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ABSTRACT

HIGH PERFORMANCE ISSUES IN IMAGE PROCESSING
AND COMPUTER VISION

Jingyuan Zhang
Old Dominion University

Advisors: Drs. Stephan Olariu and James L. Schwing

Typical image processing and computer vision tasks found in industrial, medical,
and military applications require real-time solutions. These requirements have
motivated the design of many parallel architectures and algorithms. Recently, a new
architecture called the reconfigurable mesh has been proposed. This thesis addresses a

number of problems in image processing and computer vision on reconfigurable

meshes.

We first show that a number of low-level descriptors of a digitized image such as
the perimeter, area, histogram and median row can be reduced to computing the sum
of all the integers in a matrix, which in turn can be reduced to computing the prefix
sums of a binary sequence and the prefix sums of an integer sequence. We then pro-
pose a new computational paradigm for reconfigurable meshes, that is, identifying an
entity by a bus and performing computations on the bus to obtain properties of the
entity. Using the new paradigm, we solve a number of mid-level vision tasks includ-
ing the Hough transform and compcnent labeling. Finally, a VLSI-optimal constant
time algorithm for computing the convex hull of a set of planar points is presented

based on a VLSI-optimal constant time sorting algorithm.

As by-products, two basic data movement techniques, computing the prefix sums
of a binary sequence and computing the prefix maxima of a sequence of real numbers,
and a VLSI-optimal constant time sorting algorithm have been developed. These by-
products are interesting in their own right. In addition, they can be exploited to obtain

efficient algorithms for a number of computational problems.
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CHAPTER 1

INTRODUCTION

Recent advances in VLSI have made it possible to build massively parallel machines
featuring many thousands of cooperating processors. Among these, the mesh-connected
computer architecture has emerged as a natural choice for solving image processing
and computer vision tasks. Its regular structure and simple interconnection topology
makes the mesh particularly well suited for VLSI implementation. In addition, matrices
and digitized images map naturally onto the mesh. It comes as no surprise, therefore,

that many image processing and computer vision algorithms have been reported on

mesh-connected computers [7,8,11,28,33,35,37,52,53].

However, due to its large communication diameter, the mesh tends to be slow
when it comes to handling data transfer operations over long distances. In an attempt
to overcome this problem, mesh-connected computers have recently been augmented
by the addition of various types of bus systems [1,4,46,58,59]. A number of efficient
image processing and computer vision algorithms on meshes with a bus system have
been reported in the recent literature [12,46,47,51]. A common feature of these bus
structures is that they are static in nature, which means that the communication pat-

terns among processors cannot be modified during the execution of the algorithm.

Typical computer and robot vision tasks found currently in industrial, medical.
and military applications involve digitized images featuring millions of pixels. The
large amount of data contained in these images, combined with real-time processing
requirements have motivated researchers to consider adding reconfigurable features to

high-performance computers. This has motivated a number of bus systems whose

configuration can change, under program control, to be proposed in the literature: such
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a bus system is referred to as reconfigurable. The bus automaton |56], the
reconfigurable mesh [30,31], and the polymorphic 1orus {21,29] are examples of archi-
tectures with a reconfigurable bus system. Quite recently a number of image process-

ing and computer vision algorithms on reconfigurable architectures have been proposed

[14-16,22,32].

In this thesis, we will solve a number of image processing and computer vision
problems on reconfigurable meshes. Among the low-level vision tasks, we will
address the problem of computing the perimeter, area, histogram and median row of a
digitized image. Among the mid-level vision tasks, we will address the Hough
transform and component labeling. We will also address the problem of computing

the convex hull of a set of planar points.

1.1. The Computational Model

The computational model used throughout this work is the reconfigurable mesh.” An
M XN reconfigurable mesh consists of MN identical processors positioned on a rec-
tangular array (refer to Figure 1.1). The processor located in row i and column ;
(1<isM; 1<j<N Y** is referred to as P(i,j). Every processor has 4 ports denoted by
N, S, E, and W. In each processor, ports can be dynamically connected in pairs to suit
computational needs. Our computational model only allows two connections to be set
in each processor. Furthermore, these two connections must involve disjoint pairs of
ports (see Figure 1.1). In the absence of these local connections, the reconfigurable

mesh is functionally equivalent to the mesh connected computer.

We assume that the processing elements have a constant number of registers of
O(log MN) bits and a very basic instruction set which allows a processor to perform
standard arithmetic and boolean operations in unit time. We assume a SIMD model:
in each time unit the same instruction is broadcast to all processors, which execute it

* When no confusion is possible a reconfigurable mesh will be referred to simply as a mesh.
** For convenience, the row (column) number sometime ranges from 0 to M =1 (N =1).
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and wait for the next instruction. Each instruction can consist of performing an arith-
metic or boolean operation, setting local connections, broadcasting a value on a bus, or
reading a value from a specified bus. The regular structure of the reconfigurable mesh
makes it suitable for VLSI implementation [30,31]. In fact, it has been argued |30]
- that the reconfigurable mesh can be used as a universal chip capable of simulating any

equivalent-area architecture without loss of time.

1 N
2
E
3
4 S

Figure 1.1: A reconfigurabie mesh of size 4x5

By adjusting the local connections within each processor, several subbuses can be
established. We assume that the setting of local connection is destructive in that setting
a new pattern of connections destroys the previous one. At any given time, only one
processor can broadcast a value onto a bus. Processors, it instructed o do so, can read
any bus which passes through one of the processor’s ports. In accord with other
researchers [4,14-16,21,22,30-32,46,47,58,59], we assume that communications along
buses take O(1) time. This seems to be a reasonable assumption in the light of recent

experiments with the YUPPIE system {29].
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1.2. Problems of Interest

We are interested in addressing a number of image processing and computer vision
problems on reconfigurable meshes. Computer vision deals with scene analysis to
obtain results similar to those obtained by man. A simplified computer vision para-
digm consists of two computational stages [20]. The first, which is concerned with
low-level and mid-level techniques, is referred to as image processing. The second,
which is concerned with high-level techniques, is termed image interpretation and pro-
vides a symbolic output which describes the contents of the scene. In this thesis. we
study the following image processing and computer vision problems on reconfigurable
meshes: computing the perimeter, area, histogram and median row among the low-
level vision tasks, the Hough transform and component labeling among the mid-level

vision tasks as well as computing the convex hull of a set of planar points.

Chapter 2 is devoted to the problems of computing the perimeter, area, histogram
and median row of a digitized image. These seemingly unrelated low-level computer
vision tasks become related since they can be solved using the same technique.
Specifically, these problems can be reduced to the problem of computing the sum of
all values of a binary matrix. To compute the sum of all values of a binary matrix, we
first show how to compute the prefix sums of a binary sequence, and then how to

compute the prefix sums of an integer sequence.

In Chapter 3, we study the problem of the Hough transform and component label-
ing in the mid-level vision tasks. These problems are solved by using a novel compu-
tational paradigm, i.e. identifying entities such as lines and regions with buses and per-
forming computations on these buses to obtain properties of the entities. The compu-
tations on buses include finding the maximum on an open bus (therefore, electing a
leader of a closed bus), ranking an arbitrary open bus, and computing the prefix max-

ima (sums) on a bus.
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Chapter 4 describes a VLSI-optimal constant time algorithm for computing the
convex hull of a set of planar points, which was listed as one of the tasks of the first
DARPA image understanding benchmark for parallel computers. This VLSI-optimal
convex hull algorithm is based on the VLSI-optimal constant time sorting algorithm
and is refined from our sub-optimal convex hull algorithm. In turn, the VLSI-optimal
sorting algorithm is obtained from the multiple selection algorithm and a sub-optimal
sorting algorithm.

Finally, Chapter 5 summarizes the results and proposes a number of open prob-

lems. The research results presented in this thesis can also be found in [23,38-45].

e i e s e — e
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CHAPTER 2

LOW-LEVEL VISION TASKS

In this chapter, we will show that a number of low-level vision tasks such as comput-
ing the perimeter, area, histogram and median row of a digitized image can be per-
formed in doubly logarithmic time on reconfigurable meshes. For this purpose, we

first argue that the prefix sums of a binary sequence of size N can be computed in

O(ll—gg%) time on a reconfigurable mesh of size M XN with 2<M <N . This allows us

to compute the prefix sums of a sequence of N integers in the range from 0 to N in
O(1) time on a reconfigurable mesh of size VxN. Next, we show that the number of
I’s in a binary matrix of size¢ NxN can be computed in O(loglogN) time on a
reconfigurable mesh of size NxN. Finally, we reduce the problems of computing the

perimeter, area, histogram and median row to computing the number of 1’s in a binary

matrix.

2.1. Prefix Sums of a Binary Sequence

Given a binary sequence by, by, . . ., by, the prefix sum problem involves computing
the sums of all the prefixes of that sequence, that is, b,, b +b,.
bi+bytbs, . . . bytbot - - +by.

For definiteness, we let z; (1<j<N) denote the j-th prefix sum, that is.
zj=by+bo+ - - - +b;. We first show how to compute z; in constant time on a

reconfigurable mesh of size (N+1)xN by using the configurational computation para-

digm introduced by Wang er 2!, [61]. We then extend the idea to solve the entire

problem in O(lloogLIIlV/I) time on a reconfigurable mesh of size (M+1)x2N with
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2sM <N . Finally, we show that the same problem can be solved in O(:—O&%) time on
og
a reconfigurable mesh of size M xN with 3sM <N .

To begin, assume a reconfigurable mesh of size (N+1)xN with the input sequence
by, by, ... ,by stored by the processors in the first row, with P (1,j) storing b; for all
Jj. I b; is O then all processors in column j connect their ports W and E; if b; is 1
then all processors in column j connect their ports W and S, as well as their ports N
and E. Now P (1,1) broadcasts a signal on the bus through its W port; it is easy to
confirm that for 1<j<N, the row number of the unique processor in column j that
observes the signal on its E port, equals z;+1. Refer to Figure 2.1 for an example:
here, N=4, the binary sequence is (1,0,1,1), and the highlighted bus is the onc on

which the signal is broadcast.

Figure 2.1: The buses formed for (1,0,1,1) on a 5x4 mesh

We now assume a reconfigurable mesh R of size (M +1)x2N (2<M <N). Notice

that in this setup we may not have sufficient height to store the prefix sums as
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described above. We will therefore adapt the previous algorithm by emulating modulo

M arithmetic. We assume that the input is stored in the first row of R, with P(1,2j-1)

storing bj forall j=1,2,...,N.

We now outline the basic idea of the algorithm. Begin by setting connections in
the odd columns as described above. For the even columns, except for the top and bot-
tom rows, connections are set as a cross (i.e. connect N to S, and E to W, with no
intersection). Connections in row M+1 are set as follows: if bj=1 then P(M+1,2j)
connects its ports W and N; if bj =0, then no connections are set in P(M+1,2j). The
connections in the first row of R are set as follows: if hj=l then P (1,2j) connects
ports S and E; if ;=0 then P (1,2j) connects ports W and E. Figurc 2.2 shows such
an example for M =2, N=4, and input sequence (1,0,1,1).

1 2 3 4 7 8

Figure 2.2: The buses formed for (1,0,1,1) on a 3x8 mesh

As before, processor P(1,1) broadcasts a signal along the bus containing its W
port. It is easy to confirm that there exists a unique processor in column 2j (1<j<V)
that receives the broadcast signal from its ports E. Let r; be the row number of this
processor. Now set, for every j,
yj «rj— L

Moreover, it is clear that
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yj] =z; mod M.

Next, mark each processor P(1,2j) if a "wrap-around" occurred in column 2;. We
determine a new set of binary values by letting every processor P (1,2j) set b jl to 1 or
0 depending on whether or not P (1,2/) is marked. It is worth to note that

zy =0 + - +bHM +yL.
The objective now becomes the computation of the prefix sums of the sequence of b{.
b}, ...,b}. Itis further interesting to note that the number of times 1 occurs in the
derived sequence b{, bj,...,b, is a factor of M times less than in the original

sequence. In addition, computing all the values yjl as well as the new binary sequence

takes O(1) time.

This process can be carried out iteratively, say ¢ times, until there are less than
M 1’s in the new binary sequence, and therefore no "wrap-around" will occur. It is
obvious from the above construction that

zp=( o (OM +y)HM +y[) - M + ],
Expanding we get

Zj =y;Mt_l + - +yj2M +yj1
a base M expansion of z;. This last equation yields the final insight into this algo-

rithm. Namely, for the first iteration set

] 1
Zj &Y

and thereafter set

k kngk-1 o k-1
zj < yiM +zim

It is easy to confirm that z] is exactly z;.

To argue for the running time of the algorithm, observe that : is at most

log N
log M

+1. To summarize our findings we state the following result.

Theorem 2.1. The prefix sums of a binary sequence of size N can be computed in

O(-llgg—%) time on a reconfigurable mesh of size (M +1)x2N with 2<M <N . O

9
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We next illustrate the above concepts with the example featured in Figure 2.2.
Here, N=4, M=2, and the input sequence is (b, by, b3, by) = (1,0,1,1). The
highlighted bus in Figure 2.2 is the one on which the signal is broadcast. After the first
iteration, the updated binary sequence (b, b;, b3, b}) reads (0,0,1,0), the sequences
O1,¥2.¥4,y4) and (z}, 2,24, z2}) are both (1,1,0,1). The buses formed in the
second iteration are demonstrated in Figure 2.3. After the second iteration, the
updated binary sequence (b, b2, b, b2) is (00,00), %, y2,y%,y2) is (0,0,1,1)
and (2%, 27, 24, 23) is (1,1,2,3). At this point the computation ends and the prefix

sums returned are (zy, z4, 23, 24) = (1,1,2,3).

