each individual in each gallery and probe. The proposed method 

was found to model variations in illumination well as shown by the good results 

from the PIE illumination database. A phase congruent approach was followed to 

further improve accuracy but was found to perform poorer than the nonlinear modular 

approach above. One of the issues with nonlinear manifold based methods is the 

inability of these methods to project data back to the original space and reconstruct 

the images. We were able to show that the proposed method is able to recover data 

from the nonlinear feature space. 

Table 6.1 gives a comparison of the proposed method with Isomap. Unlike Isomap 

and most other nonlinear manifold method, the proposed approach is not neighbor­

hood dependent. The proposed approach provides a direct projection to the feature 
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space and data can be reconstructed from the feature space. 

Table 6.1: A comparison with Isomap. 

Isomap 

Neighborhood size dependent 

No direct projection to feature space 

Data cannot be reconstructed 

Model variations in all directions 

Proposed approach 

Not dependent 

Direct projection to feature space 

Data can be reconstructed 

Model variations along one direction 

One of the issues of the proposed method is its inability to model variations 

along multiple directions. A more local approach that divides data into smaller clus­

ters could solve this problem. Research work is progressing to divide datasets of 

similar patterns into neighborhoods that will enable feature space transformation 

with reduced complexity. The trick here is to combine all the multiple curves into 

one single region to enable direct projection of new data. Another approach that 

might provide improved accuracy for the proposed approach is to use Gabor wavelets 

based frequency representation. Gabor wavelet based image representation is widely 

applied in face recognition [69, 70, 71]. This particular representation of images is 

similar to those of the human visual system and found to provide improved accuracy 

over conventional representation of images. Another topic to be investigated is to try 

multiple classification strategies to find one that best suite our algorithm. Current 

work is also progressing to implement the subspace strategy with other nonlinear 

functions and to identify the optimum nonlinear function to be used from an object 

classification perspective. 
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