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ABSTRACT

STATISTICAL METHODS FOR META-ANALYSIS IN LARGE-SCALE GENOMIC
EXPERIMENTS

Wimarsha Thathsarani Jayanetti
Old Dominion University, 2022
Director: Dr. Sinjini Sikdar

Recent developments in high throughput genomic assays have opened up the possibil-

ity of testing hundreds and thousands of genes simultaneously. With the availability of vast

amounts of public databases, researchers tend to combine genomic analysis results from mul-

tiple studies in the form of a meta-analysis. Meta-analysis methods can be broadly classified

into two main categories. The first approach is to combine the statistical significance (p-

values) of the genes from each individual study, and the second approach is to combine the

statistical estimates (effect sizes) from the individual studies. In this dissertation, we will

discuss how adherence to the standard null distributional assumptions in both categories of

meta-analysis methods can lead to incorrect significance testing results in detecting the true

set of significant genes. To overcome this, we will also propose two robust meta-analysis

methods that perform empirical modifications of the summary results. In the first part,

we will propose a new meta-analysis method combining p-values for a gene from multiple

studies with an aim to detect significance in a consistent pattern in a majority of studies.

Our proposed method performs an empirical modification of the individual p-values using an

empirical Bayes approach before meta-analyzing them. In the second part, we will propose a

meta-analysis method combining effect size estimates for a gene from multiple studies with

an aim to detect significance in at least one study. Here we perform empirical modification

of the z-scores, obtained from effect size estimates of the genes and their standard errors,

using the empirical Bayes approach. Through various simulation studies and real genomic

data applications, we will show that our proposed meta-analysis methods outperform the

existing meta-analysis methods in terms of accurately identifying the truly significant set

of genes by reducing false discoveries, especially in the presence of unobserved confounding

variables.
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CHAPTER 1

INTRODUCTION

In this chapter we start with section 1.1 where we describe the biological background

of genomic data. In section 1.2, we illustrate several existing meta-analysis methods for

genomic data. In section 1.3, we briefly describe about the concept of multiple hypothesis

testing and existing correction methods. Finally, an overview of the dissertation is outlined

in section 1.4.

1.1 BACKGROUND

1.1.1 DNA

The hereditary substance in humans and almost all other animals is DNA or deoxyri-

bonucleic acid. The DNA of nearly every cell in a person’s body is identical. The instructions

sent to the cells to grow, develop and function can be encoded in a string - a molecule of

DNA, a polymer made up of recurring units called nucleotides. DNAs are nucleic acids.

Adenine (A), Guanine (G), Cytosine (C), and Thymine (T) are the four nucleotides found

in DNA molecules. The nucleotide A always binds to T in DNA, while C always binds to G.

These nucleotides, in a specific sequence, store the information for life. DNA is arranged in

a double-helix structure, in which two complimentary polymers interlace and twist to form

the classic helical shape (see Figure 1). The information for life is stored in the nucleotides

in a precise sequence.

1.1.2 GENOME

A genome is an organism’s complete DNA sequence that contains all of its genetic infor-

mation. The genome contains all the instructions for creating and maintaining an organism.

Genomes come in a variety of sizes and configurations, and they vary between species.
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Fig. 1. Double-helix structure of DNA. Adapted from “Building Blocks of the Genetic

Code” by the American Society of Human Genetics, 2019 (https://www.ashg.org/discover-

genetics/building-blocks/).
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1.1.3 GENE

The precise information that encodes for physical products of genetic information is

contained in certain areas of the genome. A “gene” is a section of the genome that contains

this information. Genes are lengthy strands of DNA that are the fundamental units of

inheritance in all living organisms. Genes also provide information about building proteins.

1.1.4 PROTEIN

A protein is made up of a chain of amino acids linked by peptide bonds. Proteins

are necessary for life to exist. All living cells rely on them for growth, repair, function,

and structure. Because a gene can encode information for proteins and other functional

molecules, it is a crucial notion in genomic biology.

1.1.5 CENTRAL DOGMA OF BIOLOGY

The process of converting DNA instructions into a functional product is known as the

“Central Dogma”. Francis Crick, the discoverer of the structure of DNA, initially proposed

it in 1958. The central dogma explains the flow of genetic information, from DNA to RNA,

to make a functional product, a protein (see Figure 2). In this process, the DNA is replicated

in order to transfer information to new cells. If activated, the genes are then transcribed

into messenger ribonucleic acids (mRNAs) in the nucleus and then translated into proteins

in the cytoplasm. Information is transferred between information-carrying polymers such as

DNA, RNA, and proteins in this process.

1.1.6 GENE EXPRESSION

Gene expression is the process by which information encoded in DNA is transformed into

instructions for creating proteins or other molecules which is summarized in central dogma

of biology. This process enables a cell to respond to changes in its environment. It serves as

an on/off switch for controlling when proteins are produced as well as a volume control for

increasing or decreasing the number of proteins produced. The condition of the system at

any particular time is determined by the gene expression measure.
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Fig. 2. Central dogma of biology. Adapted from “Central dogma of molecular biology” by

the Labster Theory, 2021 (https://theory.labster.com/central dogma molecular biology pre/).
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1.1.7 HIGH-THROUGHPUT EXPERIMENTAL METHODS IN GENOMICS

High-throughput experimental methods have become critical in genomics research. They

can sequence multiple DNA molecules in parallel, allowing them to sequence hundreds of

millions of DNA molecules at once. This advantage enables researchers to generate large

data sets, allowing them to gain a more comprehensive understanding of various diseases

and developmental stages.

Several methods for measuring expression levels have long been available, but only for a

few genes at a time. This approach, which was the only one available for a long time, is slow,

expensive, and inefficient for large-scale gene screening. Prior to the widespread adoption of

microarray technologies, large-scale screenings of gene expression signatures were impossible.

Microarrays allow researchers to examine thousands of genes at once. Until the development

of sequencing technology (e.g. Next-generation sequencing), microarrays were the standard

instrument for the quantification stage. Most biological phenomena involving transcription,

gene regulation, or DNA mutation can be detected throughout the entire genome using

high-throughput experimental techniques, such as microarrays, which have become the gold

standard in genome biology research. The steps in high throughput techniques are as follows

and also summarized in Figure 3:

• Extraction: This is the process of extracting the genetic material of interest, such as

RNA or DNA.

• Enrichment: In this step, enrichment for the event of interest is done. Enrichment pro-

cesses are not required in some circumstances, such as whole-genome DNA sequencing

where genomic DNA fragments are collected and sequenced.

• Quantification: The enriched material is quantified in this step.



6

Fig. 3. Three common steps in high throughput techniques. Adapted from Podgórski,

K. (2021). Computational Genomics with R Altuna Akalin Chapman & Hall/CRC, 2021,

International Statistical Review, 89(2), 420-421.

1.1.8 MICROARRAY EXPERIMENT

Microarrays have played an important role in the recent biotechnological revolution. They

have enabled researchers to simultaneously monitor the expression of thousands of genes and

hence obtain snapshots of the state of a complete genome. This advancement has given rise

to a new field of study in statistics and bioinformatics.
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DNA microarray, also commonly known as DNA chip, is a technology that allows re-

searchers to identify and quantify mRNA transcripts in cells. Researchers use DNA microar-

rays to quantify the expression levels of large numbers of genes simultaneously. The number

of molecules of mRNA produced by the transcription of a specific gene can be used to approx-

imate the gene’s degree of expression. A microarray is made up of strands of polynucleotide

(DNA) called probes that are connected to or produced at set spots on a solid surface. The

mRNA is taken from the subject cells to begin a microarray experiment. The molecules

are then tagged with fluorescent dye. These tagged transcripts are referred to as targets.

After the samples have been processed, they are deposited on the array and permitted to hy-

bridize in a hybridization chamber for some time. By hybridization, the tagged targets bind

to probes on the array with which they share sufficient sequence complementarity. The array

is then washed, removing any targets that did not hybridize. Spotted or cDNA microarrays

and oligonucleotide chips are the two most common types of expression microarrays. Figure

4 depicts an example of a cDNA microarray experiment.
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Fig. 4. A cDNA microarray experiment. Adapted from “cDNA and Microarrays” by

the BioNinja (https://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-

modification-and/cdna-and-microarrays.html).

At the end, this image will be analyzed to obtain information about gene expression

levels: each spot on the array is identified, then its intensity is measured and compared to

the background. This is known as image analysis. As with any statistical analysis, and

particularly in image analysis, the quality of the data must be examined first. Once the

quality of the data has been determined it is still necessary to carryout some preprocessing

before the analysis. Microarray data preprocessing mainly consists of two steps: background

correction and normalization. The next step is the differential expression analysis. The

goal of differential expression analysis is to discover quantitative changes in expression levels

between experimental groups. The analysis of gene expression data from a single study has
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limitations, such as small sample sizes. The statistical significance established is substan-

tially higher when multiple studies are taken into account at once than when only one study

is taken into account. Therefore, it makes more sense to generalize the findings from a meta-

analysis than from a single study since it incorporates many populations into the analysis

and, as a consequence, takes into account the variations between various groups, which are

most likely to respond in different ways.

1.2 META-ANALYSIS METHODS FOR GENOMIC DATA

Today, meta-analysis has become a key component in genomic research. A meta-analysis

is a statistical method that integrate the summary results of multiple studies. Meta-analysis

can be performed when there are multiple studies addressing the same overall hypothesis.

It produces more robust results, which can assist researchers in better understanding the

magnitude of an effect that generalized to a larger population. Meta-analysis has several

benefits, including increased statistical power to detect an effect and improved precision and

accuracy of effect estimates.

Meta-analysis methods can be broadly classified into two main categories. One where

statistical significance measures such as p-values from individual studies are combined, and

the other where statistical estimates such as effect sizes from individual studies are com-

bined. Fisher’s combined probability test [1] and Stouffer’s Z-test [2] are the two widely

used traditional p-value combination methods. Over the time, several weighted and gener-

alized versions of these traditional p-value combination methods have also been discussed

and illustrated [3–5]. Several methods combining effect sizes exist in the literature [6, 7].

There are advantages and disadvantages for both type of meta-analysis methods. Methods

based on combining significance (p-values) are relatively flexible since they require minimal

information and assumptions from the studies. On the other hand, combining effect sizes

is statistically more powerful than combining p-values or z-scores but require more strict

assumptions and they can not be easily extended to studies with multiple groups.

In our first project, we will focus on the p-value combining methods. Following is a

brief description of some commonly used methods for combining significance (p-values). We

consider K independent studies that have been carried out to detect a certain effect. Let θj

denote the parameter that characterizes the effect of study j, j = 1, ..., K. The jth study
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is outlined to test the hypothesis H0j : θj = 0 against an alternative H1j : θj ̸= 0 using the

test statistic Tj. Assuming Tj follows a continuous distribution, the significance of a test is

often defined as a p-value, that is, as pj = Pr(Tj > tj|H0j). Note that when H0j is true, pj

is assumed to be uniformly distributed.

Fisher’s Method

The most popular method for combining p-values is the Fisher’s combined probability

test [1]. Fisher’s method uses the product of p-values from the studies and convert it to

chi-square scores using a −2log transformation. Due to this reason it is also known as the

inverse chi-square method. The Fisher’s combined probability test statistic is defined as

follows:

VF = −
K∑
j=1

2log(pj)

When all the null hypotheses of the K tests are true, then VF has a χ2 distribution with

2K degrees of freedom, assuming that the K studies are independent. Fisher’s method can

be sensitive to smaller p-values.

Stouffer’s Method

An alternative to Fisher’s method is Stouffer’s Z test [2], which is based on converting

the p-values into Z-scores. Let ϕ(x) = exp(−x2/2)/
√
2π denotes the standard normal prob-

ability density function and Φ(x) =
∫ x

−∞ ϕ(z)dz denotes the standard normal cumulative

distribution function. Then the Stouffer’s Z test statistic is defined as follows:

VZ =
K∑
j=1

Φ−1(1− pj)

When all the null hypotheses of the K tests are true, VZ has a normal distribution with

mean zero and variance K, assuming that the K studies are independent.

Tippett’s Minimum P-value Method

The Tippett’s test statistic [8] is defined as:

VT = MinK
j=1 pj
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whose null distribution, if the K studies are independent and continuous, is the

Beta(1, K). The Tippett’s Minimum p-value test is closely related to the Bonferroni method

[9] and is also known as the union-intersection method. This method is also sensitive to small

p-values like Fisher’s method but it is less powerful than Fisher’s method especially when

all studies are significant.

Most of these traditional meta-analysis methods aim at detecting signals in at least one

study. Nowadays, researchers are more interested in detecting signals in a consistent pattern

across multiple studies. This is especially true with meta-analysis of genomic studies. In

that context some methods have been proposed recently. For example, Song and Tseng [10]

proposed an order statistic of p-values (rth ordered p-value, rOP) across studies as the test

statistic for detecting differentially expressed genes in a majority of studies. They also devel-

oped methods to estimate the parameter r for real-world applications. Later, Li and Ghosh

[11] introduced a new class of meta-analysis methods based on summaries of weighted or-

dered p-values (WOP) with the goal of detecting significance in a majority of studies. They

considered weighted versions of traditional methods such as Fisher’s method and Stouffer’s

method, in which the weight for each p-value is determined based on its order among the

studies.

In our second project, we will focus on meta-analysis techniques that combine effect

size estimates from multiple studies addressing the same research question as an alternative

to combining p-values. In meta-analysis, different weights are typically assigned to each

study to reflect the relative contributions of individual studies to the total effect size. Many

meta-analysis methods weight the studies based on precision. In the calculation of the effect

size, more precise studies are given more weight. Either a fixed effects model or a random

effects model can be used for this. Because fixed effects meta-analysis assumes that the

genetic effects are constant across the studies, it differs from random effects meta-analysis.

