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Abstract 

We present new classes of graphs for which the isomorphism problem can be solved in 
polynomial time. These graphs are characterized by containing - in some local sense - only a 
small number of induced paths of length three. As it turns out, every such graph has a unique 
tree representation: the internal nodes correspond to three types of graph operations, while the 
leaves are basic graphs with a simple structure. The paper extends and generalizes known results 
about cographs, fi-reducible graphs, and &-sparse graphs. 0 1998 Elsevier Science B.V. All 
rights reserved. 

1. Introduction 

In recent years the study of the Pd-structure of graphs turned out to be of considerable 

importance. The starting point and original motivation for many investigations was the 

class of graphs where no induced P4 is allowed to exist (hereinafter Pk denotes a 

chordless path on k vertices and k - 1 edges). For these graphs, commonly termed 

cographs, some interesting structural results have been obtained which helped to solve 

efficiently many graph-theoretic problems which are hard in general (see [7] for a 

discussion). The study of cographs has been extended by B. Jamison and S. Olariu to 

graphs which contain a restricted number of paths of length three. Besides Pd-extendible 

graphs [ 141 and Pb-lite graphs [ 151 they studied Pd-reducible graphs [13], defined as 

those graphs where no vertex belongs to more than one P4, and P4-sparse graphs [ 111, 

which generalize both cographs and P4-reducible graphs. A graph is P4-sparse if no set 

of five vertices induces more than one Pd. 

We propose to call a graph a (q, t) graph if no set of at most q vertices induces 

more than t distinct P4s. In this sense, the cographs are precisely the (4,0) graphs, 

the P4-sparse graphs coincide with the (5, 1) graphs and Pb-lite graphs turn out to be 

* This work was supported by NSF Grant CCR-9522093, and by ONR Grant N00014-97-l-0526. 
* Corresponding author. E-mail: olariu@cs.odu.edu. 
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special (7,3) graphs. The main contribution of this paper is to investigate the structure 

of (q, q - 4) graphs for any fixed q > 4. 

Tree representations for special graphs are often the basis for fast solutions of algo- 

rithmic problems which are hard in general. One of the best known paradigms is the 

isomotphism problem whose complexity is still unknown for arbitrary graphs. Using 

tree representations, polynomial isomorphism tests have been obtained among others 

for hook-up graphs [ 161, transitive series parallel digraphs [ 171, interval graphs [5], 

rooted directed path graphs [3], cographs [7], Pd-extendible graphs [14] and Pd-sparse 

graphs [ll]. 

We consider the concept of encoding a graph into a rooted tree whose internal 

nodes represent certain graph operations and whose leaves correspond to certain basic 

graphs. If the encoding is unique and can be obtained in polynomial time, and if the 

basic graphs can efficiently be tested for isomorphism then we are able to solve the 

isomorphism problem for two such graphs in polynomial time. We will prove that 

the (q,q - 4) graphs admit such a tree representation. 

The remainder of the paper is organized as follows. In Section 2 we review the 

concept of p-connectedness and recall some fundamental facts. Section 3 studies min- 

imally p-connected graphs. The results obtained are used in Section 4 to classify all 

p-connected (q,q - 4) graphs and, furthermore, to prove that (q,q - 4) graphs are 

brittle graphs for q68. Thus, as a very interesting by-product, we are provided with 

new classes of brittle graphs, distinct from all the previously known brittle graphs. Sec- 

tion 5 discusses the tree representation and an efficient isomorphism test for (q,q - 4) 

graphs. Finally, in the last section we summarize the results and pose some open 

problems. 

2. Background and tenuinology 

Let G = (V,E) be a simple graph with vertex-set V and edge-set E. For a vertex u 

of G define N(u) to be the set of vertices adjacent to u. A vertex of G is said to be an 

articulation point if its removal disconnects G. Given a set A of vertices of G, we let 

G(A) denote the subgraph of G induced by A. We shall use G - {v} as a shorthand 

for G( V - {v}). 

A chordless path P4 with vertices u, v, w,x and edges uv, VW, wx is denoted by uvwx. 

