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ABSTRACT 

A TEST OF RAD CAPTURE SEQUENCING ON ETHANOL-PRESERVED CENTENNIAL 
AND CONTEMPORARY SPECIMENS OF PHILIPPINE FISHES 

 
Madeleine I. Kenton 

Old Dominion University, 2021 
Director: Dr. Kent E. Carpenter 

 

 

Understanding the relationship between ecological characteristics and genetic change in 

natural populations in different time scales can reveal how anthropogenic stressors affect natural 

populations and can improve the success of conservation strategies. The purpose of the 

Philippines Partnerships for International Research and Education (PIRE) project is to examine 

levels of genetic change between historical fish samples collected by the USS Albatross 

expedition in the early 1900s in the Philippines and contemporary populations collected at the 

same localities. This study tests genetic protocols to process historical and contemporary DNA 

for simultaneous comparison.  Two DNA library preparation methods, single digest RADseq 

(“un-baited” sequences) and Rapture or capture probes designed from the initial RADseq tags 

(“baited” sequences), and two filtering pipelines, dDocentHPC and ANGSD are tested using four 

fishes with different life history traits. Sequencing RADseq libraries produced a range of contigs 

from contemporary and historic DNA across species. Sequencing baited libraries did not 

improve the depth of coverage for either Albatross or contemporary results. However, the 

ANGSD pipeline did improve our ability to work with and conduct analyses on the resulting 

low-coverage data, unlike dDocentHPC where fewer sequences passed all respective filters. This 

study was successful in providing the first assessment of sequencing and bioinformatics 



 

methodologies and paves the way for developing methods to improve data that can be obtained 

from the historical Albatross specimens for future PIRE project research.
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INTRODUCTION 

 

The National Science Foundation funded Philippines Partnerships for International 

Research and Education (PIRE) initiative investigates novel scientific questions about the 

evolutionary impacts of marine overexploitation and habitat loss. Comparing DNA from 

historical tissues housed in the Smithsonian Institution’s National Museum of Natural History’s 

(NMNH) collections to present-day DNA samples from corresponding populations, the project 

aims to reveal changes in genetic diversity of marine fishes of the Philippines that took place 

over the past century when substantial human impacts occurred. The current study consists of an 

assessment of different molecular and bioinformatics techniques to establish a successful 

pipeline to reach the overall objectives of this PIRE project. 

 

The Albatross Expedition 

The NMNH houses one of the greatest ichthyology collections in the world. This 

collection contains more than 6 million ethanol preserved specimens and a wide variety of 

osteological preparations and tissues preserved for genetic analyses. The largest accession ever 

made by the museum’s fish collection includes the specimens acquired by the expedition of the 

U.S. Research Vessel Albatross (hereafter referred to as the Albatross). Over the course of just 

two years — 1907 to 1909 — the voyage of the Albatross resulted in the acquisition of 91,000 

fish specimens (hereafter referred to as the Albatross specimens) contained in 28,440 cataloged 

single species, single locality jars or ‘lots’ (Smith & Williams, 1999). On this voyage the 

Albatross spent most its time exploring the natural resources of the Philippines (Smith & 

Williams, 1999). 
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The Philippines is located at the apex of the “Coral Triangle” (Allen & Werner 2002). 

This region is positioned along the equator, between the Indian and Pacific Oceans and includes 

the countries of Indonesia, Malaysia, the Philippines, Papua New Guinea, Timor-Leste, and 

Solomon Islands (Asaad et al., 2018). This area is a global hotspot of marine biodiversity and 

contains over 2,600 species of reef fishes (Tornabene et al., 2015). Out of the 6 countries that 

constitute the Coral Triangle, the Philippine archipelago serves as the epicenter of the world’s 

marine biodiversity, containing more marine species per unit area than anywhere else on Earth 

(Carpenter & Springer, 2005).  

In the Philippines, the extensive biodiversity does not only serve as a point of pride, but 

also substantially contributes to ecosystem services (Tamayo et al. 2018; Pinheiro et al. 2019). 

Many communities benefit from fisheries (both commercial and artisanal) and marine eco-

tourism (White et al., 2000). However, Philippine marine ecosystems are also known to be some 

of the most impacted by anthropogenic stressors (Roberts et al., 2002; Nanola et al., 2010). With 

the number and intensity of these stressors constantly on the rise, it is important to trace how the 

genetic variation of natural populations is affected as this can directly influence conservation and 

management efforts. 

Recent advances in molecular genetic approaches allow us to closely study populations 

and the origins of biodiversity. Similarly, new molecular techniques have improved our ability to 

contrast historical DNA from museum specimens with present-day samples (Wandeler et al., 

2007). The use of specimens from the Albatross collection offers the Philippines PIRE project 

the unique opportunity to investigate how anthropogenic impacts have affected marine species 

over the past century in the epicenter of marine biodiversity.  
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In many museums around the world, preserved specimens such as those that make up the 

Albatross collection, are often stored for long periods of time. However, if the storage conditions 

are not closely monitored and the preservation method is not ideal, it is not likely that they will 

be good candidates for molecular analysis (Chakraborty et al., 2006). One of the most important 

details concerning the Albatross collection is that all specimens were fixed and preserved in 

ethanol (Smith & Williams, 1999). This is an important distinction to make because currently the 

most common method of fixing fresh specimens is with formalin. Formalin is known to cause 

significant alterations to DNA making it challenging to obtain viable genetic material from many 

archival natural history collections (Chakraborty et al., 2006; Baloglu et al., 2007). However, 

ethanol as a method of fixation and preservation leads to significantly less DNA damage over 

time when compared to other common options (Chakraborty et al., 2006; Shiozawa et al., 1992). 

Over the past century therefore, the Albatross specimen’s DNA molecules will have sustained 

less damage than those from similar collections, making them potential candidates for molecular 

analysis.  

In this study, I explore a suite of Next Generation Sequencing (NGS) and bioinformatics 

techniques in order to assess strategies for successfully sequencing historic Albatross fish DNA 

with a depth of coverage that would allow us to detect the level of genetic change in response to 

anthropogenic stress. I first examine the performance of a common pipeline, Restriction-site 

Associated DNA sequencing (RADseq; Miller et al., 2007; Baird et al., 2008) and dDocentHPC 

(https://github.com/cbirdlab/dDocentHPC; a variation of dDocent, Puritz et al., 2014), on 

providing contemporary data that can be associated with species habitat preference. 