Compared to random effects models, fixed effects models offer much lower p-values and more

precise confidence intervals for the estimates [12]. Below is a brief discussion of both the

fixed effects and random effects models.

Fixed Effects Model

The fixed-effect model assumes that the true effect size for all studies is identical and that

the only reason the effect size varies between studies is due to within-study estimation error.
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Therefore, the weights in the fixed effect model are solely based on within-study variances.

Inverse-variance weighting is frequently utilized for the fixed effects model. Suppose θ̂j and

wj denote the effect size estimate and its inverse of the estimated variance for the jth study,

j = 1, 2, ..., K. The weighted average of the effect size estimates can be computed as follows:

θ̂F =

∑K
j=1wj θ̂j∑K
j=1 wj

The variance of the weighted average of the effect size estimate can be calculated as

var(θ̂F ) =
1∑K

j=1wj

Random Effects Model

The goal of the random-effects model is to estimate the mean of a distribution of effects

rather than one true effect. Those means usually assumed to follow a Normal distribution.

The model estimates the variance of that Normal distribution and therefore the degree of

between-study heterogeneity. Each study’s weight incorporates the between-study variance

of heterogeneity τ 2 [13] , which is expressed as

τ 2 = (Q− (K − 1))/

(
K∑
j=1

wj −

(∑K
j=1w

2
j∑K

j=1 wj

))

where k is the number of studies and Q =
∑K

j=1wj(θ̂j − θF )
2. Then the weight for the

random effects model is computed as

wR
j = 1/(

1

wj

+ τ̂ 2)

In the second part of this dissertation, we will focus on the inverse variance method based

on fixed effect model, which involves multiplying individual effect sizes by the inverse of their

squared standard error. The widely used meta-analysis method called METAL [14] use this

idea to test the hypothesis that the genes are differentially expressed in at least one study.

1.3 MULTIPLE HYPOTHESIS TESTING CORRECTION

METHODS

Multiple hypothesis testing refers to testing several hypotheses simultaneously. This sce-

nario is quite common in statistical research, especially in genomic studies where thousands

of genes are tested simultaneously. The probability that some of the true null hypotheses
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will be rejected can be large if our decisions about the individual hypotheses are based on

the unadjusted marginal p-values. The concept of family wise error rate (FWER) was first

introduced by Tukey in 1958. The FWER is defined as the probability of making at least

one type I error in the family. Therefore, by assuring FWER ≤ α, the probability of making

one or more type I errors in the family is controlled at level α. Tukey, Scheffé and Bonferroni

methods are some of the classical solutions to control FWER.

Benjamini and Hochberg [15] proposed an alternative approach to control false discov-

ery rate (FDR) that is more appropriate in scenarios, such as the detection of differentially

expressed genes. FDR is the expected proportion of tests which are incorrectly called signifi-

cant out of all the tests which are called significant. Considering M hypothesis tests, Table 1

lists all possible outcomes. Here, FDR is defined as E(V
R
). The Benjamini-Hochberg method

is a procedure which controls the FDR so that FDR ≤ α.

Table 1

Possible outcomes when simultaneously testing M null hypotheses.

Not significant Significant Total

Null is true U V M0

Alternative is true T S M1

Total M-R R M

1.4 OVERVIEW OF THE DISSERTATION

This dissertation is based on two different projects that are linked through the meta-

analysis of genomic data. The first project focuses on developing a novel meta-analysis

technique which aim to identify genes significant consistently in a majority of studies. The

proposed method empirically adjusts the weighted ordered p-values from multiple studies

before combining them. This proposed method is developed for situations when p-value
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is the only available information for the genes in the studies considered for meta-analysis.

A second project is developed for situations where the aim is to identify genes significant

in at least one study. This method requires availability of effect size estimates and their

standard errors from the studies which are then combined across the studies. Through

various simulation studies, we showed that our proposed meta-analysis methods outperform

the existing methods in terms of accurately identifying the truly significant set of genes. We

applied our proposed methods on several real-life datasets (lung cancer, brain cancer and

diabetes) which clearly demonstrate the utility of the proposed methods.



15

CHAPTER 2

EMPIRICALLY ADJUSTED WEIGHTED ORDERED

P-VALUES METHOD

2.1 INTRODUCTION

One of the flexible approaches for meta-analysis methods is to directly combine the p-

values from the studies. In that context, there are two popular traditional methods - Fisher’s

combined probability test [1] and the Stouffer’s Z test [2]. These traditional methods assume

that individual p-values which are coming from different studies are uniformly distributed

under the null hypothesis of no differential expression in any study. However, in large-

scale multiple testing problems, the theoretical and empirical null might differ, [16] hence,

the distributional assumption of these traditional p-value combination methods can become

problematic.

Recently, an empirically adjusted meta-analysis (EAMA) method [17] has been proposed

to ensure that all the p-values from individual studies are uniformly distributed under the

null hypothesis. In this study, they have applied an empirical adjustment to the raw p-values

before combining them using Fisher’s method and obtained better inferences compared to the

Fisher’s method. However, the traditional methods, including EAMA, aim to identify genes

that have significant contributions to the outcome of interest in any of the studies. In recent

years, researchers are often more interested in identifying those genes which are differentially

expressed in majority of studies. To address this problem, in recent years several methods

have been proposed [18–23]. For example, Song and Tseng [10] proposed the rth ordered

p-value (rOP) method that aims at testing the alternative hypothesis that there is signal in

at least a given percentage of the studies. But, the rOP method considers information on

only one ordered p-value for conclusion, which can lead to considerable loss of information

for meta-analysis. Later, Li and Ghosh [11] proposed a weighted ordered p-values method

(WOP) which combines all ordered p-values using Fisher’s and Stouffer’s statistics after

weighting them based on their order, and tests whether the genes are differentially expressed
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in majority of studies against the null hypothesis that they are not differentially expressed in

any study. Based on the results obtained by Li and Ghosh [11], the WOP method appeared

to be more robust than the rOP method as well as the traditional methods (Fisher’s method

and Stouffer’s method). Under the WOP framework, although many classical p-value com-

bination approaches can be expressed, Li and Ghosh focused on the Fisher’s and Stouffer’s

methods. Hence it is still needed to ensure that the p-values are uniformly distributed under

the null hypothesis.

We propose a meta-analysis method that implements WOP method but empirically ad-

justs the null distribution of the p-values to ensure that they are uniformly distributed under

the null hypothesis. We considered the same problem of testing the alternative hypothesis

that a gene is differentially expressed in at least half of the studies against the null hypothesis

that it is not differentially expressed in any study. But instead of directly combining the

weighted ordered p-values, we combined empirically adjusted p-values after weighting them

based on their order. Our proposed method utilizes the Empirical Bayes method, proposed

by Efron [16], for estimating the null distribution empirically. After appropriately combining

empirically adjusted weighted ordered p-values across the studies using the WOP summary

statistic, we computed multiple testing corrected p-values based on the numerical distribu-

tion with the aim of identifying a smaller proportion of interesting or significant genes that

are differentially expressed in at least half of the studies.

Our proposed method has advantages over both the traditional p-value combination

methods as well as the WOP method. Compared to the traditional p-value combination

methods, the proposed method better focus on identifying genes that are differentially ex-

pressed in a majority of studies. On the other hand, our proposed method has much robust

performance than the WOP method. The rest of this chapter is organized as follows. In

section 2.2, we first discuss our hypothesis setting. We then propose our empirically adjusted

weighted ordered p-values method. Next, we briefly describe the empirical estimation of null

distribution using the Empirical Bayes method. In section 2.3, we present simulation results

and the application of our method on three sets of micro-array data on lung cancer, brain

cancer, and diabetes which clearly demonstrate the utility of the proposed method. We end

this chapter with a discussion in section 2.4.
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2.2 METHODS

2.2.1 HYPOTHESIS SETTING

Suppose there are K independent studies where each study consists of G genes. Let θij

denotes the underlying true effect size for the ith gene in the jth study where θij = 0 indicates

that the ith gene is not differentially expressed in the jth study and θij ̸= 0 indicates that the

ith gene is differentially expressed in the jth study, i = 1, 2. . . , G : j = 1, 2, . . . , K. The goal

of our method is to detect genes that are differentially expressed in a majority of studies

against the null hypothesis that they are not differentially expressed in any study. As a

general rule, we target those genes that are differentially expressed in at least half of the

studies. That is, for the ith gene, the hypothesis setting for our meta-analysis method is

HSm : {H0 :
K∑
j=1

I(θij ̸= 0) = 0 vsHm
1 :

K∑
j=1

I(θij ̸= 0) ≥ m}

where m = ⌈K/2⌉, i.e., m is the smallest integer that is not lower than K/2.

Note that, the hypothesis setting under our meta-analysis method can be generalized for

any choice of m ranging from ⌈K/2⌉ + 1 to K. Since the WOP meta-analysis method is

mostly focused on testing HSm for m = ⌈K/2⌉ for simplicity [11], we also focus on testing

HSm for m = ⌈K/2⌉ in this study.

2.2.2 PROPOSED EMPIRICALLY ADJUSTED WEIGHTED ORDERED P-

VALUES METHOD

In this section, we describe our proposed meta-analysis method which empirically modifies

the raw p-values from multiple studies and computes multiple testing corrected p-values after

appropriately combining them across the studies. This empirical modification of the raw p-

values will ensure that the p-values from all studies are uniformly distributed under the null

hypotheses, so that the key assumption of the p-value combination methods such as the

Fisher’s [1] and the Stouffer’s [2] methods is satisfied. Next, we provide the detailed steps of

our proposed meta-analysis method:

• Step 1: For gene i in study j, we obtained the p-value pij for testing the null hypothesis

θij = 0 against the alternative hypothesis θij ̸= 0, i = 1, 2. . . , G : j = 1, 2, . . . , K.



18

• Step 2: We considered the inverse z-transformation to get the corresponding z-scores

as follows:

zij = Φ−1(pij), i = 1, 2. . . , G : j = 1, 2, . . . , K

• Step 3: The z-scores in step 2 may not follow a standard normal distribution under

the null hypotheses. Therefore, we estimated the parameters of the null distribution

of the z-scores empirically assuming that the null distribution is normal with mean δ0

(not necessarily 0) and standard deviation σ0 (not necessarily 1) using an Empirical

Bayes method as described in section 2.2.3. Let δ̂0 and σ̂0 be the estimated mean and

standard deviation of the null distribution. We modified the z-scores, obtained in step

2, using the estimated parameters as:

z
′

ij =
zij − δ̂0

σ̂0

, i = 1, 2, . . . , G : j = 1, 2, . . . , K

These modified z-scores z
′
ij are expected to follow a standard normal distribution under

the null hypotheses.

• Step 4: We converted the empirically adjusted z-scores into corresponding p-values

as :

p
′

ij = Φ(z
′

ij), i = 1, 2, . . . , G : j = 1, 2, . . . , K

• Step 5: For a gene i, we ordered the p-values over the K independent studies. Let

p
′

i(j) denote the jth ordered p-value for gene i, i = 1, 2, . . . , G : j = 1, 2, . . . , K. We

calculated the summary statistic as follows:

Ti =
K∑
j=1

wjH(p
′

i(j))

where p
′

(i(j))s denote the list of p-values, corresponding to the ith gene, ordered

over the K studies, j = 1, 2, . . . , K. Here, wj represents the weight correspond-

ing to the jth ordered p-value and H(.) denotes the p-value combination method,

i = 1, 2, . . . , G : j = 1, 2, . . . , K. In this study, we considered the same choices for the

weights and p-value combination methods as considered by the WOP method [11].
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Two different weighting schemes based on the binomial distribution are considered –

binomial weighting and half-binomial weighting [11]. The weights are calculated based

on the Binomial distribution so that p-values closer to the median are up-weighted and

smallest/largest p-values are down-weighted. This makes sense because the behavior

of the majority of studies are best captured by the p-values that are closer to the center

of the distribution. In the binomial weighting scheme every p-value contribute to the

combined summary statistic since all the weights are non-zero. Additionally, since the

Fisher’s method can be very sensitive to extremely small p-values, we considered the

half-binomial weighting scheme where the effect of the smallest p-values are reduced

on the combined summary statistic, by considering zero weights for them.

Thus, the binomial weighting scheme is defined as wb
j = f(j − 1: K − 1, 0.5), j =

1, 2, ..., K, where f(x : n, p) denotes the probability mass function of the binomial dis-

tribution Bin(n, p) for x = 0, 1, . . . , n. The half binomial weighting scheme is defined

as whb
j = wb

j for m ≤ j ≤ K and 0 for j < m. The function H(.) in the WOP

statistic depends on the choice of the p-value combination method. In particular,

two popular p-value combination methods are considered – Fisher’s method [1] where

H(pi(j)) = −2log(pi(j)), and Stouffer’s method [2] where H(pi(j)) = Φ−1(1 − pi(j)),

i = 1, 2. . . , G : j = 1, 2, . . . , K.

• Step 6: We obtained the p-value pi, for gene i by comparing the statistic defined in step

5, to the numerical distribution by simulating U(0, 1) random variables as described

below:

(i) We randomly generated p-values from U(0, 1) distribution for all the G genes in

the K studies. We repeated this data generation process B times. Let p
(b)
ij denotes

the p-value for the ith gene in the jth study in the bth dataset, i = 1, 2, .., G : j =

1.2, . . . , K : b = 1, 2, . . . , B.

(ii) We calculated the summary statistic T
(b)
i =

∑K
j=1wjH(p

(b)
i(j)), for gene i, using the

simulated p-values obtained in (i), i = 1, 2, .., G : b = 1, 2, . . . , B.

(iii) For gene i, the p-value corresponding to the summary statistic Ti is computed as

pi =

∑B
b=1 I{T

(b)
i ≥ Ti}

B
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An alternative way for obtaining the p-values of the WOP statistic is based on per-

mutation analysis which requires the original data for each study. Since in the context of

meta-analysis it is not always feasible to obtain the original data, we focus on the more prac-

tical solution by obtaining the p-values based on the numerical distribution of the summary

statistic. Finally, the Benjamini-Hochberg method is applied to the p-values of the summary

statistic to account for multiple testing [15].