The vertices u and x are termed the endpoints, while u and w are the midpoints of 

Pd. A graph is a clique if its vertices are pairwise adjacent. A stable set denotes a 

set of pairwise non-adjacent vertices. For other graph-theoretic notations we refer to 

Golurnbic [9]. 

In the following we shall adopt the terminology introduced by Jamison and Olariu 

[lo]. A graph G = ( V, E) is p-connected if for every partition of V into nonempty dis- 

joint sets A and B there exists a crossing P4, that is, a P4 containing vertices from both 

A and B. The p-connected components of a graph are the maximal induced subgraphs 

which are p-connected. Note that a p-connected component has either one or at least 
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four vertices. Vertices which are not contained in a nontrivial p-connected component 

are also called weak. It is easy to see that each graph has a unique partition into 

p-connected components. Furthermore, the p-connected components are closed under 

complementation and are connected subgraphs of G and G. 

A p-connected graph G = (V,E) is called separable if there exists a partition of V 

into nonempty disjoint sets fi, V2 such that each P4 which contains vertices from both 

sets has its endpoints in Vz and its midpoints in 6. We say that (6, Vz) is a separation 

of G. Obviously, the complement of a separable p-connected graph is also separable. 

If (I$, V2) is a separation of G then (VI, 6) is a separation of I!?. We now recall some 

important facts that form the basis for the results derived in this paper. 

Theorem 2.1 (Jamison and Olariu [lo]). Every separable p-connected component H 

has a unique separation (Hl,Hz). Furthermore, every vertex of H belongs to a cross- 

ing PJ with respect to (H,,Hz). 

Let G = ( V, E) be an arbitrary graph. A set 2 of vertices of G is called homogeneous 

if 1~ IZI < 1 VI and each vertex outside Z is either adjacent to all vertices of Z or 

to none of them. A homogeneous set Z is maximal if no other homogeneous set 

properly contains Z. Let H be a p-connected component. The graph obtained from H by 

replacing every maximal homogeneous set by one single vertex is called characteristic 

p-connected component of H. Recall that a graph is a split graph if its vertex-set can 

be partitioned into a clique and a stable set. 

Theorem 2.2 (Jamison and Olariu [lo]). A p-connected component H is separable if 

and only tf the characteristic p-connected component of H is a split graph. 

The introduction and study of separable p-connected graphs is justified by the fol- 

lowing general structure theorem for arbitrary graphs. 

Theorem 2.3 (Jamison and Olariu [lo]). Let G = (V,E) be a graph. Exactly one of 

the following statements holds: 

(i) G is disconnected. 

(ii) ?? is disconnected. 

(iii) There exists a unique proper separable p-connected component H with separation 

(Hl,H2) such that every vertex outside H is adjacent to all vertices in HI and 

to no vertex in Hz. 

(iv) G is p-connected. 

As already pointed out in [lo], this structure theorem suggests, in a natural way, 

a tree representation for every graph G. The leaves of the tree correspond to the 

p-connected components of G. If these subgraphs have a simple structure then we 

may hope to solve the isomorphism problem in polynomial time. This observation 

motivates a further study of p-connected graphs. As a first step in this direction, in the 
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next section of this work, we shall look at graphs that are critical in the sense of 

p-connectedness. 

3. Minimally p-connected graphs 

A graph G= (V,E) is minimally p-connected if G is p-connected and, for every 

vertex u of G, G - {v} is not p-connected. Following the notation in [ 1 l] a p-connected 

graph G = (V,E) is called a spider if V admits a partition into disjoint sets S and K 

such that: 

(i) ISI = ]KI 22, S is stable, K is a clique; 

(ii) There exists a bijection f :S+K such that either 

N(s) = {f(s)} for all vertices s in S, 

or else 

N(s) = K - {f(s)} for all vertices s in S. 

If the first of the two alternatives of (ii) holds then G is said to be a spider with 

thin legs, otherwise the spider has thick legs (see Fig. 1). As a technicality, a P4 is 

considered to be a spider with thin legs. Obviously, the complement of a spider with 

thin legs is a spider with thick legs and vice versa. The main goal of this section is 

to prove that each minimally p-connected graph is a spider. Our first result shows that 

no minimally p-connected graph contains a homogeneous set. 