1 2 3 4 6 7 8
D NN N

T T ’Q.
'...".'.

Figure 2.3: The buses formed for (0,0,1,0) on a 3x8 mesh

Note that the prefix sums of a binary sequence of size N can be computed in two
stages on a reconfigurable mesh of size (M+1)xN: we deal with the even and odd
subsequences separately and combine the results in the obvious way. Note, further, that
the computation can, in fact, be carried out on a reconfigurable mesh of size M xN by

replacing modulo M arithmetic by modulo (M —1) arithmetic.

In [30] it is argued that the prefix sums of an arbitrary sequence of N real

~ numbers can be computed in O(log N) time in one row of a reconfigurable mesh of

size NxN. Now combining the result in [30] with our findings, we get the'following

10
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important theorem.

Theorem 2.2. On a reconfigurable mesh of size MxN with M<N the prefix sums of

an N-element binary sequence can be computed in O(log N) time if M=1, and in
02BNy time if M>1. O
log M
The following results can be easily derived from our Theorem 2.2.

Corollary 2.3. On a reconfigurable mesh of size MxN the prefix sums of a binary

sequence by, by, . . ., by with at most M 1’s can be computed in O(1) time. O
q 1) N p

Coroliary 2.4. The prefix sums of a binary sequence b;, b,, .. .,by can be com-

puted in O(1) time on a reconfigurable mesh of size VN x. [J

Corollary 2.5. The prefix sums of an integer sequence x;, x,, ... gy with

0<x;<VN can be computed in O(1) time on a reconfigurable mesh of size VN xV . [J

2.2. Prefix Sums of an Integer Sequence

In this section, we present a constant time algorithm to compute the prefix sums of a
sequence of n integers in the range from O to n—1 on an nxn reconfigurable mesh.
We then show that the range of integers to be processed by the prefix sum algorithm
can be extended to n®, where ¢ is a positive integer. In this case, the complexity of

our algorithms is O(c) time on this mesh.

To begin, we show how to compute the prefix sums of ay, a;, . .. .a,_; with
0<a;<n-1 in O(1) time on a reconfigurable mesh R of size nxn. For this purpose, it
is assumed that the sequence is stored in the first row of R, with a ; being stored by

processor P (0,j) for all j. At the end of the computation, every processor P (0, ) will

store agt - +a]~.

First, for every a;, the processors in column j can compute the tuple <Xj.y;>
such that a;=x; xin +y;, with 0<x; <\n -1 and 0<y; <Vn -1 in O(1) time. Note that
x;i=| | and =a; mod Vn
Nl B A "

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The computation proceeds as follows. Every processor P (i ,j) (0<i<n-1) in column j
computes ixVn and compares ixVn with a ;- Notice that in each column there must
exist a unique row number i for which the following two conditions hold:

eixVn < a;;
o (i+1)xVn >a;.

a .
Now this unique row number i is the largest integer smaller than or equal to Vi_- that
n
a; a; —
. j , j
is, Tn , and, therefore, a; mod Nn = Jj— Tn xVn .

Once the tuple <x;,y;> has been obtained from a; (0sjsn-1), computing the

prefix sums of ag, @y, ...,a,; amounts to computing the prefix sums of the
sequences Xg, X1, . . ., X,y and yg, ¥y, . . . ,¥,-;- We only demonstrate how to com-
pute the prefix sums of xg, X, . . . ,x,_, for the prefix sums of yg, y;, ... .y, can

be computed in the same way.

To compute the prefix sums of xg, x;, . .. ,x,_;, we partition the nxn mesh R
into Vn submeshes Mg, My, ... ,My_, of size nxVn, with M; iavolving the
columns iVn through (i +1)Vn =1 of R, and compute the prefix sums of the elements
stored in the first row of every M;. Now Corollary 2.5 guarantees that this can be done
in O(1) time in every submesh M;. Let cq, ¢y, ...,cy;_; be a new sequence of

integers with ¢; (0SisVn-1) standing for XX+ .. Put

differently, every c; is the sum of the elements in the first row of M, .

The purpose of the next data movement operation is to move all the ¢,’s to the
first row of M, with P (0,i) storing ¢; for all i. We proceed as follows: every proces-
sor P (0,(i+1)Vn -1) holding ¢;, broadcasts ¢; to P( (i+DVr =1); in wrn,
P ,(i+1)\fr7 —1) broadcasts ¢; to processor P (i,i); finally, P(i,i) broadcasts ¢; to

P0,i).

It is important to note that every ¢; is an integer in the range 0 to n—1. As

12
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before, every processor P (0,i) (0<i<Vn -1) computes the tuple <u;,v;> such that
c;=u;x\n +v;, with 0<u;<Vn -1 and 0<v;<Vn ~1; this can be done in O(1) time on
M. Consequently, computing the prefix sums of cg, ¢y, . . . , €y -1 reduces to com-
puting the prefix sums of ug, uy, ... ,uy;_yand vy, vy, . .., vy _;. By Corollary 2.5,
this operation, performed in two stages, takes O(1) time altogether.

Now performing in reverse the data movement operation detailed above, we can
arrange for co+ci+ - - - +¢; (0<i<Vn —1) to be moved to P(0,G+1)Vr —1). All that
remains to be done is to add, for all i (0<i<Vn -2), the value just received by
P (0,Gi+1)Vn -1) to all the processors in the first row of M. This, of course, is done

in a straightforward way in O(1) time.
To summarize our findings we state the following result.

Theorem 2.6. The prefix sums of a sequence of integers ag, a;,...,a,., with

0<a;<n-1 can be computed in O(1) time on a reconfigurable mesh of size nxn . [J

To extend the result in Theorem 2.6 to integers larger than n, consider a
sequence &g, @y, .. .,a,-1 with 0<a;<n® for a positive integer ¢. We begin by
representing every a; in radix n form. This can be done by successive divisions in
O(c) time. We apply the above algorithm to every sequence consisting of the digits of
the same rank in all @;’s. By Theorem 2.6, handling every such sequence takes O(1)
time. Since there are a total of O(c) sequences, the whole processing including com-
bining the results from all sequences takes O(c) time, hence we have the following.
Theorem 2.7. The prefix sums of a sequence of integers agy, ay, .. ..q,., with

0<a;<n®, here ¢ is a positive integer. can be computed in O(c) time on a
reconfigurable mesh of size nxn. O
2.3. Sum of all the Integers in a Matrix

The goal of this section is to show how the constant time integer prefix sums algo-

rithm developed in the previous section can be used to devise fast algorithms for
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computing the sum of all values in a square matrix. We first show the number of 1’s
in a binary matrix of size naxn can be computed in O(loglogn) time on a
reconfigurable mesh of size nxn. We then show the sum of all the entries in an nxa
matrix all of whose elements are integers in the range 0 to log n can be also computed
in O(loglogn ) time.

We assume a reconfigurable mesh R of size nxn and a matrix A[1..n,1..n] with
P(i,j) storing Ali,j] for all 1<i,j<n. It is, furthermore, assumed that every entry
Ali,j] is either 0 or 1. We view R as consisting of submeshes R, R,, . . . ,Ry; of
size Vn xn with R; (1<i<Vn ) involving rows (i—1)Vn +1 through iVz of R. In turn,
every R; (1<i<Vn) is further subdivided into submeshes R

Rlz 44444 R~f . Wlth R

i
(1<j<Vn ) consisting of columns (j~1)Vn +1 through jVn of R;.

Next, we compute the sum of all the entries stored by processors in R;; recur-
sively and let the result, denoted by a;;, be stored by processor P (iVn ,jVn ). Notice

that the sum of all numbers in the original matrix is given by Y g e
1<i,j<Vn
Finally, every processor P (iVn ,jVn') broadcasts a;; to P((i~1)Vn +j,jVn ) in

turn, processor P ((i—1)Vn +j,jVn ) broadcasts a;; to P((i=1)Vn +j.1). Note that as a
result of the previous data movement operation, column 1 of every R; contains in top-
down order a;q, a;y, . . . ,a;y;. Now applying Theorem 2.7, we compute the (prefix)
sums of all the elements in column i of R in O(1) time. Clearly, the value of the
prefix sum stored by P (n,1) is exactly the sum of all the entries in the matrix.

Let T(n) denote the worst-case running time of our algorithm. By our previous
discussion, T (n) satisfies the recurrence;

T(n) = T(n ) + O(1).

with the boundary condition T(2) = O(1). It is easy to confirm that the solution of this

recurrence is T(n) = O(loglog n).

The following theorem captures our findings.
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Theorem 2.8. Let A be an nxn matrix all of whose elements are either O or 1. The

sum of all the elements of A can be computed in O(loglog n) time on a reconfigurable

mesh of size nxn. [J

Now consider the matrix A[l..n,1..n] all of whose entries are integers in the
range from O to log n and let R be an nxn reconfigurable mesh with P (i,j) storing
Ali,j] forall i, j. We try to compute the sum of all the entries in A on R by divide
and conquer as before, but once the size of the submeshes is smaller than log nxlog n,
the method in [30] will be used to compute the sums of all entries in the correspond-

ing matrices, and it takes O(loglog n). The overall complexity is still O(loglog n ), so

we have the following result.

Theorem 2.9. Let A be an nxn matrix all of whose elements are integers in the
range from O to logn. The sum of all the elements of A can be computed in

O(loglog n) time on a reconfigurable mesh of size nxn. O

2.4. Computing Low-Level Descriptors of a Digitized Image

In this section, we will use the results developed in the previous section to compute a
number of low-level descriptors of a digitized image, including the perimeter, area,

histogram, and median row.

The area of a gray-level image is defined to be the number of pixels whose
gray-level intensity exceeds a certain threshold. For a binary image, the area
corresponds to the number of 1 pixels in an image. The boundary of the image is the
set of all pixels whose gray-level intensity exceeds the threshold and all of whose
neighbors do not exceed the threshold. It is worth noting that the boundary of a gray-
level image can be identified by checking a constant number of neighbors of cach
pixel. The perimeter of an image is the length of its boundary, i.e. the number of pix-
els on the boundary. Correspondingly, the area of a component is the number of pix-

els within that component, and the perimeter of a component is the number of pixels
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on the boundary of that component.

Recently, Jenq and Sahni [14] presented an algorithm for computing the area and
perimeter of components of an nxn image in O(log n) time on a reconfigurable mesh
of size nXn, if the components are labeled. We will show how to compute the perim-

eter and the area of an an nxn image in O(loglog n) time on a reconfigurable mesh of

size nxn.

In fact, computing the area and perimeter of a digitized image can be reduced to
instances of computing the sum of all values of an nxn matrix discussed in the previ-
ous section. To see that this is the case, we let every processor in the mesh write a 1
or a 0 into a local variable depending on whether or not the gray level intensity of the
pixel it holds is above or below the threshold. Therefore, we get a binary matrix of
size nxn, and the number of 1’s in that matrix is exactly the area of the image. The

problem of computing the perimeter is similar. Consequently, we have the following

result.

Theorem 2.10. Both the area and the perimeter of a digitized image of size nxn can

be computed in O(loglog n) time on a reconfigurable mesh of size nxn. O

The histogram of an image quantized to k& gray levels is a vector H, where H (z;)
is the number of pixels with gray level z; (1<i<k). The histogram tells us how often
each gray level occurs in an image. It indicates the overall brightness and contrast of
an image. Further, the dynamic range of the gray levels that make up an image is
readily apparent. As such, histograms are valuable tools for image processing work
both qualitatively and quantitatively [25]. It is not surprising that algorithms for com-
puting the histogram have been designed and implemented in many parallel architec-
tures [2,12,24,26,27,49].

On a reconfigurable mesh of size nxn, Jenq and Sahni [16] presented an algo-
rithm for computing the histogram of an nxn image quantized to k gray levels in

O(\/Flog(n/\//?)) time. Their algorithm assumes that each processor has oWk )
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memory. In practice, each processor can only have O(l1) memory and the number of
gray levels is a constant. Under this more realistic assumption, their algorithm takes
O(logn) time. This result can be improved if we reduce computing the histogram to
computing the sum of all values of an nxn binary matrix. To compute the histogram
of a digitized image, we proceed to compute the number of pixels of each gray level
and so, by the result in the previous section, the overall complexity is O(kloglog n).
Since for all practical purposes, the number & of gray-level intensities is a constant, we

have the following resuit.

Theorem 2.11. The histogram of a digitized image of size nxn can be computed in

O(loglog n) time on a reconfigurable mesh of size nxn. O

The median row of a binary image is defined to be the row with the property that
about half the 1’s are above it and about half are below it [46]. More specifically. for
a binary matrix A[l..n,1..n], let 5; be the sum of all entries in row i of A, and let S
stand for the sum of all the entries in the matrix. The median row m of A is defined

by the condition

m~—1 S m S

ZS[<— and ZS,'Z—.

=1 2 =1 2
In [46], Prasanna-Kumar and Raghavendra gave an O(n ') algorithm to compute the
median row on nxn meshes with multiple broadcasting. To the best of our
knowledge, there is no algorithm reported in the literature to compute the median row

on a reconfigurable mesh. We will present such an algorithm next.

