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ABSTRACT

A THEORETICAL MODEL FOR CALCULATION
OF MOLECULAR STOPPING POWER

Yuan-Jian Xu

0ld Dominion University, 1984
Director: Dr. Govind S. Khandelwal

A modified local plasma model based on the work of Linhard-
Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's
molecular charged density model is employed to obtain a formula to
evaluate the stopping power of many useful molecular systems. The
stopping power of H2 and He gas was calculated for incident proton
energy ranging from 100 KeV to 2.5 MeV. The stopping power of 0y, Ny
and water vapor was also calculated for incident proton energy rang-
ing from 40 KeV to 2.5 MeV. Goo& agreement with experimental data
was obtained.

A discussion of molecular effects leading to departure from
Bragg's rule was presented in this thesis. The equipartition rule
and the effect of nuclear momentum recoiling in stopping power are
also discussed in the appendix. The calculational procedure presented
in this thesis hopefully can easily be extended to include the most
useful organic systems such as the molecules composed of carbon,
nitrogen, hydrogen and oxygen which are useful in radiation protec-

tion field.
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Chapter 1

INTRODUCTION

The subject of energy loss of heavy ions such as protons, or o
particles passing through matter, has been studied for more than
sixty years. Research in this area began with the study of a mecha-
nism under which charged particles lose their energy mainly to the
atomic electrons. These studies have contributed to the basic
understanding of the interaction of charge particles with matter-
atoms-molecules and, more recently, to materials. The energy loss
parameters have found their use in various applications. The list
includes: radiation dose effects on solid state devices; shielding
problem; space radiation research; design and calibration of
spectrometers and dosimeters; proton doses in manned or unmanned
space flights; energy transfer to living cells, and radiation
effects in materials, etc.

The Bethe [1] theory of energy loss of fast charged particles
rests on the knowledge of the so-called mean excitation energy of
the medium. Once this parameter is known, the high energy stopping
power of an atom can readily be calculated. The determination of
this parameter, however, is very laborious, as is seen in the works
of Dehmer, Inokuti, Saxon, and Baer [2], [3], [4], who calculated

the mean excitation energy parameter for atoms of atomic number
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ranging from Z =1 to Z = 38. The numerical evaluations involving
the Hartree-Slater wave functions in these calculations are so
involved that the estimating of the errors is difficult to ascertain.

The Bethe theory, although developed for the atoms, has also
been extended to obtain the stopping power of molecules under the
Bragg's rule [5]. One essentially ignores the chemical binding of
molecules under this rule. Recently, however, several experiments
(6], [7], [8], have revealed that for low energy regions there may
exist deviations from the Bragg's rule. Furthermore, there are some
indications (see, for instance, a series of papers by Wilson and his
co-workers) that the Bragg's rule may not be obeyed in the determina-
tion of the mean excitation energy parameter for molecules, although
this departure does not have much effect on stopping power because
of the dominance of the velocity of the projectile on the stopping
power.

It is evident from the above discussion that the traditional
approach of obtaining the molecular stopping power from the atomic
stopping power via the Bragg's rule should be abandoned, at least for
the low energy projectile. The local plasma model which has been
successful in predicting the mean excitation energy would serve as
the appropriate candidate for an alternative approach.

This thesis discusses the establishement of a modified local
plasma model by employing the Gordon-Kim molecular [9] density model,
which provides a method of calculating molecular stopping power even
at quite low proton energies. In spite of the fact that it is a
somewhat average model, calculation is relatively simple,

and the calculation of stopping powers of H,, He, 02, N, and water
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vapor are in fair agreement with experimental data. Modifications
to the local plasma model are mainly due to the complexity of real
atomic and molecular situations. Besides the effects of shell
corrections, and the screening of projectiles, other effects such
as nuclear recoiling are also involved. Interesting discussions on
deviation from the Bragg's rule and on the modified local plasma
model and the conclusions deduced from experimental data are pres-
ented in the last section of this thesis, '"Molecular Effect of
Stopping Power."

From the theoretical model established in this report, the
departure of stopping power from Bragg's rule only occurs for low
velocity projectile cases. Deviation from the Bragg's rule also is
found to depend on the chemical structure of molecules. More overlap
of electron clouds is found to cause more deviation from the Bragg's
rule when the Gordon-Kim model is employed. The geometric structure
gives the most important information on molecular effects.

The basic stopping power theories assume the interaction between
the projectile and the atomic electron, which is assumed initially
to be at rest. While it is true that the overall energy loss must,
indeed, take place in this manner, in some collisions the recoiling
of the nucleus cannot be neglected. This is especially true for
relatively low incident energies of the heavy ion. Although the
recoiling momentum may be very large. Thus, the conservation of
momentum will lead to a different value of the momentum of electrons
than has previoﬁsly been assumed in these theories.

This observation lends itself to solving a three body problem.

Thus, in this report, a semi-classical three body model is established
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to calculate relevant quantities. Specifically, exact semi-classical
three body calculations are made for a proton incident on a hydrogen
atom with the electron in its first Bohr orbit. The model and the
resulting conclusions especially in regards to the equipartition

theorem for shell corrections are presented in the appendix.

Historical Review

The three prominent theories of penetration of charged particles
in matter are: Bohr's semi-classical theory, Bethe's quantum theory,
and Lindhard's local plasma theory based on the treatment of free
electron gas. Since this paper touches upon all three theories, it
is helpful to outline their main features and assumptions of interest.
When appropriate, the detailed structure of these theories will also

be given, in later sectiomns.

Semi-Classical Theory

Bohr's semi-classical treatment of the slowing down charged
particles, done as early as 1913 [10], [11], was the first to give
the overall characteristic structure and the features of the penetra-
tion theory. The classical parameters appearing in this theory,
surprisingly, could later be calculated or related to the quantum
treatment. The main underlying assumptions and the characteristics
of the theory are:

1. The coulomb interaction between the incident-charged particle
of velocity v and the atomic electrons is assumed to be respon-

sible for energy 1loss.

2. The momentum transfer is sufficiently small so that the
projectile's path is a straight line.

3. The atomic electron is assumed to be at rest.
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4., The minimum impact parameter is determined from the knowledge
of the maximum momentum transfer of the projectile to a free
electron. The masimum impact parameter is determined under
the assumption that the interaction time must be larger than
the orbital period of the atomic electromn.
Based on the above assumptions, Bohr obtained the stopping power

formula as:

2 4 3
—ég:lmNZ z e lnmv (1)

dx mv2 ezm
where, ze is the charge of the projectile and N is the number of
atoms per unit volume, with Z electrons per atom, and w is the
characteristic atomic frequency.

Equation (1), even though the derivation was based on classical
considerations, embodies the main features of the quantum mechanical
description given in the later section. As is known, in both
theories, the properties of the incident ion such as its charge ze,
and its velocity v occur in this equation, m being the mass of
the electron. The properties of the medium are contained in the

quantities N, Z, and w.

Quantal Theory

Bethe's non-relativistic calculation of stopping power was per-
formed in 1933 in the first Born approximation [1] and rests mainly
on the following assumption.

1. The interaction responsible for. energy loss is the coulomb
interaction between the incident ion and the atomic electon.

2. The speed of the ion is much greater than that of the atomic
electrons.

3. The calculation of the maximum momentum transfer entails the
collision with the electron initially at rest.
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4, Within the plane wave Born approximation, the assumption that
the electronic positions are correlated only over relatively
small distances implies the use of the dipole oscillator
strengths.

Based on the above assumptions, Bethe arrived at the following

energy-loss formula:

E 2 4
__i_ _ 4TNZz% e 1n 2mv (2)
dx mv2 I

where I, the mean excitation energy of the medium, is defined

through the electric dipoie strength fn by:
Z1lnT-= g fh In E

with En being the eigenenergy of the electromn.
Notice the similarity between equations (1) and (2) obtained
under classical and quantal considerations, respectively. Notice

2 (which represents the maxi-

also the occurrence of the factor 2mv
mum energy transfer of the assumption (3)) which in the argument of

log in equation (2).

Theories Based on the Thomas-Fermi Model

Bloch [13], in 1933, calculated the stopping power by using the
Thomas-Fermi model for the many electrons of the atoms of the medium.
Useful results were later obtained by Lindhard (141, [15], [16], and
his co-workers. Lindhard showed that for a swift heavy particle of
low charge the stopping power of a free electron gas is given by

dE lmzze4 2mv?

-—=—7 0 1n
dx mv2 (th

) (3)
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where, P is the electron density, and wp, is the classical plasma

frequency given by

3

and Y is a parameter calculated by Lindhard to be equal to V2
Lindhard made the bold assumption that the theory can be extended

to the atoms if one writes the above equation as:

QE__ 4ﬂz2e4N va2

>y 43
= 5 S 1n e p(r) d°r (3a)
dx mv thp(r)

where, now p(?) is to be evaluated by employing the quantal wave
functions of the electrons. This model is often called a local

plasma model, in literature.