Subsequently, I compare the performance of this pipeline on both contemporary and historic 

data, with that of Rapture (RADseq) and Capture, (Ali et al., 2016) a sequencing approach that 
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increases depth of coverage and ANGSD (Korneliussen et al., 2014), a bioinformatics software 

specifically designed for low coverage data. 

 

Next Generation Sequencing and the use of RADseq  

Next generation sequencing platforms perform massively parallel sequencing producing 

millions of fragments of DNA (Grada & Weinbrecht, 2013). These platforms generate large 

amounts of data but often produce high sequence error rates at the same time (Korneliussen et al, 

2014). One method to reduce such error rates and further reduce sequencing costs is to employ 

genome reduction techniques (Hoffberg et al, 2016). Restriction-site Associated DNA 

sequencing (RADseq) is one such technique, which reduces the genome by sequencing 

thousands of DNA fragments located near specific restriction enzyme cut sites (Miller et al., 

2007; Baird et al., 2008; Davey et al., 2011).  

The RADseq methodology employed during the library preparation stage relies on a 

restriction enzyme digestion and a Polymerase Chain Reaction (PCR) step to provide high-

resolution population genomic data at low cost (Shafer et al., 2017). Not only can RADseq be 

successful with a minimal amount of starting material but a reference genome is not required, 

and a wide variety of population genomic approaches such as outlier scans, linkage mapping, and 

demographic analyses can be conducted (Shafer et al., 2017). As a result, this methodology has 

become a common and important component of ecological and evolutionary studies. 

To explore the effectiveness of the Philippines PIRE project’s proposed methods, this 

study began by sequencing single Sbf1-digest RADseq libraries of contemporary specimens on 

an Illumina platform and filtered the output using dDocentHPC. This was conducted to analyze 

our ability to compute and compare population genetic and neutrality test statistics in a total of 
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four marine fishes classified into two groups with distinct habitat preference: a demersal group 

including Siganus spinus and Ambassis urotaenia, and a near shore pelagic group consisting of 

Spratelloides delicatulus and Atherinomorus endrachtensis. These fishes are representative of 

the different types of species that will be used in the wider PIRE project (Table 1). Spratelloides 

delicatulus and Atherinomorus endrachtensis were only utilized in this first objective of the 

study since we did not have sequence data from their respective Albatross counterparts.   

 

Study Species and Life History Characteristics 

 

 

Table 1 Life history characteristics of studied species  

Species (code) Life History Trait Reference  
Feeding Type Depth 

distribution 
Habitat 
preference 

 

Ambassis urotaenia 
(Aur) 

Zooplanktivore Benthic Mostly river 
mouths/in 
brackish waters, 
Amphidromous 

Need ref 

Siganus spinus 
(Ssp) 

Herbivorous, 
diurnal feeders 

Benthic Marine, reef-
associated 

Need ref 

     
Atherinomorus 
endrachtensis  
(Aen) 

Zooplanktivore Semi-
pelagic 

Marine, brackish; 
reef associated, 
lagoons and inner 
parts of reefs 

Need ref 

Spratelloides 
delicatulus  
(Sde) 

Planktivore Semi-
pelagic 

Marine, reef-
associated 
lagoons and along 
costal margins 

Need ref 
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The Little Spinefoot, Siganus spinus, are demersal, marine, reef-associated fish in the 

family Siganidae (Laviña & Alcala, 1974). This family is distinguished by the presence of 

venomous spines. Siganids are widely distributed throughout the tropical, subtropical, and 

temperate Indo-West Pacific region and the Indian Ocean (Iwamoto et al., 2009). Both adults 

and juveniles are primarily diurnal feeders. They feed almost continuously on algae and other 

benthic plants during the daytime (Soliman et al., 2010). They are often found in small schools 

but may browse individually or in pairs, sometimes accompanied by other siganids, scarids, and 

acanthurids. This species has a planktonic larval duration (PLD) of 17 days, a restricted 

settlement period of 1–3 days, and spawns on or around the new moon (Harahap et al., 2002).  

Siganus spinus are economically important and attract attention from the aquaculture industry 

due to their quick growth, herbivorous lifestyle and high commercial value (Randall et al., 1990). 

Additionally, siganids constitute one of the more important food resources for local consumption 

in many small island nations, such as the Philippines (Laviña & Alcala, 1974). They are typically 

fished by spearing or throw-net with the aid of a flashlight at night. 

Ambassis urotaenia is in the family Ambassidae, which are known as the “Asiatic 

Glassfishes” and are distinguished by their transparent bodies (Martin & Heemstra, 1988). 

Ambassis is a genus of closely related species, which inhabit the tropical and sub-tropical coastal 

waters and estuaries of the Indo-Pacific (Martin & Blaber, 1983). In general, Ambassis species 

are demersal zooplanktivorous occurring in schools (Martin & Blaber, 1983). They are mainly 

found in brackish water at the mouths of rivers, and typically amphidromous, migrating from salt 

water to freshwater streams (Riede, 2004).  

 Spratelloides delicatulus is in the Clupeidae family, which includes the herrings, shads, 

sardines, and menhadens (Mohan & Kunhikoya, 1985). This is a near shore pelagic marine 
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species that is associated with coastal reefs and lagoons, and typically occurs in small schools 

that feed near the surface on zooplankton (Mohan & Kunhikoya, 1985). These fish are an 

important part of artisanal fisheries in the Philippines, served either dried and salted or fried. 

They also serve as an important baitfish for the tuna fishing industry throughout the Indo-Pacific 

region (Jones, 1960). This species has a very short life span of around four months (Milton et al. 

1991) and the occurrence of juveniles for a longer period also suggests that S. delicatulus may 

spawn more than once in a spawning season (Mohan & Kunhikoya, 1985.  

Atherinomorus endrachtensis is a member of the family Atherinidae, which are known 

for a distinctive silver stripe that runs horizontally near their lateral line (Kimura et al., 2001). 

This species is nearshore pelagic, associated with marine and brackish waters, and inhabit 

lagoons and reefs but are rarely seen along the open coast (Ivantsoff and Crowley, 2000). 

Atherinomorus endrachtensis is a zooplanktivore that tends to occur in schools (Kimura et al., 

2001). Atherinids are known to have demersal eggs (Takemura et al., 2004). More than 27 

species of marine atherinid fishes are found in the Indo-Pacific (Ivantsoff, 1984; Ivantsoff and 

Crowley, 2000). 

The genetic makeup of these species is compared in order to determine if genetic patterns 

can be associated with habitat usage and to explore the variety of population genetic signatures 

that are likely to be encountered in the wider PIRE project. I predict that similar patterns of 

heterozygosity and nucleotide diversity will be observed within the species that share habitat 

preferences. 