To compute the median row, we proceed along the same lines as for computing
the sum of all the elements in a binary matrix in the previous section: we view the
mesh R as consisting of submeshes Ry, R, ...,Ry; of size Vnxn with R
(1si<Vn) involving rows (i-1)Va +1 through iVa of R. In addition, every R,

(ISi<Vn) is further subdivided into submeshes Ry, R oo . R . with R

Nn e

(1j<Vn ) consisting of columns (j—1)Vn +1 through jVn of R;.
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We compute, recursively, the sum of all the entries stored by processors in R; J
and move all these partial results to the first column of R. Specifically, if we let a;,
stand for the sum of all the entries in R;;, then as a result of the above data movement

operation, column 1 of every R; contains in top-down order g;y, a;., . . ., a; 5.

Next, having computed the prefix sums of all the entries in the first column of R,

we can determine the unique subscript i for which P ((i —1)Vn,1) stores a value smaller
than %, while P (i Vi ,1) stores a value larger then or equal to —i— Clearly, this tells us

that the median row occurs among the rows from (i —1)Vn +1 to i Vn . This observation
motivates us to search for the median row in the submesh R;.

We now proceed as follows: R; is viewed as consisting of submeshes M,

va

My, ... M, of size n'"*xn with M; (1Sj<n™®) involving rows (j-1)n"*+1 through

jn 1/4

of R; (note that for simplicity the rows of R; are numbered from | to Vn ). We
further subdivide every M; into square submeshes M, of size n 4 with M &

involving columns (k—1)n'"*+1 through kn ' of M.

The sum of all entries in every M I is determined: note that this takes O(1) time
as these sums were computed as part of the recursive call that determined the sum in
all square submeshes R;; discussed above. The only remaining task is to determine
which processor stores this intermediate result. This, however, is done in a straightfor-

ward way whose details are omitted.

We are now in a position to determine which M ; contains the median row. For
this purpose, we move the sum of all entries in every M jk to the first column of R in
the obvious order, and compute the prefix sums of these values. This process contin-
ues until a median row is found. It is easy to show that there is a total of O(loglog n)
iterations and each iteration takes O(1) time. To summarize, we have the following

result.
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Theorem 2.12. The median row of a binary image of size nxn can be computed in

O(loglog n) time on a reconfigurable mesh of size nxn. O
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CHAPTER 3

MID-LEVEL VISION TASKS

The reconfigurability of a bus system allows us to associate an entity with a bus (either
closed or open) and have all relevant elements of the entity on that bus (or enclosed by
that bus if the bus is closed). Once such a bus is established, many properties of these
elements can be determined by performing computations on the bus. In this chapter.
we first present a new computational paradigm, i.e., identifying entities such as lines
and regions with buses and performing computations on these buses to obtain proper-
ties of the entities. Computations on these buses include finding the maximum on an
open bus (that leads to electing a leader of a closed bus), ranking an arbitrary open
bus, and computing the prefix maxima (sums) on a bus. We then use this paradigm to
develop the algorithms to solve the problem of Hough transform and component label-

ing,

3.1. Basic Computations on Buses

On reconfigurable meshes, buses are created dynamically, under program control, to
fulfill computational needs. Every bus will have a positive direction and a negative
direction. We assume that every processor that belongs to a bus can determine the
positive (resp. negative) direction on the corresponding bus by checking local condi-
tions only. Corresponding to each direction each bus will have a first and a last pro-

cessor (for a closed bus, we can elect a first processor, i.e., a leader).

A bus may be thought of as a doubly-linked list of processors, with every proces-
sor on the bus being aware of its immediate neighbors, if any, in the positive and

negative direction. When restricted to a given bus, the processors will be assumed to
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have two ports: one is the positive port, the other ti:e negative port. The positive (resp.
negative) rank of a processor on a bus is taken to be one larger than the number of
processors preceding the given processor when the bus is traversed in the positive
(resp. negative) direction from the first processor. A bus is said to be ranked when
every processor on the bus knows its positive and negative rank. The length of a bus

coincides with the highest rank of a processor on that bus.

Quite often, the dynamic setting of connections within a reconfigurable mesh will
result in establishing a number of buses, some of them being closed. Such is the case
in some image processing applications where buses are "wrapped" around regions of
interest in the image at hand. Subsequent computation often calls for selecting an ID
for every region under consideration. This can be done by labeling every region with
the identity of one of its pixels (typically, the pixel with the largest row and least

column number within the region).

Put differently, it is normally necessary to elect a leader on the bus that was
created around the region and broadcast the identity of this leader to all the pixels con-

cerned. Therefore, we shall formulate the following general problem.

Problem 3.1. Computing the maximum on an unranked bus. Consider an unranked
bus B of N processors, with every processor holding an item from a totally ordered

universe. Identify the processor that holds the largest of these items.

Let P be an arbitrary processor on the bus, and v(P) be the item stored by the
processor P *. The algorithm begins by having all processors disconnect their positive
and negative ports. We equate active processors with those on the bus which have set
no connections. Hence, initially, all processors are active. During the course of the
algorithm certain processors will become inactive, as we are about to explain. For a

processor P on the bus, its (current) active neighbors are the closest active processors

* For simplicity we assume that all items on the bus are distinct.
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o st o

in both positive and negative directions, provided they exist. An active processor P is
said to be a local maximum if with P’ and P” standing for the active neighbors of P,
VIP)>v(P' )and v(P) > v(P").
The algorithm comprises at most |_log N/ iterations. Specifically, for all i

(Isi .<_Uog N), iteration i involves the following sequence of steps:

Step 1. By probing its active neighbors in each direction, every active processor deter-

mines whether or not it is a local maximum;

Step 2. Every processor that is not a local maximum on the bus connects its positive

and negative ports, thus becoming inactive;

The algorithm terminates when there is only one active processor left on the bus.
It is easy to see that the algorithm has at most Llog NI iterations: this is because no
two active neighbors on the bus can be local maxima in a given iteration. Conse-

quently, every iteration eliminates at least half of the active processors. Therefore we

have the following result.

Lemma 3.1. Given an unranked bus of length N with every processor holding an item
from a totally ordered universe, the processor that holds the largest of these items can

be identified in O(log N) time. [0

Since electing a leader is equivalent (in our formulation) to computing the max-

imum of the items on the bus we have proved the following result.

Corollary 3.2. A leader can be elected on an unranked closed bus of length N in
O(log N) time. OJ

Consider an arbitrary bus B. Applying the divide-and-conquer paradigm on B
assumes that every processor on the bus knows its (positive) rank. Therefore. an

important task is to determine the rank of every processor on B. Specifically, we state

this as the following fundamental problem.

Problem 3.2. Ranking an arbitrary bus. Let B be an arbitrary open bus of length V.
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compute the rank of every processor on B.

Obviously, in case the bus B is closed, our first task is to elect a leader on this
bus and to transform B into a open one. Our algorithm for ranking a bus is an adapta-
tion of an elegant algorithm of Cole and Vishkin [5]. They define the r—ruling set
problem as follows. Let G=(V ,E) be a directed graph such that the in-degree and the
out-degree of every vertex is exactly one. For obvious reasons such a graph is termed
a ring. A subset U of V is an r-ruling set if (1) no two vertices in U are adjacent, and
(2) for each vertex v in V there is a directed path from v to some vertex in U whose

edge length is at most r. Cole and Vishkin proved the following surprising result.

Proposition 3.3 ([5]) A 2-ruling set of a ring with N vertices can be obtained in

O(log" N) time using N processors in the EREW-PRAM. [

As noted by Cole and Vishkin the same algorithm applies to models of computa-
tions where only local communications between successive nodes in the ring are
allowed. This is precisely the case of an unranked bus. To rank an arbitrary bus B of
length N we let every processor store a 1. Now repeatedly find a 2-ruling set in B
and eliminate the nodes not in the current ruling set after having added the value they
contain to the next node of the ruling set. Once the rank of the node in the current
ruling set is known, the rank of the node eliminated can be derived in O(1) time.
Clearly, this process terminates in O(log N) iterations. Consequently we have the fol-

lowing result.

Lemma 3.4. An arbitrary open bus of length N can be ranked in O(log Nlog" N ) time

using the processors on the bus only. O
Another fundmental problem is performing semi-group computations on a bus

Problem 3.3. Computing the prefix maxima (sums) on a bus. Consider an arbitrary
open bus B (either ranked or unranked) of length n, with every processor holding an

item. The problem of interest is to compute the prefix maxima (sums) on the bus.
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It is easy to see that a ranked bus of length N is equivalent to a reconfigurable
mesh of size 1xn. By applying the prefix maxima (sums) algorithm in [30], it follows
that the prefix maxima (sums) on a ranked bus of length N can be computed in
O(log N) time. For an unranked bus of length N, we can first rank the bus, then
apply the prefix maxima (sums) algorithm in [30]. Hence we have that the prefix max-

ima (sums) on an unranked bus of length N can be computed in O(log N log*N ) time.

Although our general bus ranking algorithm takes O(log Nlog"N), in many prac-
tical (special) cases, bus ranking takes only O(log N) time or even O(1) time. There-
fore under such circumstances, computing the prefix maxima (sums) on an unranked
bus of length N takes O(log N) time. Next we will show that, even on an arbitrary

unranked bus of length N, the prefix maxima problem can be solved in O(log N ) time.

To make the problem precise, we need to introduce some terminology. As before,
let P be an arbitrary processor on the bus, and v (P) be the item stored by the proces-
sor P. We let Neg(P) stand for the set of processors preceding P in the positive
direction of B, and we let Pos(P) stand for the set of processors following P in the
positive direction of B. Now the prefix maxima problem involves computing for
every processor P on the bus the value

max  v(
QeNeg(P)uP

Initially, every processor on the bus marks itself "active”. During the course of
the algorithm certain processors will become inactive. For a processor P on the bus,
its (current) active neighbors are the closest active processors in Neg(P ) and Pos(P ).
provided they exist. An active processor P is said to be a local maximum if with P’
and P” standing for the active neighbors of P,

v(P)>v(P )and v(P) > v(P").

The algorithm begins by having all processors on the bus disconnect their positive

and negative ports. We equate active processors with those on the bus which have set

1o connections (thus, initially, all processors on the bus are active). The algorithm

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comprises at most |log nl iterations. Specifically, for all i (1<i<liog n), iteration i

involves the following sequence of steps:

Step 1. Every active processor checks its two active neighbors to detect whether or not

it is a local maximum;

Step 2. Every processor that is not a local maximum connects its positive and negative

ports (and, thus, becomes "inactive");

Step 3. Every processor that is a local maximum in the current iteration broadcasts the

value it holds in the positive direction on the bus;

Step 4. Every inactive processor updates the prefix maximum by taking the maximum

of the value received and the current maximum it stores.

It is easy to see that this simple algorithm terminates in |log N] iterations: this is
because no two active neighbors on the bus can be local maxima in a given iteration.
Consequently, every iteration eliminates at least half of the active processors, and the

claim follows.
To summarize our findings we state the following result.

Lemma 3.5. The prefix maxima problem on an arbitrary unranked bus of length N' can

be solved in O(log V) time. O

3.2. The Hough Transform

One of the fundamental problems in computer vision and image processing is the
detection of shape. An important subproblem involves detecting straight lines and
curves in binary or gray-level images. The task of detecting lines is often accom-
plished by a computational method referred to as the Hough transform [10,13,20,55].
We assume an image of size NxN, and for the purpose of computing the Hough
transform, we assume that the image has been binarized by assigning to every possible
edge pixel a 1 and to every pixel that cannot be an edge pixel a 0. An instructive dis-

cussion of this binarization process can be found in [53]. It is well known that a
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straight line L in the plane can be represented by two parameters 8 and p, where 0 is
the angle determined by the normal to L and the positive direction of the x axis, and
p is the signed distance from the origin to the line L, with the points on the line satis-
fying xcosB+ysinb=p (refer to Figure 3.1). For an image of size N xN, the Hough
transform involves building a matrix H[1..n,~V2N..N2N] such that for every i, Hli,p]

contains the number of the edge pixels (x, y) for which {x cosf; + ysinG;J=p, here 0,,

6,, . ..,0, are the possible values of the 8-parameter.

L: xcosO+ysin0= o

v

O \ X

Figure 3.1: A line L in the normal form

Recently, a number of parallel algorithms for the Hough transform have been
designed for different parallel architectures. Cypher ¢ al. |7}, and Guerra and Ham-
brush [11] show that the Hough transform can be computed in O(N+n) time on a mesh
connected computer of size NxN with each processor storing a pixel. Ranka and
Sahni [50] presented O(n+logN ) algorithms on an N2 hypercube. Jolion and Rosen-
feld [18] present an O(log n) Hough transform algorithm on pyramid. Jeng and Sahni

[15] give an O(nlog(N/n)) algorithm on a reconfigurable mesh of size N xN with each
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processor storing a pixel by token passing. We will present another O(nlog(N /n))
algorithm for computing the Hough transform by using a bus to identify a potential
line and computing how many edge pixels are on the bus. Although our algorithm has

the same complexity as Jenq and Sahni’s, ours is simpler and more natural.

We begin by reviewing basics concerning the Hough transform. The interested
reader is referred to [13,20,55] for more information. Let L be a straight line in the
plane. It is easy to see that L can be represented by the following two parameters:
® 0, the angle determined by the normal to L and the positive direction of the x axis;

® 0, the signed distance from the origin of the cartesian coordinate system to L.

When no confusion is possible we simplify the notation by writing 6 and p,
respectively. It is obvious that if we restrict 0 to the range [0..7t], the ordered pair (8,p)
uniquely determines the line L. In addition, a point (x, y) of the plane belongs to L

whenever

xcos6 + ysin@ = p. (3.1)

Equation (3.1) is at the heart of the practical approach for detecting straight lines
in an image.