Further Discussion of the Bethe and Lindhard Theories

The simplicity in Bethe’s theory results from several factors.
The first factor allows all the atomic electrons to participate in
the stopping process. Indeed, this is not valid for the inner shell
electrons which are tightly bound and may not always participate in
the stopping process. The second factor is the inclusion only of
the dipole transitions in the theory, although other transitions
(though less probable) may possibly take place. This, as indicated
earlier, is tantamount to assuming that the electronic positions are
correlated only over relatively small distances. These corrections

to the Bethe theory have been extensively investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lindhard's local plasma theory, as mentioned earlier, makes the
bold assumption through equation (3) for its application to atomic
systems. This approach, surprisingly, works well for atoms as is
shown recently in the evaluation of the mean excitation energy para-
meter [17]. The approach rests with the comparison of equation (3)

of Lindhard with the Bethe formula equation (2):
> 3
ZInI=f p(r) 1ln (Yhmp) « d7r (4)

The local plasma model is also relatively easy to extend to molecules
for ionic bonded gases, covalent bond gases and metals. Such prog-
ress has recently been made by various authors. (See, for instance,

a series of papers by Wilson and his co-workers.)
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Chapter 2

STOPPING NUMBER FUNCTION

The energy loss of fast charged particles caused by their
inelastic collision with atoms, is given with good approximation by
Bethe's formula, which is based on the quantum perturbation theory.
However, the mean excitation energy in his formula is too compli-
cated to evaluate theoretically for many practical problems
especially for molecules. It appears the local plasma model
affords a simple method to calculate the mean excitation energy of
elements as well as compounds. There still remain three problems:
(1) people have more interest in stopping power than in mean excita-
tion energy; (2) how to extend this method to evaluate molecular
stopping power; and (3) how to extend this method to slow charged
particle cases as well as to fast charged particle cases. Now let
us recall the basic formula of local plasma model for fast charged

particles.

2 4 2
dE & N 2 -
N R G (5)
dx mv Yhuwy, (r)
2 -
where wi(f) = EEELB%EL- is the plasma frequency. We can see in the
mv

above formula that once the parameter 7Y and the electron density

p(¥) are known, the stopping power can be determined immediately.
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10

We will discuss the problem of parameter 7Y in the section '"Local
Plasma Model for High Projectile's Energy Cases."

The atomic electron density is just the square of the wave
function of the ground state of the atom. It is not easy to find
the molecular wave function. Fortunately, we have a very simple
molecular electron density model, namely the Gordon-Kim model [9].
It is a rough model, but as a first order of approximation this
model gives the main features of molecular effects. Detailed
discussion will be presented in the next chapter. To extend this
model to low energy regions is of considerable interest from both
a practical and theoretical point of view. Unfortunately, many
effects arise at low energies including projectile charge screening,
nuclear momentum recoiling, forbidden transition, etc. On one hand
we have to consider the above complexity in realistic atomic and
molecular world. On the other hand we still need to keep the
simplicity of the local plasma model, otherwise no results can be
obtained in practice. This section is devoted to establish a modi~
fied local plasma model. We will concentrate on finding a stopping
number function L. It should be valid for low energy as well as
high energy cases, and should still retain the simplicity of the
local plasma model. It will also approach the realistic cases as
closely as possible. However, it is only an average model and some

estimating is involved.

Local Plasma Model for High Projectiles Energy Case

When the projectiles move rather fast the stopping power can be

determined by Bethe's formula with good accuracy,
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(6)

where I, the mean excitation energy has been of considerable study.
This is because once the parameter is known, the energy loss can be
obtained immediately. However, the evaluation of this parameter is
considerably laborious. In principle, the parameter can be calcu-
lated exactly only for the H-atom for which accurate wave functions
are known. More recently, Dehmer, Inokuti and Saxon [2] used the
tabulation of Hartree-Slater potential given by Herman and Skillman.
They solved the Schroedinger equation to obtain the radial matrix
element R (nl, n'l') where (n, 1), (n', 1') are initial and final
states of atom. Knowing these values they calculated the mean
excitation energy parameter I for atoms rangiﬁg from Z =1 to

Z = 38, However, there are difficulties with the above approach.

In practice, the extreme complexity of numerical calculations
renders it impossible to extend the approach to evaluate the mean
excitation energy of molecules.

An alternative approach is the possibility of using the local
plasma model, formula (5). There are, however, two central quanti-
ties which should be known. These are function Y and p(r).

The evaluation of p(r) rests on the determination of the wave func-
tions of electron only in ground states, such Hartree wave function
for various atoms have recently been available in the work of
Clementi and Roetti. The problem is then the determination of

parameter Y.
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Calculation of Parameter Y

In his original theory of stopping power of electron gas
Lindhard gave a quantitative discussion for the values of para-
meter Y. The first term in high energy expansion of stopping

number L 1is given by

2
in (%%%-C(x))

where C(x) = 1/y . Lindhard discussed the function C(x) as a
function of electron density. He surmised that the function C(x)
depends on the density slightly only. It should be a little bit
less than one for moderate density and should approach unity for both
extremely low and extremely high densities. Furthermore, Lindhard
suggested that the values of Y can be taken to be unity for light
atoms without large error. Later, Lindhard and Scharff [14] sug-
gested on the basis of a simple model that Y = Y2 can be chosen
for heavier elements.

Chu and Power using constant value of Y = /2 obtained the
parameter I for various atoms 17 . Their calculated values
however were found to exceed the values calculated by Delmer et al.
(based on oscillator strength method) by 207% to 30%. The most
satisfying thing, however, was the similar trend in the variation
of I wvalues in both cases as a function of atomic numbers. This
points towards a greater confidence in the local plasma theory.

Some authors encouraged by this, and also not satisfied with Chu
and Power's results treated the parameter Y as an empirical para-

meter to fit the data. Unsatisfied with this type of empirical
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treatment, we adopt the following approach. Bohm and Pine [18],
[19] have treated the problem of collective long range interaction
in a quantum electron gas. They introduced normal coordinates of
collective motion of electron beyond some screening radius r, and
the individual particle motion was considered to be more important
for radius smaller than 1. .

Bohm and Pine showed that the average plasma frequency <w>
(which is the average over the frequency of the collective oscilla-
tions, say W) is a linear function of the classical plasma frequency
mp and is given by

3 B

<w> = {1 3 — (1 +i3'0_82)] @, (N
S

where A_ = rs/a is a dimensionless parameter and is the average

5 0

distance between electrons, and where a, is the Bohr radius.
The parameter B can be determined by minimizing the electrom
long range correlation energy (the long range part of correlation

energy is obtained by subtracting short range exchange energy from

the cohesive energy)

1r _ 0.866 8 0.458 g2 0.019 g
corr B )\3/2 - A + )\
S S S

(8)

The minimization of the above equation leads to the following equa-

tion for B

5  2.598 B
0.076 B° + ———— - 0.916 = 0 (9)

.
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At this stage let us recall that Bohr's semi-classical theory and
Bethe's quantum theory have the similar first term in the high

velocity expansion of

2
L = 1n (2mv )

One must note that E 1is some average energy which in the case of
the Bethe theory is the mean excitation energy I. Thus, some sort
of average quantity must occur in the argument of long term, there-
fore recalling equation (4) of Lindhard's theory,

2mv2)
Yhw
p

L =1n (

It was shown by Bohm and Pines that Yﬁmp may be replaced by H<w>
where <w> 1is given by equation (7). Thus

2
y=1+3/2i‘;——(1+3/10 g2)
S

Once we know As then R can be determined by equation (9), hence

Y can be determined by equation (7). Now let us use the average

model to evaluate vy as function of Z for various atoms. We took
3 _ 4

. . 3
average distance between electrons in an atom as ro =37 rO/Z

where ¥y is atom's radius. Then Xs = rs/a0 where 2, is Bohr
radius. Table 1 shows T B, AS as functions of Z for some
selected values of Z ranging from Z = 2 to Z = 54.

Table 2 shows Y as a function of Z. TFrom table 2 we can see
Y is nearly a constant equal to 1.,19. This is reasonable, since
other workers have chosen values of Y ranging from Y = 1.1 to

Y = 1.5. Actually in Lindhard's description of Y it is a function

that slightly depends on density or AS, and is not a constant.
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Table 1. r,, B as functions of Z.
Z r, < B
2 1.0 2.42 0.54
3 1.55 3.27 0.62
4 l.12 2.15 0.51
5 0.98 1.75 0.46
6 0.91 1.53 0.43
7 0.9 1.43 0.42
10 1.17 1.65 0.45
11 1.9 2.60 0.55
12 1.6 2.13 0.50
13 1.43 1.85 0.47
14 1.32 1.67 0.45
15 1.28 1.58 0.44
16 1.27 1.54 0.43
18 1.43 1.66 0.45
36 1.59 1.47 0.42
54 1.75 1.41 0.41
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We obtained 7Y = 1.19 partly because we took an average model.

8 to 107).

Table 3 lists Y as a function of As (ranging from 107t
Since p(r) = l/lz from the table we can see that Y is very
slightly dependent on density; a little bit greater than one for
moderate density and approaches unity for both extreme cases--very
low and very high density. Compared with Lindhard's qualitative
description of C(X) = 1/Y dis his theory, as mentioned earlier in
this section, we reach agreement with Lindhard for these two differ-
ent cases. In the exact calculations of mean excitation energy
using local plasma model, we took Y as function of distance «r
(distance from electron to nuclei), instead of a constant.

Recent development confirmed the concept of Y obtained here in
improving the work of Chu and Powers. Furthermore, the above consid-

eration will be used in the following section for low energy stopping

power.