Lemma 3.1. Let G = (V, E) be a p-connected graph and let Z be a homogeneous set 

in G. Then, for every vertex v in Z, G - {v} is p-connected. 

Proof. Since G is p-connected there is a P4 containing vertices from both Z and V-Z. 

This P4 contains exactly one vertex from Z, say u. If u is replaced by any other vertex 

w from Z then we again get a Pd. 

Assume that G* = G - {v} is not p-connected. Then there is a partition A,B of 

the vertex set V* = V - {v} of G* without a crossing P4. Let Z* = Z - {v}. Z* is 

Fig. 1. The spiders with eight vertices. 
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a subset of one of the sets A, B. This can be seen as follows. Let Z* f’A # 0 and 

Z* n B # 8. Take a P4 with vertices from both Z* and V* - Z* (the existence follows 

from the above observation). This P4 is contained in one of the sets A or B, say A. 

Replace the vertex from Z* n A by a vertex from Z* n B. Then we get a crossing PJ, 

a contradiction. Therefore, let without loss of generality Z* 2 A. In G there exists a 

P4 containing vertices from both A U {G} and B. This P4 contains u but no vertex from 

Z*. If 2’ is replaced by any vertex from Z* then we obtain a new P4 which is crossing 

between A and B, contrary to the assumption. 0 

Let G be p-connected and G* = G - { } v not p-connected. By Theorem 2.3 exactly 

one of the following statements is true: 

(i) G* is disconnected, i.e. v is an articulation point in G. 

(ii) G* is disconnected, i.e. u is an articulation point in G. 

(iii) There is a unique proper separable p-connected component H of G* with sepa- 

ration (Hl,Hz) such that every vertex outside H is adjacent to all vertices in HI 

and to no vertex in H2. 

According to the different cases we call the vertex v to be of type 1, 2 or 3. 

Lemma 3.2. Let G= (V,E) be p-connected. If each vertex of G is of type 1 or 2 

then G is a Pd. 

Proof. A connected graph has at most 1 V / - 2 articulation points. Therefore, G contains 

vertices of both types. In particular, since / VI 24 there exist at least two vertices which 

are articulation points in G. Furthermore, since G is connected there are vertices of 

different type, say x of type 1 and y of type 2, with xy E E. 

Suppose first that IN( y)l > 1. 

Denote G( U1 ), G( Uz), . , , G( U,) the components of G - {x} and let y E Ui. Note that 

under the above assumption we have U1 - {y} # 8 and Y >, 2. Since there is no edge 

in G connecting vertices from different sets U, - {y}, U2, . . . , U, we conclude that 

G - {x, y} is connected. Now let G( W, ), G( Wz), . . , be the components of G - {y}. 

Then we get & = {x} and Wz = V - {x, y}. This means that x is adjacent to all other 

vertices in G. However, then there is no P4 containing x and this contradicts to the 

fact that G is p-connected. Therefore IN(y)1 = 1. 

Since there exist at least two articulation points in G and since G is connected, there 

is a second vertex y’ of type 2 which is adjacent to a vertex x’ of type 1. Analogously 

as above we conclude that IN( y’)l = I. Thus we have N(y) = {x} and N( y’) = {x’}. 

Again denote G( fl ), G( W, ), . . . the components of G - { y}. Since IN( y’) I = 1 we have 

W, = {x’} and WZ = V - {x’, y}. If x =x’ then x would be adjacent to all other vertices 

in G. This is not possible since G is p-connected. Therefore x # x’. x’ E K and x E Wz 

implies xx’ E E. Therefore, the vertex set { y,x,x’, ,v’} induces a Pd. Each further vertex 

w is adjacent to x’ and also to x (exchange the parts of y and y’), thus exactly to the 

midpoints of the Pd. As a consequence, there is no crossing P4 between {y,x,x’, y’} and 

the remaining vertices. Therefore no such vertex w exists. This proves the lemma. 0 
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Lemma 3.2 implies that each nontrivial minimally p-connected graph contains a 

vertex of type 3. If v is of type 3 then we write H(u) for the separable p-connected 

component and (Hi(u),H~(v)) for the separation. Further we denote R(v) to be the 

vertices of G* outside H(v). 