After obtaining the list of differentially expressed genes using Benjamini-Hochberg p-

value cutoff of 0.05, the performance of the proposed method is assessed using the following

four performance measures:

• Sensitivity: Proportion of genes which are correctly identified as differentially expressed

out of all the genes which are truly differentially expressed.

• Specificity: Proportion of genes which are correctly identified as non differentially

expressed out of all the genes which are truly non differentially expressed.

• FDR: Proportion of genes which are incorrectly identified as differentially expressed

that are actually differentially expressed in less than m studies.

• Type I error rate: Proportion of genes which are incorrectly identified as differentially

expressed that are actually not differentially expressed in any of the studies.

2.2.3 EMPIRICAL ESTIMATION OF NULL DISTRIBUTION

Suppose the p-values corresponding to G genes in a study are denoted as p1, p2, . . . , pG.

These p-values can be converted into z-scores as zi = Φ−1(pi), i = 1, 2. . . , G. The null

distribution of the z-scores is N(0, 1) theoretically. However, in large-scale testing situations

empirical and theoretical null might differ. The large-scale multiple testing situation enables

us to estimate the null distribution of the z-scores. In this section, we will briefly discuss an

empirical Bayes method, proposed by Efron [16], for estimating the null distribution empir-

ically.

The z-scores, corresponding to the G genes, can be categorized into two groups – the

“uninteresting” group if the zi is obtained from the null distribution, and the “interesting”

group if the zi is obtained from the non-null distribution, i = 1, 2. . . , G. Let p0 denotes
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the prior probability of the z-scores belonging to the “uninteresting” group and p1 = 1− p0

denotes the prior probability of the z-scores belonging to the “interesting” group. Suppose

f0(z) and f1(z) be the densities of the z-scores in the “uninteresting” and the “interesting”

groups respectively. The mixture density of the z-scores is defined as f(z) = p0f0(z)+p1f1(z).

Following Bayes theorem, the a posteriori probability of belonging to the “uninteresting”

group given z is Pr[”uninteresting”|z] = p0f0(z)
f(z)

.

The mixture density f(z) is estimated using the Poisson regression method introduced by

Lindsey as described in Efron and Tibshirani [24]. Here the range of z-scores is partitioned

into k equal intervals, with kth interval having midpoint xk and containing count sk of the

total G z-scores. If the z-scores are independent then the counts sk will follow a Poisson

distribution where the expected value λk is approximately proportional to f(xk). These λks

are estimated using Lindsey’s method which amounts to estimating f(z).

The null density, f0 is estimated from the central peak of the histogram of the z-scores.

Assuming that f0 is a normal distribution with mean δ0 and standard deviation σ0, for z-

scores close to zero, we can write log(f(z)) = −1
2
( z−δ0

σ0
)2 + constant. The parameters of f0

are estimated as: δ0 = argmax{f(z)} and σ0 = [− d2

dz2
logf(z)]

− 1
2

δ0
.However, the above esti-

mate of σ0 can be unstable [16]. Therefore, a smoothing step is applied where a quadratic

curve a0 + a1xk + a2x
2
k is fitted by ordinary least squares to the estimated log(f(xk)) values,

for xk within 1.5 units of the maximum δ0, yielding the final estimate of σ0 as [−2a2]
− 1

2 .

Furthermore, assuming that the interesting z-scores always fall outside δ0 ± cσ0 one can

obtain an unbiased estimate for p0 as p̂0 = π̂(c)
G0(c)

, where π̂(c) = #(zi ∈ δ0 ± cσ0)/G and

G0(c) = 2Φ(c)− 1.

This method of estimation of the parameters of null distribution is called the method of

“central-matching”. More details about this method can be found in Efron [16] and Efron

[25].
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2.3 RESULTS

2.3.1 SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of our proposed method for

accurate identification of significant genes in majority of studies. We simulated continuous

gene expression datasets for multiple independent studies. Details of the data generation

process are given below.

We considered 10 independent studies each involving continuous gene expression levels

for 3000 genes, i.e., K = 10 and G = 3000. We considered two groups of subjects in each

study where each group consists of 20 subjects, i.e., n1 = n2 = 20. We considered 50 genes

as differentially expressed between the two subject groups in 1,2,. . . ,10 studies respectively

(see Figure 5 ). That is, in total, 500 genes are differentially expressed between the subject

groups in at least one study. Since our alternative hypothesis for a gene is that it is differ-

entially expressed in at least five studies, we aim to identify only the 300 genes (10%) that

are differentially expressed in at least five of the studies.

We generated the (log) expression level for the ith gene, lth subject in the kth group for

each study separately using the following model:

yikl = µ+Gi + Vk +GVik +Wikl + eikl

Here µ denotes the overall mean effect, Gi denotes the effect due to the ith gene, Vk

denotes the effect due to the kth subject group, and GVik denotes the interaction effect be-

tween the ith gene and the kth subject group, Wikl denotes the effect of a hidden variable and

eikl denotes the error component corresponding to the ith gene, lth subject in the kth group,

i = 1, 2. . . , G : k = 1, 2: l = 1, 2, . . . , nk.
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Fig. 5. Illustration of differentially expressed genes in 10 studies.

For our simulations, we considered µ, Gi, and Vk as zero for all i, k and l, for simplicity.

Note that, we considered 50 genes to be differentially expressed between the two subject

groups in 1,2,. . . ,10 studies respectively. The differences in magnitudes of (log) expression

values of these genes between the two groups are considered as eight, which are obtained

through the generation of the interaction terms between the genes and the groups, (GV )iks,

as follows:



24

For study j where j = 1, . . . , K,

(GV )i1 = −4, (GV )i2 = 4 for i = 1, . . . , 25j

(GV )i1 = 4, (GV )i2 = −4 for i = 25j + 1, . . . , 50j

(GV )i1 = (GV )i2 = 0 for i = 50j + 1, . . . , G

In our simulations, we assumed the presence of a hidden variable which acts as a con-

founder. The effect of the hidden confounder for the ith gene, lth subject in the kth group was

generated such that it varied over the two subject groups, different groups of genes as well

as over different studies. We considered Wikl = uiklI(sikl = 1), where sikl ∼ Bernoulli(0.4)

and uikl are generated depending on the gene, subject group and the study ID j as given

below:

uikl =


N(−1 + j + δ.I, 0.012), for i = 1, . . . , 25j : l = 1, . . . , nk.

N(2 + j + δ.I, 0.012), for i = 25j + 1, . . . , 50j : l = 1, . . . , nk.

N(5 + j + δ.I, 0.012), for i = 50j + 1, . . . , G : l = 1, . . . , nk.

where i = 1, 2. . . , G : k = 1, 2: j = 1, 2, . . . , K. Here, I = 1 for group 1 (i.e., for k = 1)

and I = 0 for group 2 (i.e., for k = 2). The magnitude of the difference between the means

of the distributions of uikl between the two subject groups is given by δ. In our simulations,

we considered δ = 4.

We introduced correlations among some of the genes through the generation of the error

terms eikls as described below:

We considered four groups of correlated genes given by C1 = {1, 2, . . . , 30}, C2 =

{121, 122, . . . , 180}, C3 = {1501, 1502, . . . , 1560} and C4 = {2671, 2672, . . . , 2730}. The

error term eikl for the ith gene, lth subject in the kth group , i = 1, 2, . . . , G : k = 1, 2: l =

1, 2, . . . , nk is generated as:

eikl =

 1√
2
e1ikl +

1√
2
e2ikl, if i ∈ {C1, C2, C3, C4}.

e2ikl, o.w.

where e1 are generated independently from N(0, 1) in such a way that the values of e1 are

same for all the genes belonging to the same group, and e2 are generated independently from

N(0, 22).
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For each study, after generating the (log) gene expression values for all the subjects, we

tested whether the genes are differentially expressed between the two subject groups using

“limma” in Bioconductor [26] and stored the raw p-values. We then applied our proposed

method, as described in section 2.2.2, and obtained the list of differentially expressed genes

with a Benjamini-Hochberg adjusted p-value cutoff of 0.05. We obtained the type I error

rate for our proposed method as well as evaluated its performance using sensitivity, speci-

ficity, and false discovery rate (FDR) based on 500 Monte-Carlo iterations. Because of the

hypothesis setup, as described in section 2.2.1, false positives and type I error are not the

same. Type I error is rejecting the null hypothesis for a gene that is not differentially ex-

pressed in any of the studies while a false positive is rejecting the null hypothesis for a gene

that is differentially expressed in less than m studies [11]. We, additionally, compared the

performance of our proposed method with the original WOP method (without any empirical

adjustment) [11].

Table 2 summarizes the simulation results for our proposed method and the correspond-

ing WOP method with the two choices for the p-value combination approach (Fisher [1] and

Stouffer [2]) and the two weighting schemes (binomial and half-binomial [11]), as discussed

in the methods section 2.2.2. The type I error rates for our proposed method are controlled

at 0.05 but the WOP method has extremely high type I error rates in all settings. Our

proposed method also has significantly lower FDR values compared to the WOP method.

Although the proposed method has slightly lower sensitivity values, the specificity values

are much higher compared to the WOP method. In general, the half binomial weighting

scheme has slightly lower sensitivity and slightly higher specificity values compared to the

binomial weighting scheme. The FDR values for both methods and the type I error rates

for the WOP method are also slightly lower for half binomial weighting. The results did not

vary significantly between the choices of the p-value combination approaches.
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Table 2

Performances of the proposed method and the WOP method in presence of hidden con-

founder. Type I error rate, sensitivity, specificity, and FDR values are obtained based on

500 Monte-Carlo iterations. The proportion of differentially expressed genes between the

two subject groups is 10%.

Weighting

scheme

P-value

combination

approach

Method Type I error rate Sensitivity Specificity FDR

Binomial

Fisher
proposed 0.038 0.955 0.983 0.138

WOP 0.530 0.999 0.767 0.677

Stouffer
proposed 0.040 0.945 0.984 0.130

WOP 0.518 0.997 0.784 0.661

Half-Binomial

Fisher
proposed 0.041 0.926 0.986 0.120

WOP 0.489 0.992 0.815 0.627

Stouffer
proposed 0.042 0.917 0.987 0.116

WOP 0.483 0.990 0.822 0.618

We, additionally, varied the proportion of differentially expressed genes between the two

subject groups, ranging from 5% to 20%. Figure 6 shows the performances of the proposed

method as well as the WOP method with varying proportion of differentially expressed genes

in presence of hidden confounder in the studies. Our proposed method has type I error rates

controlled at 0.05 consistently in all settings. Although the type I error rates of the WOP

method decreased with increase in proportion of differentially expressed genes in the studies,

they are still unacceptably high (see Figure 6). The FDR values of our proposed method are

also much lower than those of the WOP method in all settings, although the values for the

WOP method decreased with increase in proportion of differentially expressed genes. Our

proposed method has slightly lower sensitivity values compared to the WOP method but

the values increased when the proportion of differentially expressed genes is increased. The

specificity values of the proposed method are close to one in all settings but the WOP method

has much lower specificity values which further decreased as the proportion of differentially

expressed genes is increased.
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Fig. 6. Performances of the proposed method and the WOP method in presence of hidden

confounder with varying proportion of differentially expressed genes between two subject

groups. Type I error rate, sensitivity, specificity, and FDR values are obtained based on 500

Monte-Carlo iterations.(Continued on the following page.)
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BF: WOP method with binomial weighting scheme and Fisher’s p-value combination ap-

proach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

We also considered some variations in our simulations. In particular, we considered a

simulation scenario where we assumed the presence of a hidden variable that does not act as

a confounder as well as a simulation scenario where there do not exist any effect of a hidden

variable or confounder in the studies. We also looked at the effect of changing the number

of studies. All these scenarios are described below.

a) Presence of a hidden variable that does not act as a confounder

In this simulation scenario, we assumed the presence of a hidden variable which affects the

outcome but does not vary between the two subject groups. We generated the distribution

of the hidden variable for the ith gene, lth subject in the kth group, as Wikl = uiklI(sikl = 1),

where sikl ∼ Bernoulli(0.4) and uikl are generated as given below:

uikl = N(−4 + j, 0.12) for i = 1, . . . , G; k = 1, 2; l = 1, . . . , nk; j = 1, . . . , K

We considered 10% of the genes as differentially expressed between the two subject groups

in at least five studies as considered before. The differences in magnitudes of (log) expression

values of these differentially expressed genes are considered as two. All the other terms in

the model for simulation are generated in the same way as described previously.
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Table 3 shows the results for our proposed method and the WOP method. In this simu-

lation scenario, both the methods have controlled type I error rates under all settings. The

FDR values of the proposed method are slightly lower compared to the WOP method. Both

methods have very similar sensitivity and specificity values. The methods with half bino-

mial weighting scheme have lower sensitivity as well as FDR values compared to those with

binomial weighting scheme, similar to what we observed in presence of hidden confounder.

Table 3

Performances of the proposed method and the WOP method in presence of hidden variable

that does not act as confounder. Type I error rate, sensitivity, specificity, and FDR values

are obtained based on 500 Monte-Carlo iterations. The proportion of differentially expressed

genes between the two subject groups is 10%.