 

Comparison of RADseq and Rapture Methodologies 
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Previous preliminary results from the Philippines PIRE project revealed that sequences 

from historical species yielded low numbers of contigs with data. In order to increase the 

effectiveness of our sequencing efforts, a method known as Rapture (Capture from initial 

RADseq libraries, Ali et al, 2016) was performed for both Albatross and Contemporary 

specimens of A. urotaenia and S. spinus to provide uniform, comparable sets of data. 

Rapture separates RAD tag isolation and sequencing library preparation into two distinct 

steps and uses an in-solution capture of chosen RAD tags to target the sequencing of desired loci 

(Ali et al, 2016). This RAD methodology combines the benefits of both RAD and sequence 

capture into a very inexpensive and rapid library preparation that can include many individuals 

as well as high specificity in the number and location of genomic loci analyzed. It also tends to 

result in higher recovery of more unique (nonclonal) RAD fragments than other RAD protocols 

(Ali et al, 2016). The type of RAD data typically produced with Rapture was expected to provide 

an adequate coverage and amount of single nucleotide polymorphisms (SNPs) to detect for 

instance, fishing-induced declines in genetic diversity (Pinsky & Palumbi 2014).  

The second aim of this study was to compare RADseq (“unbaited” sequences) and 

Rapture (“baited” sequences) methodologies for Albatross and contemporary specimens of A. 

urotaenia and S. spinus. Baited sequences are expected to show an increased depth of coverage 

with higher number of sites and contigs remaining after filtering than unbaited sequences 

(Peñalba et al, 2014).  

 

Comparison of the Filtering Pipelines ANGSD and dDocentHPC 

Low coverage data can also be optimized by choosing the appropriate data analysis 

pipeline. An adaptation of dDocent (Puritz et al., 2014) called dDocentHPC 
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(https://github.com/cbirdlab/dDocentHPC) was utilized for quality trimming, de novo reference 

assembly, mapping, and variant calling to compare contemporary populations with adequate 

coverage. The dDocentHPC pipeline results can be compared to the ANGSD pipeline results, 

which is designed to be useful for low coverage data and for non-model organisms that lack a 

reliable reference population (Korneliussen et al., 2014). ANGSD is intended as a novel and 

efficient program that allows user-friendly access to methods for population genetics while 

working directly on de novo-estimated genotype likelihoods (GL). ANGSD is unique in that it 

allows different types of input data, however, to run all of the available analyses the input must 

be sequence data. It is also noteworthy because it enables users to perform a large number of 

common population genetic analyses (Durvasula et al., 2016). 

Both unbaited and baited genetic output for S. spinus and A. urotaenia were filtered using 

ANGSD and dDocentHPC, in order to compare their output and ability to compute analyses 

from sequence data. Given that ANGSD is tailored to maximize the output from low coverage 

data, this study hypothesizes that as opposed to dDocentHPC, results from ANGSD will generate 

a considerably higher number of sequences after filters and consequently, more metrics will be 

available to analyze focal species. 

It is important to optimize methods for molecular studies as there are many variations in 

methodologies and the type of input data used can cause optimization strategies to vary 

dramatically by study (O'Leary et al., 2018). Methods that provide flexibility in the number of 

loci and individuals analyzed are necessary to facilitate effective genetic analysis (Ali et al, 

2016). The findings of this study will further our understanding of genetic changes throughout 

the past century of major anthropogenic impacts. Each of the study objectives will lay the 

foundation for future studies on contemporary and museum specimens from several species 
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spanning spatial and temporal ranges as part of the larger Philippines PIRE project.  
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MATERIALS AND METHODS 

 

Sampling Design 

A total of four species were sampled to complete this study. From these, A. urotaenia and 

S. spinus were sampled and extracted from both Albatross and contemporary collections, while 

S. delicatulus and A. endrachtensis were sampled and extracted from contemporary specimens 

only. The sites and number sampled are displayed in Table 2 and Figure 1. 

 

 

Table 2 Sampling information. Sample sites are listed by corresponding library preparation 
method, species, and time period of collection. The number of specimens sent for sequencing is 
also given. Ssp=Siganus spinus, Aur=Ambassis urotaenia, Sde=Spratelloides delicatulus, 
Aen=Atherinomorus endrachtensis 
 
Library 
Method 

Species Time period Collection Site Site 
Code 

Collection 
Dates 

Number 
Sequenced 

RADseq 
“unbaited” 

Ssp Contemporary Albay Gulf CGub 8-Nov-2017 52 
Albatross Atulayan Bay AAtu 17-Jun-1909 96 

Sde Contemporary Matnog Bay CMat 8-Nov-2017 90 
Aen Contemporary Batangas Bay CBat 19-Nov-2018 96 
Aur Contemporary Sorsogon Bay CRag 8-Nov-2017 90 

Rapture 
“baited” 

Ssp Contemporary Albay Gulf CGub 8-Nov-2017 52 
Albatross Atulayan Bay AAtu 17-Jun-1909 96 

Aur Contemporary Hamilo Cove CHam 25-Mar-2019 96 
Albatross Pagapas Bay APag 20-Feb-1909 42 
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Fig. 1 Map of contemporary collection sites.  

 

 

This study began by optimizing extraction and sequencing methods on contemporary 

specimens so that Albatross specimen DNA, from irreplaceable samples, would not be exhausted 

during testing. Contemporary collections of the four species of interest were made from sites that 

corresponded to existing Albatross collections of the same species. This methodology ensured 

that contemporary and Albatross counterparts could be compared to analyze population genetic 

change over the last century, which is a main focus of the Philippines PIRE Project. In order to 

accurately gauge the potential to reach this goal, we tested the success of proposed pipelines in 
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extracting and sequencing the DNA of these contemporary specimens. Each species was 

collected from a unique single site around the Philippines. To test our ability to successfully 

sequence DNA from ethanol preserved Albatross specimens, only single historical populations of 

A. urotaenia and S. spinus were processed. These two species were selected due to the success of 

sequencing their contemporary counterparts. The unique historical collections were borrowed 

from the NMNH’s division of fishes collection. The S. spinus lot was USNM lot number 182997 

and the A. urotaenia samples came from USNM lot number 180062.  

Contemporary samples for these species were purchased from fish markets at their 

respective collection sites around the Philippines between 2017 and 2018. Fishes were either 

purchased whole from markets and landings, or fin clips were collected from vendors. 