Lemma 3.3. Let G = (V,E) be minimally p-connected and let x E V be a vertex of 

type 3 with IR(x)I minimal. Then /R(x)1 = 1. 

Proof. Assume that IR(x)I 22. By virtue of Lemma 3.1, G contains no homogeneous 

set. Therefore, x is adjacent to some but not to all vertices in R(x). Consequently, we 

find vertices u and u’ in R(x) with xu E E and xu’ 6 E. 

We consider vertex u and examine the possible types of u: 

(i) Assume that u is of type 1, i.e. u is an articulation point in G. Since G - {u,x} 

is connected we conclude that N(x) = {u}. Obviously, U’ is not an articulation 

point in G and not in G. Thus, u’ is of type 3. x can neither be in R(u’) nor 

in Hi(u’) since each vertex from this two sets is adjacent to at least two ver- 

tices. Thus x E&(u’) and as an immediate consequence u phi. Since both 

H(x) and H(u’) are p-connected, we easily see that H(x) c H(d). However, now 

IR(u’)( < IR(x)l, contradicting the choice of x. 

(ii) Assume that u is of type 2, i.e. u is an articulation point in G. Since G- {u,x} is 

connected this would imply N(x) = V - {x}. H owever, this is not possible since 

xu’ #E. 

(iii) Assume that u is of type 3. Since H(x) and H(u) are p-connected, either H(x) & 

H(u) or H(x) C R(u) holds. The second case is not possible since some edges 

between R(u) and Hi(u) would be missing (take vertices v l Hz(x)nR(u) and 

w~R(x)nH~(u), then uw$E). 
Therefore H(x) g H(u). Since, due to the choice of x, jR(u)l > [R(x)1 must hold, we 

conclude that H(u) = H(x) and, due to the uniqueness of the separation (Theorem 2.1) 

(fh(u),ff2(u)) = W1(x),ffz(x)). H owever, since we know from above that u is adjacent 

to all vertices in Hi(x) and to none in Hz(x), this would imply a homogeneous set 

R(u) U {u}, a contradiction. 

This shows that the assumption [R(x)/ 22 is not correct. 0 

Lemma 3.4. Let G = (V, E) be minimally p-connected and let x E V be a vertex of 
type 3 with R(x) = {u}. Then N(x) = R(x) or N(x) = HI(X) U&(x). 

Proof. Assume first that xv E E. We distinguish the possible types for v. If v is of 

type 2, i.e. an articulation point in G then N(x) = V - {x}. This is not possible since 

no P4 would exist containing x in contradiction to the p-connectedness of G. If v 

is of type 3 then obviously R(u) = {x} and therefore N(x) = {v} U H,(x). Thus {u,x} 

would be a homogeneous set. Therefore v is of type 1, i.e. articulation point in G and 

N(x) = (0). This shows the first part of the statement. 
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For the second part assume that xv $ E. If v is of type 1 then N(x) = 8 which is 

not possible since G is connected. If v is of type 3 then R(v) = {x} and therefore 

N(x) = H,(x). Again {v,n} would be a homogeneous set. Therefore v is of type 2 and 

N(x)=H,(x)uH2(x). 0 

We are now ready to prove the main result of this section. 

Theorem 3.5. Every minimally p-connected graph is a spider. 

Proof. If G contains no vertex of type 3 then, by Lemma 3.2, G is a P4 and therefore 

a spider. Let x be a vertex of type 3 with IR(x)I as small as possible. By virtue of 

Lemmas 3.3 and 3.4, we have R(x)= {v} and N(x)=R(x) or N(x)=Hl(x)U&(x). 

It suffices to consider the case N(x) = R(x), the second case being handled similarly. 