The process begins by identifying the pixels in the image space that have a
chance of belonging to an edge (i.e. straight line) in the image. Appropriately, these
pixels are referred to as edge pixels (see [53] for details). It is convenient to associate
with every edge pixel in the image the value of 1 and with all the remaining pixels the
value of 0. Next, the O-space is quantized: let 6,, 6,, . ..,0, be the angles in the
quantization. Naturally, the number n of different angles in the quantization is dictated
by the desired accuracy of the output as well as by the resources available. It is cus-

tomary, although not necessary, to chose the angles in the quantification such that for
all i, 6i=—7:—. For every angle 6; in the quantization, all the edge pixels (x. v) that

have the same p-value™ in (3.1) define a possible edge in the image space. For an

* Truncated to an integer; in this section we shall always truncate by applying the floor function.
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image of size NxN, the Hough transform involves building a matrix
H{[1..n,—N2N.~N2N1] such that for every i, H[i,p] contains the number of the edge pix-

els (x, y) for which {x cosB; + ysin(‘),-_' =p

We are now in a position to describe how the proposed Hough transform algo-
rithm on reconfigurable meshes works. For this purpose, a reconfigurable mesh R of
siz¢ NXN is assumed, with every processor P (i,j) of R storing pixel IM[i,j] whose
x and y coordinates are i and j respectively. We proceed to detect edge pixels in the
image: as pointed out in [53] this can be carried out in O(1) time on R by applying a

Sobel gradient operator to the image.

We assume the O-space quantized as described above. To make our exposition
more transparent and easier to follow, we restrict ourselves to angles in the range
[0,/4]. As it turns out, the remainder of the range is handled similarly. We shall,

therefore, consider a generic angle 0 satisfying

0<0<m4 (3.2)

It is easy to confirm that this choice of 6 implies that

llz—z—SCOSOSIand 0 <sinb <

2
— 3
> (3.3)

and that

cosB = sinB and sin6 + cosd = 1. (3.4)

For every pixel IM{i,j] (not necessarily an edge pixel) in the image space we
write

Pij = i cos® + jsin6) (3.5)

The following results will be instrumental in understanding how our algorithm

works and can be easily derived from observation (3.3)-(3.5) above using straightfor-

ward trigonometric manipulation.
Lemma 3.6. For all j (0<j<N-1) we have Poj SP1; S~ < pn-y,. Furthermore.

no three consecutive elements in row j have the same value of p. [
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Lemma 3.7. For all i, j (0<i,jsN-1),0< Pis1,j — Pij S 1. That is, the p-values of
consecutive pixels in row j differ by no more than 1. [J
Lemma 3.8. For all values of i, j (0<i,jSN-1), p; ; # Piyy j41- O
Lemma 3.9. For all values i, j (0<i,jSN-1), p; j_; =p; ;41 implies p; ;) = p;; =
Pij+1- O

For every i (0<i<N-1), and for every value of p, let /,? stand for the set of pix-
els IM[i,j} in column i satisfying

Licos® + jsin®) = p. (3.6)

In this notation, Lemma 3.9 tells us that /;? is a vertical interval in column i of

the image space. Denote I;P as [b;?tP], with P and b} standing for the top and bot-

tom row numbers of pixels in I;P, respectively. Now Lemmas 3.7 and 3.8 combined

indicate that

bP, —tP < 1. (3.7)
Refer to Figure 3.2.a for an illustration. Let R, be the set of all the pixels in the
image that satisfy (3.6). Note that R, is the collection of vertical intervals {1
0<i<N-1). |
Next, compute the number of pixels in R, which are edge pixels. We begin by
constructing a bus to connect pixels of R, and then count the number of edge pixels
on that bus. Figure 3.2.b illustrates informally how the buses are formed for the data
of Figure 3.2.a, where pixels marked by A or * are at either end of a bus for a given
value of p. The general principle for constructing the bus follows. For each p. the
pixels in R, are ordered by increasing x coordinate; when the pixels have the same x
value, they are ordered by increasing y coordinate; The bus then connects processors

together according to this order.

More specifically, link the processors corresponding to each /P vertically. Then

we consider two cases for linking processors in /;” to processors in /2. First, if 1f =
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b®y, processor P (i—1,bf ;) can be directly linked to processor P (i,zf). Second, if
tP+1 = by, processor P (i-1,bf,) is linked to processor P (i tP) through processor
P (i,tP+1). Notice in the second case, P (i t+1) corresponds to a pixel in Ry, To
avoid two connections in one processor, the computation proceeds in two steps. One
step is for even values of p, the other for odd values of p. Notice for each p one end
of the bus must in the bottom row or the rightmost column. The even values of p can
be distinguished from the odd values of p in O(1) time as follows: consider the
sequence beginning with the bottom row (from left to right) followed by the rightmost
column (from bottom to top). Assign a 1 to the processors marked as the end of a bus
with A and O to others; perform prefix sums on that binary sequence. Theorem 2.6
guarantees that this prefix sums can be computed in O(l) time on an NxN
reconfigurable mesh. Figure 3.2.c and Figure 3.2.d show how the buses are formed for
even values of p and odd values of p respectly using the data in Figure 3.2.a. It is
obvious that the buses can be constructed in O(1) time since every processor need only

check the p-value of its direct neighbors. Note, further, that by construction every bus

has length O(V).

Finally, the technique for computing sums in one row described in [30] can be
applied if the rank of the processors on a bus can be determined. To determine the
rank, the coordinates of the processors marked A are put on the bus. The rank of cach
processor is the sum of the absolute difference of its coordinates with those broadcast.
We now assign a 1 to processors storing edge pixels in R, and O to other processors.
The technique of [30] can now be applied to compute the sum in O(log k) time, where

k is the length of the bus connecting R,

Since the sums for ali p at a given 8 are computed in two steps, and each step
takes O(loghN ), the row of values in H corresponding to a 8 can be computed in
O(logN) time. Thus, the complete set of values for H can be computed in O(n xlogN )

time. To summarize our findings we state the following result.
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Figure 3.2.b: Buses formed for cach p

computed for 0=n/8

Figure 3.2.a: A 7x7 grid with p-value

igure 3.2.d: Buses formed for odd p’s

Figure 3.2.c: Buses formed for even p’s
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Theorem 3.10. The Hough transform matrix H of an NxN digitized image stored one
pixel per processor by a reconfigurable mesh of size NxN can be computed in

O(nxlog N) time, where n is the number of angles in the quantization of the 0-space.

O

In fact, we can do better. To see this, we consider the NxN reconfigurable mesh
M as consisting of n submeshes S;, Sy, ... ,S, of size (N/n)xN with S; (1<i<n)
consisting of the rows (i—1)N/n through iN/n—1 of R, here we assume that n is
smaller than N. The idea of the (improved) algorithm is to pipeline the n angles ;.
8, ...,0, as follows. Initially, the mesh S, processes angle 6, as described above
for log( N/n) time units. In the next stage, the submesh $ » Teceives the partial result

computed by S and continues processing 8;; at the same time S starts processing the

angle 6,, and so on.

It is easy to confirm that the whole computation is finished in (2n—1)xlog (N/n)

time units. Consequently, we have the following important result.

Theorem 3.11. The Hough transform of an NxN digitized image stored one pixel per
processor by a reconfigurable mesh of size NxN can be computed in O(n xlog (N /n))

time, where n is the number of angles in the quantization of the 6-space. [J

3.3. Component Labeling

Another fundamental mid-level vision task involves detecting, counting, and labeling
the various connected components present in an image. The task at hand is commonly
referred to as component labeling. Given a binary image of size Vn xVn . two 1-
valued pixel are adjacent if they share a horizontal or vertical edge. Two pixels are
connected if there exists a path of adjacent 1-valued pixels from one to the other. The
component labeling problem is to label each 1-valued pixel such that any two 1-valued

pixels receive the same label if and only if they are connected. A set of pixels that
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receive the same label is a connected component of the image.

The component labeling problem has been extensively studied in the parallel set-
tings. Nassimi and Sahni [37] showed an O(\f; ) algorithm on a mesh connected com-
puter of size Y xVn . Cypher et al. [6] gave an O(log?) algorithm on a hypercube
or shuffle-exchange architecture of size n. In [8], the same authors presented an
O(logN) algorithm on the EREW (Exclusive Read, Exclusive write) PRAM model.
Prasanna-Kumar and Reisis [76] gave an O(n'") algorithm on meshes with multiple
broadcasting of size Vn xVn . Recently, Miller et al. [32] proposed an O(log?n) time
algorithm on a reconfigurable mesh of size Vn xVn . Their algorithm is based on
divide-and-conquer and on an O(logn) time algorithm to label the connected com-
ponents of a graph [57]. We will present an O(log n) time component labeling algo-
rithm using buses to identify connected components. For ease of understanding. we

first give a preview of the algorithm, then give the details of the implementation.

3.3.1. The Algorithm — a Preview

The task of labeling the connected components of an image can be broken down into

the following two subtasks:
e assigning a unique "name" to every component;
e informing every 1-pixel in the image of the name of the component it belongs to.
The bulk of the component labeling algorithms in the literature are divide-and-
conquer based, or else proceed along lines originating in Levialdi [19]. Levialdi’s algo-
rithm is, basically, a two-stage algorithm. In the first stage, every component in the
image is shrunk to a single pixel and then eliminated. The second stage is the expan-
sion stage: here, a unique label is generated for each component and then every pixel
in the component is informed about this label.
The divide-and-conquer approach [3,9,18] involves solving the component label-

ing problem in larger and larger sub-images, until the whole problem is solved.
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Our approach is different: we exploit the dynamic reconfigurability of the bus
system of the mesh at our disposal to "wrap" a bus around every component of the
image. In case the component contains holes, buses will be created around the holes as
well. As it turns out, once these buses have been created, the subtasks of uniquely
identifying every component and of informing every 1-pixel of the name of the com-

ponent it belongs to can be performed efficiently.

To avoid the need of handling tedious special cases, we subject the input image /
to the following simple morphological transformation, resulting in a new image I’ of
size 2¥n x 2Vn : for all i, j (1<i,j<Vn ), we map pixel(i,j) of I to the 2x2 group of
pixels consisting of pixel(2i—1,2j~1), pixel(2i--1,2j), pixel(2i,2j—1), and pixel(2i,2/)
of I.

It is easy to see that the mapping from / to I’ that we just defined preserves a
number of important topological properties, including connectivity. In addition, /' has
a property that we refer to as the odd-even property, namely,

for every i (1<i<Vn) rows 2i—1 and 2i are identical. (3.8)
Similarly,

for every j (1<j<Vn) columns 2j-1 and 2/ are identical. (3.9)

We further assume that the new image I’ has been pretiled in a reconfigurable
mesh of size 2Vn x2Vn such that for every i, j, processor P (i,j) stores pixel(i,j) of
r.

Before we give a high-level description of the algorithm, we need to define some
new terms. A 1-pixel pixel(i,j) is termed a boundary pixel if the 3x3 window cen-
tered at pixel(i,j) contains both 0 and 1-pixels. By convention, the portion of the 3x3
window that exceeds the borders of the image is assumed to contain O-pixels. A pro-
cessor storing a boundary pixel will be termed a boundary processor. A hole in a com-
ponent is a maximal connected region of O-pixels within the component. In the pres-

ence of holes, it makes sense to distinguish between external boundaries and internal
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boundaries, with one internal boundary surrounding every hole in a connected com-

ponent of 1-pixels.

On every boundary, external or internal, we elect a leader: this is a boundary pro-
cessor P (i,j) for which j is minimized and i is maximized, among all the processors

on the same boundary as P (i,j).

Our component labeling algorithm involves the following sequence of computa-
tional steps. We only give a brief overview of these steps here. A detailed description

is presented in the next subsection.

Step 1. The purpose of this step is to detect boundary pixels in the image and to con-
struct buses that will connect the corresponding boundary processors of the mesh:

these buses will be referred to as boundary buses;

Step 2. The goal of this step is to elect a leader on each boundary bus constructed in
Step 1; furthermore, every leader identifies its bus as external or internal;

Step 3. The task specific to this step is to have every leader of an internal bus deter-

mine the identity of the corresponding external bus;

Step 4. Finally, using the information computed in Step 3, every l-pixel in the image

is informed about the identity of the component it belongs to.

3.3.2. The Algorithm — Detailed Description

We are now in a position to give a detailed description of the computational steps in

our component labeling algorithm.

Step 1. The first goal of this step is to identify boundary pixels; once this is done. the
corresponding boundary processors connect a certain pair of ports, thus establishing
buses in the reconfigurable mesh. Specifically, every processor P (i,j) holding a 1-
pixel inspects the 3x3 window centered at pixel(i,j). If this window contains both ()

and 1-pixels, P (i,j) identifies itself as a boundary processor.
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Note that by the odd-even property specified in (3.8) and (3.9), every such 3x3 win-
dow must contain two identical rows and two identical columns. Furthermore, the
identical rows (resp. columns) are adjacent in the window. It is now an easy task to
confirm that there are exactly 24 distinct window configurations such that pixel(i,j) is

a boundary pixel (for the reader’s benefit, these configuration are featured in Figure

3.3; the * stands for the "don’t care”" pixel).