Collections were made only when the original location of the harvest was verified. Specimens 

designated for genetic study were fixed and preserved in 95% molecular grade ethanol. Muscle 

tissue was subsampled using forceps, a scalpel and an alcohol lamp for sterilization.  

 

DNA Extraction, Library Preparation and Sequencing 

Muscle tissue was removed and stored in vials with 95% ethanol while whole specimens 

were placed into a tube with a unique identifier (so that it could be matched back to the extracted 

tissues) and preserved in 75% ethanol. During transport, samples were stored at room (<23°C) or 

refrigerated temperatures (4°C), and kept out of direct sunlight, until they could be permanently 

stored in a freezer (-80°C). DNA was extracted using QIAGEN DNeasy Blood and Tissueâ kits 

with minor modifications to best accommodate both Albatross and Contemporary tissues. 

Comparison tests were run to determine optimal digestion times and amount of starting tissue. 

Initially results indicated that 20mg of muscle tissue, with a digestion time of 90 minutes for 
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Albatross specimens and 157 minutes for contemporary specimens was optimal for the highest 

DNA yield. This tissue amount (20mg) was extracted and utilized for all of the unbaited 

populations. Subsequent tests indicated that 50mg of tissue helped with low DNA yields and 

therefore, 50mg of tissue was extracted and utilized for all baited populations. The DNA was 

eluted 4 times, using 100 µL of elution buffer (buffer AE). Each DNA elution for a subset of 

samples were visualized via gel electrophoresis on a 1% agarose gel stained with SYBER Safe 

(Invitrogen, Thermo Fisher Scientific) in order to confirm high-quality extracts.  

The elutions were then shipped to the Texas A&M University – Corpus Christi 

(TAMUCC) Genomics Core Laboratory, where RADseq libraries for Illumina sequencing were 

prepared. Extracted DNA was enriched for high molecular weight fragments, using Beckman-

Coulter SPRI-Select paramagnetic beads. Size selection of DNA was regulated with respect to 

the frequency distribution of fragment lengths. The concentration of all DNA samples was 

quantified using a Spectramax M3 fluorescent plate reader and the Biotium AccuBlue kit.  

The first libraries followed a single digest RADseq protocol using New England Biolabs 

SbfI-HF restriction enzyme. A biotinylated, inline barcode was ligated to digested DNA prior to 

sonication with a Diagenode Bioruptor in order to adjust the average DNA fragment size to 

~300bp. Target biotinylated DNA was then isolated using Thermo Fisher Scientific M-280 

Streptavidin Dynabeads. A second SbfI digestion was performed to remove the biotin-Dynabead 

complex. Illumina adapters were ligated to the samples using the KAPA Biosystems Hyper Plus 

DNA prep kit, as in ezRAD (Toonen et al., 2013). The DNA concentration of each library was 

quantified using a KAPA qPCR library quantification kit on an Applied Biosystems Incorporated 

StepONEplus real-time thermocycler. Pooled libraries within a species were normalized and 

combined prior to capture.  
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Sequencing was completed by the Novogene facility (UC Davis, CA). The size of 

fragments in the final libraries were selected using a Sage Science BluePippin pulsed-field 

electrophoresis rig, and the DNA concentration was quantified using a KAPA qPCR library 

quantification kit. All libraries were sequenced using an Illumina HiSeq 4000 sequencer at a 

target depth of 3 million reads per individual. 

Data from sequenced RADseq libraries were then bioinformatically processed (see 

below) to produce filtered de novo references for A. urotaenia and S. spinus, which were sent to 

Daicel Arbor Biosciences laboratories (ArborBio) where probe baits were designed for 

subsequent Rapture analyses. The Rapture protocol utilized custom 120bp MYcroarray MYbaits 

kits, where every nucleotide in each RAD locus is targeted by an average of three baits. Each kit 

contains custom biotinylated capture baits for one species. After the completion of the probe 

design, Rapture libraries were prepared by the TAMUCC Genomics Core Laboratory and 

sequencing was performed in the same sequencing facility as with the RADseq libraries. 

 

Filtering and SNP Discovery 

After sequencing, reads were re-associated with each sample (demultiplexing) using the 

process_radtags function in STACKS (Catchen et al., 2013). All of the following processes until 

the genotyping were performed within the newest version of the dDocentHPC application 

wrapper. Trimmomatic (Bolger et al., 2014) was used to trim adapters and low-quality reads 

from datasets, de novo genome assemblies were carried out using Rainbow (Chong et al., 2012) 

for each species (since no reference genome was available for any), reads were mapped to the de 

novo reference using Burrows-Wheeler Aligner (Li & Durbin, 2009), and filtering improper pairs 

and PCR clones was completed using samtools (Li et al. 2009). Finally, the same Binary 
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Alignment Map (BAM) files were separately used to obtain genotype calls and likelihoods in 

FreeBayes (Garrison 2010) and ANGSD (Korneliussen et al., 2014), respectively, for pipeline 

comparisons. 

The dDocentHPC pipeline utilized a combination of samtools (Li et al. 2009), VCFtools 

(Danecek et al., 2011) filters to parse loci and samples for minimum alternate allele depth and 

frequency, minimum nucleotide and mapping quality score, minimum mean read depth, missing 

data, and PCR clones (see Appendix A for settings). Data from individuals were then aggregated 

by location and time for “sample aware” filtering of loci and sampled based upon missing data, 

reference allele frequency in heterozygotes, strand bias, imbalanced proportions of forward and 

reverse reads, imbalanced mapping quality between allelic states, proper pairing, deflated locus 

quality scores (Li 2014), maximum mean read depth, and Hardy-Weinberg equilibrium. 

Haplotypes for each RAD locus were assembled using rad_haplotyper, which additionally 

filtered loci for paralogs, missing data, low depth of coverage, genotyping errors, and excess 

haplotypes. The loci filtered by rad_haplotyper were excluded from the curated Variant Call 

Format (VCF) files, and SNPs with more than two allelic states were also removed. From the 

final filtered data set, ArborBio targeted approximately 5000 loci at random from each 

population (after the above in-house quality control) for capture bait design. Filters and settings 

for each species are provided in Appendix A. In order to allow for direct comparisons, filters 

applied to all four contemporary species in the habitat preference analysis were optimized using 

the S. delicatulus dataset, which had the lowest number of resulting sites and contigs. In contrast, 

for the comparison of filtering methods as well as baited and unbaited results, filter settings were 

optimized for each species and time period individually (Appendices B-H). Subsequently, 

individuals below a threshold of contigs with data were dropped manually which generated a 
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secondary dataset for each comparison. During the process of making the VCF files, jobs were 

run with both Albatross and contemporary individuals when applicable and split into separate 

Albatross and contemporary runs for filtering of the VCF files.  