Note that, if 2 is a homogeneous set in the subgraph H(x) then Z C HI(X) or 

Z 2 Hi. This can be seen as follows. Assume that Z nHi(x) # 8 for i = 1,2. Take a 

P4 with vertices from both Z and H(x) -Z. Since Z is homogeneous, this PJ contains 

exactly one vertex from Z, say z. As we have already seen, z may be replaced by 

any other vertex from Z to form another Pd. If z E H,(x) then replace z by a vertex 

z’ E Z f? Hi, if z E Hz(x) then by a vertex z” E Z n HI (x). It is immediately clear 

that a P4 results which is crossing between H,(x) and Hz(x) and whose midpoints or 

endpoints are not both in H,(x) or Hz(x). 

We can conclude that Z is also homogeneous in G. However, Lemma 3.1 implies that 

G contains no homogeneous set. Therefore, no such set Z exists. Using Theorem 2.2 

we conclude that G(Hl (x) U Hz(x)) is a split graph. For convenience denote K the 

vertex set of the clique induced by H,(x) and S the stable set Hz(x). Note that each 

vertex of G is contained in a P4 xvks with k E K and s ES. 

Let s’ ES with N(s’) = {k’}. If lN(k’)nSI 22 then each vertex of G - {s’} is 

contained in a path xvks with s # s’, thus G - {s’} would be p-connected, contra- 

dicting the minimality of G. Therefore IN(k’) n SI = 1. Analogously, let k” E K with 

N(k”) n S = {s”}. Then IN( = 1, otherwise G-{k”} would be p-connected. Clearly, 

the vertices k’ E K and s’ E S with IN(k’) n 5’ = 1 and IN( = 1 together with x and 

v induce a spider with thin legs. 

For all further vertices k”‘E K and S”‘E S which are not in the spider (N(k”‘) n SI 32 
resp. IN(s”‘)I 22 holds. Assume that any of this vertices, say s”‘, is deleted. For each 

k”’ E K with s”’ E N(k”‘) there is at least one additional vertex in S which is adjacent 

to k”‘. Therefore each vertex of G - {s”‘} is contained in a P4 xvks with s # s”’ and 

G - {s”‘} remains p-connected. Consequently, no further vertices exist and the proof 

is complete. q 

Theorem 3.5 implies the following very useful property of p-connected graphs that 

may be the starting point for more and deeper results concerning the structure of 

arbitrary graphs. 
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Theorem 3.6. Let G be p-connected. Then there is an ordering (v~, v,-1,. . . ,vl) of 

the vertices of G and an integer k E {4,5,. . . , n} such that the folIowing holds: 

G({vi,vi-I,..., VI }) is p-connected for i = k, . . . , n and a spider for i = k. 

4. On p-connected (q, q - 4) graphs 

We start with some properties concerning minimally p-connected graphs. 

Observation 4.1. In a spider each P4 has its midpoints in the clique K and its endpoints 

in the stable set S, i.e. a spider is separable. For each pair s, s’ E S (k, k’ E K) there is 

exactly one P4 containing both vertices. 

Observation 4.2. A spider with IZC = ISI = r contains exactly ;,(Y - 1)P4s. 

Observation 4.3. If H and G are spiders with thin (thick) legs and H has fewer 

vertices than G, then H is isomorphic to an induced subgraph of G. 

Fact 4.4. If q is even and G is a spider with q vertices then G is not a (q,q - 4) 

graph. If q is odd, q >, 9, and G is a spider with q - 1 vertices then G is not a (q, q - 4) 

graph. 

Proof. Let q be even. By virtue of Observation 4.2, the spider G contains ir(r - 1) 

PAS with r = !. Since iq(q - 2) > q - 4 holds, G does not satis& the definition of a 

(q,q - 4) graph. 
Let q be odd. Then r = i(q- 1) and G contains $(q - l)(q - 3)Pds. For q>9 we 

get &(q - l)(q - 3) > q - 4. Therefore G is not a (q,q - 4) graph. 0 

The following theorem characterizes p-connected (q, q - 4) graphs. Part (a) already 

implicitly appeared in [l 11. For the sake of completeness we restate it, giving, however, 

a completely different proof. 

Theorem 4.5. Let G = (V, E) be p-connected. 