Group 1
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Figure 3.3: The various 3x3 windows centered at a boundary pixel

Now cvery boundary processor connects two of its ports as follows:

e Every boundary processor P (i,j) in Group I connects:
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SE if P (i,j) is in subgroup (1.1);

SW if P (i,j) is in subgroup (1.2);

NW if P(i,j) is in subgroup (1.3);

NE if P (i,j) is in subgroup (1.4).
e Every boundary processor P (i,j) in Group 2 connects:

EW if P (i,j) is in subgroups (2.1)-(2.4);

NS if P(i,j) is in subgroups (2.5)-(2.8).
@ Every boundary processor P (i ,j) in Group 3 connects:

NW if P (i,j) is in subgroup (3.1);

NE if P (i,j) is in subgroup (3.2);

SE if P(i,j) is in subgroup (3.3);

SW if P (i,j) is in subgroup (3.4).

What results is a collection of disjoint buses, referred to as boundary buses, satis-

fying a number of properties that we present next. The reader can find an illustration
in Figure 3.4 about how the boundary buses are created: shaded processors are

assumed to contain 1-pixels.
Lemma 3.12. Every boundary processor belongs to exactly one boundary bus.

Proof. First, every 1-pixel can determine whether or not it is a boundary pixel by exa-

mining the 3x3 window discussed above.

Consequently, every boundary processor will belong to at least one boundary bus.
However, since every boundary processor only connects one pair of ports, it belongs to

at most one boundary bus. The conclusion follows. [J
Lemma 3.13. Two boundary buses either coincide or else are disjoint.

Proof. Suppose not; now, some boundary processor must belongs to at least two dis-

tinct buses, contradicting Lemma 1.2. O

Lemma 3.14. Every boundary bus is a closed curve.
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Figure 3.4: The resulting buses after Step 1

Proof. Follows immediately from the way boundary processors set their local connec-

tions. J

In summary, Step 1 runs in O(1) time since it amounts to setting local connec-

tions by checking 3x3 windows only.

Step 2. As mentioned in the previous section, the goal of this step is to determine the
leader of every boundary bus created in Step 1. Let B be an arbitrary bus created in
Step 1. Recall that the leader of the bus B is the boundary processor £ (i .j ) for which

the value of j is minimized and i is maximized, among all boundary processors on the
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bus B. By Lemma 3.1, the leader can be found in O(logn ) time.

To complete Step 2, the leader of every bus identifies its bus as external or inter-
nal. This task is easy as soon as we note that a bus is external if the 3x3 window cen-
tered at its leader has a 1-pixel in its north-east corner; similarly, a bus is internal if

the 3x3 window centered at its leader has a O-pixel in its north-east corner.

Note: For the reader’s benefit, the leaders of the buses in Figure 3.4 are featured in

black.

Step 3. The purpose of this step is to associate every internal bus with the correspond-
ing external bus. To carry out this task, we extend slightly the definition of a leader of
an internal bus. Let B stand for an arbitrary internal bus created in Step 1, and let
P (i,j) be the leader of B. Note that the odd-even property specified in (3.8) and (3.9)
guarantees that i is odd. For the purpose of this step, we shall refer to processor

P (i,j) as the odd leader of B and to processor P (i—1,j) as the even leader of B .

To begin, every non-boundary processor in the reconfigurable mesh sets its local
connection to EW. Both odd and even leaders of an internal bus broadcast a signal
westbound on the horizontal buses created above. Every boundary processor reads its
port E; boundary processors that receive a signal from their E port will be referred to
as special. It is important to note that the data movement described above allows us to
distinguish between even and odd special processors. Clearly, if P(i’,/") is an odd spe-
cial processor, then P (i’—1,/") is an even special processor. Further, note that no spe-
cial processor can be the leader of its own bus. Now leaders (even and odd) of internal
buses as well as special processors (even and odd) proceed to reset their local connec-
tion as follows:

(3.10) every odd leader of an internal bus sets its local connection to EW:
(3.11) every even leader of an internal bus sets its local connection to NW:
(3.12) every special processor in an odd row sets its connection to EW or to NE

depending on whether or not its original setting was SW or NS;
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(3.13) every special processor in an even row sets its connection to EW or to SE

depending on whether or not its original setting was NW or NS.

What follows as a result of (3.10) - (3.13) above is a bus system that originates at
the leader of every external bus, traverses exactly once every boundary processor of
the corresponding connected component and returns to the leader (see Figure 3.5 for

an illustration).

Figure 3.5: The resulting buses after Step 3

To conclude Step 3, every leader of an external bus broadcasts its identity on the
bus created above; an obvious result of this operation is that every boundary processor

associated with a connected component in the image becomes aware of the identity of
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the leader of the external bus of that component. It is obvious that Step 3 can be car-

ried out in time O(1).

Step 4. The goal of this last step is to inform every non-boundary processor holding a
1-pixel of the identity of the leader of the corresponding external bus. Note that since
the leader of every external bus uniquely determines the corresponding component,

once this step is completed, the task of labeling the connected components in the

image is also complete.

To achieve the goal of this step, we let every non-boundary processor storing a
1-pixel set its local connection to EW; boundary processors as well as processors stor-
ing 0-pixels set no connection. Next, every boundary processor broadcasts westbound
the identity of the leader of the external bus of the component. This, obviously.

achieves the desired result, and Step 4 is complete.

It is important to note that Step 4 can be carried out in time O(1). To summarize

our findings we state the following result.

Theorem 3.15. The component labeling problem of a binary image of size Vn <Vn

can be solved in O(log n) time on a reconfigurable mesh of size 2Vn x2Vn [
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CHAPTER 4

CONVEX HULL OF A SET OF PLANAR POINTS

The convex hull of a set of points in the plane is defined as the smallest convex set
that contains the original set [48]. The problem of computing the convex hull of points
in the plane is central in a variety of problems in pattern recognition and image pro-
cessing [32-35,47,48]. It comes as no surprise, therefore, that this problem was
included among the tasks of the first DARPA image understanding benchmark for
parallel computers [54]. In addition, the convex hull of an nxn digitized image can

be reduced to the convex hull of planar points of size O(n).

Quite recently, Miller and Stout [34] proposed efficient paraliel convex hull algo-
rithms on many different parallel architectures. In particular, they showed that the
convex hull of n planar points can be computed in O(log?z) time on a reconfigurable
mesh of size Vn xVn if the points are sorted by x -coordinate. It is worth noting that
sorting n points takes Q(Vn ) time on a reconfigurable mesh of size Vn xVn . Thus.
the reconfigurable bus system does not seem helpful when dealing with the dense case.
ie., computing the convex hull of » planar points on a Vn xVn reconfigurable mesh.
We will show a constant time algorithm to deal with the sparse case, i.e., computing

the convex hull of # planar points stored in one row of an nxn reconfigurable mesh.

In preparation for this result We first present two important data movement tech-

niques. First, we argue that the prefix maxima of n real numbers can be computed in

O(llg—gg—n—) time on a reconfigurable mesh of size mxn. Second, we show that n real
m

numbers stored in one row of a reconfigurable mesh of size nxn can be sorted in O(1)

time. We then use these two techniques to construct a sub-optimal convex hull algo-
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rithm, This sub-optimal algorithm will be later refined into an optimal one. Our result
shows that the convex hull of n planar points can be computed in O(1) time on a

reconfigurable mesh of size nxn.

4.1. Prefix Maxima of a Sequence of Real Numbers

Given a sequence of » real numbers ag, ay, . . .,q,_;, the problem is to compute
z;=max{ag, ay, . . . ,aj} for all j (0O<j<n-1). To begin, we demonstrate an O(1) time

algorithm for computing the prefix maxima of n reals on an nxn reconfigurable mesh.

We then use divide-and-conquer to solve the same problem in O(ll—ogg—i) time on a
0

mxn reconfigurable mesh with Z<m<n. In both algorithms, we assume that the input
a; (0sj<n-1) is stored in the processor P (0,j), and the output z ; (0sjsn-1) will also

be stored in the processor P (0,/).

Our first algorithm can compute the prefix maxima of n reals in O(1) time on an
nxn reconfigurable mesh. It consists of three stages. In the first stage, we let every
processor P (i,j) with 0<i<j<n-1 know q; and a;. For this purpose, we establish a
vertical bus in column j (1<j<n-1) from P (0,j) to P(j,j), and let P (0,j) (1<j<n~1)
broadcasts a; southbound along the vertical subbus in column j; we then establish a
horizontal subbus in row [ (0<i<n-2) from P(i,i) to P(i,n—1), and let P(i.)
(0<i<n-2) broadcast g; eastbound along the horizontal subbus in row i. In the
second stage, we check whether a; equals the maximum of ay, a;

a; in column

NN
J (1gj<n~-1). To do so, we compare a; with ag, ay,...,a;_; in column j, and
record a 1 if a; is smaller than g; (0<i<j-1) and a O otherwise. What we get in
column j is a binary sequence of length j-1, and a; equals the maximum of
ag, @y, . . .,a; if and only if the resulting binary sequence is all 0. It is easy to see
that, if a; equals the maximum of ag, ay, . . ., j» the j-th prefix maximum is exactly
a;. Hence, we mark these a;’s. On the other hand, if a ; does not equal the maximum

of ag,ay, ... ,a;, the j-th prefix maximum is equal to the nearest marked a’s 1o its
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left. Therefore all we need to do in the third stage is to let every non-marked proces-
sor obtain the value stored by the nearest marked processor to its left. This can be
done by establishing the buses between two consecutive processors and letting every
marked processor broadcast the value it stores westbound. It is obvious that all these

three stages take constant time. To summarize, we state the following result.

Theorem 4.1. The prefix maxima of n real numbers stored in one row of a

reconfigurable mesh of size nxn can be computed in O(1) time. O

Next, we show how to compute the prefix maxima of n reals ag, ay, . . . ,a,_,
on an mxn mesh with 2<m<n. For simplicity, we assume that n is a power of m.
Begin by partitioning the original mesh into submeshes of size m xm, and compute the

prefix maxima on each such submesh of size m xm .

We further combine groups of m consecutive submeshes of size m xm into a sub-
mesh of size mxm?, then combine groups of m consecutive submeshes of size m xm?
into a submesh of size mxm?, and continue until the original mesh is obtained. Note
that if the prefix maxima of m consecutive submeshes are known individually then the
prefix maxima of their combination can be computed as follows. For convenience. let
M represent the k-th submesh of size m!, involving the columns from km' 1o
(k+1)m'~1; similarly, let max(M}) represent the maximum of the reals originally
stored in row 0 of M. Now we show how to combine M, , M{, .1, ... M1
into M!*1. Consider the submesh M/, ,, of this group, the prefix maxima of this sub-
mesh can be updated by taking the maximum of the current prefix maximum of the

submesh Mg, ., and the overall maximum of the preceding submeshes in the group,

ie. max{max(Mg,), max(Mg, ), ... max(M2,,,_;)}. Note that there will be

O(—I%r—’;—) iterations and that each iteration takes O(1) time.

Theorem 4.2. The prefix maxima of n reals stored in one row of a reconfigurable

log n
log m

mesh of size mXxn with 2<m<n can be computed in O( ) time. [J
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4.2. A VLSI-Optimal Sorting Algorithm

In this section, we first present several basic algorithms based on the binary prefix sum
algorithm developed in Section 2.1, which include a simple sub-optimal sorting algo-
rithm and a ranking algorithm. These algorithms then will be used to devise an O(1)
time selection algorithm on a reconfigurable mesh. Further, it turns out that we can
exploit our selection algorithm to solve a more general problem, the multi-selection
problem, in O(1) time. Finally, the solution to the multi-selection problem yields a

VLSI-optimal sorting algorithm: we show that sorting n items takes O(1) time on a

reconfigurable mesh of size nxn.

4.2.1. Preliminaries

In Section 2.1 we showed that, on a reconfigurable mesh of size M xN with M <N the

prefix sums of an N-element binary sequence can be computed in O(log N) time if
. logN . . . . i .
M=1, and in O(m) time if M>1. The binary prefix problem has far-reaching

applications. We will proceed to illustrate some of these applications. Consider an
arbitrary set X={x;, x,, . .., xy} with M elements of X marked. The compaction
problem asks for a permutation x, x,, ...,xy of X with all the marked elements

occurring before the non-marked ones.

We now demonstrate how the prefix sum of a binary sequence can be used to
solve the compaction problem efficiently on a reconfigurable mesh R of size M xN .
For this purpose, we assume that X is stored in the first row of R. with processor
P (1,i) storing x; for all i.

Begin by partitioning the mesh R into two submeshes R and R ,, with R | involv-
ing the first M columns, and R, consisting of the last N-M columns of R. Every pro-
cessor P (1,i) in Ry writes a 1 into a local variable b; whenever x; is non-marked; oth-
erwise, P (1,i) writes a 0 into b;. Similarly, processor P (1,i) in R, writes a | into a

local variable ¢; when x; is marked and a O otherwise. Now compute the prefix sums
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of the two binary sequences by, by, ... ,by and ¢y, ¢y, . .., cy_y on R, and R,

respectively. By Corollary 2.3, this takes O(1) time on both R and R .