Rapture processing followed the filtering process described above except that capture 

data consisted of only individuals (no pools) and the assembly of a reference genome was not 

necessary as baits were mapped to the original de novo reference created from contemporary 

individuals.  

 

Genetic Diversity in relation to habitat preference  

The VCF output from the dDocentHPC pipeline of all four unbaited contemporary 

species datasets was used to determine if genetic patterns were observed in relation to habitat 

preference. VCFtools (Danecek et al., 2011) was run on the final VCF files produced by filtering 

in order to determine the mean sequencing depth and nucleotide diversity (Pi) of populations. 

The program PGDspider (Lischer & Excoffier, 2012) was used to convert VCF files into 

STRUCTURE format to calculate number of alleles (nAlleles), effective number of alleles 

(nEffAlleles), and heterozygosity with the program Genodive (Meirmans & Van Tienderen, 

2004). PGDspider (Lischer & Excoffier, 2012) was again used to convert VCF files into FASTA 

format in order to calculate effective population sizes (Ne) using NeEstimator (Do et al., 2014).  

 

Comparison of RADseq and Rapture Datasets 

The program PGDspider (Lischer & Excoffier, 2012) was used to convert VCF files into 

STRUCTURE format for downstream analyses using the package “adegenet” (Jombart & 

Ahmed, 2011) in R (R Core Team, 2020) and Genodive (Meirmans & Van Tienderen, 2004), 
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and FASTA formats to provide input files for MEGA (Kumar et al., 2008) and NeEstimator (Do 

et al., 2014). Number of alleles (nAlleles), effective number of alleles (nEffAlleles), observed 

and expected heterozygosity, and inbreeding coefficient (Ho, Hs, Gis, respectively) were 

calculated in Genodive and the program MEGA was utilized to calculate Tajima’s D. Ne 

estimator was utilized to calculate Ne with 95% confidence intervals. The R packages adegenet 

and heirfstat (Goudet, 2005) were used to compute principal component analyses (PCAs) and 

fixation indices (FSTs), respectively, from VCF files manually merged using tidyverse 

(Wickham et al., 2019) and custom scripts.  

 

Comparison of dDocentHPC and ANGSD Filtering Pipelines 

The pipeline ANGSD was run on the baited and unbaited BAM files generated for both 

Albatross and contemporary. The settings are listed in Appendices I and J. Filter settings for 

ANGSD were optimized individually for each species and library preparation method. ANGSD 

was used to calculate site frequency spectrum, neutrality test statistics, and FSTs between 

populations. Custom R scripts were utilized to calculated nucleotide diversity, Tajima’s D, and 

principal component analyses from the ANGSD output. 
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RESULTS 

 

Genetic Diversity in Relation to Habitat Preference 

The Siganus spinus dataset produced the highest number of sites and contigs from the 

most individuals and had the highest number of contigs with data per individual after calculating 

coverage (Table 3). In contrast, S. delicatulus showed the least number of final sites, contigs, and 

final individuals (Table 3). Depth of coverage was similar in all species except for A. 

endrachtensis which had the lowest mean coverage (Table 3). 

There were distinctly higher number of effective alleles and inbreeding coefficient values 

for the near-shore pelagic species, A. endrachtensis and S. delicatulus, than there were for the 

demersal species, A. urotaenia and S. spinus (Table 4). However, demersal species illustrated 

higher levels of observed heterozygosity even when this was expected to be lower than that of 

pelagic species (Table 4). There was no clear correlation between nucleotide diversity (Pi) and 

habitat preference. Atherinomorus endrachtensis had highest nucleotide diversity, while A. 

urotaenia displayed the lowest. Spratelloides delicatulus had the only effective population size 

(Ne) that was not infinite.   
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Table 3 Sequencing and filtering results for the four focal species. Final number of sites, contigs 
and individuals for focal species after filtering using the same set of filters optimized for S. 
delicatulus. Mean depth was calculated using VCFtools from the dDocentHPC pipeline. 
Ssp=Siganus spinus, Aur=Ambassis urotaenia, Sde=Spratelloides delicatulus, 
Aen=Atherinomorus endrachtensis. 

Species Final Sites Final Contigs Final Individuals Mean Depth 
Aur 9883 4723 20 47.71 
Ssp 40168 11786 24 56.7 
Aen 2371 1429 20 22.05 
Sde 1106 584 18 49.97 

 

 

 

Table 4 Diversity metrics for the focal 4 species. nAlleles, number of alleles; nEffAlleles 
effective number of alleles; Ho, observed and Hs, expected heterozygosity; Gis, inbreeding 
coefficient; Pi, nucleotide diversity; Ne, effective population size; and mean depth are displayed. 
Allele, heterozygosity, and inbreeding estimates were calculated in Genodive. Pi and Ne were 
calculated using VCFtools and Ne estimator, respectively. Ssp=Siganus spinus, Aur=Ambassis 
urotaenia, Sde=Spratelloides delicatulus, Aen=Atherinomorus endrachtensis. 

Species Habitat nAlleles nEffAlleles Ho Hs Gis Pi Ne 
Aur demersal 1.981 1.322 0.221 0.217 -0.02 0.217 ∞ 
Ssp demersal 1.944 1.335 0.18 0.228 0.211 0.28 ∞ 
Aen pelagic 1.999 1.497 0.108 0.332 0.674 0.321 ∞ 
Sde pelagic 1.988 1.391 0.173 0.272 0.363 0.267 727 
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Fig. 2 Nucleotide diversity (Pi) for each of the four focal species. 

 

 

 

Fig. 3 Mean sequencing depth for each of the four focal species. 
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Comparison of RADseq and Rapture Datasets  

A total of 6666 and 5047 capture baits were designed for S. spinus and A. urotaenia, 

respectively. However, the Rapture baited output did not perform well for any of the filter 

strategies used (see appendices B-H for settings). Baited Albatross specimens produced few or 

no useable sites or contigs using filter settings optimized for S. delicatulus; (Table 5). When 

filtering was optimized by species for baited Albatross specimens by lowering filter thresholds, 

additional contigs were provided (Table 6). However, filters had to be very relaxed in order to 

optimize Albatross populations and when these files were loaded into analysis programs such as 

Genodive, adegenet, or Ne Estimator, no useable data was present.  