Weighting

scheme

P-value

combination

approach

Method Type I error rate Sensitivity Specificity FDR

Binomial

Fisher
proposed 0.044 0.913 0.986 0.123

WOP 0.051 0.919 0.984 0.136

Stouffer
proposed 0.043 0.884 0.988 0.110

WOP 0.052 0.893 0.986 0.126

Half-Binomial

Fisher
proposed 0.043 0.839 0.990 0.095

WOP 0.050 0.848 0.989 0.107

Stouffer
proposed 0.043 0.824 0.991 0.092

WOP 0.050 0.832 0.989 0.103

The performances of the two methods with varying proportion of differentially expressed

genes, in the presence of hidden variable that does not act as confounder, are shown in Figure

7.
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Fig. 7. Performances of the proposed method and the WOP method in presence of hidden

variable that does not act as confounder with varying proportion of differentially expressed

genes between two subject groups. Type I error rate, sensitivity, specificity, and FDR values

are obtained based on 500 Monte-Carlo iterations.(Continued on the following page.)
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BF: WOP method with binomial weighting scheme and Fisher’s p-value combination ap-

proach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

The type I error rates remained controlled at 0.05 for both methods consistently in all

settings. Both the methods have similar FDR values for smaller proportion of differentially

expressed genes, but the FDR values of the WOP method slightly increased with increase

in the proportion of differentially expressed genes. The sensitivity values are very similar

for both methods with half binomial weighting having slightly lower values than binomial

weighting. Both methods have very similar specificity values.

b) No effect of any hidden variable or confounder

In this simulation scenario, we assumed that there is no effect of any hidden variable

or confounder in the studies. Therefore, we set Wikl = 0, for all i, k and l. Here also, we

considered 10% of the genes as differentially expressed between the two subject groups in at

least five studies and the differences in magnitudes of (log) expression values of these genes

are considered as two. The random error term (eikl) are generated as before with e1 drawn

independently from N(0, 0.52) and e2 generated independently from N(0, 5.52). All the other

terms in the model for simulation are generated in the same way as described previously.

Table 4 shows the results for our proposed method as well as the WOP method. The type

I error rates are controlled for both methods under all settings. The sensitivity values are

slightly lower for the proposed method. FDR values are also slightly lower for the proposed
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method compared to the WOP method. Both methods have very similar specificity values.

The half binomial weighting scheme has lower sensitivity as well as FDR values compared to

the binomial weighting scheme, consistent with what we observed in the previous simulation

scenarios.

Table 4

Performances of the proposed method and the WOP method when there is no effect of any

hidden variable or confounder. Type I error rate, sensitivity, specificity, and FDR values are

obtained based on 500 Monte-Carlo iterations. The proportion of differentially expressed

genes between the two subject groups is 10%.

Weighting

scheme

P-value

combination

approach

Method Type I error rate Sensitivity Specificity FDR

Binomial

Fisher
proposed 0.037 0.905 0.984 0.137

WOP 0.051 0.919 0.980 0.163

Stouffer
proposed 0.038 0.882 0.986 0.122

WOP 0.052 0.899 0.983 0.147

Half-Binomial

Fisher
proposed 0.036 0.837 0.990 0.100

WOP 0.051 0.856 0.986 0.126

Stouffer
proposed 0.038 0.824 0.990 0.098

WOP 0.051 0.840 0.987 0.119

Figure 8 shows the simulation results for the two methods with varying proportion of

differentially expressed genes when there is no effect of hidden variable or confounder in

the studies. The performances of the methods are very similar to what we observed in the

previous scenario in the presence of hidden variable that does not act as confounder.
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Fig. 8. Performances of the proposed method and the WOP method when there is no hidden

variable or confounder with varying proportion of differentially expressed genes between two

subject groups. Type I error rate, sensitivity, specificity, and FDR values are obtained based

on 500 Monte-Carlo iterations. (Continued on the following page.)
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BF: WOP method with binomial weighting scheme and Fisher’s p-value combination ap-

proach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

c) Effect of changing the number of studies

Here, we compared the performance of our proposed method with the WOP method for

varying number of studies (5, 10 and 15). In this simulation scenario, we assumed presence

of a hidden variable which acts as a confounder. We considered K independent studies each

involving continuous gene expression levels for G = 3000 genes. Note that, we considered

10% of the genes are differentially expressed between two subject groups in at least ⌈K/2⌉
studies. The differences in magnitudes of (log) expression values of these genes between

the two groups are considered as a function of number of studies (K), which are obtained

through the generation of the interaction terms between the genes and the groups, (GV )iks,

as follows:

For study j where j = 1, . . . , K,

(GV )i1 = −35/K, (GV )i2 = 35/K for i = 1, . . . , 25j

(GV )i1 = 35/K, (GV )i2 = −35/K for i = 25j + 1, . . . , 50j

(GV )i1 = (GV )i2 = 0 for i = 50j + 1, . . . , G

The effect of the hidden confounder for the ith gene, lth subject in the kth group was

generated such that it varied over the two subject groups, different groups of genes as well
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as over different studies. We considered Wikl = uiklI(sikl = 1), where sikl ∼ Bernoulli(0.4)

and uikl are generated depending on the gene, subject group and the study ID j as given

below:

uikl =


N(−1 + j/2 + δ.I, 0.012), for i = 1, . . . , 25j : l = 1, . . . , nk.

N(2 + j/2 + δ.I, 0.012), for i = 25j + 1, . . . , 50j : l = 1, . . . , nk.

N(5 + j/2 + δ.I, 0.012), for i = 50j + 1, . . . , G : l = 1, . . . , nk.

where i = 1, 2. . . , G : k = 1, 2: j = 1, 2, . . . , K. Here, I = 1 for group 1 (i.e., for k = 1)

and I = 0 for group 2 (i.e., for k = 2). The magnitude of the difference between the means

of the distributions of uikl between the two subject groups is given by δ. In our simulations,

we considered δ = 4. All the other terms in the model for simulation are generated in the

same way as described previously.

Figure 9 summarize the simulation results for our proposed method and the corresponding

WOP method with the two choices for the p-value combination approaches (Fisher and

Stouffer) and the two weighting schemes (binomial and half-binomial) for varying number of

studies (K). The type I error rates for our proposed method are controlled at 0.05 but the

WOP method has extremely high type I error rates in all four settings and for all the choices

of K. Our proposed method also has significantly lower FDR values compared to the WOP

method in all four settings and for all the choices of K. When K = 5, sensitivity values

are relatively lower for our proposed method. However, when K = 10 and 15, sensitivity

values are very similar for both methods. The specificity values of the proposed method are

close to one in all four settings and for all the choices of K but the WOP method has much

lower specificity values in all four settings which further decreased as the number of studies

is increased.
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Fig. 9. Performances of the proposed method and the WOP method in presence of hidden

confounder with varying number of studies. Type I error rate, sensitivity, specificity, and

FDR values are obtained based on 500 Monte-Carlo iterations. (Continued on the following

page.)
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BF: WOP method with binomial weighting scheme and Fisher’s p-value combination ap-

proach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

2.3.2 AN APPLICATION TO LUNG CANCER STUDIES

We conducted meta-analysis using our proposed method on five lung cancer gene expres-

sion datasets. Details about these five studies can be found in [17, 27]. Each of the datasets

contains normalized expression levels for 7,200 genes, and subjects with different types of

lung cancer. We aimed to identify the genes that are differentially expressed between two

lung cancer types - adenocarcinoma (AD) and squamous cell carcinoma (SQ) in at least

three out of the five studies. Table 5 lists the detailed information on these five lung cancer

studies. To obtain the p-values for the genes for each dataset, we tested for differential ex-

pression between AD and SQ subjects using “limma” [26]. We applied our proposed method,

following the steps described in section 2.2.2, after empirically adjusting the p-values for the

genes. The empirically estimated mean and the standard deviation of the original z-scores

are – 0.83 and 1.99, respectively. That is, the empirically estimated null distribution of the

original z-scores is much different from the theoretical null distribution. For comparison, we

also applied the WOP method to identify the differentially expressed genes between the two

lung cancer types in at least three studies.
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Table 5

Detail information on lung cancer datasets.

Dataset Sample Size Comparison

Bhattacharjee 81 AD vs SQ

GSE11969 125 AD vs SQ

GSE29016 50 AD vs SQ

GSE30219 146 AD vs SQ

GSE43580 150 AD vs SQ

We considered a gene significant if the Benjamini-Hochberg adjusted p-value is less than

0.05. Table 6 summarizes the number of differentially expressed genes, identified by our

proposed method as well as the WOP method, for the two choices of p-value combination

approaches (Fisher [1] and Stouffer [2]) and the two weighting schemes (binomial and half

binomial). The WOP method identified much higher number of significant genes compared

to the proposed method at each combination of p-value combination approaches and weight-

ing schemes. For the WOP method, the maximum number of significant genes (68.3%) is

identified by the Fisher’s p-value combination approach with binomial weighting scheme.

Our proposed method with Stouffer’s p-value combination approach and binomial weighting

scheme identified the maximum number of significant genes, which is 1,474 (20.4%). In all

settings, the WOP method identified more than 58% of the genes as significant which clearly

indicates a possibility of high FDR. Consistent with our simulation results, the methods

with binomial weighting scheme identified higher number of significant genes compared to

the methods with half binomial weighting.
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Table 6

The number of significant genes (percentage) identified by our proposed method and the

WOPmethod with two choices of p-value combination approaches and two weighting schemes

for the lung cancer data.

Weighting

scheme

P-value

combination

approach

Method
Number of significant genes

(percentage)

Binomial

Fisher
proposed 1406 (19.5%)

WOP 4921 (68.3%)

Stouffer
proposed 1474 (20.4%)

WOP 4672 (64.9%)

Half-Binomial

Fisher
proposed 1317 (18.3%)

WOP 4286 (59.5%)

Stouffer
proposed 1371 (19.0%)

WOP 4208 (58.4%)

Figure 10 shows the overlap between the number of significant genes identified by the

proposed method and the WOP method with both weighting schemes using the (a) Fisher’s,

and (b) Stouffer’s p-value combination approaches for the lung cancer study. For the Fisher’s

p-value combination approach, there are 1,234 genes which are identified by both methods

with both weighting schemes (see Figure 10(a)). Similarly, for the Stouffer’s p-value combina-

tion approach, 1,312 genes are identified by both methods with both weighting schemes (see

Figure 10(b)). At a specific combination of the p-value combination approach and weighting

scheme, all the genes identified by our proposed method are also identified by the WOP

method. In order to identify biological pathways associated with the gene lists identified

by our proposed method with both p-value combination approaches and weighting schemes,

we performed functional annotation clustering using Database for Annotation, Visualization

and Integrated Discovery (DAVID) software [28]. Our proposed method identified several bi-

ologically relevant KEGG pathways including cell cycle, DNA replication, and p53 signaling

pathway based on the Benjamini-Hochberg adjusted p-value cutoff of 0.05.
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Fig. 10. Venn diagram showing the overlaps between the number of significant genes

identified by the proposed method and the WOP method with both weighting schemes us-

ing the (a) Fisher’s, and (b) Stouffer’s p-value combination approaches for the lung cancer

study. BF: WOP method with binomial weighting scheme and Fisher’s p-value combination

approach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

We further investigated some genes which are identified as significant by the WOPmethod

but not by our proposed method. For the lung cancer study, 44 genes are not significant in

any of the studies based on the p-values from the differential expression analysis in each study
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but the WOP method with all choices of p-value combination approaches and weighting

schemes have identified them as differentially expressed in at least three studies and the

proposed method with any choice of the p-value combination approach and weighting scheme

did not identify them as significant. For example, the genes with entrez IDs 11131 and 1723

are identified by the WOP method with both weighting schemes and p-value combination

approaches, but not by our proposed method. Figure 11 and Figure 12 show the box plots

of the expression levels of the genes for the two cancer types (AD and SQ) in each of the five

studies. From the figures, we can see that the genes are not differentially expressed between

the two cancer types in at least three studies. Further, based on the p-values from the

differential expression analysis in each study, above mentioned genes are not significant in

any of the studies. This suggests that these genes are unlikely to be differentially expressed

between AD and SQ patients, and therefore, it is reasonable that our proposed method did

not identify these genes.
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Fig. 11. The box plots of the gene with ID 11131 for the two cancer types in each of the

five studies for lung cancer data.
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studies for lung cancer data.
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2.3.3 FURTHER APPLICATIONS

To further compare the performance of our proposed method with the WOP method, we

used two micro-array data sets. After the gene matching and filtering process, brain cancer

and diabetes studies contain 5836 and 6645 genes, respectively. Table 7 and 10 provides the

detailed information on seven brain cancer datasets and 16 diabetes datasets [10, 29]. The

p-values for the genes for each dataset in brain cancer and diabetes studies were obtained

from the supplementary material available in [10]. For the diabetes study with multiple

groups, the p-values are obtained following the procedures as described in [29] i.e., by taking

the minimum p-value of all the pairwise comparisons after adjusting for multiple testing.

Table 7

Detail information on brain cancer datasets.

Dataset Sample Size Comparison

GSE1993 65 AA vs GBM

GSE4412 85 AA vs GBM

GSE4271 100 AA vs GBM

GSE4290 180 AA vs GBM

GSE19578 53 AA vs GBM

GSE4381 29 AA vs GBM

GSE16011 284 AA vs GBM

For the brain cancer study, we identified the genes that are differentially expressed be-

tween two subtypes of brain tumors – anaplastic astrocytoma ( AA) and glioblastoma (GBM)

in at least four studies out of the seven studies. The estimated mean and the standard

deviation of the empirical null distribution of the original z-scores are -0.36 and 1.42, re-

spectively. That implies the empirically estimated null distribution of the original z-scores

is different from the theoretical null distribution. We applied the WOP method and our

proposed method to identify the differentially expressed genes between the two brain cancer
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types. Table 8 shows the number of differentially expressed genes, identified by our proposed

method and the WOP method, for the two choices of p-value combination approaches and

two weighting schemes using the Benjamini-Hochberg adjusted p-value cutoff of 0.05. In

all settings, the WOP method identified much higher number of significant genes (> 30%)

compared to the proposed method indicating possibility of high false discoveries. For both

the methods, the maximum number of significant genes is identified by the Fisher’s p-value

combination approach with binomial weighting scheme. Consistent with our simulation re-

sults and previous data application, the methods with binomial weighting scheme identified

higher number of significant genes compared to the methods with half binomial weighting.