It is easy to verify that for a non-marked processor P(l,i) in R, if b, + b
+-:+ + b = p, then P(Li) stores the p-th non-marked element among Xy
X2 ..., Xy Likewise, for a marked processor P(1,M+j) in Ryif ¢y +cy+ -+ + ¢,
= ¢q, then P(L,M+j) stores the g-th marked element among Xp,;, Xp42, . . . . Xy
Note also that since there are M marked elements altogether, by + b, + -+ + by, =

Cr+eCo+ - +ceyopy-

To complete the compaction operation, we only need swap the i-th non-marked
element among Xxj, Xy, ...,Xy with the sth marked element among x,, .
Xp42s - - - »Xy- This can be achieved by a simple data movement operation as follows.
Every processor P (1,i) (1<i<M) storing a non-marked element broadcasts X, to
P(p,i) withp=b; + by + - - - + b;; similarly, every processor P (1,M+j) (1<j<SN-M)
storing a marked element broadcasts Xyyj 0 P(g.M+j) with g=c; + ¢y + 4+ ¢ T
After this operation, every row of R contains two elements: one marked, the other

non-marked. In two broadcasting steps these two elements are interchanged. All that

remains to be done is to broadcast these elements back to the first row of R.

Further, it is not hard to figure out that the relative order of the marked elements
can be preserved by rearranging all the marked elements on R;. To summarize our

findings we state the following result.

Theorem 4.3. On a reconfigurable mesh of size MxN (M <N), the compaction prob-

lem on an N -element set with M elements marked can be solved in O(l) time. O

Consider a set X={x;, x5, ...,xy} with elements from a totally ordered

universe,” and let ¥ be an M-element subset of X. For every x; (ISjsN), we let

* To avoid tedious bookkeeping details we assume that all elements of X are distinct, and that two clements of X
can be compared in O(1) time.
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rank(x;) stand for the position of x; in the sorted version of X . The ranking problem
involves computing the ranks in X of all the elements in Y. As we are about to
explain, the ability to compute the (prefix) sum of a binary sequence, together with the

compaction algorithm described above, affords us an efficient ranking algorithm.

Let R be an NXN reconfigurable mesh with X stored in the first row of R, with
processor P (1,i) storing x; for all i. To begin, compact the elements in ¥ into the first
M positions of row 1, and let x"y, x5, . . . ,x’y be the corresponding permutation of
X . Note that by Theorem 4.3 this operation can be done in O(1) time on R.

Partition the mesh R into M submeshes R, R,, . . . Ry, with R; (1<i<M) con-

sisting of rows 1+(i-1)% through i% of the original mesh’. Further, having esta-

blished vertical buses in all columns of R, every processor P (1,i) (1<i<N) broadcasts

x’; to the whole column i.
Next, processor P(1+(i—1)—g—,i ) (1Si<M) broadcasts x”; horizontally to the

whole row 1+(i—1)£;—. Every processor P(l+(i—1)%,j) (1<j<N) sets a local variable

b;j to 1 whenever x’; is larger than or equal to x’;; otherwise the variable is set to0 0.
Clearly, the number of 1’s in the binary sequence b;y, by, . . ., by is precisely the
rank of x’; in X. In turn, finding the number of 1’s in the sequence b;,, b;o, . . . .byy .

is an instance of the binary prefix problem. By Theorem 2.2, using the processors in

the mesh R; this takes O(log N) time if M=N, and O(—8N time if M =N
log N -log M

Theorem 4.4. Let X be an arbitrary set of N elements chosen from a totally ordered
universe, and let ¥ be a subset of X of size M (M <N). On a reconfigurable mesh of

size NxN the ranking problem for ¥ can be solved in O(log N) time if M=N and in

log N .
—_— f M#N.
O( log N-log M) time i [

* For simplicity of exposition we assume that —ﬁ—i is an integer.
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The solution to the ranking problem presented above can be easily extended to
yield an efficient sorting algorithm. To see this, consider a reconfigurable mesh R of
size MNXN with M<N, and let x{, x5, . .. ,xy be an arbitrary sequence of elements
from a totally ordered universe. We assume that the sequence is stored in the first row
of R, with P (1,i) storing x; for all i. The output is also stored in the first row of R in

the usual way.

To begin, we create vertical buses in every column of R, and let processor P (1,i)
(1<i<N) broadcast x; to the whole column i. We now view the original mesh as con-
sisting of submeshes S, S,, ... ,Sy, of size NxN, with §; (1<i<M) involving rows

1+(@-1)N through iN of R. We further partition the input sequence into groups of

consecutive M’ =% items, and let the i-th group be ranked in S;. By Theorem 4.4,

log N logN . ..
=0 t tM>1.
og N-log M’) (log M) fme

It is now a straightforward data movement operation to move the item of rank |

this takes O(log N) time if M =1, and in O( 1

(1<j<N) to processor P(1,j). We therefore have the following result.

Theorem 4.5. On a reconfigurable mesh of size MNXN with M <N an N -element

sequence chosen from a totally ordered universe can be sorted in O(log V) time if

M=1, and in O(<%EN) time if M>1. O
log M

Note that Theorem 4.5 implies the following result that will be used again and

again in the remaining part of this work.

Corollary 4.6. An N -clement sequence chosen from a totally ordered universe can be

sorted in O(1) time on a reconfigurable mesh of size N32xN . O

The following result is a well-known gem of the computer science folklore. In

addition, it turns out to be useful in our algorithms, so we state it for further use.

Folklore Theorem. Let B be a two-dimensional array. Regin by sorting the elements

in each row of B in ascending order; next, sort the elements in each column of B in
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ascending order. After this the rows of B are still sorted in ascending order. [J

4.2.2, The Selection Algorithm — a Preview

Given a collection A=lay, a,, . .. ,a,) of n elements chosen from a totally ordered
universe and an integer ¥k (1<k<n), our task is to return the k-th smallest element in
A. As before, for all j (1<j<n), we let rank(aj) stand for the position of a ;i in the
sorted version of A. In this terminology, we need to identify the element a, of A with

rank(a )=k .

Assume that the elements of A have been placed in a matrix B[1..n3,1.2%%] in
such a way that all rows and all columns are sorted in increasing order. The basic idea
of our algorithm is to exploit the structure of B to reduce the problem of finding the
k-th smallest element in A to that of computing the £’ -th smallest element in a subset
A’ of A containing at most n%> elements. On a reconfigurable mesh of size nxn.
both computing the matrix B with the properties specified above and selecting the k-
th smallest element in a set A’ containing at most n%? elements can be done in con-

stant time, yielding, as we shall see, a constant time algorithm for selection.

Our arguments rely, in part, on the following simple result whose proof follows

immediately from the properties of matrix B.

Lemma 4.7. Let b; j be an arbitrary element of B. For every choice of subscripts
', j with 1" <i; 1€ <5, rank(by ;- )<rank(b; ;); similarly, for every choice of sub-

scripts i, j with i<i” <n'3; j<j” <n?3, rank(p, j)<rank(by ). O

Subdivide B into square matrices By, B, . . ., B,s with B; (1<i<n') consisting

173

of columns 1+(i~1)n'" through in'®. For all i (1<i<n'®) let D; stand for the (set of

elements on the) main diagonal of B;. Note that the elements of D; are b (i~

by ar-1n¥ - - - » by . To make the notation less involved, we let the elements of
i i i b i .
D; be dy,dy, ..., d,ns, with d; standing for b; i1y
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Lemma 4.7 implies the following easy result.
Lemma 4.8. For all i (1<i<n!?), rank(d ’1 )<rank(d§)< < rank(d,‘;m). O

Assume that none of the diagonal elements has rank k. Under this assumption,

we define for every diagonal D; (1<i<n!?) the parameter s; as follows:

o if rank (d})>k;
s; =1 n!® if rank (dws)<k; (4.1)
¢ if rank (d})<k and rank (d/,; }>k.

~

Notice that Lemma 4.8 implies that s; is unique for every i (1<i<n!3). We now
introduce a result that tells us that some elements of B can be eliminated, as they are
known to have ranks either smaller than k or larger than £ and, consequently, they do
not qualify for the k-th smailest element in A. The proof follows immediately from
Lemma 4.7 and is, therefore, omitted.

Lemma 4.9. If s;=t (0sr<n ') then
rank(b), , )<k whenever 1<p <z, 1<g<r+(i-1)n 113
and

rank(b, ,)>k whenever t+1sp<n'”, 1+1+(i-1)n'P<g<n??. O

We call an element of B a candidate if it cannot be eliminated by virtue of
Lemma 4.9. Let C stand for the set of candidates. We propose to show that C con-
tains no more than n?> elements. For this, we begin by defining the sets of elements
eliminated by virtue of Lemma 4.9. Informally, let U; and L; (1<i<n'?) stand for the
rectangular sets eliminated in the upper left and lower right regions determined by d;.

and d}‘_H , respectively (refer to Figure 4.1).
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B nif3

Figure 4.1: The layout of matrix B

More formally,
o Ui=(b,, 1 1<p<sy; 19<s ),
o Ln= (b, , |ss+l<p <n '3 s B3014(n1P-1)n1B<g <n?3);
e for all i (2<i<n'?),
U, = {i)p‘q VISp <s;5 8+ 140 —2))1”3Sq Ss,-+(i—l)n”3|;
e for all i (1<isn!?-1),
L; = (b, , Is+1<p <P 5414 -1)n1BP<g <5, +in 1),
It is important to note U; is the set of elements whose ranks are smaller than &,
and L; is the set of elements whose ranks are greater than k. It is tedious but straight-

forward to show that

nlll

Z(|U‘-| + 1L y=n —n?3, (4.2)
i=1
The interested reader can find the details of the derivation in Appendix A.
Observe that with C standing for the set of candidates as above, (4.2) translates

as

IC l<n??,
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Finally, note that we have reduced the problem of computing the k-th smallest
nl/3

element in A to the problem of computing the (k—Y1U;|)-th smallest element in C.
i=]

In the next section we show how these ideas can be implemented efficiently on an

nxn reconfigurable mesh.

4.2.3. The Selection Algorithm — Implementation Details

Consider an nXn reconfigurable mesh R; the input to the algorithm is a collection
A={ay, ay, .. .,a,} of n elements chosen from a totally ordered universe. The input
is assumed stored in the first row of R, with P (1,i) storing a; for all i (1i<n). Dur-
ing the course of the algorithm, the mesh R will be viewed as consisting of submeshes
in a way that suits various computational needs. However, every time such a view is

taken, the implied partition will be made explicit to avoid confusion.
The first stage of our algorithm involves constructing the matrix B[1..n13,1..1%3)

featured in Section 4.2.2: recall that B contains all the elements of A and has all rows

and columns sorted in increasing order.

To begin, partition the mesh R into #n!3 submeshes My, M, ... ,M,sof size
nxn?® with M; (1<i <n') involving the columns 1+(i —1)n 23 through in%? of R. Sort
the elements in the first row of each M; and leta’, a’,, . . . ,a’,, be the corresponding
permutation of A. It is worth noting that if the sorting algorithm discussed in Section

4.2.1 is used, Corollary 4.6 guarantees that the previous operation can be performed in

O(1) time in each submesh M;.

Next, every processor in R connects its ports N and S creating vertical buses in
every column. Now processor P(l,i) (1Si<n) broadcasts a’; southbound to
i

i) with x;=| —| and y;=(i~1) mod n?".
n /

P (x;+y;n'?

Further, every processor connects its E and W ports thus creating horizontal buses

in every row of R. For all i (1<i<n), processor P(xi+yl-n“3,i ) broadcasts
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westbound to P (x;+y;n'3,1).

At this moment it is convenient to view the original mesh as a collection of 123
submeshes Sy, Sy, ..., S, of size n'®xn with S; (1<j<n®®) involving rows
14+(j—1)n'? through jn! of R. It is easy to verify that, as a result of the previous

data movement operation, the first column of each S; (1<j<n??) contains in top-down

’ 7

’
order a';, @’ o, . . ., @4, .

Again, using the sorting algorithm discussed in Section 4.2.1, sort the first column
of every S j (15§ Snm) in O(1) time. After this operation we refer to the elements in
the first column of S; as b, bj,, ... ,bj ps. Now repeating in reverse the data
movement operation detailed above, we obtain a one-dimensional row-major layout of
matrix B in the first row of the original mesh. The fact that both rows and columns of
B are sorted is implied by the Folklore Theorem stated in Section 4.2.1. Furthermore,
the layout of B is such that the first row of M; (I1<i<n'®), contains b; 4,
b;y .. ..,b; y2s. At this moment, it is helpful to note that in the row-major layout of

B,

processor P (1,i) stores b, , with p= —% and g=(i-1) mod n??+1. (4.3)
n

The second stage of our algorithm involves identifying the diagonals D, D,.
D3, ... ,D,u as discussed in Section 4.2.2. Note that it is an easy task for every pro-
cessor in row 1 of R to mark itself if it contains an element of such a D;. Note also
that row 1 of R contains exactly n?® marked elements. Now using the ranking pro-
cedure specified in Section 4.2.1, we can compute in O(1) time the rank in A of every

element of B stored by a marked processor.

If some rank obtained above equals £ then the algorithm terminates, returning the

desired element. We may, therefore, assume that all the ranks computed above are dis-

tinct from k.
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Now (4.3) will be used to store the matrix B in a different form in all M, ’s.
Specifically, the rows of B will be stored in rows 1, 14123, 142023 14n-n2? of
all M;’s.

To achieve this, we first establish vertical buses in every column of R and let
processor P (1,i) (1<i<n) broadcast bp'q southbound to P (i,i). Next, establishing a

horizontal bus in every row of R, we let processor P (i ,i) broadcast b, 4 to the entire

q
row i. Finally, every processor P (i,j) with j=g+rn??® (0<r<n'-1) broadcasts by,
northbound to P(1+(p—1)n2’3,j ). It is easy to confirm that after this data movement
operation, processor P (1+(p —-1)n2’3,q) in M stores bp - Note that from now on we

only use the submesh M (recall that M, contains columns 1 through n2? of the origi-

nal mesh).