Low Energy Stopping Number Function

Lindhard-Winther expanded the stopping number function of free

electron gas in high energy case and in low energy case as follows:

2 2
2mv mv . .
L2 = 1ln (?%r—) - <T;//L§~ (high density case) (10)
P
5 3 5 3
__ (XF 2mv©, 2
Ll == ( 3) cl(x) (qis—d (low energy case) (11)
P
2, x2
where Cl(X) = L 73 [1n ( 1+ ; X ) - L - :2 1 (12)
2(1-Xx7) X 1+ X
3
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2 . .
%2 = ez/nhVF , wi _ 4mpe”/m is the plasma frequemncy, p is the

electron density V is the Fermi velocity.

F
Bonderup [20] directly combined low emergy L function L
and high energy L function L2 and used V2 instead C(X) in
the first term imn LZ' (In [15] Lindhard and Winther assumed
C(X) = 1; see last few lines of page 10.) He then performed calcu-
lations for the stopping power of some elements using the above L
function and local plasma model. Good agreement was found with
experimental data for proton energy over 500 KeV. Unfortunately,
for low energy regions, his simple approach is not valid.
We establish our modified 1 function based on the following

principles:

1. smoothly join Lindhard-Winther's high energy L function L2
and low energy function Ll;

2. involve Pine correction using Yhw  instead of %Hw_  in all
the terms in L function; P P

3. apply correction on the second term of L2.
The correction on the second term warrants some discussion.

Many complicated physical effects are involved in the low energy
region. We will discuss them in detail to approach the realistic
atomic and molecular world. Bethe, Walske, and Brown [21], [22],
[23], developed quantum mechanical theory of stopping power of
innershells of atoms. Calculations are done under plane wave Born
approximation using hydrogenic wave functions. Brown [21] and
Walske [22] had calculated the stopping power of K shell electrom.

Walske [23] also calculated the stopping power of L shell elec-

trons. Khandelwal and Merzbacher [24] calculated the stopping power
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of M-shell electrons. Khandelwal more recently evaluated K and L
shell corrections [25].

They defined a stopping number function B as follows:

B QE_= éve422 z B (13)
dx  mv2 i=K,L,M "1
where

w q

max max 2 24

B, =/ wdw [ | Fu, (q) | —jil (14)

w_. q_. q

min min

where IFwi(q)[2 is the form factor, q 1is the change in incidence
particles momentum divided by
2

R

N

Ry)

For high energy projectiles, they also give an asymptotic stopping

number formula of the form
Bs(es’ ns) = Ss(es) in Ng + Ts(es) - Cs(es’ ns)

where s = K,L,M and where CS are the so called shell correction

terms. Equation (13) can also be written in terms of

2mv

B=2Z1n ( T

) - g Cs(es’ ﬂs) (13a)

where 1 is the mean excitation energy, es is dimensionless
screening parameter denoting the observed ionization potential in

. . L . . 2 .
units of ideal ionization potential Z sRy/sz. ng 1is also a
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dimensionless quantity and is given by 1/2 mv2 divided by
Zogsa RY-

The calculations of the shell corrections are extremely complex.
Bethe, Brown, and Walske expanded them in power series of l/ns.

The first term of shell correction given by Brown [21] is Ck total
~ l/nk for K shell electron meanwhile Walske's [23] results are

Ck total ~2/nL . The difference between Brown and Walske is
mainly due to the fact that they took different upper limits to
estimate maximum momentum and energy transfer. As is well known
when a heavy particle collides with a free electron, the maximum
momentum transferred to the electron is 2mv and maximum energy
transfer is 2mv2 these values are the ones taken in by Brown in
doing his calculations. But if one considers the nuclear recoiling
and the binding effects, then the upper limit of momentum transfer is
no longer 2mv. Walske took the upper limit of both momentum trans-
fer and energy transfer as infinity. Indeed, both Brown and Walske
simplified the problem in this manner. Later, we'll use an exact
three body semi-classical model to estimate the upper limit of momen-
tum transfer. Right now, at this stage, we'll use Brown's assumption
for consistency with the free electron gas of plasma model, but keep
in mind that there are some errors due to Brown's assumption. The
accurate result should be expected to be between Brown's and Walske's
results. Now we try to establish some relationship between plasma

model and quantum mechanical calculation based on Bethe, Brown, and

Walske's theory. Following Brown

¢, torar - L - L
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where we define

<n> = %-mv2/<T> ,

<T> is the average kinetic energy of electron of atoms then

1 2 2
ap> 2™ lpegs M
n <T> 1 mv2
k il
2
by virial theorem <T> = |<E>l we have
2
<n>_ Prers N
nk ]<E>]
For Z =1 we get
=1
Ck =1 "3 Ck total

hence, we have

o . <>
kiz=l 1 1 _ <17 _ %—(Lindhard—Winther's second term of L2 function) .

ZlZ=1 2 <n> gyl
For Z = 2 we get
cklz=2 = ¢, total
so that
EELEfg.= 1 1 = l~(Lindhard—Winther's second term of L function).
le=2 2 <> 2 2
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Now, let us consider atoms which contain L shell electronms.
Walske also showed that the total shell correction of 1L electron
CL total ~2/nL , which is still due to the value infinity for the
upper limit of momentum transfer and energy transfer. If we keep

Brown's model, i.e. assume that the incident particle collides with

free electron, we have CL total ~l/nL where

Y sz

2

Ziess? BY

Now consider L shell closed. The total K and L shell correc-

tions is

n
1 1 1 K
K total L total nK UL UK UL
1 Zleff? 1 1 2eff? <n>
=TI_[1+Z ]—<n>[l+z ] m
K Keff2 Keff2 K
1
_ 1 1+ ZLeffz] 2 mv2/<T>
<n> VA 2 1 2
Keff 5 mv /ZKeffz Ry
N ZLeffZ] lregs2 Y
<n> Zgess? |[<E>|
for hydrogenic atom
2Z 2 Ry 4--l Z 2Ry * 8 Z 2
|<E>| = Keff 4 Leff 22, pe2 RV . (1 +._E§£§§) %
Z Keff
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hence,

1
<>

CK total + CL total
Z

-1
)
Now consider L shell open:

n
_]_'_.+_1‘__(_z.‘__2)_=i[l+(2—2) K]

+ C. =
K total L Ny g, 8 ng 8 nL

. Z 2 Z 2 Ry
- Keff
_ 1 1 + (z-2) "Leff e

<n> 8 ZKeff2 l<E>|

where ZKeffz Ry _ <n>
|<E>| Tk
Now 1 [ 1 2]
[<B>| =< 12 2p ¢c2 Ry + J2 ‘Legr”
z 2
- Leff
=2 Zeors2 Ry [1 4 (2-2) _Leff 4
z ZKeff2
hence,
1 (2-2) lleff?q z (2-2) “Leff’
C +C = 1+ 2]—2-/(1+ s Z 5)
k total = L <p> TTg Zeoss Coif
or CK + CL 11
Z 2 o>
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In both bases either closed shell or open shell we obtained the same

results,

<T> <T> 1 -
= = (15)
vl 2

1 -1
2 2

~N |

1
2 mvz

(Lindhard-Winther's second term of L., functiom).

2
It appears that from quantum perturbation theory we obtained the
similar result as of plasma theory except a factor of 1/2. Actually
if we use Walske's result exactly the same results are obtained from
both quite different approaches. What is implied in this surprising
similarity. We believe this similarity is the real background of
local plasma model. 1In plasma model average kinetic energy <I> is
related to the plasma density. On another side in Bethe-Brown-
Walske's theory as we have shown the average kinetic energy <T> is
related to atomic wave function by using virial theorem or average
kinetic energy is related to atomic electron demsity. Since these
two approaches give the same stopping power expressions, we may say
that plasma model can be localized by the equivalence of these two
approaches. But for low energy projectile, especially for light
elements which contain L shell electrons, this formula is too
simple to describe the stopping power due to various physical effects.
First, one should take into account the transitions that are forbid-
den by Pauli's principle (for the importance of this in the case of
asymptotic stopping numbers see Khandelwal [26]). There is a modi-
fication factor on l/nK or l/nL or l/nM which depends on Z
and also depends on the shell. The following tables 4 and 5 list the

coefficients of n for different 6 (where 6

L L is the energy

L
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difference between ground state and lowest occupied state in units of

2 = : =
ZLeffz Ry/n* for L shell n = 2) according to Walske for 67, = 1

the coefficient of nL‘l is 2.

Table 4. Coefficient of n.~1.

L

o 0.35 0.45 0.55 0.65 1

Coefficients 1.5032  1.0756  1.9890  2.0000 2
of np

-1

Table 5. Coefficient of nK

8, 0.7 0.75 0.8 0.85 0.9
Coeffisients 2.0662  2.0999  2.1196  2.1290  2.1309
L
K

Second, at low energy we also need to consider high order expan-
sion terms which are not completely known. Walske's expansion for

-3, n -4 forms involves fitting.

the L shell for the n

L L

Third, Brown and Walske's calculations are based on hydrogenic
wave functions, as Walske has pointed out, for Z <30 the results

are not accurate.
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Fourth, as mentioned, Brown's model of upper limit of momentum
transfer was used and this involves an uncertain factor between 1
and 2. This is because due to the nuclear recoiling, the real value
should be between that of Brown and Walske, and should depend on
projectiles energy.

Furthermore, there exists a screening effect on low energy
projectiles charge. It is easy for the element like Li to loose
its valence electron, when positive heavy ion projectile moves
rather slow. There is some chance that the projectile can capture
the electron. This will cause screening effect on projectile which
in turn will decrease the stopping power. All these complicated
effects should be taken into account.