Principal component analyses were constructed to compare the baited and unbaited 

contemporary dDocentHPC output. Only the first principal component was significant for all 

populations (Figure 4). Siganus spinus and A. urotaenia had a very similar spread in the unbaited 

PCA. Similarly, the baited PCA also had a very similar spread for both species. However, there 

was a much wider spread in unbaited PCA than the baited ones. Albatross individuals could only 

be analyzed for PCA for unbaited S. spinus where they show a notable separation with their 

contemporary counterparts (Figure 4).  

 



 23 

 
Fig. 4 Principal component analysis from the dDocentHPC output of unbaited (A, 
A. urotaenia; B, S. spinus) and baited datasets (C, A. urotaenia; D, S. spinus). 
Only principal component 1 was significant for all. 
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Table 5 Final sites, individuals, and contigs using filter settings optimized for Spratelloides 
delicatulus filtering for 15 individuals. (Ssp=Siganus spinus, Aur=Ambassis urotaenia, 
Sde=Spratelloides delicatulus, Aen=Atherinomorus endrachtensis). This includes manual 
individual dropping based on coverage for each population as well (see Appendix A for settings) 
 
Library  
Method 

Species Time  
Period 

Final  
Sites 

Final  
Contigs 

Individuals 

RADseq  
“unbaited” 

Ssp Contemporary 40168 11786 24 
Albatross 11 9 8 

Aur Contemporary 9883 4723 20 

Rapture 
“baited” 

Ssp Contemporary 5808 2404 96 
Albatross 0 0 0 

Aur Contemporary 319 126 45 
Albatross 0 0 0 

 

 

 

Table 6 Final sites, individuals, and contigs using filter settings optimized individually for each 
population sequenced. (Ssp=Siganus spinus, Aur=Ambassis urotaenia, Sde=Spratelloides 
delicatulus, Aen=Atherinomorus endrachtensis). This includes manual individual dropping 
based on coverage for each population. (see Appendices B-H for settings) 
 
Library  
Method 

Species Time Period  Final Sites Final Contigs Individuals 

RADseq  
“Unbaited” 

Ssp Contemporary 211754 35298 21 
Albatross 2220 556 8 

Aur Contemporary 6212 3200 21 

Rapture 
“Baited” 

Ssp Contemporary 19621 4708 81 
Albatross 56654 12026 7 

Aur Contemporary 621 194 46 
Albatross 2727 777 5 

 

 

 

Comparison of dDocentHPC and ANGSD Filtering Pipelines 

All Albatross populations had at least a few ending sites and contigs when ANGSD was 

utilized (Table 7). Siganus spinus consistently ended analysis with the highest number of 
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individuals, sites, and final contigs compared to A. urotaenia (Table 7). Filtering with 

dDocentHPC was highly successful for all of the unbaited data sets (Figures 5 and 6).  and was 

more successful at producing reads for the baited Albatross populations than ANGSD (Tables 6 

and 7). However, ANGSD was more successful in producing useable data for all analyses (Table 

8). In addition, optimizing the dDocentHPC filtering required required highly relaxed settings to 

salvage as many contigs as possible. Overall, when compared to the dDocentHPC results (Table 

6), ANGSD (Table 7) was more successful in producing analyzable reads, especially for the low 

coverage data provided by the populations produced with Rapture libraries. 

 Nucleotide diversity (Pi) and Tajima’s D were higher across all dDocentHPC results 

when compared to ANGSD results (Table 8). Ne Estimator produced infinite Ne values for most 

dDocentHPC results, while the values produced by ANGSD were much smaller with bounded 

95% confidence intervals. Values for FSTs were higher when produced by ANGSD and many of 

the values were not produced by dDocentHPC due to a lack of usable baited Albatross data. 

The Ne calculated from ANGSD output provides the estimated population size for the 

temporal midpoint between the Albatross and contemporary populations. Therefore, they are not 

equal to the dDocentHPC Ne calculations and only roughly comparable. I could not directly 

calculate heterozygosity using the data produced by ANGSD (Table 8 list as NA). 

Only the first principal component for all PCAs produced with ANGSD, was significant 

and there was no separation between Albatross and contemporary populations (Figures 7 to 10). 

Unbaited A. urotaenia did not have a corresponding Albatross population and was graphed 

independently. However, there was a much wider spread in baited PCA of the contemporary 

populations than the Albatross populations (Figures 9 and 10) because of the small size of the 

Albatross specimen data.  
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Table 7 Filtering results for the ANGSD pipeline. Final Sites, contigs, and 
minimum represented individuals after filtering with ANGSD. Ssp=Siganus 
spinus, Aur=Ambassis urotaenia, Sde=Spratelloides delicatulus 
Aen=Atherinomorus endrachtensis 
 
Library  
Method 

Species Time  
Period 

Final  
Sites 

Final  
Contigs 

Individuals 

Unbaited Ssp Contemporary 193644 30266 20 
Albatross 876 276 6 

Aur Contemporary 42311 7283 20 

Baited Ssp Contemporary 93314 8041 30 
Albatross 82 20 2 

Aur Contemporary 5091 596 30 
Albatross 18 9 2 

 

 

 

Fig. 5 Final Siganus spinus Contigs after Filtering using Two Different Pipelines (UnB_Ssp_A= 
Unbaited Siganus spinus Albatross, UnB_Ssp_C= Unbaited Siganus spinus Contemporary, 
B_Ssp_A= Baited Siganus spinus Albatross, B_Ssp_C=Unbaited Siganus spinus Contemporary).  
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Fig. 6 Final Ambassis urotaenia Contigs after Filtering using Two Different Pipelines. 
(UnB_Aur_C= Unbaited Ambassis urotaenia Contemporary, B_Aur_A= Baited Ambassis 
urotaenia Albatross, B_Aur_C=Unbaited Ambassis urotaenia Contemporary). 
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Fig. 7 Principal component analysis from the ANGSD output of unbaited Ambassis 
urotaenia contemporary individuals. Only principal component 1 was significant. 
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Fig. 8 Principal component analysis from the ANGSD output of unbaited Siganus 
spinus Albatross and contemporary individuals (red = Albatross, black = 
Contemporary). Only principal component 1 was significant. 
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Fig. 9 Principal component analysis from the ANGSD output of baited Ambassis 
urotaenia Albatross and contemporary individuals (red = Albatross, black = 
Contemporary). Only principal component 1 was significant. 
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Fig. 10 Principal component analysis from the ANGSD output of baited Siganus 
spinus Albatross and contemporary individuals (red = Albatross, black = 
Contemporary). Only principal component 1 was significant. 
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DISCUSSION 