The third stage of our algorithm involves computing for all i (1<i<n'’?), the
parameter §; (see Section 4.2.2). We proceed as follows: having established a vertical
bus in each column of M, we let processors storing elements dj of D; broadcast the
corresponding elements northbound to the processors in row 1 (of M ;). Observe that
the purpose of this data movement operation is to have all the elements of D; in posi-

tions 1+(i—1)n'*® through in'? of the first row of M.

Next, we further subdivide M into submeshes My, My, . .., M5 each con-
taining n 1?3 contiguous columns of M. By the previous observation, the first row of
My; (1<i<n'P) contains in left-to-right order the elements d, db, ... ,dlis of the
diagonal D;.

We now describe how to compute s; in the first row of M ;. First, the processor
holding d} broadcasts to the whole row 5;=0 or 5;=—e< depending cn whether or not
rank(d’ )>k. In case the processor holding diws receives —oo, it will broadcast to the

173

whole row s5;=n"" or s;=+e depending on whether or not rank(d,‘;us )<k . In case +oo

was broadcast previously, every processor in row 1 reads the rank of the item held by
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its right neighbor (provided it exists) and the unique processor that identifies the condi-

tion in (1) broadcasts s; to the whole row.

We now turn to the last stage of our algorithm, namely computing the set C of
nlfj

candidates and identifying the (k=Y. |U; |)-th smallest element of C. As noted in Sec-
i=1

nl/3

tion 4.2.2, the k-th smallest element in A is precisely the (k-3 |U;!)-th smallest ele-
i=1
ment in C.
First, to compute C we only need mark for all 1<i<n!” the elements belonging

to U; and L; (refer to Section 4.2.2 for definitions). We only demonstrate how the ele-

ments of U; are marked, since marking the elements of L; is a perfectly similar opera-

tion.

Let s, 3, ...,5,» be the parameters computed above. If 5;=0 then there is
nothing to be done, as U;=. Otherwise, for all i, let P(1,j;) be the processor that has
identified s;. Now every processor P (1,j;) broadcasts s; to the whole column j;. Next,
horizontal buses are established in ail rows 1+(t—1)n?3 (1<r<n!). Further, every pro-
cessor P (1+(t-1)n2/3,j,-) with z<s; splits the horizontal bus in row 1+ —=1)n?3 and
broadcasts —eo westbound on its own subbus. Every processor that receives —eo, includ-
ing the sender itself, marks itself "U-removed". Clearly, after having removed all the
elements in U; and L; (1<i<n!3) what remains are precisely the elements of C .

nl/:

Before actually computing the set C, it is convenient to compute Y 1U;|. At this

i=
point, we view M, as a collection of n!”3 submeshes N, N,, . .. N3 of size
n?3xn?3, each containing n%® contiguous rows of M i Specifically, for every i
(1<i<n!®), N; contains rows 1+(i~1)n?> through in?> of M,. Every processor that
has been marked "U-removed" in the previous computational step broadcasts the ele-

ment of A it holds to the diagonal of the mesh N ; that it belongs to; in turn this diago-

nal processor broadcasts the item to the first column of N ;- The net result of this data
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n'’

movement operation is that the first column of M, contains all the elements of UL
i=1

n 13

in some order. What remains to be done is to count the elements in \_JU;. For this,

i=1
we let every processor in column one of M; write a 1 or a 0 into a local variable
depending on whether or not it stores a "U-removed" element. Now computing the

(prefix) sum of the corresponding binary sequence we obtain the desired resul.

To compute the set C, every processor that has not been marked "U-removed" or
"L-removed" broadcasts the element of A it holds to the diagonal of the mesh N ; that
it belongs to; in turn this diagonal processor broadcasts the item to the first column of
N;. The net result is that the first column of M, contains all the elements of C in

some order. What remains to be done is to sort the elements in C using the submesh
173

M and to pick the (k—Y |U;)-th element in the sorted version of C. To sort C we

i=1
need to move the elements of C to the first row of M. For this movement, we first
compact the elements of C in the first column of M (as discussed in Section 4.2.1)
and then broadcast every element of C to a unique slot in the first row of M,. The

details of this simple operation are left to the reader.
To summarize our findings we state the following result.

Theorem 4.10. Selecting the k-th smallest element of a collection of n elements

chosen from a totally ordered universe can be done in O(1) time on a reconfiguratle

mesh of size nxn. [J

The problem of multi-selection arises frequently in databases. Here, given an
unordered set A of n records and a sequence of m integers 1 < ¢, <g,< - <gq,
< n, we are interested in answering queries of the type "find the ¢, -th smallest element
in A". The problem is to answer all these queries as fast as possible. We propose to
show that our selection algorithm affords us a constant time multi-selection algorithm

as long as m<n1?.
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Our multi-selection algorithm proceeds exactly as the selection algorithm up to
the point where only M was used to return the k-th smallest element of the collec-
tion. Notice that, in fact, we have answered one query in M,. Clearly, we could have,
just as well, answered, in parallel all m<n' queries by using all the submeshes M,

M,, ..., M, s Consequently, we have the following result.

Theorem 4.11. The multi-selection problem involving m <n'”® queries can be solved in

O(1) time on a reconfigurable mesh of size nxn. O

4.2.4. The VLSI-Optimal Sorting Algerithm

We are now in a position to show how the pieces fit together to produce a very
efficient sorting algorithm for reconfigurable meshes. For this purpose, consider an
arbitrary set X={x,, x5, . ..,Xx,} of elements chosen from a totally ordered universe.
Let R be a reconfigurable mesh of size nxn storing the input sequence in the first
row, with P (1,i) containing x; for all i.

To begin, we solve the multi-selection problem on X involving the set of queries
0=(q1, 99, . . . ,q,s} with ¢; (1<i<n 13y asking for the in?3-th smallest element in
X . Note that the multi-selection algorithm developed in the previous section allows us

to solve this instance of the multi-selection problem in O(1) time of the mesh R .

Let X'={x"}, X'5, . . ., X1} be the subset of X with x’; (1<i<n'?) the in?>-th
smallest element in X. Note that having obtained X’ amounts to having n' implicit
buckets of exactly n?3 elements each. Our plan is to place the elements of X into the
corresponding buckets and, using the sorting algorithm discussed in Section 4.2.1, to

sort each such bucket. This will clearly amount to sorting X itself.

The only point that needs to be clarified is how the elements of X are placed into
those buckets in O(1) time. For this purpose, establish vertical buses in all columns of
R, and let every processor in the first row broadcast the value it holds to the whole

column. The unique processor in row in?? (1<i<n') that holds x’; broadcasts x; to
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the whole row in?3.

In every column j of R we do the following. Processor P (in%?,j) (1<i<n!®)
writes a 1 into a local variable whenever x; is larger than or equal to x’;; otherwise, it

writes a 0. Furthermore, in every column j of R it is easy to identify the unique : for

which

P((t—l)n2’3,j) stores a 0 and P (tn 2’3,j) stores a 1. (4.4)

We now view the mesh R as being composed of n!3 submeshes Si

Sz, P ,Snm of size n2’3

xn, with S; (1<i<n') involving rows 1+(i-1)n%> through
in®3 of R. In our scheme, for all i, the submesh S; will play the role of the i-th

bucket discussed above.

Observe that the purpose of the previous data movement operation was to estab-
lish for every element x; of X the bucket it belongs to. Specifically, we let x; belong

to the ¢-th bucket whenever the condition of (4.4) above holds for x -

As noted above, our choice of the query-set guarantees that every bucket contains
precisely n?? elements. It is now a straightforward operation to sort the elements in
every bucket in O(1) time using the sorting algorithm discussed in Section 4.2.1.

To summarize our findings we state the main result.

Theorem 4.12. An n-element sequence chosen from a totally ordered universe can be

sorted in O(1) time on a reconfigurable mesh of size nxn. [J

4.3. A Sub-Optimal Convex Hull Algorithm

In this section, we will exhibit a sub-optimal convex hull algorithm. This algorithm
will be later refined into an optimal one. Let S={p, p5, . . . ,py} be a set of points in
the plane; here, p; (1si<N) is represented by its cartesian coordinates (x;,y;). To
avoid tedious details we assume, without loss of generality, that the points in S are in
general position, with no three collinear and no two having the same x or y coordi-

nates. The details of our sub-optimal convex hull algorithm follow.
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Step 1. Find the four extreme points in S in the x and y direction, and let them be

without loss of generality, p;, p, pj3 and pg4  Specifically, x,=max {x; ],
1<j<N

¥o=max
15 <N

il x3=12}i<3vix,- }, and y4=‘2}i2\1(yj J.

Step 2. Compute ;lle sets (refer to Figure 4.2 for an illustration)
Si=lpid xo<x<xy; y1Syi<y,),
So={pil x3<x;<xg1 ¥y <y,),

S3=(pil x350;5x4; ¥4y Sy3),

Sa=(pil x45x;:5x 13 y4Syi Sy ).

Figure 4.2: Illustrating S, S5, S5 and S

For further reference, we take note of the following result.
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Lemma 4.13. The upper hull U(S) of S is the concatenation of the upper hulls U,
and U, of S, and §,, respectively. Similarly, the lower hull L(S) of S is the concate-

nation of the lower hulls L5 and L, of S5 and S, respectively.

Proof. Suppose not. Enumerate the points on U(S) in counterclockwise order as
Di1=Uy, Uy, . . ., Ug=p3 (s23); similarly, enumerate the points on the concatenation of
U, and U, in counterclockwise order as p;=vy, vy, . . ., u=p3 (t23). Let i be the

first subscript for which the two enumerations differ. Specifically, u; is different from

v; and for all 1Sj<i, u;=v;.

Since u; belongs to U(S), u; must lie outside of the triangle determined by p .
P, and p3. This observation restricts u; to either $,| or §,. Without loss of generality.
assume that u; belongs to §;. Consequently, u;_;(=v;_;) and v; also belong to S,.
Since U, is the upper hull of S, it must be that u; lies in the closed left halfplane
determined by the directed line v;_;v;. On the other other hand, since U(S) is the
upper hull of S, v; is in the closed left halfplane determined by the directed line
w;_jU;, it must be that u;_,(v;_,), 4;, and v; are collinear. It contradicts either that 1; 1s
in U(S) or that v; is in U ;.

The proof of the fact that the lower hull L(S) is the concatenation of the lower

hulls L3 and L4 of S5 and S is similar. [J

Note that by virtue of Lemma 4.13, we only need to compute the upper hulls of
S1, S, and the lower hulls of S5 and S4. For simplicity, we shall deal with S, only.
the others being similar.
Step 3. Sort the points in §; by increasing y-coordinate, and let L=(p;=q,.
qq - - . ,q=P,) be the resulting sorted sequence;
Step 4. For every j (1<j<t), find the subscript f(j) (j<f (j)<t) such that the angle
determined by 4t (jy 4;» and the negative direction of the x-axis is as large as possi-

ble; (see Figure 4.3)
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Figure 4.3: Computing f (/) of g,

Step 5. Compute the prefix maxima of the values f(j)'s in L; specitically. let

g(j)=lmaxl{f (t)). (see Figure 4.4, where for every point g; the pair (f (f).g (/) is
<gj-

featured)

Step 6. Eliminate all the points g; for which f (j)<g(j). Report all the remaining

points in L, including ¢ and q,.
The following result argues for the correctness of our algorithm.

Theorem 4.14. At the end of Step 6, all the remaining points in L belong to the upper

hull of S .

Proof. The conclusion implied by the following stronger statement. Let U, stand for

the upper hull of §;.

qj (25jst~1) belongs to Uy if and only if { (j)>g (/). (4.5)
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First, if q; ('ZSjSt—l) belongs to the upper hull U, then let ¢; and g, be its
neighbors on the upper hull. We note that since ¢ and g, trivially belong to the
upper hull U, and that the points ¢; and ¢, are well defined. Clearly, f(i )=/ and so
g (j)=j<k=f(j), as claimed.

Conversely, if q; does not belong to U, then let ¢; and g, be the closest points
on U, such that g; lies on the chain from g; to g;. Since g; and g, are neighbors on

| the upper hull U, we have f(i)=k; furthermore, f(j)<k=g(j), and the conclusion fol-

lows. O

q,, (12,11)

P,=4;
F

q,, (11,10)

do (0,10)
q 7 (8,10) .

4 (10,10) d 6 (10,0)

@e—

d 2 (3,6) ds (6,6) |

q; (4,6) q 4(6,6)

Figure 4.4: The pair (f ().g (/) of every q,

Since the correctness is settled, we now proceed to analyze the running time. We
assume a reconfigurable mesh of size NMxN with 2SM<N. Step 1 can be imple-
mented to run in O(1) time on a reconfigurable mesh of size NxN since we only need

compute max {z;} and min {z;} with z;=x; and z;=y,.
1< isjsNv s s
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Step 2 is demonstrated for S, only; computing S; with i=2,3,4 is similar. All that
is needed is to establish a subbus running through the entire row 1. The processors
storing p and p, broadcast, in two computational steps, their cartesian coordinates to
all processors in row 1; every processor that stores a point in S, marks itself. Thus

Step 2 runs in O(1) time.

Step 3 can be implemented as follows. First, all unmarked processors change the
y-coordinate of the point that they store to +eo. Now the sorting algorithm in Section
4.2 is invoked: this runs in O(1) time and needs a mesh of size NxN. It is helpful to
assume that at the end of Step 3, processors P (1,1), P(1,2), ..., P(l,t) contain

L=(pi=q,, q,, - ..,q;=D5) in sorted order.