In formula (15)

c, + C
k% 1,12, 1 1, _—
7 { 2} 7 {2 Lindhard-Winther's

Second term of L, function times 2}

»

the factor 1/Z is due £o the definition of C/Z as another Z in
the bracket is mainly due to each electron's contribution to total
shell correction, 1/nK or l/nL is full shell's shell correction,
it looks like these two Z factors cancel each other, but taking
into account all the above effects the situation is not so simple.
As we know, the quantity Z in the bracket of formula (15) is
mainly due to each electron's contribution to total shell correction
but at least the screening effect has a negative influence. As is
well known, Li's first ionization potential is above 5 ev. It means

only 5 ev additional energy can cause Li to loose its valence electron.
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Meanwhile, neon's first ionization potential is about 20 ev. The
ionization potential rises linearly in Z between lithium and neon.
It appears for Li screening effect is much more important than for
neon. At least for 2 < Z < 10 elements of small Z have more
influence on reducing the stopping power through screening than
large Z.

Formally, we absorb this effect into the bracket. WNow, in the
bracket we have two contradictory effects. The shell correction
proportional to Z, the screening effect is in the inverse direction.
In addition, there are many other unclear effects which we have
mentioned above. Roughly now, we have the following assumption,
suppose these two cpntradictory effects roughly cancer each other
also with other effects. We may use a half full shell number as an
average instead of Z 1in the bracket.

Thus, we obtain the expression for L

27

(vaz) __l <T>

Lz = 1n ﬁwp Z m—vz_ for Z g 2

(16)
L—1(@ﬁ) 2 > oty 2 <z <10
27 " They” T w2 <

<T>

mv2

where =-% (Lindhard-Winther's second term in L function).

2

As mentioned earlier the equivalence of the shell correction
term from Lindhard-Winther's theory and Bethe-Walske's theory actu-

ally gives somewhat the explanation of the local plasma model.
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Furthermore, for real atoms we also give the correction of Lindhard's
theory. Also we can tell how far the local plasma model can be
applied to real situations. Lindhard and Winther also used a para-
meter Y in both the first term and terms of L2 to simplify the
calculations we will show in the note at the end of this section in
detail.

Now (16) becomes

1.5
1 3 1 <
L =1nY - = L for Z < 2
2 z 108 Y
1.5
L =1py-2 3 1 for 2<Z<10
2 Z 10X Y
2 e2 2 2
where X = > v is the Fermi velocity and Y = =
ThV F Ty,

Now we apply the Pine correction on L, di.e. use thp instead

of ﬁwp in L, as well as in Ll or using Y = 2mv2/thp instead

of Y = 2mv2/hwp in L function.

Finally, we smoothly join Ll and L2 thus obtaining L func-

tion by the following manner. Extensive numerical evaluations using
a computer program of the function Ll and L2 for various values
of the variable Y revealed that in most useful cases there were

found two roots Yl and Y2 of the equation Ll = L2 where

Y, <Y Furthermore, the slope M of the function L

1 ¢ for values

2

of Y greater than Y, was always small. On the other hand, the

2

slope of L, for Y values less than Y

2 | Wwas very steep. These

observations, including the behavior of these functions (see figure 1),
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Fig. 1. The low and high energy stopping number functions as
function of the variable Y. A typical value equal to
0.1 of the quantity X2 was chosen.
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led us to the following recipe to preserve the continuity consistent

with the physics of the situation

L= L2 when MY < L2
= >
L2 Max [Ll’ L2] when MY L2
actually we have
<
Ll Y Yl
1 =
Y >
L Ty

which was found to be convenient for the computer programming.

functions L and L are defined as follows:

1 2
23 3
Ll=(-3—) Y Cl(X)
1422 1ol
where C,(X) = — (1n ( ) - )
1 X2, 2 X2 1+ 2 x2
2(1-%9) 3
3
L = l Y—E i:i. l
2 = B Zz 10X X
where N 1is the half full shell number
1 for Z € 2
N =
5 for Z €2 <10

The

Note: Lindhard and Winther used a parameter Y in both first and

second terms of the L2 function, i.e.
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3 1
L2 =1InY - 5% Y
instead of
_ 2mv? <T>
Ly=ln 5 "1 2
P = mv
2
2 2
_ 2mv 2 _ e
where Y = o and X = o
P F

where VF is the Fermi velocity VF

n is the density of plasma.

_h (3ﬂ2n)l/3
m

31

2 _ 4ﬁe2n

m

Applying this formula in the atomic or molecular scale, i.e. in

the local plasma model n is the electronic wave function square of

ground state. Thus Y and X are the function of density since we

know the wave function, L

show that the second term of L2

<> . 31.5
5 is equal to 5%
- mv

2

1
Y

the following formulae are used:

>
i

definition of X

_h

-—_— (?:'rr2
m

™
i
|
=]
<
N
!

n)

2/3

5 can be easily obtained. Now we will

(17.1)

(17.2)

(17.3)
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-3 2
<T> = 10 mV (17.4)

F

moo./m ./
From (17.3) we have v/;-— s 3n VF VF

2
from (17.2) we have wg = é%?— ‘n

thus

4'[1 m m .
= —1
hoy =/ VI e/ T AR Ur
h A= 2 me ‘/ irpary
where 3 ™Y

thus
3 ,V,2
v=/2ch
X VF
since from (17.4) we know <T> = i%—m VF2 , finally we have
i.5
= 1n 7 1
LZ =1ln Y - s Y
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Chapter 3

CALCULATION OF MOLECULAR STOPPING POWER

In this section, we perform calculations on the molecular
stopping power of HZ’ He, NZ’ O2 and water vapor for wide proton
projectile energy regions (for H,, He, 100 KeV - 2.5 MeV, 40 KeV -
2.5 MeV else). Comparisons of the experimental data were indicated
in tables 6 to 11 (see reference [27] and [28]).

The basic formula for the stopping power of local plasma is as

follows:

2 2
mv 3

2 4
_4E _ 4mz"e N ¢ o(p) 1 (————) d°r

dx oy 2 Yﬁwp ()

To extend the formula to low energy regions, it is only necessary to

replace

2mvp2

(———
Yﬁwp(r)

by L function, which we have established in the section entitled
"Stopping Number Function."

Now we are interested in molecular stopping power. The charge
density in the inteegral should be the electron density of molecules.
As we mentioned in the section titled "Stopping Number Function,"

the Gordon-Kim model is a rough model of molecular electron density.

33
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They assumed that no arrangement or distortion of the separate atomic
density takes place when the atoms are brought together. The total
electron density of two interacting atoms is, therefore, taken simply

as the sum of the two atomic densities.

o @ =0,@ +p, F-XK,) (18)
A B 12
molecule
where §12 is the internuclear distance.
._)
r
>
r-—Rl2
A -
3 B
ﬁiz

Let us use H, as an example to explain how to apply formular
(18). The ground state wave function of the hydrogen atom is

- -2
1/7 e F. The electron density of hydrogen atom is 1/7 e r Accord-

ing of (18)

2—2rR cos §)

1 12

e +~% e - (2 J r2 + R
For other atoms the atomic wave functions are obtained by‘Clementi,
Roetti [29] (published in atomic data and nuclear data). They used
Roothan-Hartree-Fock method to calculate basic function and their
coefficients for ground and certain excited states of neutral and

ionic atoms for Z < 54. For molecules which contain more than two
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atoms the model can be extended as follows:

> > > >
P molecule = Pa(® + Pp(r - Ry + 0o (¥ - K, () (19)

Here we present the calculation of water vapor which contains three
atoms. The angle between two OH bounds is about 105°. It should
be calculated by formula (19), but for simplicity in this section we

neglected the H-H overlap simply as follows:

> > b
p = po(r) + 2 pH(r - OH)

Hy0

Also we need to comsider partial ionic bond effect. Many compounds
exhibit partial ionic bond rather than pure covalent bond. Pauling
defined partial ionic fraction [30] as the measured dipole moment
divided by ideal dipole moment. Consider, for example, the compound
HC1. The distance between two nuclei is 1.275A°, the partial ionic
fraction is p = -E'OX 100%, u° = e x Ry = 4.80 x 1.275 = 6.12 D, but
the actual measured dipole moment H° = 1.03 D. Hence

p = 1.03/6.12 x 100% = 17%. Hy0 1is also partial ionic bonded

compound. The actual measured dipoment is U = 1.94 D the ideal

dipoment H° = e Ry = 4,8 x 0.958 D = 4,598 D the partial ionic

u
fraction p = -7 = 0.42. The molecule's electron density of partial

M
ionic bonded compounds can be expressed as follows:

+ > >, >
= pA(r) + pB(r - RAB)

Pmolecule

with p¥ = (1 -p) o@D +p o@D
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The case p = 1 (pure ionic bond) physically corresponds to moving
one electron from one atom to another. Now for one atom we use wave
function of positive ion, for another atom we use wave function of
negative jon. For the case p = 0, that is the pure covalent bond,
we still use the neutral atom's wave function. HZ’ 02, NZ’ are all
pure covalent bond molecules.

Water vapor is a partial ionic bonded compound. The distances

between nuclei are listed in table 6.

Table 6. The distances between nuclei of molecules

02, NZ’ Hz and HZO.