 

Study of Genetic Diversity in relation to habitat preference 

An objective of this study was to explore variations in population genetic signatures 

across species with different habitat characteristics to help understand what to expect in the 

larger PIRE project. The first prediction was that similar patterns of metric values would be 

observed within the species that share habitat preferences. This was true for values in the 

effective number of alleles, heterozygosity, and inbreeding coefficient, where a dichotomy of 

higher or lower values was observed across habitat preference. However, a cohesive picture did 

not emerge from this dichotomy and there was no correlation between habitat preference and 

nucleotide diversity or effective population size.  For example, while nucleotide diversity 

showed high variation across species (the pelagic A. endrachtensis had the highest value), the 

demersal species illustrated higher levels of observed heterozygosity when this was expected to 

be lower than that of pelagic species. Overall, there are no clear patterns in life history 

characteristic across habitat differences. However, more populations and higher sample sizes 

might help increase the power in some analysis, such as Ne. Further hypotheses regarding life 

history characteristics need to be tested in the wider PIRE project in order to better understand 

this component of variation in population genetic structure. 

Other potential sources of noise in the habitat comparison might have been introduced in 

the filtering process in our efforts to produce a direct comparison between species. The filter 

settings applied to all the species where the parameters needed to reach a minimum of 500 final 

contigs (an internal threshold) in the dataset with the lowest quality and depth (S. delicatulus was 

the species that needed the most lenient settings to reach this threshold). This could indicate that 
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some low-quality data may have been included to salvage the number of useable contigs for each 

of these species. Additional filtering strategies may also be useful for exploring potential results 

further. 

    There are also many potential changes to a molecular protocol to increase coverage in 

data. For example, including a whole genome amplification step or modifying RAD libraries 

may increase the amount and quality of SNP data produced.  While RADseq has proven to be an 

effective tool in many studies, alternative methods of optimizing DNA size fragments and 

quantity will be needed to ensure that RADseq alone can be used effectively on historical DNA.  

 

Comparison of RADseq and Rapture Library Prep Protocols 

The Rapture protocol was employed to produce a smaller set of loci but with higher depth 

of coverage than loci produced by RADseq, and to reduce unwanted fragments that would be 

expected in historical DNA. Therefore, this study expected to see a higher number of sites, 

contigs and individuals remaining after dDocentHPC filtering in Rapture datasets. However, 

results were mixed for both pipelines for both contemporary and historical samples. The RADseq 

datasets often had more sites and contigs but less individuals than Rapture datasets. The RADseq 

pipeline also produced substantially more data from the two contemporary populations than from 

the Albatross S. spinus, where only a handful of contigs and individuals remained. The Rapture 

baits appear to have worked successfully for contemporary Siganus spinus but not as effectively 

for Ambassis urotaenia. Using the same filtering scheme as before (optimized for S. delicatulus) 

none of the baited Albatross datasets produced any reads at the end of filtering, suggesting that 

the implementation of Rapture protocols did not increase the effectiveness of our sequencing 

runs. When filtering was optimized independently, the resulting number of sites and contigs from 
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these datasets increased but only very few individuals passed all filters. However, the extremely 

lenient filter settings that were required to salvage baited sequences could have compromised the 

quality of these datasets. Looking at our results, there may have been problems with capture 

probe creation or with the sequences used to create these datasets, as the data contradicts the 

results of previous studies, and did not increase the effectiveness of our data. These observations 

might also indicate a species or collection effect in the results as S. spinus consistently showed 

higher success across treatments. A variety of library preparation methods will need to be tested 

in a higher number of populations and species in order to optimize the use of Rapture and see if 

its success rate changes in future PIRE projects. 

 

Comparison of dDocentHPC and ANGSD Filtering Pipelines 

The ANGSD pipeline was generally more effective than dDocentHPC at handling data 

with very low coverage, consistent with our hypothesis and other studies (Korneliussen et al. 

2014). Unlike dDocentHPC, ANGSD maintained some reads, contigs and individuals for all 

employed filter settings and populations, including all Albatross populations. While 

dDocentHPC calculates allele frequencies from actual genotype calls, ANGSD does this from 

genotype likelihood scores. This was especially important for the Albatross files where low 

coverage would not have produced as much missing data as with dDocentHPC filtering. 

Nevertheless, in order to get contigs in our final VCF file from ANGSD for the baited Albatross 

populations, filters had to be very lenient, just as in dDocentHPC. Even with the improved 

abilities of ANGSD, resulting datasets were still very small and showed a large amount of 

missing data, indicating a need to explore other methodologies earlier in the protocol to address 

these limitations.    
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Historical DNA allows us to examine the evolution of lineages and discover population 

patterns over time. For the Albatross specimens however, many challenges remain that will 

require extra time and effort to optimize protocols to get adequate good quality data. In addition, 

alternative questions need to be tested such as whether it is likely that enough change occurred 

over the past century to account for the observed differences between the Albatross sequences 

and the reference obtained from contemporary specimens. However, the extra effort is fully 

justified given the promise of unlocking historical population and evolutionary patterns from the 

over 90,000 fish specimens collected by the Albatross from the Philippines and surrounding 

waters.  
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CONCLUSIONS  

 

Next generation sequencing and genome reduction techniques have provided much 

needed capacity and versatility for gaining new insights into ecological, evolutionary and 

conservation questions. However, researchers should use careful consideration when choosing 

and applying these methods given intrinsic sources of error and bias. Similarly, optimizing 

methodologies can profoundly affect all steps of a genomic study, from study design and 

execution, to the resulting data output (Andrews et al., 2016).  Results from our RADseq and 

Rapture protocol assessment indicate a need for the PIRE project to explore alternative library 

preparation methods and extraction methodologies to gain higher amounts of DNA with high 

molecular weight. This study has already prompted the PIRE project to explore the use of 

Shotgun sequencing (Messing, 2001), whole genome amplification (Borgström et al., 2017), and 

hybridization RAD (hyRAD) (Suchan et al., 2016) to improve sequencing results from the 

historical Albatross specimens. 
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APPENDIX A 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  

 
For all fltrVCF options use the -h argument at the command line. 
 
Notes: These settings are designed to clean a raw VCF file made from individuals and retain as 

much biological variation as possible. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 07 05 17 15 06 11 09 08 10 04 13 05 07 18 19 20 
 fltrVCF -c 3.3 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools –max-alleles 2 #Remove sites with more alleles.  
 02 vcftools --remove-indels  #Remove sites with indels. Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 8 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.4 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles. 