Step 4 can be implemented to run in O(log N/log M) time on a reconfigurable
mesh of size MNxN as follows. Assume that, initially, for all 1<j<z, P (1,j) stores ¢ I
Establish vertical subbuses in each column and let P (1,/) broadcast the cartesian coor-
dinates of g; along the subbus in column j (1<j<r). Next, establish horizontal buses
running from P((j~1)M+1,j) to P((j-D)M+1,r) (1<j<t). For all j, P((j-1)M+1,/)
broadcasts the cartesian coordinates of q; eastbound on the horizontal subbus in row
(J~1)M +1. Finally, every processor P ((j-1)M+1,k) with j<k<t computes the angle

determined by gy, q; and the negative direction of the x axis.

We now subdivide the mesh into submeshes of size M xN as follows. The first
M xN submesh involves the first M rows, the second the next M rows and so on. Now
Theorem 4.2 guarantees that for all j (1<j<r), f(j) can be computed in
O(log N/log M) time. (Actually, to compute the f(j)’s only the maximum is needed,
not the prefix maxima.) It is easy to arrange for f(j) in row (j—1)M +1 to be sent back
to P(1,j). This, clearly takes O(1) time since only the appropriate buses have to be

established and the information broadcast along them.

Step 5 can be implemented to run in O(1) time on a reconfigurable mesh of size

NN by using the prefix maxima algorithm discussed in Section 4.1. Finally. Step 6
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involves marking every P (1,j) that contains a point of the convex hull. To complete
the algorithm, the points of the convex hull are compacted into the leftmost position in
the first row of the mesh. By Theorem 4.3, this takes O(1) time on a reconfigurable

mesh of size NxN.
To summarize our discussion we state the following result.

Theorem 4.15. The convex hull of a set of N planar points can be computed in

O(log N/log M) time on a reconfigurable mesh of size NM XN with 2<M<N. O
In particular, with M =N, Theorem 4.15 implies the following result.

Corollary 4.16. The convex hull of a set of N planar points can be computed in O(1)

time on a reconfigurable mesh of size N>xN . O

4.4. An Optimal Convex Hull Algorithm

To make our presentation more transparent and easier to understand, we first present
the details of a simple routine that finds the supporting line of two upper hulls U and

V that do not overlap in the x direction.

We assume that both U and V have size Vn and that the points in U and V are
sorted by x coordinate; since U and V are non-overlapping, we may assume without
loss of generality that all the points in U have smaller x coordinates than those in V.
To merge these two hulls we shall use a reconfigurable mesh of size Vn xVn with
every processor P (i,j) containing a point of U and a point of V. More precisely, lel
Uy, Uy, ..., uy; and vy, vy, ... ,vy; be the points of U and V in left to right order.

Now for every i, j (1<i,j<Vn), processor P (i,j) of the mesh stores u; and v;.

For every fixed i (1<i<Vn) every processor P (i,j) in row i checks whether the
hull points v;_; and v;,; (provided they exist) lic below the line determined by u; and
vj. Clearly, in every row of the mesh, exactly one processor detects this condition. By
using suitably constructed horizontal buses, the processor P (i,j) detecting the condi-

tion above sends v; to P(i,i). In turn, P(i,i) broadcasts the ordered pair (u, W)
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vertically, to all the processors in column i of the mesh: recall that these processors
store the points of the hull U. Now every processor in column i checks whether the
hull point in U it stores lies below the line determined by u; and v ;- It is easy to see
that W is a supporting line if and only if every processor in column j detects this
condition. Clearly, there exists exactly one such supporting line for the hulls U and V.
Note that the entire computation is performed in O(1) time. Therefore, we can state the

following intermediate result.

Lemma 4.17. Consider a reconfigurable mesh of size Yn xVn and let U and V be two
non-overlapping upper hulls of size at most Vn . If the elements of U (V) are repli-
cated to all the rows (columns) of the mesh, then the supporting line of the two hulls

can be computed in O(1) time. O3

We are now in a position to show how the sub-optimal convex hull algorithm
developed in the previous section and the simple merging algorithm detailed above can
be used for obtaining a constant time convex hull algorithm for reconfigurable meshes.

Consider, again, an arbitrary set S of points pq, py, . .. ,p, in general position
with every p; specified by its cartesian coordinates (x;,y;). The set is assumed stored,

one point per processor, in the first row of a reconfigurable mesh of size nxn.

As in the case of meshes with multiple broadcasting, our strategy involves com-
puting the upper and lower hull of the set S. Symmetry allows us to restrict ourselves
to describing how the upper hull is computed: the computation leading to the lower

hull is similar.

Our optimal convex hull algorithm begins by sorting the set of points in increas-
ing order of their x coordinates: this takes O(1) time if the algorithm in Section 4.2 is
used. Next, we view the original mesh as consisting of submeshes of size nxVn : the
first such submesh involves the first Vo columns, the second involves the next Vi
columns, and so on. It is important to note that in every submesh constructed above,

we can determine, using the sub-optimal algorithm of the previous section, the upper
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hull of Vn of the original points in the set . For further reference, we refer to these

upper hulls as H,, H,, . . . ,H; in left to right order.

In preparation for the next step, we view the original mesh as a collection of sub-
meshes R; ; of size Vn xVn such that for all i, j (I1<i,j<Vn), R;; involves the pro-
cessors P(a,b) with 1+(i-1)Vn <a<iVn and 1+(j-1)Vn <b< jVn. As a result of
the previous computational step, every R ; contains, in its first row, the upper hull of

the points p ;_;yv; 41 through p,y;.

Our next step involves merging the Vn upper hulls. This task begins by replicat-
ing the information in the first row of the original mesh (i.e. the Vi upper huils) to all
the rows in the mesh by using appropriately constructed vertical buses. For every i
(1<i<Vn' ), every processor on the diagonal of R; ; storing a point of H;, broadcasts its
coordinates horizontally, along the bus in its row. Note that this data movement has
the effect of replicating the points of the upper hulls in a way consistent with the
hypothesis of Lemma 4.17. Now in every R; ; (1<i</ <Vn') the supporting line of H,
and H; is computed in O(1) time as previously described.

Our next task is to determine whether the supporting line between upper hulls H;
and H; is a supporting line for the set LISH,-‘ This task is accomplished as follows:

i=l
for every i (1<i<Vn), the previous computational step produces Vr ~i supporting
lines. The ordered pair consisting of a point in H; and a point in H j with i<j is
assigned to row j of R; ;, and then broadcast horizontally to the whole row of the ori-

ginal mesh. As before, every processor detects whether the hull point it stores lies

below the line determined by the ordered pair it receives. If some point lies above this

Vn
line, then the line is not a supporting line for ( JH;.
i=l

It is easy to see that the operation described above produces all the supporting
\
lines of the set \ JH;. Note that for each supporting line detected, all the points that lie

i=1
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in the x direction between the endpoints of the supporting line cannot be on the con-
vex hull and can, therefore, be eliminated. Finally, the remaining convex hull points
are compacted into the leftmost positions in the first row of the mesh. By Theorem

4.3, this can be done in O(1) time.
To summarize our findings we state the following result.

Theorem 4.18. The convex hull of an n-element set of points in the plane, stored one
item per processor in the first row of a reconfigurable mesh of size nxn can be com-

puted in O(1) time. OJ

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5§

CONCLUSIONS AND OPEN PROBLEMS

Typical image processing and computer vision tasks found currently in industrial, med-
ical, and military applications require real-time solutions. This requirement has
motivated the design of many parallel architectures and algorithms. Recently, a new
architecture called the reconfigurable mesh has been proposed. It has been claimed
that the reconfigurable mesh is suitable for VLSI implementation because of its regular
structure. Further, it has been argued that the reconfigurable mesh can be used as a
universal chip capable of simulating any equivalent-area architecture without loss of
time. In this thesis we have addressed a number of image processing and computer
vision problems on reconfigurable meshes. Among the low-level vision tasks, we have
addressed the problem of computing the perimeter, area, histogram and median row of
a digitized image. Among the mid-level vision tasks, we have addressed the Hough
transform and component labeling. We have also addressed the problem of computing

the convex hull of a set of planar points.

In Chapter 2, we first showed how to compute the prefix sums of a binary
sequence and the prefix sums of an integer sequence by using the reconfigurability of
the bus systems. We then showed how to compute the sum of all the integers in a
matrix. Finally, we showed that a number of low-level descriptors of a digitized
image such as the perimeter, area, histogram and median row can be reduced to com-
puting the sum of all the integers in a matrix. Another important class of descriptors
of a digitized image is the moments. Specifically, the (p,q)-th moment of a binary
image IM[1..n,1..n] is given by

n n
mpq=§§iqu1M[i J1 (3.1)
i=lj=
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As it turns out, my is precisely the area of the image. The center of an image is a

point of coordinates x.., y, defined as

mip mgy
X, =——and y, = —.
mgg mog

Finally, m, and m,, are the moments of inertia around the i and j axes, respectively.
Furthermore, mgy+my; yields the moment of inertia around the origin. It is easy to
see that computing the double sum in (5.1) amounts to computing the sum of all the
integers in a matrix, the integers being in the range from 0 to O(n?*7). However, in
our algorithm for computing the sum of all the integers in a matrix, the ranges of the
integers is restricted to [0,Jog n]. We do not know how to compute the moments in

O(loglogn ) time.

In Chapter 3, we first proposed a new computational paradigm, that is, identifying
an entity with a bus and using computations on the bus to obtain properties of the
entity. The computations that we introduced include finding the maximum on a bus
(which allows us to elect a leader of a closed bus), ranking an arbitrary open bus, and
computing the prefix maxima (sums) on a bus. To illustrate our paradigm, we showed
how to solve the problems of computing the Hough transform and component labeling.
However, our algorithm for ranking a bus of length N takes O(log Nlog"N) time. It
would be of interest to see whether an O(log N) time bus ranking algorithm can be
obtained. Such an algorithm would reduce the overall complexities of many algo-
rithms. In our component labeling algorithm, every step except for electing a leader
takes O(1) time. It is also interesting to see whether electing a leader can be avoided

or whether our algorithm for electing a leader can be improved.

In Chapter 4, we have developed a VLSI-optimal constant time sorting algorithm
and a VLSI-optimal constant time convex hull algorithm. In both algorithms, we only
handled the sparse case. For the dense case, i.e., computing the convex hull of »n

planar points on a reconfigurable mesh of size Va xVn , it is easy to get an O(Vn )
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algorithm by combining the sorting algorithm on a mesh [36,60] and the result of
Miller et al. [34]. It is also time-optimal or VLSI-optimal. It is of interest to develop
a time-optimal and VLSI-optimal algorithm for handling the general case, that is, com-

puting the convex hull of m (Nn <m<n) planar points on a reconfigurable mesh of size

Vr xVn .

Further, in this thesis, we have developed two basic data movement techniques
for reconfigurable meshes. One is computing the prefix sums of a binary sequence of

size n. The other is computing the prefix maxima of a sequence of n real numbers.

. logn ., . : .
Both algorithms take O(l—g;) time on a reconfigurable mesh of size mxn with
ogm
2<m<n. Therefore, they are adaprive in the sense that they can be executed on a
reconfigurable mesh featuring a number of rows independent of the size of the input.

These two techniques are interesting in their own right. In addition, they can be

exploited to obtain efficient algorithms for a number of computational problems.
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APPENDIX A

In this appendix we propose to prove that

13

AU+ L1y 2 n-n?3, (A1)

i=1
To begin, we note the following simple observation that follows directly from

Lemma 4.8.

For all i, j (1sigj<n!?), 5;2s;.
Observe that the definitions in Section 4.2.2 immediately imply that

o lU |l =55y

o |L,1al=(n'=s,15)(n s, 1n);

efori=23,...,n

\U; =s; (s5;—s;_1+n 1);

efori=12,...,n""-1

3 13y,
lLi |=(}’l1 =S; )(si+1—s[ +n 1 3),

For technical reasons, we find it convenient to augment the notation by defining

sg=n' ands,1s,,=0. (A3)

Note that the definitions in (A.3) are consistent with (A.2); furthermore, in this
notation we can write for all i=1,2, ... ,n!3

o |U; I=s; (s;—s;_1+n'?);

and

® ]Ll l=(fl 1/3—Si )(s,-+1—s,- +n 1/3).

To settle (A.1), we propose to show that

n1/3

n1/3
SUU T+ 1LY =n =23+ ¥ (5,~5;,1)%. (A4)
i=1 i=0
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For this purpose, note that we can write for all i=1,2, . .. ,n!?3
—n 23
IU‘- l+|L‘- l=n“~n IB(Si —Si+1)+25i2“5"5"_1—siSi+1.

Now

13 173 nl/!

n n
AU+ L) =n=n12 3 (5;~5;, 1)+ 3 (5:5;41)% + 51%=5 150

i=1 i=l i=]

which can be written as

nlls nl,r_(
Z(lU, | + ILl |) =n-n 1/351—S 1S0+312+Z(Si—si+1)2.
i=1 i=1

3

By (A.3) we can write n!3s; as sqs; at the same time, we add and subtract
y 1 051

so2=n?3 1o get

13 13 nl3
Z('U‘ |+ IL‘ I) =n "‘712134'812—25 ISO+S()2+Z(Si —S£+1)2= n-—n 2/3+Z(81 —S,'.H)Z,
i=1 i=1 i=0

as claimed.

The conclusion follows. [J
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