R(A) 0.74 0.958 1.094 1.207

Table 7 lists the results of this paper together with Andersen and
Ziegler [31], curve fitted results and three sets of experimental
data for H2 molecules. Good agreement within 20 percent is found
with experimental data from proton energy 100 KeV - 2.5 MeV.
Calculations from the equations established by Bonderup [20] were
also undertaken by extending them to molecular system. Table 7
lists these values for Hz molecules in the last column. These
differ from our results in the low energy regions. Table 8 lists

the same physical quantities for helium gas. The same trend is

observed as in the base of the H2 molecule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"uoissiuad Inoyum panqiyoud uononpoidas Jeyung “Joumo JybuAdoo ayy Jo uoissiwuad ypm paonpoidey

Table 7. Summary of the stopping cross sections (in units of eV x 10_15 cmzlmolecule) for the hydrogen molecule for
various proton energles.

Theoretical
Curve Fitted Values Calcu-
Values lated from
Theoretical Andersen & Reynolds Bonderup & Bonderup's
Values of the Ziegler et al.* Langley Hrelpland Work
E (KeV) Present Paper [31]) [321 [33] [34} [20]

100 11.41 11.6 11.66 11.2 10.23
200 7.52 8.0 7.80 7.64 7.02
300 5.70 5.95 5.82 4,54 5.39

(311 KeV)

400 4.63 4.60 4.70 ) 4.41
500 3.93 4.00 3.94 3.75
600 3.42 3.40 3.40 3.82 3.28

(581.5 KeV)
700 3.04 3.00 2.92
800 2.75 2.75 2.73 2.64
(778.7 KeV)

900 2.50 2.50 2.41
1037 2.24 2.35 2.14 2.16
1055 1.62 1.64 1.53 1.57
2047 1.30 1.21 1.22 1.24
2591 1.07 1.07 1.04 1.04

*Andersen and Ziegler [31] note that the data in reference {32] appear to be constantly high by amount ranging from 5 percent
to 10 percent,

L€



Table 8. Summary of the stopping cross section values (in units of eV x 10_15 cmzlatom) for helium atom for various

proton energies.

Best Available Experimental Results

Curve Fitted

Theoretical
Values Calcu-

‘uoissiwJad 1noyum pauqiyosd uononpoisdas Jayun4 “Jaumo ybuAdoo ayi jo uoissiwiad yum paonpoiday

Values lated from
Theoretical Andersen & Reynolds Park & Bonderup & Brolley Bonderup's
Values of the Ziegler et al. Zimmerman Hrelpland Phillips & Ribe Work
E(KeV) Present Paper [31] [32] [35] [34] [36] [37] [20]
80 7.46 7.37 7.15 6.6
100 7.07 7.16 7.30 7.05 7.02 5.45
200 5.38 5.64 5.55 5.64 5.60 4.49
300 4.26 4.39 4.41 3.78
400 3.59 3.60 3.69 3.25
500 3.10 3.07 3.18 2.85
600 2.73 2.69 2.81 2.54
700 2.45 2.41 2.29
800 2,23 2,19 2.09
900 2.15 2.00 1.92
1000 1.89 1.92 1.79
2000 1.12 1.14 1.07
4400 05.95 0.600 0.585 0.576

8¢
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Table 9 lists the results of this model together with Andersen-
Zeigler and three sets of experimental data from proton energy
40 KeV - 2.5 MeV for Né molecule. Table 10 lists the same physical
quantities for 02. Table 11 lists the results of this model
together with Reynolds et al. experimental data for water vapor

all these tables show theoretical results of this model are in good

agreement with experimental data.
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Table 9. Proton stopping cross section values (in units of
10-15 eV em2) or more exactly 1/2 stopping cross section
per molecule (10-1° eV—cmZ) of 0, gas.
Best Available
Curve Fitted EXPERIMENTAL RESULTS
Values
Theoretical Andersen & Reynolds
Values of the Ziegler et al. Phillips Langley
E(KeV) Present Paper [31] [32] [36] [33]
40 17.20 16.0 17.1+2.6 14.1
50 17.81 16.9 17.8+x2.6 14.8
60 18.24 17.3 18.2+2.6 15.0
70 18.48 17.8 18.5%2.6 14.9
80 18.41 17.9 18.5£2.6
90 18.25+ 2.6
100 17.79 17.7 17.9+2.6
200 13.26 14.1 14.7+2.6
300 10.85 11.2 11.2+1.7
400 9.24 9.3 9.34%+1.7
500 8.10 8.1 8.08+1.7
600 7.25 7.2 7.21%1.7
700 6.7
800 6.0
900 5.65 4.78
1037 5.20
2074
2591 2.71 2.72
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Table 10. Proton stopping cross section per atom (in units of
10~15 eV cm2) or more exactly 1/2 stopping cross section
per molecule (10712 ev - cn?) of 0, gas.
Best Available
Curve Fitted EXPERIMENTAL RESULTS
Values
Theoretical Andersen & Reynolds
Values of the Ziegler et al. Phillips Langley
E(KeV) Present Paper [31] [32] [36] [33]
40 15.89 14.6 15.2%22.6 12.5
50 16.52 15.2 16.4%£2.6
60 16.99 16.2 16.9%2.6 14.2
70 17.29 16.7 17.15%£2.6 13.8
80 17.48 17.0 17.25%2.6 13.8
90 17.1 17.25£2.6
100 17.43 17.0 17.17%+2.6
200 14.36 14.6 14.7%2.6
300 11.84 11.9 11.99+1.7
400 10.14 10.0 9.76 1.7
500 8.92 8.8 8.84%1.7
600 7.99 7.9 7.91%£1.7
700 7.0
800 6.5
900 6.0
1037 5.64 5.25
2074
2591 2.97 2.85
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Table 11. Proton stopping cross section per molecule
(10712 ev - cm?) of H,0 vapor.

Theoretical Reynolds
Values of et al.
E(KeV) Present Report [32]
40 28.81 25.0+2.6
50 28.81 26.1£2.6
60 28.59 26.9%2.6
70 28.22 27.5+2.6
80 27.77 27.6%£2.6
90 28.28 . 27.5%2.6
100 26.77 27.3+2.6
200 21.04 22.0+1.7
300 17.06 17.9+1.7
400 14.43 15.0+1.7
500 12.59 13.0%1.7
600 11.20
700 10.13
800 9.28
900 8.56
1000 7.97
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Chapter 4

MOLECULAR EFFECT OF STOPPING POWER

Deviations from Bragg's rule due to chemical structure have been
recently systematically studied by several experimenters. Some
interesting conclusions were summarized from these experiments. Now,
we have already obtained stopping cross section of molecules by using
method established in the sections titled "Stopping Number Function'
and "Calculation of Molecular Stopping Power.'" We can also easily
obtain the atomic stopping cross section by calculating the differ-
ence of these two quantities. In this way we can obtain the
deviation from Bragg's rule theoretically. A discussion, based on
this evaluation and on conclusion from the experimental side, will
be presented in this section.

Discussion on deviation from Bragg's rule due to chemical
structure of stopping power of molecules is of great interest. In
1905, Bragg and Kleeman first proposed the Bragg's rule [5]. It
states that the stopping power (or stopping cross section) of a
molecular substance is the additive sum of the atomic stopping
powers multiplied by the number of times each atom occurs in the
molecule. Bragg's rule has been shown by Thompson [38], for very
high velocity proton to be valid within about 17%. Wilson and his

co-workers [39], [40], [42] systematically studied the molecular

43
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effect on mean excitation energy. Considerable deviations from
Bragg's rule on mean excitation energy were found, This is not
contradictory to Thompson because due to Bethe's formula

dE _ f4relz 2my

-—= N 1n

dx mv2 I

even though there may be considerable difference in mean excitation
energy 1, for very high velocity case the percentage deviation on
stopping power can still be very small.

For low energy projectile the situation is more complex. Many
authors found no molecular effect on stopping power. Reynolds
et al. [32], and Park and Zimmerman [35], found there existed devia-
tion from Bragg's rule. Since 1971, Baylor group did several
experiments and thus systematically studied deviation from Bragg's
rule due to chemical structure, [6], [7], and [8]. They used a
particle as the projectile from 300 KeV to 2 MeV and many gaseous
compounds as targets in their experiments. The following conclusions
have been given:

1. Physical effects appear to have caused deviation from
Bragg's rule. The stopping power of HZO vapor obtained by Reynolds
et al, [32], was found to be an average 11% higher than that of
D20 ice obtained by Wenzel and Waling for proton of 30-600 KeV [43].

2. Chemical binding effects are more likely to cause depar-.
ture from Bragg's rule for low velocity projectile.

3. Bourland and Power [7] said Bragg's rule applies to the

gaseous compounds which contain single and double bonded molecules.

Bragg's rule does not apply to compounds containing triple bonds.
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For ¢ particles of energy 0.3 -2 MeV, the deviation of Bragg's rule
are found as much as 12.8%. Especially they indicated that molecular
hydrogen obeys Bragg's rule. One year later, Power et al. [6]
wondered about their previous conclusion. They said '"this observa-
tion greatly weakens the assumption that a physical state effect is
possibly the cause of deviation from Bragg's rule and may even imply
that the problem is not due to a difference in e(C) (stopping cross
section) under certain circumstances but rather than the atomic
stopping cross section e(H) may be considerably different than
one-half the molecular stopping cross section e(HZ) as has usually
been assumed in the past. In 1974 Lodhi and Power [8] have a more
careful conclusion. They said that single bonded compounds involv-
ing C, H, F and Br have been shown to have molecular stopping cross
sections that are predictable with errors of a very few percent by
using vapor deposited solid carbon €(C) along with an e(H) that
is common to eleven compounds. It appears that there exists no
unique atomic stopping power for carbon and hydrogen which satisfies
Bragg's rule for double bond compounds and that due consideration
must be given to molecular structure when predicting molecular
stopping power from atomic stopping power for those compounds.