Table 8

The number of significant genes (percentage) identified by our proposed method and the

WOPmethod with two choices of p-value combination approaches and two weighting schemes

for the brain cancer data.

Weighting

scheme

P-value

combination

approach

Method
Number of significant genes

(percentage)

Binomial

Fisher
proposed 635 (10.9%)

WOP 2462 (42.2%)

Stouffer
proposed 613 (10.5%)

WOP 2260 (38.7%)

Half-Binomial

Fisher
proposed 518 (8.9%)

WOP 1885 (32.3%)

Stouffer
proposed 503 (8.6%)

WOP 1796 (30.8%)

Figure 13 shows the overlap between the number of significant genes identified by the pro-

posed method and the WOP method with both weighting schemes using the (a) Fisher’s, and
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(b) Stouffer’s p-value combination approaches for the brain cancer study. For the Fisher’s

p-value combination approach, there are 498 genes which are identified by both methods

with both weighting schemes (see Figure 13(a)). Similarly, for the Stouffer’s p-value combi-

nation approach, 482 genes are identified by both methods with both weighting schemes (see

Figure 13(b)). We performed functional annotation clustering for the brain cancer study

to identify pathways associated with the significant gene lists identified by our proposed

method for all settings. Our proposed method identified important KEGG pathways for

the brain cancer such as Focal adhesion, ECM-receptor interaction, Amoebiasis, PI3K-Akt

signaling pathway, Pathways in cancer, p53 signaling pathway, Cell cycle, Shigellosis, Pro-

teoglycans in cancer, TNF signaling pathway, Wnt signaling pathway and Protein processing

in endoplasmic reticulum based on Benjamini-Hochberg adjusted p-value cutoff of 0.05.
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Fig. 13. Venn diagram showing the overlaps between the number of significant genes iden-

tified by the proposed method and the WOP method with both weighting schemes using

the (a) Fisher’s, and (b) Stouffer’s p-value combination approaches for the brain cancer

study. BF: WOP method with binomial weighting scheme and Fisher’s p-value combination

approach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.

For the diabetes study, two datasets are excluded from the analysis because they are

from human and we considered the remaining 14 mouse datasets. We tested the alternative

hypothesis that the genes are differentially expressed in at least seven experiments out of 14
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experiments. The estimated mean and the standard deviation of the empirically estimated

null distribution of the original z-scores are -0.21 and 1.12, respectively. For this study

also, we can see that the empirical null distribution of the original z-scores is different from

the theoretical null distribution. Table 9 depicts the numbers of differentially expressed

genes, identified by our proposed method and the WOP method, for all the settings using

the Benjamini-Hochberg adjusted p-value cutoff of 0.05. Our proposed method has identified

lesser number of differentially expressed genes compared to the WOP method in all scenarios,

as we observed before with other studies.

Table 9

The number of significant genes (percentage) identified by our proposed method and the

WOPmethod with two choices of p-value combination approaches and two weighting schemes

for the diabetes data.

Weighting

scheme

P-value

combination

approach

Method
Number of significant genes

(percentage)

Binomial

Fisher
proposed 193 (2.9%)

WOP 1131 (17.0%)

Stouffer
proposed 204 (3.1%)

WOP 1089 (16.4%)

Half-Binomial

Fisher
proposed 195 (2.9%)

WOP 941 (14.2%)

Stouffer
proposed 200 (3.0%)

WOP 933 (14.0%)
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Table 10

Detail information on diabetes datasets.

Dataset Sample Size Description

1 28 Brown preadipocyte IRS knockout profiling

2 14
Comparison of Low Fat and High Fat Diet on Mice of Two Genetic

Backgrounds (B6 vs. 129) - Fat

3 16
Comparison of Low Fat and High Fat Diet on Mice of

Backgrounds (B6 vs. 129) - Liver

4 17
Comparison of Low Fat and High Fat Diet on Mice of

Backgrounds (B6 vs. 129) - Skeletal Muscle

5 18
Isolated adipocytes from normal and fat insulin receptor knockout

(FIRKO) mice sorted into small and large cells

6 6 Liver - ob/ob mice

7 9
Mouse skeletal muscle - controls, streptozotocin diabetes and insulin

treated

8 12 Human pancreatic islets from normal and Type 2 diabetic subjects

9 21
Transcription profiling of wild type and PGC-1alpha KO liver and skeletal

muscle

10 12
Effect of PGC-1alpha and PGC-1beta on gene expression in myocytes

and hepatocytes

11 57

Control Insulin Receptor (IR) and IRS-1 Single and Double Heterozygous

(DH) Knockouts - Comparison of Age (6 weeks vs 6 months) and Genetic

Background (B6 vs. 129) - Epididymal White Fat

12 55

Control Insulin Receptor (IR) and IRS-1 Single and Double Heterozygous

(DH) Knockouts - Comparison of Age (6 weeks vs 6 months) and Genetic

Background (B6 vs. 129) - Liver

13 52

Control Insulin Receptor (IR) and IRS-1 Single and Double Heterozygous

(DH) Knockouts - Comparison of Age (6 weeks vs 6 months) and Genetic

Background (B6 vs. 129) - Skeletal Muscle

14 12 Effect of insulin infusion on skeletal muscle

15 44
Skeletal Muscle - Muscle Insulin Receptor Knockout and Control Mice -

Control, Streptozotocin Diabetic and Insulin Treated

16 54 Human skeletal muscle - type 2 diabetes - Swedish males

All datasets except 8 and 16 are used in the diabetes meta-analysis.
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Figure 14 shows the overlap between the number of significant genes identified by the

proposed method and the WOP method with both weighting schemes using the (a) Fisher’s,

and (b) Stouffer’s p-value combination approaches for the diabetes study. For the Fisher’s

p-value combination approach, there are 159 genes which are identified by both methods

with both weighting schemes (see Figure 14(a)). Similarly, for the Stouffer’s p-value com-

bination approach, 175 genes are identified by both methods with both weighting schemes

(see Figure 14(b)).

We performed pathway analysis using the significant gene lists identified by our proposed

method for all settings. Our proposed method did not identify any significant KEGG path-

way at Benjamini-Hochberg adjusted p-value cutoff of 0.05. However, our proposed method

identified some significant GO term biological processes (BP) related to diabetes including

response to lipopolysaccharide [30], response to estradiol [31] and response to glucocorticoid

[32].
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Fig. 14. Venn diagram showing the overlaps between the number of significant genes

identified by the proposed method and the WOP method with both weighting schemes us-

ing the (a) Fisher’s, and (b) Stouffer’s p-value combination approaches for the diabetes

study. BF: WOP method with binomial weighting scheme and Fisher’s p-value combination

approach; BS: WOP method with binomial weighting scheme and Stouffer’s p-value com-

bination approach; HBF: WOP method with half-binomial weighting scheme and Fisher’s

p-value combination approach; HBS: WOP method with half-binomial weighting scheme and

Stouffer’s p-value combination approach; EABF: proposed method with binomial weighting

scheme and Fisher’s p-value combination approach; EABS: proposed method with binomial

weighting scheme and Stouffer’s p-value combination approach; EAHBF: proposed method

with half-binomial weighting scheme and Fisher’s p-value combination approach; EAHBS:

proposed method with half-binomial weighting scheme and Stouffer’s p-value combination

approach.
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2.4 DISCUSSION

Meta-analysis is a popular method of integrating summary results from different sources

to test a particular hypothesis. In this chapter, we mainly discussed the importance of devel-

oping new meta-analysis methods that focus on testing significance in a majority of studies

in a consistent pattern. The WOP method is one of the important approaches that aims

to identify genes significant in a majority of studies. However, the existing WOP method

relies on some theoretical null distribution which can lead to incorrect statistical inference

especially in presence of unobserved covariate effects. As a remedy to this problem, we have

proposed a new meta-analysis method that empirically estimates the null distribution of the

test statistic before combining them across the studies. Like the WOP method, our proposed

meta-analysis method tests the same hypothesis with an aim to detect genes significant con-

sistently in a majority of studies.

Several simulation studies are carried out under different scenarios to evaluate the per-

formance of our proposed method. We considered sensitivity, specificity, false discovery rate

and type I error rate as the performance measures. While generating the gene expression

datasets for each study, we considered the scenarios that assumes no effect of any hidden

variable or confounder, presence of a hidden variable which acts as a confounder as well as a

scenario that assumes presence of a hidden variable that does not act as a confounder. We

also introduced correlations among some of the genes through the generation of the error

terms in the model.

The proposed method has shown significantly better performances than the WOP method

especially in the presence of hidden confounder in the studies, a scenario very common in

genomic studies. The type I error rates are controlled at 5% for our method while they are

extremely high for the WOP method. The FDR values are also significantly lower for our

proposed method compared to the WOP method. Our method has slightly lower sensitivity

values but much higher specificity values compared to the WOP method. For the scenarios,

that assumes no effect of any hidden variable or confounder and presence of a hidden variable

which does not act as a confounder, the results showed that there is no significant difference

between the WOP method and the proposed method. We showed the application of our

method on three micro-array data sets: Lung cancer study, Brain cancer study and Diabetes

study. For those real life data, we identified the genes that are differentially expressed in

at least half of the experiments using the Benjamini-Hochberg adjusted p-value cutoff of
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0.05. Further, we performed functional annotation clustering using DAVID with the genes

that are identified as significant by our proposed method in order to identify the significant

pathways. Future research can be done with different choices of the p-value combination

approach and weighting scheme. Additionally, we can further extend our proposed method

with hypothesis setting HSm for choices of m ranging from ⌈K/2⌉+ 1 to K.
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CHAPTER 3

META-ANALYSIS METHOD COMBINING EFFECT SIZE

ESTIMATES

3.1 INTRODUCTION

As discussed before in the introduction, there are two main approaches for the classical

meta-analysis. The first approach combines p-values either using weights or without them,

and the second approach combines effect size estimates in either fixed or random effects

models. Both approaches have their own set of benefits and drawbacks as discussed in sec-

tion 1.2. In this chapter, we focused on meta-analyzing multiple studies using effect size

estimates to identify genes that are differentially expressed in at least one study.

Combining effect size estimates from studies that address the same research question is

the primary alternative to combining p-values and/or z-scores. This can be accomplished

using either a fixed effects model or a random effects model. A fixed-effects model assumes

that there is a single underlying overall effect, whereas a random-effects model accounts for

the possibility that each study represents its own population effect [33]. In this project we

will focus on meta-analysis based on the fixed-effect model. Inverse-variance weighting is

frequently utilized for the fixed effects model where the effect size estimates of the genes from

each study are weighted by the inverse of their variances. Statistically, combining effect size

estimates is more powerful than combining p-values or z-scores [13]. However, it necessitates

that the outcome be assessed in each study using the exact same scale, unit, transformation,

etc. For a outcome with well standardized measurements, this may be doable in a meta-

analysis.

There are several software packages available that implement meta-analysis techniques

for Genome-wide Association Studies (GWAS) and are discussed in [13]. METAL [14] is the

most widely used software for meta-analysis. METAL employs two strategies: an effect-size

based strategy that is weighted by the study-specific standard error and a weighted z-score
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method based on sample size, p-value, and direction of effect in each study. Here we focus

on the METAL method that is based on effect size estimates and their standard errors from

independent studies. This method assumes that the overall z-score for a gene is standard

normally distributed under the null hypothesis that the gene is not differentially expressed

in any study. However, this assumption may be violated in large scale multiple testing prob-

lems [16]. It has been observed that even after using common multiple testing correction

procedures, this assumption can still result in high number of false discoveries of significant

genes [17]. To reduce the false discovery rate, it is critical to develop large-scale hypothesis

testing meta-analysis methods based on empirically adjusted null distributions rather than

relying on some theoretically assumed null distributions. In this chapter we proposed a new

meta-analysis method that modifies the overall z-scores from METAL method by estimating

the empirical null distribution parameters. For empirical estimation of the null distribution

of z-scores, we considered the previously described Empirical Bayes approach [16].

We demonstrated, using a variety of simulated scenarios, that our proposed meta-analysis

method with empirical adjustment has robust performance and outperforms the METAL

method in terms of reducing false discoveries, particularly in the presence of hidden con-

founder variables. Furthermore, we showed the utility of the proposed meta-analysis ap-

proach by conducting a meta-analysis of lung cancer genomic studies. The rest of the chapter

is organized as follows. In section 3.2, we first discuss our hypothesis setting for the meta-

analysis. Then we provide a detailed description of our proposed meta-analysis method.

Next, we briefly describe the methods for the empirical estimation of the null distribution

of the z-scores. In section 3.3, we present various simulation results and the application of

our method on lung cancer data. Our results clearly demonstrate the utility of our proposed

method especially in presence of hidden confounder. We end this chapter with a discussion

in section 3.4.
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3.2 METHODS

3.2.1 HYPOTHESIS SETTING AND METAL META-ANALYSIS METHOD

Suppose there are K independent studies and G genes in each study. The goal of our

meta-analysis method is to detect genes that are differentially expressed in at least one study.

Therefore, we want to test the hypothesis that the true effect size of a gene is non-zero in at

least one study against the null hypothesis that it is zero in all studies. That is, for a gene

i, i = 1, 2. . . , G, the hypothesis setting for our meta-analysis method is

H0 :
K∑
j=1

I(θij ̸= 0) = 0 vsH1 :
K∑
j=1

I(θij ̸= 0) ≥ 1

where θij denotes the underlying true effect size for the ith gene in the jth study.

The widely used meta-analysis method called METAL [14], tests the above mentioned

hypothesis to identify genes significantly differentially expressed in at least one study. For

each gene, this method combines the estimates of the true effect size from multiple indepen-

dent studies by weighting them with the inverse of their variances, under the assumption

that the effect size estimates and their variances have same units across the studies. Suppose

θ̂ij and SEij denote the effect size estimate and its standard error for gene i from study j,

respectively, i = 1, 2, . . . , G : j = 1, 2, .., K.