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size.  

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency.  
Adjust based upon sample size. 

 16 vcftools --missing-indv 1 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.5 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more     real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable.  Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter.  Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX B 
 

Siganus spinus unbaited contemporary individually optimized settings. 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 07 05 17 15 06 11 09 08 10 04 13 05 07 18 20 
 fltrVCF -c 5.5 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels.  Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 8 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.4 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles. 

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.5 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable. Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter.  Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX C 
 

Siganus spinus unbaited Albatross individually optimized settings 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 05 17 15 06 11 09 08 10 04 13 05 18 20 
 fltrVCF -c 5.5 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels.  Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 1 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.1 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles. 

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.9 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs.  The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable.  Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter.  Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX D 
 

Ambassis urotaenia unbaited contemporary individually optimized settings 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 07 05 17 15 06 11 09 08 10 04 13 05 07 18 19 20 
 fltrVCF -c 2.2 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels.  Not adjustable 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 8 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.4 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles.  

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.5 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs.  The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable.  Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter.  Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX E 
 

Siganus spinus baited contemporary individually optimized settings. 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 07 05 17 15 06 11 09 08 10 04 13 05 07 18 20 
 fltrVCF -c 5.5 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels.  Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 8 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.4 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles.  

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.5 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable. Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter. Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX F 
 

Siganus spinus baited Albatross individually optimized settings 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 14 15 06 11 09 08 10 13 18 20 
 fltrVCF -c 5.5 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels.  Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 1 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.1 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable. 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles.  

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.9 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable. Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter. Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX G 
 

Ambassis urotaenia baited contemporary individually optimized settings 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 04 14 05 17 15 06 11 09 08 10 04 13 05 18 20 
 fltrVCF -c 2.2 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels. Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 2 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.1 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles. 

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.5 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable. Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter. Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX H 
 

Ambassis urotaenia baited Albatross individually optimized settings 
 

This is a configuration file for fltrVCF to control filters, filter order, and filter thresholds.  Each 
row controls a setting and will be listed by command and argument.  Settings here will be 
overridden by arguments specified at the command line  
 
For all fltrVCF options use the -h argument at the command line. 
 
fltrVCF Settings, run fltrVCF -h for description of settings 
 fltrVCF -f 01 02 03 14 15 06 11 09 08 10 13 18 20 
 fltrVCF -c 2.2 
 
Filters 
 01 vcftools --min-alleles 2 #Remove sites with less alleles. 
 01 vcftools --max-alleles 2 #Remove sites with more alleles. 
 02 vcftools --remove-indels  #Remove sites with indels. Not adjustable. 
 03 vcftools --minQ  100 #Remove sites with lower QUAL. 
 04 vcftools --min-meanDP 1 #Remove sites with lower mean depth. 
 05 vcftools --max-missing 0.1 #Remove sites with lower proportion of genotypes 

present. 
 06 vcffilter AB min  0.25 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB max  0.75 #Remove sites with equal or lower allele balance. 
 06 vcffilter AB nohet  0 #Keep sites with AB=0. Not adjustable 
 07 vcffilter AC min  0 #Remove sites with equal or lower MINOR allele 

count. 
 08 vcffilter SAF/SAR min 10 #Remove sites where both read1 and 2 overlap. 

Remove sites with equal or lower (SAF/SAR & SRF/SRR | SAR/SAF & SRR/SRF). 
These are the number of F and R reads supporting the REF or ALT alleles. 

 09 vcffilter MQM/MQMR min 0.25 #Remove sites where the difference in the ratio of 
mean mapping quality between REF and ALT alleles is greater than this proportion from 
1. Ex: 0 means the mapping quality must be equal between REF and ALTERNATE. 
Smaller numbers are more stringent. Keep sites where the following is true: 1-X < 
MQM/MQMR < 1/(1-X). 

 10 vcffilter PAIRED   #Remove sites where one of the alleles is only 
supported by reads that are not properly paired (see SAM format specification). Not 
adjustable. 

 11 vcffilter QUAL/DP min 0.2 #Remove sites where the ratio of QUAL to DP is 
deemed to be too low. 

 12 vcftools QUAL/DP max  #Remove sites where the ratio of QUAL to DP is 
deemed to be too high. Not adjustable. 

 13 vcftools --max-meanDP 400 #Remove sites with higher mean depth. 
 14 vcftools --minDP  10 #Code genotypes with lesser depth of coverage as 

NA. 
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 15 vcftools --maf  0 #Remove sites with lesser minor allele frequency. 
Adjust based upon sample size. 

 15 vcftools --max-maf  1 #Remove sites with greater minor allele frequency. 
Adjust based upon sample size. 

 16 vcftools --missing-indv 0.6 #Remove individuals with more missing data. 
 17 vcftools --missing-sites 0.9 #Remove sites with more data missing in a pop 

sample. 
 18 filter_hwe_by_pop_HPC 0.001 #Remove sites with <p in test for HWE by pop 

sample. Adjust based upon sample size. 
 19 rad_haplotyper -d 50 #depth of sampling reads for building haplotypes. 
 19 rad_haplotyper -mp 1 #Remove sites with more paralogous individuals. 

Adjust according to sample size. 
 19 rad_haplotyper -u 40 #Remove contigs with more SNPs. Adjust 

according to sequence length. 
 19 rad_haplotyper -ml   10 #Remove contigs with more individuals exhibiting 

low coverage or genotyping errors. 
 19 rad_haplotyper -h 25 #Remove contigs with greater NumHaplotypes-

NumSNPs. 
 19 rad_haplotyper -z 0.1 #Remove up to this proportion or number of reads 

when testing for paralogs. The more real variation in your data set, the greater this 
number will be. (<1) or number (>=1) of reads. 

 19 rad_haplotyper -m 0.5 #Keep loci with a greater proportion of haplotyped 
individuals. 

 20 OneRandSNP   #Keep 1 random SNP per contig. Not adjustable. 
Can't be run after filter 21. 

 21 MostInformativeSNPs  #Keep the most informative SNP per contig. Not 
adjustable. Can't be run after filter 20. 

 86 rmContigs    #Remove contigs that have had SNPs removed by 
the previous filter. Intended to be run after filters 05, 06, 13, 14, 17, 18 if desired. 
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APPENDIX I 

Siganus spinus ANGSD settings 
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APPENDIX J 

Ambassis urotaenia ANGSD settings 
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