It appears they corrected their previous conclusion that the
double bonded compounds have no deviation from Bragg's rule. How-
ever, their main difficulties lie in the fact that it is very hard

to determine the atomic stopping power from experimental data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Discussion on Deviation from Bragg's Rule, Due to
Chemical Structure from Theoretical Model

In the above section, we found the Baylor group met difficulties
with determining the atomic stopping cross section from experiments,
Actually, it is very hard to obtain atomic state hydrogen. However,
from the local plasma model it is quite easy to calculate the atomic
cross section, since atomic electron ground wave functions are
employed in obtaining the density in local plasma model.

Tables 12, 13, and 14 show the calculated atomic and molecular
stopping cross section of 02, NZ’ HZ’ respectively. The percentage
deviation from Bragg's rule are also listed.

From tables 12, 13, and 14 the following facts are found:

1. When the projectile's velocity becomes extremely large, the
deviation from Bragg's rule almost vanishes from NZ’ 02 gases. When
the protons energy increased to 100 MeV, the deviation from Bragg's
rule decreased to almost 1%. This result agrees with Thomson's
predictions.

2. When the protons velocity becomes comparable to the atomic
electron velocity (corresppnding to proton energy 40-100 KeV) there
may exist considerable deviations from Bragg's rule.

3. Deviations from Bragg's rule are also found to depend on
chemical structure of molecule. As is well known in chemistry Oz's
structure is a little bit fuzzy. From bond energy point of view,

0, is still a double bonded molecule. Meanwhile, N

2 is 100% triple

2

bonded molecule, H, is a single bonded molecule. It is also noticed

2

that the maximum deviation for 02, N2 and H2 above 100 KeV proton

energy are about 2.6%, 7.4% and 10%, respectively. Meanwhile, the
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Table 12. Atomic and molecular stopping cross section and deviation

from Bragg's rule of O

9
E(KeV) 40 100 200 300 500 1037 100000

S(atomic)

eVXlO—:LS cm2 17.44 17.48 14.65 12.15 .9.1 5.72 0.1429
atom

S(molecular)

1/2 eV x 10’_15 cm2 15.89 17.43 14.36 11.84 8.92 5.64 0.1476
molecule

deviation 8.9% 0.3% 2% 2.6% 2% 2.4% 1.1%

Table 13. Atomic and molecule stopping cross section and deviation

from Bragg's rule of N,.

E(KeV) 40 100 200 300 500 1037 100000
S(atomic)
eV x 1075 en? 19.33 18.57 14.52 11.56 8.53 5.30 0.1340
atom
S(molecular)
1/2 eV x 1073 em®  17.70 17.79 13.26 10.55 8.10 5.20 0.1319
molecule
deviation 4% 4.27  7.4%  6.1% 5%  1.9%  1.3%
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Table 14. Atomic and molecular stopping cross section and deviation
from Bragg's rule of H

-
E(KeV) 100 200 300 500 800 1037 25.91

S(2 x atomic)

2x evx 10 ew®  12.7 8.13 6.1 4.17 2.89 2.36 1.11
atom

S(molecule)

eV x 1075 e 11.43 7.53  5.71 3.93 2.75 2.24 1%
molecule

deviation 107 7.4%  6.4% 5.87 4.8% 5.1%  3.6%
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internuclear distance for O N2, and H, are 1.20A°, 1.094A° and

2’ 2

0.74A9, respectively.

It appears, the smaller the internuclear distance the more the
deviation will be. When Gordon-Kim model is employed, the smaller
the internuclear distance always means that there is more overlap
of electron clouds. Thus more overlap causes more deviation from
Bragg's rule. In this model, the molecular binding effects are
also determined by these overlap of electron clouds. However,
Gordon-Kim model is a very simple model for diatomic molecules.

The internuclear distance is the only relevant parameter, but the
most important information about the molecular effect is contained
in this parameter. There is a very strong relationship between

the bond energy and the distance between the nuclei. The stronger
the bond energy, the shorter the distance will be. It is interest-
ing to mote that the single bonded, double bonded and triple bonded
carbon molecules have internuclear distances equal to 2.94, 2.52,
and 2.24 in Bohr units, respectively. It means that the triple
bonded carbon has more overlap that the single bonded carbon. We
may thus expect that the triple bond carbon will have more deviation
from Bragg's rule than the single bonded carbon. It is expected
from the above statement that the same compounds the triple bonded
molecules most likely have more deviation from Bragg's rule than
single bonded molecules, but it does not mean that we agree with
the statement that the single bonded molecules have no deviation
from Bragg's rule.

Actually from our calculation, it was found that H2 had consid-

erable deviation from Bragg's rule at low projectiles energy (10% for
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100 KeV proton energy) due to its small internuclear distance 0.74A°
and relatively large overlap of electron cloud. It was also noticed
that all these deviations due to molecular effect always decreased
the stopping power.

One of the reasons to understand the above fact is that the
binding effects always weaken momentum transfer and cause the upper
limit of momentum transfer to be less than 2mv and thus reduce
the stopping power. Another reason is due to the shell correction
term. As we know the first shell correction term is proportion to
<T>/mv2 for bond states <T> ~ |<E>|. Thus, more binding effect

increased the kinetic energies thus decreasing of stopping power.
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Chapter 5

CONCLUSION

We have established a modified local plasma model which in
conjunction with the Gordon-Kim model affords a method to calculate
molecular stopping power even at low ﬁrojectile energy. By using
this model the main conclusion of deviation from Bragg's rule,
summarized by Baylor group's experiments, can be understood. Some
ambiguity on deviation from Bragg's rule of HZ is now understood
under the present model. The assumption that e(H) = 1/2 E(Hz),
is not correct from overlap point of view (where € 1s the stop-
ping cross section). The only conclusion by using simple Gordon-Kim
model is that the more percentage overlap caused more deviations.
In other words, the stronger the binding effect the more deviation
from the Bragg's rule will be. It appears that for the same
compounds, triple bonded molecules most likely caused more devia-

tion than the single bonded molecules.
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APPENDIX A

THE EQUIPARTITION RULE AND NUCLEAR MOMENTUM RECOILING

A semi-classical three body collision model has been established
to estimate the upper limit of total momentum transfer of proton
incident on hydrogen atoms. Numerical results revealed that the
equipartition rule in shell correction deserves more careful study.

We have mentioned in the section titled "Stopping Number Func-
tion" that to apply a correction on the first term of shell correction
we used Brown's results. Specifically the term <T>/mv2 was used
instead of the term <T>/% mv2 of plasma model.

In their paper "Stopping Power of Electron Gas and Equipartition
Rule" Lindhard and Winther [15] mentioned that their result of first
term of shell correction was in. agreement with Walske's result [22].
As is known, Walske's shell correction term is just twice that of
Brown [21]. This result leads one to believe the existence of an
equipartition rule in case of shell corrections. Lindhard and
Winther noticed this, and surmised that there was a corresponding
equipartition rule in the plasma model. This implies that the plasma
resonance excitation and the close collision each had equal contribu-
tion to stopping power. It appears that plasma model gives exactly
the same results as quantum perturbation theory. Lindhard and Winther
emphasized this fact as a success of local plasma model. Fano also

mentioned this fact in his paper '"Penetration of Proton o Particles
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and Mensons" [44]. He used the results of plasma model to support
the existence of the equipartition rule in shell corrections.

The so called equipartition rule has its origin in Bethe's
stopping power formalism. Bethe divided the stopping power of fast
charged particles into two parts, that due to the distant collision
and the close collision. There was also found to have considerable
contribution to stopping power for those particles which move not
so fast. Thus, besides the logarithm term, the so called shell
correction terms should also be included in calculating the contri-
butions to stopping power.

Brown had calculated the stopping number function and shell
correction of K shell electron by using the hydrogenic wave func-

tions. The expression for stopping number is as follows:

B = fEmaxEdE meax

Emin Qmin

4q 2
Q, 1T @]

where Q = (P - ?')Z/Zm P and P' being the momenta of incident
particle before and after collision IFn(Q)|2 is the form factor.
Brown took the simple two body collision model, namely particles
colliding with a free electron to estimate the upper limit of momen—
tum and energy transfer. Thus he obtained the maximum transfer

AP = 2mv. Brown obtained an asymptotic expression for stopping

max

power of K electron as BK = 2 1n nK + 2.57861 - l/nK where

ny = 1/2 2 in units of
eff

is the first term of shell correction. Meanwhile, Walske took both
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the upper limit of momentum transfer and energy transfer as infinity

and obtained the stopping number functions

B.(6_, ny) =/ EdE [ 4Q r (]2
i"7i i
where i =K, L, M denotes the different shell, n; = mv2/2 in

units of 22

Ry, 0., dis the observed ionization potential of ith
eff 7Y i

shell divided by "ideal ionization potential."
Walske also defined the shell correction term ci(ei, ni) as
follows B.(8,, n,) =S.(8.,) Inn, + T.(8,) - C_(8,, n,) and he thus
it4i i i i i i i i i’ i
obtained asymptotic formula BK and BL both for K and L shell.