(a) Zf G is a (5,l) graph then G is a spider. 

(b) If G is a (7,3) graph then 1 VI ~7 or G is a spider. 

(c) Zf G is a (q,q - 4) graph, q = 6 or 928, then I VI <q. 

Proof. By Theorem 3.6 there is an ordering (vn, . . . , VI) of the vertices of G and an in- 

teger kE{4,5,..., n} such that Gi := G( {vi, vi_ 1 , . . . , VI}) is p-connected for i = k, . . . , n 

and Gk is a spider. 

(a) Let G be a (5,l) graph. It can easily be verified that each spider is a (5,l) 

graph. Assume that k<n, i.e. there is a vertex t&+1 which is not in the spider Gk. 

Let X be the vertex set of an arbitrary P4 in Gk. There are no three vertices in 

X such that t&+1 together with these vertices induces a Pd. Otherwise G(X U {t&+1}) 
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would be a graph with five vertices and at least two PUS, thus not a (5,l) graph. 

Therefore, uk+l is either adjacent to all vertices in X, to no vertex in X, or exactly to 

the two midpoints. 

Using Observation 4.1 we conclude that Uk+i is either adjacent to all vertices of Gk, 

to none of them, or exactly to the vertices of the clique of Gk. However, in all three 

cases Gk+i is not p-connected since there is no P4 in Gk+, containing !&+I. This is a 

contradiction. Therefore, k = n and G is a spider. 

(b) Let G be a (7,3) graph. Again, it can easily be verified that each spider is a 

(7,3) graph. If k = 4 then the spider Gk is a Pd. Since Gi is p-connected for i = k, , II, 

adding ai+1 to Gi increases the number of Pds by at least one. Since G is a (7,3) graph 

no more than two vertices can be added. Therefore we get 1 VI < 7. 

Let k > 4 and assume that k < n, i.e. there is a vertex uk+[ which is not in the 

spider Gk. Since Gk+i is p-connected there exists a P4 in Gk+, containing &+I. Let 

X = {x, y,z, i&+1} be the vertex set of this Pd. Further let H be the spider with smallest 

number of vertices which is a subgraph of Gk and which contains x, y and z. Obviously, 

H has four or six vertices. In the first case extend H to a spider with six vertices. 

Now adding Uk+l to H results in a graph with seven vertices and at least four P4s. 

This is a contradiction. Therefore we have k = n and G is a spider. 

(c) Let G be a (q,q - 4) graph with q = 6 or q 3 8. We know from Observation 4.3 

and Fact 4.4 that k <q, i.e. the spider Gk has less than q vertices. By Observation 4.2 Gk 

contains exactly ik(k-2) Pas. Since Gi is p-connected for i = k,. . . , n, adding vi+1 to G; 

strictly increases the number of P4s. Therefore, Gi contains at least ik(k-2)+(i-k) P4s. 

Assume that G has at least q vertices, i.e. n3q. This would imply that the number 

of Pbs which are contained in the graph G4 is at least 

$k(k-2)+(q-k)=q+;k(k- lO)>q-3>q-4. 

As a consequence, G4 would not be a (q, q - 4) graph, a contradiction. Therefore we 

have [ V[ <q. 

This completes the proof. q 

This characterization can be used to derive interesting properties of (q, q - 4) graphs. 

A graph G is called brittle if each induced subgraph H of G contains a vertex which 

is either not the endpoint or not the midpoint of any P4 in H. It is well known that 

brittle graphs are perfectly orderable. A graph G is perfectly orderable in the sense of 

Chvatal [6] if there exists a linear order on the set of vertices of G such that no induced 

path with vertices u, v, w,x and edges uv, VW, wx has u < v and x <w. The importance of 

perfectly orderable graphs stems from the fact that these are precisely the graphs for 

which the coloring heuristic “always use the first available color” based on the linear 

order yields a coloring using the minimum number of colors. Chvatal has shown that 

perfectly orderable graphs are perfect. 

It is easy to see that (q,q - 4) graphs, q>9, are not brittle and not even perfect 

since the induced cycle of length five belongs to these classes. On the other side the 

following holds. 
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Theorem 4.6. Every (q, q - 4) graph, 4 Q q < 8, is brittle. 