The effect size estimates, for each gene, are then combined across the studies in a weighted

sum where the weights are proportional to the inverse of their variances. That is, for a gene

i, the overall effect size estimate is defined as

θ̂i =

∑K
j=1 θ̂ijwij∑K
j=1wij

where wij =
1

SE2
ij
, i = 1, 2, . . . , G : j = 1, 2, .., K. Then, for gene i, the overall z-score can be

calculated as

zi =
θ̂i
SEi
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where SEi =
√

1∑K
j=1 wij

, i = 1, 2, . . . , G : j = 1, 2, .., K. Finally, an overall p-value for gene i,

i = 1, 2, . . . , G, is obtained as

pi = 2(1− Φ(|zi|))

3.2.2 PROPOSED META-ANALYSIS METHOD

In this section, we describe our proposed empirically adjusted meta-analysis method that

modifies the overall z-scores from METAL meta-analysis method and computes multiple

testing corrected p-values. This modification involves transforming the overall z-scores from

METAL through an empirical correction of their null distribution. Following are the detailed

steps of our proposed meta-analysis method.

• Step 1: Let θ̂ij and SEij denote the effect size estimate and its standard error for gene

i from study j, respectively, i = 1, 2, . . . , G : j = 1, 2, .., K. For gene i, we obtain the

overall effect size estimate θ̂i as

θ̂i =

∑K
j=1 θ̂ijwij∑K
j=1 wij

where wij =
1

SE2
ij
, i = 1, 2, . . . , G : j = 1, 2, .., K.

• Step 2: For gene i, we obtain the overall z-score zi as

zi =
θ̂i
SEi

where SEi =
√

1∑K
j=1 wij

, i = 1, 2, . . . , G : j = 1, 2, .., K.

• Step 3: Since, these z-scores in step 2 may not followN(0, 1) under the null hypotheses,

we empirically estimate the parameters of the null distribution of the z-scores. We

consider the Empirical Bayes method [16], previously described, for estimating the

parameters of the null distribution. Suppose µ̂EB and σ̂EB are the Empirical Bayes

method estimated mean and standard deviation of the null distribution of the z-scores.

We modify the z-scores in step 2, using the estimated parameters as

zEB
i =

zi − µ̂EB

σ̂EB

, i = 1, 2, . . . , G
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These modified z-scores are expected to follow a standard normal distribution under

the null hypotheses.

• Step 4: For gene i, we obtain the overall p-value as

pEB
i = 2(1− Φ(|zEB

i |)), i = 1, 2, . . . , G

The final p-values are then corrected for multiple testing using the Benjamini-Hochberg

(BH) method [15].

After obtaining the list of differentially expressed genes using Benjamini-Hochberg p-

value cutoff of 0.05, the performance of the proposed method is assessed using the following

three performance measures:

• Sensitivity: Proportion of genes which are correctly identified as differentially expressed

out of all the genes which are truly differentially expressed.

• Specificity: Proportion of genes which are correctly identified as not differentially ex-

pressed out of all the genes which are truly not differentially expressed.

• FDR: Proportion of genes which are incorrectly identified as differentially expressed

out of all the genes which are identified as differentially expressed.

The Empirical Bayes method for estimating the null distribution of the z-scores has been

discussed before in section 2.2.3. The proposed method with Empirical Bayes adjustment to

the z-scores will be referred to as Empirical Bayes adjusted method from now on. There is

an alternative method of estimating the null distribution of the z-scores called BACON [34].

BACON considers a Bayesian framework for estimation and was previously introduced in

the fixed effects meta-analysis in genomic studies [34]. We will compare the performance of

our proposed (Empirical Bayes adjusted) method with the BACON adjusted method in our

simulation studies and data applications. Estimation of the null distribution using Bayesian

method (BACON) is briefly discussed below.

Bayesian method (BACON) for estimation of the null distribution parameters

Suppose the observed set of z-scores corresponding to G genes in a study are denoted as

zi, i = 1, 2. . . , G. The null distribution of the z-scores is supposed to be N(0, 1) theoreti-

cally. However, in large-scale testing situations empirical and theoretical null might differ.
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However, the large-scale multiple testing situation enables us to estimate the parameters

of the null distribution of the z-scores. In this section, we will discuss a Bayesian method,

known as BACON [34], proposed by van Iterson et al., for estimating the null distribution

empirically.

BACON assumes that the observed set of z-scores can be modeled by a three-component

normal mixture:

f(z : p,µ,σ) =
3∑

k=1

pk ϕ(z : µk, σk)

where the mixture proportions are constrained to sum to one, i.e.,
∑3

k=1 pk = 1. Here,

ϕ(z : µk, σk) represents the density of N(µk, σ
2
k), k = 1, 2, 3. Moreover, one of the compo-

nents represents the empirical null distribution and other two components represent two

separate non null distributions. This method applies Gibbs sampling algorithm to estimate

the parameters of the mixture distribution. Conjugate prior distributions are assumed for

means µk, variances σ
2
k, and proportions pk as follows:

µk|σ2
k ∼ N

(
λk,

σ2
k

τk

)
σ2
k ∼ Inverse Gamma(αk, βk)

(p1, p2, p3) ∼ Dirichelet(γ1, γ2, γ3)

We considered the same choices for hyper-priors λk, τk, αk, βk, γk, as suggested by van

Iterson et al. [34]. Moreover, data-driven starting values are used to start the Gibbs sam-

pling algorithm based on the median and median absolute deviation of the z-scores.

Given the z-scores zi for i = 1, 2. . . , G, the Gibbs sampling algorithm iterate in the fol-

lowing steps:

(i) Generate the unobserved data xik from the multinomial distribution as follows:

xik ∼ Multinomial(ω̃ik)

where ωik = pkϕ(z : µk, σk) and ω̃ik represents the normalized proportion such that∑3
k=1 ω̃ik = 1
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(ii) Calculate the following quantities:

ηk =
G∑
i=1

1(xik ̸=0)

sk =
G∑
i=1

zi1(xik ̸=0)

s2k =
G∑
i=1

z2i 1(xik ̸=0)

(iii) Generate samples from the posterior distributions as follows:

µk|σ2
k ∼ N

(
λkτk + sk
ηk + τk

,
σ2
k + sk

ηk + τk

)
σ−2
k ∼ Gamma

(
αk +

1

2
(ηk + 1), (βk +

1

2
τk(µk − λk)

2 +
1

2
s2k)

−1

)
pk ∼ Dirichelet(γk + ηk)

A burn-in period of 2000 iterations is considered.
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3.3 RESULTS

3.3.1 SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of our proposed method

based on sensitivity, specificity and FDR. We simulated continuous gene expression datasets

for multiple independent studies. Details of the data generation process are given below.

We considered 10 independent studies each involving continuous gene expression levels

for 10000 genes, i.e., K = 10 and G = 10000. We considered two groups of subjects in each

study where each group consists of 40 subjects, i.e., n1 = n2 = 40. We considered 1000 genes

(i.e., 10%) as differentially expressed between the two subject groups in all 10 studies.

The (log) expression level for the ith gene, lth subject in the kth group for each study is

generated separately using the following model:

yikl = µ+Gi + Vk +GVik +Wikl + eikl

Here µ denotes the overall mean effect, Gi denotes the effect due to the ith gene, Vk

denotes the effect due to the kth subject group, and GVik denotes the interaction effect be-

tween the ith gene and the kth subject group, Wikl denotes the effect of a hidden variable and

eikl denotes the error component corresponding to the ith gene, lth subject in the kth group,

i = 1, 2. . . , G : k = 1, 2: l = 1, 2, . . . , nk.

We considered µ, Gi, and Vk as zero for all i,k and l, for simplicity. The differences

in magnitudes of (log) expression values of differentially expressed genes between the two

groups are considered as four, which are obtained through the generation of the interaction

terms between the genes and the groups, (GV )iks, as follows:

(GV )i1 = −2, (GV )i2 = 2 for i = 1, . . . , 500

(GV )i1 = 2, (GV )i2 = −2 for i = 501, . . . , 1000

(GV )i1 = (GV )i2 = 0 for i = 1001, . . . , 10000

We introduced correlations among some of the genes through the generation of the error

terms eikls as described below:
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We considered four groups of correlated genes given by C1 = {1, 2, . . . , 1000}, C2 =

{2001, 2002, . . . , 3000}, C3 = {6001, 6002, . . . , 7000} and C4 = {8001, 8002, . . . , 9000}. The

error term eikl for the ith gene, lth subject in the kth group , i = 1, 2, . . . , G : k = 1, 2: l =

1, 2, . . . , nk is generated as:

eikl =

 1√
2
e1ikl +

1√
2
e2ikl, if i ∈ {C1, C2, C3, C4}.

e2ikl, o.w.

where e1 are generated independently from N(0, 1) in such a way that the values of e1 are

same for all the genes belonging to the same group, and e2 are generated independently from

N(0, 22).

In our simulations, we considered the following three settings.

Setting I

In this simulation setting, we assumed the presence of a hidden variable which acts as a

confounder. The effect of the hidden confounder for the ith gene, lth subject in the kth group

is generated such that it varied over the two subject groups, different groups of genes as well

as over different studies. We considered Wikl = uiklI(sikl = 1), where sikl ∼ Bernoulli(0.4)

and uikl are generated depending on the gene, subject group and the study ID j as given

below:

uikl =


N(−1 + j + δ.I, 0.012), for i = 1, . . . , 500: l = 1, . . . , nk.

N(2 + j + δ.I, 0.012), for i = 501, . . . , 1000: l = 1, . . . , nk.

N(5 + j + δ.I, 0.012), for i = 1001, . . . , G : l = 1, . . . , nk.

where i = 1, 2. . . , G : k = 1, 2: j = 1, 2, . . . , K. Here, I = 1 for group 1 (i.e., for k = 1)

and I = 0 for group 2 (i.e., for k = 2). The magnitude of the difference between the means

of the distributions of uikl between the two subject groups is given by δ. In our simulations,

we considered δ = 2.

For each study, after generating the (log) gene expression values for all the subjects, we

tested whether the genes are differentially expressed between the two subject groups us-

ing “limma” in Bioconductor [26] and obtained the effect size estimates and their standard
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errors. We then applied our proposed method (Empirical Bayes adjusted method), as de-

scribed in the methods section, and obtained the list of differentially expressed genes with

a Benjamini-Hochberg adjusted p-value cutoff of 0.05. We evaluated the performance of the

proposed method using sensitivity, specificity, and false discovery rate (FDR) based on 500

monte-carlo iterations. We compared the performance of our proposed method with the BA-

CON adjusted method as well as the METAL method (without any empirical adjustment)

[14].

Table 11 summarizes the simulation results for our proposed method (Empirical Bayes

adjusted method), BACON adjusted method and the METAL method without any empir-

ical adjustment [14]. Both our proposed method and the BACON adjusted method have

significantly lower FDR values compared to METAL which has extremely high FDR value.

The sensitivity values are very similar for the all three methods whereas the specificity values

are much higher for both the proposed method and the BACON adjusted method compared

to METAL. In general, both Empirical Bayes and BACON adjusted methods have much

better performances than METAL.

Table 11

Performances of the proposed method, BACON adjusted method, and METAL in presence

of hidden confounder. The proportion of differentially expressed genes between the two

subject groups is 10%.

Method Sensitivity Specificity FDR

METAL 1.000 0.597 0.784

Empirical Bayes adjusted 1.000 0.992 0.070

BACON adjusted 1.000 0.999 0.011

We, additionally, varied the proportion of differentially expressed genes between the



64

two subject groups, ranging from 5% to 20%. Figure 15 shows the performances of the

proposed method, the BACON adjusted method, as well as the METAL method with varying

proportion of differentially expressed genes in presence of hidden confounder in the studies.

Although the FDR values of the METAL method decreased with increase in the proportion of

differentially expressed genes in the studies, they remained unacceptably high in all scenarios.

Both our proposed method and the BACON adjusted method had significantly lower FDR

values compared to METAL. The sensitivity values are very similar for all the methods. Both

the proposed method and the BACON adjusted method had significantly higher specificity

values compared to METAL in all scenarios.
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Fig. 15. Performances of the proposed method, BACON adjusted method, and METAL

in presence of hidden confounder with varying proportion of differentially expressed genes

between two subject groups.

Setting II

In this simulation scenario, we assumed the presence of the hidden variable which affects

the outcome but does not vary between the two subject groups. We generated this hidden

variable which does not act as a confounder for the ith gene, lth subject in the kth group, as

Wikl = uiklI(sikl = 1), where sikl ∼ Bernoulli(0.4) and uikl are generated as given below:

uikl = N(2 + j, 0.12) for i = 1, . . . , G; k = 1, 2; l = 1, . . . , nk; j = 1, . . . , K
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We considered 10% of the genes as differentially expressed between the two subject groups

in all 10 studies as considered before. All the other terms in the model for simulation are

generated in the same way as described previously.

Table 12 shows the results for our proposed method, BACON adjusted method, and the

METAL method. In this simulation scenario, all the methods have controlled FDR values

at 0.05. The sensitivity and specificity values are also very similar for all the methods.

Table 12

Performances of the proposed method, BACON adjusted method, and METAL in presence of

hidden variable that does not act as a confounder. The proportion of differentially expressed

genes between the two subject groups is 10%.

Method Sensitivity Specificity FDR

METAL 1.000 0.993 0.057

Empirical Bayes adjusted 1.000 0.994 0.049

BACON adjusted 1.000 0.994 0.051

The performances of the proposed method, BACON adjusted method, and METAL with

varying proportion of differentially expressed genes, in the presence of hidden variable that

does not act as confounder, are shown in Figure 16. The FDR values remained controlled at

0.05 for all methods consistently for all the considered proportions of significant genes. The

sensitivity and specificity values are very similar for all methods.
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Fig. 16. Performances of the proposed method, BACON adjusted method, and METAL

in presence of hidden variable that does not act as a confounder with varying proportion of

differentially expressed genes between two subject groups.