The correct coefficient of l/nKz is taken from Khandelwal's paper

[25].
B =2 1nn, + 2.57861 - 2n.~t - (&) 1,2
K g+ 2 K 37 Mg
- ) 1
B, 8 1n n, + 25.5766 an (to order g, )

Notice that the first shell correction terms are 2n£4' or 2n£‘l .

1 1

The K-shell term 2nﬁ' thus is twice that of Brown's term ni'».
In other words, shell correction can also be divided into two
high and low momentum transfer parts. Such parts each contribute

equally to stopping power. Indeed, Walske explicitly divided shell

correction into two parts.
(8, n) = Cl(S, n) + cz(e, n)

where Cl and C2 are low and high momentum transfer parts, respec-

tively. Furthermore, he also showed that Cl and C2 are equal to
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the order of nl_l both for K and L shells and to order 1/nK2
for K-shell. Walske's results are only limited to K and L shell
electrons of hydrogenic atoms. But Fano made an assumption that the
conclusion Cl = C2 can be generalized to any shell of any atom.
This is so called the equipartition rule of shell correction. All
these conclusions are based on Walske's assumption that the upper
limits of the momentum transfer and the energy transfer are infinity.
The question is whether the assumption is true or not.

Brown took the upper limit of momentum transfer as 2mv and
this is based on the assumption that the electron initially is free.
Two factors are neglected in this assumption. First, Brown
neglected the binding effect of the electron. Second, he also
neglected the nuclear momentum recoiling. It is obvious that if
the nuclear motion is involved then due to its huge mass, the total
momentum transfer may be greatly increased. But by how much? Is
taking infinity a good approximation for the upper limit of momentum
transfer? It appears the answer should be dependent on the velocity
of projectile. TFor instance, if the projectile moves extremely slow
then the nucleus may obtain sufficiently large momentum transfer.
Otherwise due to the short interaction time, nuclear momentum could
be small and the upper limit of total momentum transfer will not
differ too much from Zmv.

In this appendix, we estimate the upper limit of momentum
transfer by the projectile to a hydrogen atom by establishing a
semi-classical three body collision model. For protons energy over

50 KeV a fitting formula from numerical results was obtained (see

for the general results later in this appendix):
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AP =2mV_ g
max ep

where

£=

N

(1 + 8.9 (%’,—9)5) L+ J1- (%’—)2)
P

P

where Vp is the velocity of proton and VO is the Bohr velocity.

£
Numerical results of of various proton energies are listed in

table Al.

Table Al. & as functions of E.

E(KeV) 50 75 100 200 400 1600

g 2.20 1.43 1.19 1.01 0.991 0.996

From the above formula and the table we see that for high energy
projectiles Brown's assumption is correct. The values of ¢
slightly less than unity is due to binding effect but for low
energy proton the factor of nuclear momentum play a more important
rule. There is a considerable correction to Brown's results. But
even at 50 KeV protons energy the numerical result of & 1is only
2.2, still quite different from Walske's assumption of infinity.
It is true that when protons energy becomes smaller, then the

correction factor & is expected to increase rapidly, but then
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the expansion of stopping number function Bi should involve more
terms than just the term ni"l. However, Fano's assumption that

Cl = C2 or equipartition rule of shell correction, deserves a careful
study.

Nuclear Momentum Recoiling

In this section first we shall review the conservation laws and
the resulting physical quantities when the collision is assumed to be
taking place between two bodies only. Later, three body collision
problems are handled numerically in a semi-classical manner. Nuclear
momentum recoiling effect is estimated in the relatively low energy
region of Bethe stopping power.

Semi-Classical Formulation of Three Body Problem for
Relatively Low Energy Stopping Power

Estimating of the Quantities Q(min) and Q(max) Two Body
Collision

Let us first comsider the energy regions such that we can always
neglect the nuclear recoiling energy, i.e. we can express energy

conservation law as

_ = 12(x2 - g2
(En EO) 1°(K K )/2MP

where En and EO are the eigen energy values of final state of
electron and initial state of electron, hK and hK' are the
initial and final momentum of projectile.

We know that in lab. coordinates the momentum changes of pro-

jectile are much smaller than the momentum of projectile itself,
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i.e. AK<<K or 60<<1 so, we have

(E_ - Ej) = w2 (&2 - 1<2')/2Mp 2 32K(K - K')/M, = hUp(K - K)

=~

since © is small

Q% = k% + K'2 - 2KK' cos (8) = (K -~ K')% + (Ke)2

= 2 2
Q= \/(En - By /AV,) " + (Ky)

Thus Q(min) = (En - EO)/‘hVp .  This Q(min) estimation is justified
unless one deals with the extremely low energy case for hydrogen atom
targets when proton's energy is lower than 10 KeV (Andersen and
Ziegler) for which we need to consider nuclear recoiling energy term.
Now let us estimate Q(max) term very caretully. This upper limit
estimation will involve a correction to Bethe's theory.

We use Landau's treatment of Bethe's theory for estimating the
upper limit of momentum transfer. Essentiall it neglects the nuclear
recoiling displacement and momentum. Hence it becomes simply a two
body collision. In this mode, the projectile collides with a free

electron.
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The projectile's initial momentum is hK and the final momentum is
hK'. All the momentum changes of projectile are transferred to the
electron which is free in its initial state hence we write down the

momentum and energy conservation laws as,

2 2

K'2 = k% + AK?® - 2KAK cos ¢
ip o B2 -2 Q2

ZMp 2m
AR = Q

where Q is the momentum of electron (in our case projectile momen-
tum loss is entirely transferred to the electron) m is the mass of

electron. From above conservation laws, we have

2K AK cos ¢ - N - QE

2M 2m
P
KQeoso L, 1y 2.0
M =Gty Q m
P P
or Q(max) = 2 mVp

It is a very simple model, but it works at high energy. The main
physical reason is that the projectile moves too fast to cause any
significant displacement of the nucleus. At relatively low energy
due to long interaction time, we need consider the nuclear recoiling

momentum to correct the upper limit, i.e. Q(max).
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Semi-Classical Three Body Formulation

A model essentially based on classical three body problem was
established. Consider a proton which collides with a hydrogen atom.
The electron of the atom was initially assumed to be in its ground
state. Somewhat semi-quantum conditions are involved in our model,
besides usual classical columb interaction. Now let us see how the

nuclear recoiling momentum influences the upper limit.

S
-

=¥

b¥ = X' - K= 2%, + A?n

where A%e and A?n are the differences of the electron momentum
and the nuclear momentum before and after collision. Now the projec-
tiles momentum not only can be transferred to the electromn, but also
be transferred to the nucleus. Furthermore, as stated before we
assume that the electron is in the ground state initially. Now let

us set the initial momentum of nucleus to be zero, i.e. AP_ = p

n n’

Thus we have AK = A? + §
e n

2 3 .3 2
(APe) + 207 P+ (Pn)

bk = [P ] > = [P [ (1 +n)
pe
2 > > 2
(APe) + ZAPe < P+ (Pn)
where 1 +n = - 7 (al)
pe
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We again write down the conservation laws:

.
K'2 = k2 + AK? - 2K AK cos ¢ (A2a)

K k'2  pe? | pn? .
o 0= 5 t 2‘; + 2; + v, (A2b)
P P n

L ok = [B | (1 +n) (A2¢)

For maximum momentum transfer cos (¢) = 1, as before. From (A2a)

we have K% - 1<2'/2MP = (2K AK - AKZ)/ZMP; from (A2a), (A2b), (A2¢c)
we have
| I P62 2 Pe2 Pr12
v [P | (1L +mn) - L+n)=—+4+— - (E, - V)
p e 2M 2m  2M 0 '=n
P n
hence,

2 2
_1 2 . (1+m° 1, 1 Pn
VpIPeI (L+m) + (Ey-V) =3 o 75 +m+M———p2}
% n Fe
L 2
=72 Pe
where
2 P 2
a=(l_+n)_+i+i_92_
Mp gul Mn pe
2v_P (1+4m 2(V_ - E.)
or P2 - P_¢© + L 0 = 0
e o o
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Vv (1+n) v - Eo)a
P = 1+ [1-7 “2 (A3)
e E V= (14m)
P
v (1+n)2 (Vn - Eo)a
AK =P (1+n) = (1 + 1 - ) (A%)
© ¢ % v 2 (1

For high energy case Vp>>V and thus there is no nuclear recoiling

0

1 . 2
a~+1/m, n->0 (Vn - Eo)a /E Vp(l +n)° >0

hence AKmax = 2me . Therefore, relatively low energy case, we have
two corrections; one is from nuclear recoiling momentum, and another
correction is from the initial energy of electron. For most cases

the first correction is more important. From the formula for AKmax’
we can see AKmax depends on 1 + N or depends on nuclear recoiling

momentum Pn which extends the upper limit and will cause an addi-

tional stopping power. In formula

(A%)

w2 4208 B +p2
1+n= e e n n

J p 2
e

> >
All these A?;, Pn, and Pe are numerical results of three body
problems. Now let us establish fundamental equations; we denote

projectile by 1, electron by 2, and nucleus by 3.
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projectile
R& ~— rlz < ez
Ll o~
Y 23

T

r13 A

3
ﬁ\&

For simplifying the calculations we established a two dimensional
model. It is not a bad approach because we are interested in nuclear
recoiling effects in which the main contribution is due to the columb
interactions between projectile and nucleus. This is partly due to
the symmetry and partly due to our interest in obtaining average

values. Equations of motion for projectiles are as follows:

ez(Yl - 1) ez(Yl - v))

. 2 3
M Yl = - r3 + r3
12 13
e2(X - X)) e2(X - %)
Mi-— 2 1~ 3 1
1 r3 r3
12 13
Y =b e =0
1 t = to 1 t = to
. _Vp
X = 4a X
1 t = to 0 1 t = to

Where M is the mass of projectile which in our case is a proton.