Proof. If a vertex v is not endpoint (midpoint) of any PJ in a p-connected component 

of G then v is not endpoint (midpoint) of any P4 in G. Therefore, it suffices to prove 

that p-connected (q, q - 4) graphs, 4 d q d 8, are brittle. 

Let q = 8 and G = ( V, E) be a p-connected (8,4) graph with maximal number of 

vertices, i.e. ) VI = 7. Further let (VT, VC,, . . . , VI) be an ordering of the vertices of V 

defined by Theorem 3.6. It is easy to see that VI is contained in exactly one Pd. For 

that reason VI is either not the endpoint or not the midpoint of any P4 in G. 

If we have at most six vertices, the conclusion follows by an exhaustive search. For 

q<7 use Obsevation 4.1 to see that spiders are brittle. Then, as above, an exhaustive 

search should convince the reader that (q,q - 4) graphs, q<7, with no more than six 

vertices are brittle. 0 

5. The tree structure of (q, q - 4) graphs 

Theorem 2.3 enables us to give for any graph a tree representation. The tree asso- 

ciated with a graph G carries labels on the interior nodes and is constructed by the 

obvious recursive procedure. The labels correspond to the cases in the theorem. Thus, 

label (1) indicates that the graph associated with this node as a root is the disjoint 

union of the graphs defined by its children. Label (2) defines the operation which we 

will call disjoint sum. All pairs of vertices belonging to different children are linked 

by an edge. Operation (3) adjoins the midpoints of the leftmost son - which has to 

represent a separable p-connected component - to all vertices of its other children. The 

leaves of the tree represent the p-connected components of the graph G along with its 

weak vertices. 

It is well known that each cograph arises from single vertices by a sequence of 

operations disjoint union and disjoint sum. Thus, in this special case the leaves of the 

tree represent vertices and the labels of the interior nodes are (1) and (2). 

Let 9(q, t) denote the set of all (q, t) graphs. In particular, 9(4,0) corresponds to the 

set of cographs, 9(&l) to the set of P4-sparse graphs. The following theorem reflects 

the containment relations between the different classes. 

Theorem 5.1. (a) 9(4,0) c g(5, l), ‘9(6,2) c 9(7,3). 

(b) %(6,2) C Q(q,q - 4) C 9(q + 1, q - 3) for q 2 8. All inclusions are strict. 

Proof. It is clear from the tree representation that it suffices to consider the p-connected 

components of the graphs. With this in mind all inclusions can immediately be deduced 

from Theorem 4.5. 

Examples to confirm the strict inclusions are in case (a) the P4 respectively the graph 

consisting of a P4 uvwx extended by two vertices y,z which are adjacent to w. In case 

(b) take the path Pe with 6 vertices for the first and the path P4 with q vertices for the 
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second inclusion. The classes Y(5,l) and %(6,2) are not comparable (take the path PS 

respectively a spider with 6 vertices). 0 

As already indicated in Section 1 it is known from [ 131 that Pd-reducible graphs 

belong to the class Y(5,l). We would like to mention another interesting set of graphs. 

A graph G is called Pd-lite [15] if every induced subgraph of G with at most six vertices 

either contains at most two Pds or is isomorphic to a spider with six vertices. It is an 

easy observation that Pd-lite graphs are a proper superclass of 9?(5,1) and 4e(6,2) and 

a proper subclass of 9(7,3). Up to now no polynomial isomorphism test for Pd-lite 

graphs was known. 

It follows immediately from Theorem 2.3 that for any graph G the tree representation 

given above is unique up to isomorphism. It is known from [lo] that it can be obtained 

in time polynomial in the number of vertices in G. Note that in our special case of 

(q, q - 4) graphs the nontrivial leaves of the tree represent 
_ spiders if q = 5; 

- graphs with less than seven vertices or spiders if q = 7; 

- graphs with less than q vertices if q =6 or qb8. 

With this information we are able to give an efficient isomorphism test. Here is an 

informal description. The algorithm tests whether two (q, q - 4) graphs are isomorphic 

or not. In the positive case, it stops in state “true”, otherwise in state “false”. 