Setting III

In this simulation scenario, we assumed that there is no effect of any hidden variable

or confounder in the studies. Therefore, we set Wikl = 0, for all i, k and l. Here also, we

considered 10% of the genes as differentially expressed between the two subject groups in all

10 studies. All the other terms in the model for simulation are generated in the same way

as described previously.
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Table 13 shows the results for our proposed method, BACON adjusted method, as well

as the METAL method. Similar to setting II, all the methods have FDR values controlled

at 0.05 with very similar sensitivity and specificity values.

Table 13

Performances of the proposed method, BACON adjusted method, and METAL when there

is no effect of any hidden variable or confounder. The proportion of differentially expressed

genes between the two subject groups is 10%.

Method Sensitivity Specificity FDR

METAL 1.000 0.993 0.056

Empirical Bayes adjusted 1.000 0.995 0.045

BACON adjusted 1.000 0.995 0.047

Figure 17 shows the simulation results for the proposed method, BACON adjusted

method, and METAL with varying proportion of differentially expressed genes when there

is no effect of hidden variable or confounder in the studies. The performances of the meth-

ods are very similar to what we observed in the previous scenario in the presence of hidden

variable that does not act as confounder.
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Fig. 17. Performances of the proposed method, BACON adjusted method, and METAL

when there is no effect of any hidden variable or confounder with varying proportion of

differentially expressed genes between two subject groups.

We also considered some variations in our simulations. In particular, we considered a

simulation scenario where we evaluated the effect of changing the number of studies in the

meta-analysis. We also considered simulation scenarios where we assumed that 10% of the

genes were significant in lesser number of studies. In particular, we considered two choices for

the number of studies, namely five and one, and evaluated the performances of our proposed

method. Each of these scenarios is described below.
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Effect of changing the number of studies

We compared the performance of our proposed method with BACON adjusted method,

and METAL by varying the number of studies. In this simulation scenario, we assumed pres-

ence of a hidden variable which acts as a confounder. We considered K independent studies

where K = 5, 10 and 15, each involving continuous gene expression levels for G = 10000

genes. Note that, we considered 10% of the genes as differentially expressed between two

subject groups in all K studies. All the terms in the model for simulation are generated in

the same way as described in setting I.

Figure 18 summarizes the simulation results for our proposed method, BACON adjusted

method, and METAL method for varying number of studies (K) in presence of hidden

variable which acts as a confounder. Both our proposed method and BACON adjusted

method have significantly lower FDR values compared to the METAL method for all the

choices of K. METAL has extremely high FDR values for all the choices of K and the values

increase as the number of studies increases. The sensitivity values are very similar for all

the methods while the specificity values of METAL remained much lower than the other two

methods. The specificity values of METAL decreased with the increase in the number of

studies.
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Fig. 18. Performances of the proposed method, BACON adjusted method, and METAL in

presence of hidden confounder with varying number of studies.

Further, we evaluated the performances of the proposed method, BACON adjusted

method, and METAL with varying number of studies, in the presence of hidden variable

that does not act as confounder. As shown in Figure 19, the FDR values remained con-

trolled at 0.05 for all methods consistently for all the considered number of studies. The

sensitivity and specificity values are very similar for all methods.



72

0.00

0.25

0.50

0.75

1.00

5 10 15

Number of studies

S
e
n

s
it

iv
it

y

0.00

0.25

0.50

0.75

1.00

5 10 15

Number of studies

S
p

e
c
if

ic
it

y

0.00

0.25

0.50

0.75

1.00

5 10 15

Number of studies

F
D

R

Method

METAL

Empirical Bayes adjusted

BACON adjusted

Fig. 19. Performances of the proposed method, BACON adjusted method, and METAL

in presence of hidden variable that does not act as a confounder with varying number of

studies.

Figure 20 shows the simulation results for the proposed method, BACON adjusted

method, and METAL with varying number of studies when there is no effect of hidden

variable or confounder in the studies. The performances of the methods are very similar to

what we observed in the previous scenario in the presence of hidden variable that does not

act as confounder.
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Fig. 20. Performances of the proposed method, BACON adjusted method, and METAL

when there is no effect of any hidden variable or confounder with varying number of studies.

Effect of reducing the number of studies for the significant genes

In this scenario, we considered 10 independent studies each involving continuous gene

expression levels for 10000 genes, i.e., K = 10 and G = 10000. We considered two groups

of subjects in each study where each group consists of 40 subjects, i.e., n1 = n2 = 40. We

considered 1000 genes as differentially expressed between the two subject groups but only

in five of the ten studies. The results for the proposed method, BACON adjusted method,

and METAL for all three simulation settings i.e., I, II and III are summarized in Table 14.
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In setting I, i.e. in the presence of a hidden variable which acts as a confounder, METAL

had extremely high FDR value, while it remained controlled for the other two methods. All

three methods had very similar sensitivity values while METAL had much lower specificity

values compared to the other two methods.

In setting II (in the presence of the hidden variable that does not act as a confounder)

and setting III (no effect of any hidden variable or confounder), all three methods performed

similarly, with very high sensitivity and specificity values and FDR values controlled at 5%.

Overall, the performances of the methods are very similar to what we observed in the

previous scenario that considered 10% of the genes as differentially expressed in all 10 stud-

ies.

Table 14

Performances of the proposed method, BACON adjusted method, and METAL when 10%

of the genes are significant in five studies for all three settings.

Setting Method Sensitivity Specificity FDR

Setting I

METAL 0.998 0.462 0.829

Empirical Bayes adjusted 1.000 0.992 0.063

BACON adjusted 1.000 0.999 0.009

Setting II

METAL 1.000 0.993 0.056

Empirical Bayes adjusted 1.000 0.994 0.049

BACON adjusted 1.000 0.994 0.054

Setting III

METAL 1.000 0.994 0.055

Empirical Bayes adjusted 1.000 0.996 0.036

BACON adjusted 1.000 0.994 0.050
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We further reduced the number of studies for the differentially expressed genes. In par-

ticular, we assumed that 10% of the G=10000 genes are differentially expressed in only one

of the ten studies. That is, we considered 1000 genes as differentially expressed between the

two subject groups in only one study. As before, we considered 40 subjects in each group.

The results for the proposed method, BACON adjusted method, and METAL for simulation

settings I, II and III are summarized in Table 15.

In setting I, i.e. in the presence of a hidden variable which acts as a confounder, the

METAL method has extremely high FDR value while both the proposed method and BA-

CON adjusted method have much lower FDR values. Although, the sensitivity values of all

the three methods are low, the Empirical Bayes adjusted proposed method has slightly higher

value compared to others. METAL also has significantly lower specificity value compared to

the other methods. Overall, the Empirical Bayes adjusted proposed method performs better

than the other two methods in this scenario with higher sensitivity and specificity values

and FDR controlled at 5%. The BACON adjusted method is a bit conservative with low

sensitivity and FDR values compared to the Empirical Bayes adjusted proposed method.

In setting II (presence of the hidden variable that does not act as a confounder), all the

three methods have similar performances, although METAL had slightly lower sensitivity

value. In this setting, the FDR values of all three methods are slightly higher than 0.05. In

setting III (no effect of any hidden variable/confounder), the performances of all the three

methods are very similar. However, the Empirical Bayes adjusted proposed method has

slightly higher sensitivity and FDR values compared to the other two methods.
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Table 15

Performances of the proposed method, BACON adjusted method, and METAL when 10%

of the genes are significant in only one study for all three settings.

Setting Method Sensitivity Specificity FDR

Setting I

METAL 0.519 0.540 0.889

Empirical Bayes adjusted 0.619 0.996 0.050

BACON adjusted 0.517 1.000 0.006

Setting II

METAL 0.799 0.995 0.057

Empirical Bayes adjusted 0.815 0.992 0.077

BACON adjusted 0.812 0.994 0.066

Setting III

METAL 0.727 0.995 0.056

Empirical Bayes adjusted 0.758 0.992 0.080

BACON adjusted 0.736 0.995 0.060

3.3.2 AN APPLICATION TO LUNG CANCER STUDIES

We conducted meta-analysis using our proposed method on five lung cancer gene expres-

sion datasets. Details about these five studies are discussed in section 2.3.2. We aimed to

identify the genes that are differentially expressed between two lung cancer types - adeno-

carcinoma (AD) and squamous cell carcinoma (SQ) in at least one study. To obtain the

effect size estimates and their standard errors for the genes for each dataset, we tested for

differential expression between AD and SQ subjects using “limma” [26]. We then applied our

proposed method, following the steps described in methods section, using Empirical Bayes

adjustment. For comparison, we also applied the BACON adjusted method as well as the

METAL method to identify the differentially expressed genes between the two lung cancer

types in at least one study.

The Empirical Bayes approach estimated mean and the standard deviation of the overall

z-scores are – 0.88 and 4.77, respectively, whereas those estimated from the BACON method

are – 0.20 and 5.86, respectively. Figure 21 shows the histogram of the original overall z-

scores for the genes obtained from METAL. We also superimposed the density curves of the
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theoretical null distribution as well as the empirical null distributions estimated from the

Empirical Bayes and BACON methods.
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Fig. 21. Histogram of the overall z-scores from METAL along with the empirically estimated

null distributions using Empirical Bayes method (red line) and BACON method (green line).
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As evident from the figure, the theoretical null distribution i.e., N(0, 1) is much deviated

from the histogram of the original z-scores. The empirically estimated null distributions

using the Empirical Bayes and BACON methods are much closer to the histogram of the

original z-scores. However, as evident from the figure, the Empirical Bayes estimated null

distribution is more closer to the histogram compared to the BACON adjusted method.

Table 16 shows the number of differentially expressed genes, identified by our proposed

method, BACON adjusted method, and METAL, significant at Benjamini-Hochberg ad-

justed p-value cutoff of 0.05. METAL identified significantly higher number of differentially

expressed genes (> 65%) compared to the other two methods, indicating a possibility of high

false discoveries. The Empirical Bayes adjusted method identified about 3% of the genes as

differentially expressed while the BACON adjusted method identified less than 1% of the

genes as differentially expressed. Further, all the genes identified by the BACON adjusted

method are also identified by the Empirical Bayes adjusted method. The BACON adjusted

method might be a bit conservative with lower sensitivity and/or FDR values, as we observed

in setting I of Table 15, where the genes are differentially expressed in a smaller number of

studies.

Table 16

The number of significant genes (percentage) identified by our proposed method, BACON

adjusted method, and METAL for the lung cancer data.

Method
Number of significant genes

(percentage)

METAL 4901 (68.1%)

Empirical Bayes adjusted 205 (2.8%)

BACON adjusted 52 (0.7%)



79

In order to identify biological pathways associated with the gene lists identified by the

our proposed method, we performed functional annotation clustering using Database for

Annotation, Visualization and Integrated Discovery (DAVID) software [28]. Our proposed

method with Empirical Bayes adjustment identified several biological processes related to

lung cancer, including keratinocyte differentiation, epidermis development, intermediate fil-

ament organization, cell-cell adhesion, epithelial cell differentiation, keratinization, cell ad-

hesion, negative regulation of endopeptidase activity, peptide cross-linking and hair follicle

morphogenesis based on the Benjamini-Hochberg adjusted p-value cutoff of 0.05.

3.4 DISCUSSION

In this chapter, we proposed a new meta-analysis method that focus on testing for signif-

icance of a gene in at least one of the studies. The METAL method [14], based on effect size

estimates and their standard errors from independent studies, is a widely used meta-analysis

method which aims to test significance of a gene in at least one study. But METAL relies

on a theoretical null distribution which can be different from the true null distribution of

test statistics. Hence, we proposed a robust meta-analysis method that empirically modifies

the overall z-scores from METAL method by estimating the parameters of the empirical

null distribution. We considered an Empirical Bayes method [16], previously described in

section 2.2.3, for empirical estimation of the null distribution of z-scores. For comparison, we

considered an alternative approach for empirical estimation of the null distribution, called

BACON [34] as described in section 3.2.2.

Simulation studies are carried out under different settings to evaluate the performance of

our proposed method using sensitivity, specificity and false discovery rate as the performance

measures. We mainly considered three different simulation settings that assumed no effect

of any hidden variable or confounder in the studies, presence of a hidden variable which acts

as a confounder and which does not act as a confounder while generating the gene expres-

sion values. Additionally, we considered some variations in our simulations. In particular,

we considered simulation scenarios where we evaluated the effect of changing the number

of studies in the meta-analysis. We also considered simulation scenarios where we assumed

that the genes were significant in different number of studies.

For the simulation setting, that assumed presence of a hidden confounder variable, both
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our proposed method and BACON adjusted method have shown significantly better per-

formances than the METAL method. The FDR values are significantly lower for both the

proposed method and BACON adjusted method compared to METAL in all the consid-

ered simulation scenarios. The sensitivity values are very similar for the all three methods

whereas the specificity values are much higher for both the proposed method and BACON

adjusted method compared to METAL in all the considered simulation scenarios. For the

simulation settings, that assumed no effect of any hidden variable or confounder and presence

of a hidden variable which does not act as a confounder, the results showed that there is no

significant difference between the performances of METAL and the other two methods in all

the considered simulation scenarios. In the simulation scenario, where the genes are differ-

entially expressed in fewer number of studies, we observed differences in the performances

of our proposed method and the BACON adjusted method. The BACON adjusted method

is a bit conservative with lower sensitivity and FDR compared to the proposed method.