We took the integration time as projectile moved from —4a0 to 4a0
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for the standard gas state given the average distances between mole-
cules are about the order of 10A and b is the impact parameter.

For the electron we have the following equations:

e2(¥.-v,)  e?(Y,-1.) .
mY. = 1 2 _ z2_3 Y = sin ¢ Y = Vo sin ¢
2 r3 r3 2 t=t 2 t=t
12 23 —to -0
. 2 (%,-X,) ez(x -X.)
B 3 ™2 2 1 :
m X2 = 3 - 3 Xz = cos ¢ X2 = Vo cos ¢
L Tos t=to t=to

where ¢ 1is the initial phase of electron obrbit. Equations of motion

of nucleus are:

. eZ(Yz—Y3) eZ(Yl—YB) .
MnY3 = 3 - 3 Y3 = 0 Y3 = 0
r23 r13 t=to t=to
. e2(X3—X2) ez(XB—Xl) .
M %, = - 5 X, LT 0 %, T 0
ryg r; =to =to

As is well known numerically high order differential equations can

be reduced to a first order equation such as:

Y(m)

f(X’YSY"y', . y(m_l))

let Y=Y ,Y =Y,,Y"' =Y., ... v® 1) _ ¢ then this will
1 2 3 m

reduce to .
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So our six second order differential equations are reduced to
twelve first order equations. The electron is assumed initially to
be in the first Bohr orbit. Since we took laboratory coordinates the
nucleus is initially at rest in the position of origin. We emphasize
here, the difference from the usual treatment. Here we took the
impact parameter b as the vertical distance from the projectile to
the nuclei's initial position and not the vertical distance from the
projectile to the electrons initial position, as is usually done.

To apply classical mechanics to the microscale system, the most
serious difficulty is that the electron can eventually drop into
positive ions columb potential well. It also caused numerical
difficulties in practice because we need infinitesimal steps to keep
acceptable accuracy.

To prevent this difficulty it looks as though we need to intro-
duce somewhat semi-quantum conditions. In 1951, David Bohm suggested
an interruption of quantum theory in terms of "hidden variables" [45].

Bohm proved that quantum mechanics can be explained as some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

modification to classical mechanics. Schordinger's equation can be

expressed as:

2— 2 42
- v
n Q_g = - v {VW(©) - h VR
dt 2m R
. . 2 - |2
where R is the real part of wave function or R = lw(z)|“.

So the equation of motion for quantum mechanics can be expressed
as using classical potential plus a quantum mechanical potential
which is correction to classical theory.

Following Bohm we got some hint that this semi-quantum mechanics
treatment prevents the electron from dropping into the nucleus. If
given an additional semi-quantum potential then we will have an
additional force to balance the usual columb force.

For 1r<<a, this force will be greater than columb force. It

0

will prevent electron dropping into the nucleus. For 1r>a this

0?
force will vanish. In some sense this additional potential gives
explanation of first Bohr orbit. The above discussion is for the
bound state. For the scattering state the electron can approach the
nucleus. Thus, we will establish a potential somewhat like Fermi
distribution which depends on the energy of the electron

-10
y =B Ll +1) (45)

2mR2 (elOE + 1)

Figure 2 gives the graphics of this potential for E>1 Ved~0, and

for E<-1
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Fig. Al. Ved as a function of E.
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or we may say for scattering state our model is a classical model,
but for bound state we have an additional term somewhat semi-quantum
term.

We use the expression (A6) rather than a potential like

ed 2

Ved = 0 E>0

merely due to the reason that we need a continuous potential to obey
the conservation law accurately. We have some freedom to choose

-10 =12 -8

e or e or e in the terms of Ve The bigger the number

4
we choose in exponential terms the sharper the curve obtained. But
as mentioned too sharp a value will cause energy or momentum conser-
vation problems.

We calculated these recoiling momenta and averaged them over
phase of the electron orbit and then took the average over impact
parameter b. Here as we mentioned earlier, b is the vertial dis-

tance from projectile to the initial position of the nucleus. From

(A4) we have the maximum momentum transfer

2 (V. - E)a
AKmax = Vp 52%59—- T+ /1- ETELE———Q——E) = £ 2m Vp
El Vp (1+m)

In the stopping number formula instead of 2m Vp we have 2m Vpg

hence we finally obtained the new stopping number formula
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2m VPZE
L =1n G——if—“ﬁ

In this two dimension model, there are two parameters, impact para-
meter b and initial phase. Numerically we calculated Pn’ Pe’ Pp’
(14+n), and finally took the average over ¢ and b. Table A2 shows
some examples of Pn, Pe, Pp as functions of initial‘phase.

Table A3 shows some examples of the average of ¢ as a function of
impact of parameter b. The correction coefficient of the stopping
number involves two factors. One is an additional contribution due
to nuclear momentum recoiling. As b is very small this factor is
very important, as b Dbecomes larger this effect vanishes. Another
factor is mainly due to the velocity of the electron in the initial
state. This factor makes negative contribution on correction (make
it less than unity) as VP increases this factor becomes mnegligible.
After an average over ¢ and an average over b, we obtained

Table A4 as a function of the projectiles energy.

As we expected when projectiles energy is small that is when
the projectile moves slow, it causes significant nuclear momentum
recoiling effect. Meanwhile the initial velocity effect is covered
by nuclear recoiling effect. As projectile moves fast it can not
cause significant nuclear recoiling momentum. We can see that the
initial velocity effect however is less important when the projectile
moves fast both effects vanish and there is no correction and we
obtain the Bethe's formula.

An approximate useful formula obtained by fitting the values as

energy greater than 50 KeV, is:
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Table A2. Momentums after collision as a function of the initial

phase,
Initial Phase Momentums After Collision
) Pp(me—Bohr/sec) Pe(me—Bohr/sec) Pn(me—Bohr/sec)
0 3672 1.39 9.28
1.10 3672 1.36 11.47
2.04 3672 1.30 11.27
2.98 3667 2.80 2.86
4,08 3671 1.83 12.31
5.03 3667 4.31 7.65
5.97 3672 2.35 9.65
(a) b=.1 (ao) E = 100 KeV
Initial Phase Momentums After Collision
) Pp(me—Bohr/sec) Pe(me—Bohr/sec) Pn(merBohr/sec)
0 3672 1.47 1.99
1.10 3672 1.37 3.63
2.04 3672 1.21 3.50
2.98 3671 1.73 2.88
4.08 3671 2.15 0.84
4,87 3668 4,72 0.95
5.97 3672 1.25 1.09

(b) b=.5 (aO) E = 100 KeV
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Table A3. as a function of impact parameters,
b(ag) : b(ag) £
0.1 80 0.1 39.2
0.3 8.84 0.3 3.82
0.5 2,94 0.5 1.17
0.7 1.41 0.7 0.9313
1.3 0.852 0.9 0.9318
(a) (E = 50 KeV) (b) (E = 100 KeV)
b(ao) £ b(ao) 3
0.1 19.1 0.1 7.5
0.3 1.161 0.3 0.981
0.5 0.9660 0.5 0.983
0.9 0.9665
(¢) (E = 200 KeV) (d) (E = 400 KeV)
Table A4.
E(KeV) 50 75 100 200 400 1600
£ 2.20 1.43 1.19 1.01 0.991 0.996
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v
=L _Oy5
£=73 (1 =28.9 (Vp) ) (1 +

Where V0 is the Bohr velocity and VP is the velocity of projec-

tile. Numerical results of relative correction of stopping number
are also calculated,.

L/LO as a function of projectiles energy are listed below:

E(KeV) 50 75 160 200 400 1600

L/Lg 1.398 1.15 1.065 1.0035 0.998 0.9993

From the table we can see that for the hydrogen atom target and for
the proton as a projectile of 50 KeV nuclear recoiling momentum
cause a considerable correction (40%) on stopping power for 100 KeV
about 6-7% correction on stropping above 200 KeV the correction of

stopping power can be negligible.

Argument of Extending to General Material

Up to now we have calculated the recoiling momentum of hydrogen
atom target. Now we will give an argument that this result can be
roughly extended to a general case of any other atoms. Let us
consider proton projectile passing through material composed of atoms
of charge Ze. Then due to the columb interaction between proton and

nucleus the momentum transfer is:
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AP = [ f (t) dt
n -® 'y

where fy(t) is proportional to Zt and is independent of the
nuclear mass. Now only for estimating we suppose that all the momen-
tum obtained by nuclei is transferred to the electrons. Thus Z
electrons share their additional momentum. Hence on the average
each electron obtained momentum independent of Zt and nuclear mass.
Then the additional stopping power is proportional to 2t but
the stopping number is independent of Zt and nuclear mass. We can
roughly say that the ratio of "additional stopping number'" to stop-

ping number of any atom are the same as for the hydrogen atom.
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