Algorithm ISOMORI’H(Gt , Gz, Boole) 

Input: Two (q, q - 4) graphs Gi, Gz. 

Output: A boolean variable Boole, which is true or false depending on whether GI 

and G2 are isomorphic. 

Step 1: Construct the representing trees lj, & for Gi and G2. 

Step 2: Test all pairs of graphs corresponding to leaves in Ti and E for isomorphism 

and assign two leaves the same label if and only if the corresponding graphs are 

isomorphic. As a result we obtain two labeled trees 7; *, q* (with integer labels on the 

internal nodes and on the leaves). 

Step 3: Perform a labeled tree isomorphism test for T,* and q*. If T,* is isomorphic 

to &* then set Boole := true else set Boole := false. 

The correctness of the algorithm is obvious. It is well known that labeled tree isomor- 

phism can be tested in time linear in the number of vertices of the tree (see e.g. [l]). 

Therefore, it remains to ensure that the task of transforming the trees of Gr , G2 into 

labeled trees can be done in polynomial time. 

The crucial point is that the subgraphs associated with the leaves are very simple. 

If the number of vertices is restricted by the constant q then isomorphism testing for 

each pair of subgraphs requires only constant time. If the subgraphs are spiders then 

isomorphism testing can be done in time linear in the size of the spiders (note that 

the stable set of the spider consists of all vertices with minimal number of neighbors). 

These considerations imply the following statement. 
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Theorem 5.2. For every jixed q the isomorphism of (q,q - 4) graphs can be tested 

in polynomial time. 

6. Conclusions and open problems 

In this work we proved that, for any fixed q >4, (q,q - 4) graphs admit a tree 

representation which enables a polynomial isomorphism test. This generalizes known 

results about cographs, Pa-reducible graphs and P4-sparse graphs. 

It is an open question whether a tree representation for arbitrary graphs can be 

found in time linear in the size of the graph. If this is true then it would immediately 

imply a linear isomorphism test and also a linear recognition algorithm for (q,q - 4) 

graphs (essentially, we have to check the leaves of the representing tree for mem- 

bership in the class 9(q, q - 4)). Note that the naive method “examine all subsets 

U & V of cardinality q and count the P4s in G(U)” shows that the recognition prob- 

lem is polynomial. Both the isomorphism and the recognition problem are known to 

be solvable in linear time for cographs (see [S]) and for P4-sparse graphs (see [12]). 

We conjecture that this is also possible for (q,q - 4) graphs with q 3 6, using similar 

techniques. 

Each (q, q - 4) graph is also a (q, q - 3) graph, therefore %(q, q - 4) C Y(q, q - 3) 

holds. Obviously 9(4,1) is the set of all graphs. It is easy to see that %(5,2) coincides 

with the class of graphs which contain no induced cycle of length five. We conclude 

with an isomorphism completeness result (a problem is isomorphism complete if it is 

polynomial time equivalent to graph isomorphism). 

Lemma 6.1. The task of testing the isomorphism of (q,q - 3) graphs, qE {4,5,6}, is 

isomorphism complete. 

Proof. The statement is trivial for q = 4. For q = 5 it follows from the fact that %(5,2) 

contains all bipartite graphs, where the isomorphism problem is known to be isomor- 

phism complete (see [4]). 

Let q = 6. We give a polynomial reduction from the set of all graphs to the class 

9(6,3) such that two graphs are isomorphic if and only if the corresponding (6,3) 

graphs are isomorphic. Let G = (V,E) be an arbitrary graph and u E V. Assume that 

Wv)={w,u2,..., u,}. Replace each nonisolated vertex UE V by a clique with 

IN(n)] =r vertices, say WI,. . .,wr, and join all r pairs ui, wi by an edge. Further- 

more, replace each edge which connects vertices from two different such cliques by 

a path of length two. It is an easy task to verify that the resulting graph is a (6,3) 

graph. q 

The complexity of the isomorphism problem remains unknown for the classes 

Y(q,q - 3) q37. 
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