We observed similar results in the lung cancer meta-analysis where the BACON adjusted

method identified very few genes (0.7%) as significant. Our proposed method identified

about 3% of the genes as significant which include all the genes identified by the BACON

adjusted method. On the other hand, METAL identified extremely large number of genes

as significant (∼ 68%) indicating possibility of gross false discoveries.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

Recent advances in high-throughput technologies have made it possible to analyze thou-

sands of genes at once. One can quickly obtain the summary results of several genomic

studies, each of which includes the significance testing results of thousands of genes, thanks

to the availability of numerous public databases. Meta-analysis is a popular method for com-

bining the summary results of hypothesis testing from multiple studies. It is widely used in

variety of scientific fields, including genomic research and psychological research. Traditional

meta-analysis methods need to be modified when combining summary results of large-scale

simultaneous hypotheses testing across multiple studies as they rely on a theoretical null

distribution which may differ from the true null distribution especially in the presence of

hidden confounder effects.

We discussed some recent advances in estimation of null distributions of test statistics

empirically and proposed methods for incorporating such empirically estimated null distri-

butions in meta-analysis of large scale genomic experiments in this dissertation. In Chapter

2, we focused on identifying genes that are differentially expressed in a majority of stud-

ies when p-value is the only source of information that is consistently available for all the

genes in all of the studies taken into account for meta-analysis. We demonstrated that,

in large-scale simultaneous testing of thousands of genes, the existing p-value combination

methods of meta-analysis can experience increased type-I error rates and significant false

discoveries, even after multiplicity corrections. As a remedy, we proposed a reliable meta-

analysis technique that modifies each individual p-value empirically before combining them

across the studies. We considered an Empirical Bayes method to estimate the parameters

of the null distribution of the test statistics. Various simulated scenarios showed that our

proposed empirically modified meta-analysis performed better than the existing method. In

Chapter 3, we focused on identifying genes that are differentially expressed in at least one

study. The METAL method combining effect size estimates and their standard errors from

independent studies is one of the important approaches that test for significance of a gene

in at least one study. We emphasized the shortcomings of this technique for significance

testing in large scale hypothesis testing problems. We proposed a new meta-analysis method
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that empirically modifies the overall z-scores from METAL by estimating the parameters of

the empirical null distribution. We considered the Empirical Bayes approach for empirically

estimating the null distribution of the z-scores. Particularly in the presence of hidden con-

founders, the proposed method (Empirical Bayes adjusted) has demonstrated significantly

improved performances than the existing methods. We have shown the effectiveness of the

proposed method in finding significant and biologically relevant genes using real genomic

datasets.

Future research can be done to explore an alternative way to empirically estimate the

null distribution of the p-values directly instead of relying on the empirical estimation of the

null distribution of the test statistics. The idea is to fit a Beta distribution to the p-values

for the genes and then convert the Beta distribution into Uniform distribution using the

CDF of the particular Beta distribution.
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APPENDIX A

R SCRIPT FOR CHAPTER 2

The following R code is used to implement the Empirically Adjusted Weighted Ordered

P-value Method in the presence of hidden variable that act as a confounder.

library(limma)

library(locfdr)

N=500

sensitivity<−matrix(NA,nrow=N,ncol=8)

specificity<−matrix(NA,nrow=N,ncol=8)

FDR<−matrix(NA,nrow=N,ncol=8)

type1error<−matrix(NA,nrow=N,ncol=8)

for(l in 1: N) {

############data generation#############

numgene<−3000

m=10

delta=4

geneID<−1:numgene

Ssize<−20

Control results<−matrix(NA,nrow=numgene,ncol=Ssize)

Trt results<−matrix(NA,nrow=numgene,ncol=Ssize)

pval.res<−matrix(NA,nrow=numgene,ncol=m)

for(j in 1:m){

for(i in 1:Ssize){

####Control group####
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gv1<−rep(c(−4,4,0),c(25∗j,25∗j,numgene −(50∗j)))

s i1k<−rbinom(numgene,1,0.4)

datac<−data.frame(ID=geneID,s i1k=s i1k,gv1=gv1)

genec 1<−datac[1:(25∗j),]

genec 2<−datac[((25∗j)+1):(50∗j),]

genec 3<−datac[((50∗j)+1): numgene,]

w 11k<−ifelse(genec 1$s i1k==1,rnorm(1,(−1+j),0.01),0)

w 21k<−ifelse(genec 2$s i1k==1,rnorm(1,(2+j),0.01),0)

w 31k<−ifelse(genec 3$s i1k==1,rnorm(1,(5+j),0.01),0)

datac$w i1k<−c(w 11k,w 21k,w 31k)

e11<−c(rep(rnorm(1,0,1),30),rep(0,90),rep(rnorm(1,0,1),60),

rep(0,1320),rep(rnorm(1,0,1),60),rep(0,1110),

rep(rnorm(1,0,1),60),rep(0,270))

e12<−rnorm(3000,0,2)

erdat1<−cbind(e11,e12)

ec11<−((1/sqrt(2))∗(erdat1[1:30,1]+erdat1[1:30,2]))

ec12<−erdat1[31:120,2]

ec13<−((1/sqrt(2))∗(erdat1[121:180,1]+erdat1[121:180,2]))

ec14<−erdat1[181:1500,2]

ec15<−((1/sqrt(2))∗(erdat1[1501:1560,1]+erdat1[1501:1560,2]))

ec16<−erdat1[1561:2670,2]

ec17<−((1/sqrt(2))∗(erdat1[2671:2730,1]+erdat1[2671:2730,2]))

ec18<−erdat1[2731:3000,2]

ei1k<−c(ec11,ec12,ec13,ec14,ec15,ec16,ec17,ec18)

y i1k<−datac$gv1+datac$w i1k+ei1k

Control results[,i]<−y i1k

####Treatment group####
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gv2<−rep(c(4,−4,0),c(25∗j,25∗j, numgene −(50∗j)))

s i2k<−rbinom(numgene,1,0.4)

datat<−data.frame(ID=geneID,s i2k=s i2k,gv2=gv2)

genet 1<−datat[1:(25∗j),]

genet 2<−datat[((25∗j)+1):(50∗j),]

genet 3<−datat[((50∗j)+1): numgene,]

w 12k<−ifelse(genet 1$s i2k==1,rnorm(1,(−1+j+delta),0.01),0)

w 22k<−ifelse(genet 2$s i2k==1,rnorm(1,(2+j+delta),0.01),0)

w 32k<−ifelse(genet 3$s i2k==1,rnorm(1,(5+j+delta),0.01),0)

datat$w i2k<−c(w 12k,w 22k,w 32k)

e21<−c(rep(rnorm(1,0,1),30),rep(0,90),rep(rnorm(1,0,1),60),

rep(0,1320),rep(rnorm(1,0,1),60),rep(0,1110),

rep(rnorm(1,0,1),60),rep(0,270))

e22<−rnorm(3000,0,2)

erdat2<−cbind(e21,e22)

ec21<−((1/sqrt(2))∗(erdat2[1:30,1]+erdat2[1:30,2]))

ec22<−erdat2[31:120,2]

ec23<−((1/sqrt(2))∗(erdat2[121:180,1]+erdat2[121:180,2]))

ec24<−erdat2[181:1500,2]

ec25<−((1/sqrt(2))∗(erdat2[1501:1560,1]+erdat2[1501:1560,2]))

ec26<−erdat2[1561:2670,2]

ec27<−((1/sqrt(2))∗(erdat2[2671:2730,1]+erdat2[2671:2730,2]))

ec28<−erdat2[2731:3000,2]

ei2k<−c(ec21,ec22,ec23,ec24,ec25,ec26,ec27,ec28)

y i2k<−datat$gv2+datat$w i2k+ei2k

Trt results[,i]<−y i2k

}
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mj<−cbind(Control results,Trt results)

colnames(mj)<−rep(c(”C”,”T”),each=Ssize)

f<−factor(colnames(mj))

design <− model.matrix(˜f)

fit <− eBayes(lmFit(mj,design))

pres<−fit$p.value[,2]

pval.res[,j]<−pres

}

z<−qnorm(as.vector(pval.res))

w<−locfdr(z,plot=0)

mu<−w$fp0[”cmest”,”delta”]

sigma<−w$fp0[”cmest”,”sigma”]

z.pval<−qnorm(pval.res)

empadjz<−(z.pval−mu)/sigma

empadj.p<−pnorm(empadjz)

#############Orderd P−Values for emp adj wop#############

res<−data.frame(empadj.p)

rownames(res)<−paste(”g ”,1:numgene)

colnames(res)<−paste(”e ”,1:m)

res.list <− split(res, seq(nrow(res)))

sorted.res.list<−lapply(res.list,sort)

#############Orderd P−Values for wop####################

res1<−data.frame(pval.res)

rownames(res1)<−paste(”g ”,1:numgene)

colnames(res1)<−paste(”e ”,1:m)
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res.list1 <− split(res1, seq(nrow(res1)))

sorted.res.list1<−lapply(res.list1,sort)

###############Test statistics#########################

m=10

wb<−dbinom(0:(m−1),m−1,0.5)

k=5

whb<−c(0,0,0,0,dbinom((k−1):(m−1),m−1,0.5))

Fisher Binom=function(x) −2∗wb∗log(x)

Stouffer Binom=function(x) wb∗qnorm(as.numeric(x),lower.tail=FALSE)

Fisher HalfBinom=function(x) −2∗whb∗log(x)

Stouffer HalfBinom=function(x) whb∗qnorm(as.numeric(x),lower.tail=FALSE)

################Calculating test statistic for EAWOP

#################

resFB<−lapply(sorted.res.list,Fisher Binom)

resSB<−lapply(sorted.res.list,Stouffer Binom)

resFHB<−lapply(sorted.res.list,Fisher HalfBinom)

resSHB<−lapply(sorted.res.list,Stouffer HalfBinom)

eawopFB test stat<−sapply(resFB,sum)

eawopSB test stat<−sapply(resSB,sum)

eawopFHB test stat<−sapply(resFHB,sum)

eawopSHB test stat<−sapply(resSHB,sum)

################Calculating test statistic WOP

######################

res1FB<−lapply(sorted.res.list1,Fisher Binom)

res1SB<−lapply(sorted.res.list1,Stouffer Binom)

res1FHB<−lapply(sorted.res.list1,Fisher HalfBinom)

res1SHB<−lapply(sorted.res.list1,Stouffer HalfBinom)
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wopFB test stat<−sapply(res1FB,sum)

wopSB test stat<−sapply(res1SB,sum)

wopFHB test stat<−sapply(res1FHB,sum)

wopSHB test stat<−sapply(res1SHB,sum)

#######################calculating p values

#######################

eawopFB results<−matrix(NA,nrow=numgene,ncol=1000)

eawopSB results<−matrix(NA,nrow=numgene,ncol=1000)

eawopFHB results<−matrix(NA,nrow=numgene,ncol=1000)

eawopSHB results<−matrix(NA,nrow=numgene,ncol=1000)

wopFB results<−matrix(NA,nrow=numgene,ncol=1000)

wopSB results<−matrix(NA,nrow=numgene,ncol=1000)

wopFHB results<−matrix(NA,nrow=numgene,ncol=1000)

wopSHB results<−matrix(NA,nrow=numgene,ncol=1000)

for(k in 1:1000) {

pval<−matrix(runif(numgene∗10),nrow=numgene,ncol=10)

rownames(pval)<−paste(”g ”,1:numgene)

pval.list <− split(pval, seq(nrow(pval)))

sorted.pval.list<−lapply(pval.list,sort)

#############################################

stat res1<−lapply(sorted.pval.list,Fisher Binom)

stat wop1<−sapply(stat res1,sum)

ind1<−ifelse(stat wop1 > eawopFB test stat , 1 , 0)

eawopFB results[,k]<−ind1

ind11<−ifelse(stat wop1 > wopFB test stat , 1 , 0)
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wopFB results[,k]<−ind11

#############################################

stat res2<−lapply(sorted.pval.list,Stouffer Binom)

stat wop2<−sapply(stat res2,sum)

ind2<−ifelse(stat wop2 > eawopSB test stat , 1 , 0)

eawopSB results[,k]<−ind2

ind22<−ifelse(stat wop2 > wopSB test stat , 1 , 0)

wopSB results[,k]<−ind22

#############################################

stat res3<−lapply(sorted.pval.list,Fisher HalfBinom)

stat wop3<−sapply(stat res3,sum)

ind3<−ifelse(stat wop3 > eawopFHB test stat , 1 , 0)

eawopFHB results[,k]<−ind3

ind33<−ifelse(stat wop3 > wopFHB test stat , 1 , 0)

wopFHB results[,k]<−ind33

#############################################

stat res4<−lapply(sorted.pval.list,Stouffer HalfBinom)

stat wop4<−sapply(stat res4,sum)

ind4<−ifelse(stat wop4 > eawopSHB test stat , 1 , 0)

eawopSHB results[,k]<−ind4

ind44<−ifelse(stat wop4 > wopSHB test stat , 1 , 0)

wopSHB results[,k]<−ind44

}

eawop pval FB<−apply(eawopFB results,1,sum)/1000

eawop pval SB<−apply(eawopSB results,1,sum)/1000

eawop pval FHB<−apply(eawopFHB results,1,sum)/1000

eawop pval SHB<−apply(eawopSHB results,1,sum)/1000

wop pval FB<−apply(wopFB results,1,sum)/1000

wop pval SB<−apply(wopSB results,1,sum)/1000
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wop pval FHB<−apply(wopFHB results,1,sum)/1000

wop pval SHB<−apply(wopSHB results,1,sum)/1000

############apply the Benjamini−Hochberg#################

pval results<−data.frame(null=c(rep(0,500),rep(1,2500)),

truth=c(rep(1,300),rep(0,2700)),eawop pvalFB=eawop pval FB,

eawop pvalSB=eawop pval SB,eawop pvalFHB=eawop pval FHB,

eawop pvalSHB=eawop pval SHB,wop pvalFB=wop pval FB,

wop pvalSB=wop pval SB,wop pvalFHB=wop pval FHB,

wop pvalSHB=wop pval SHB)

rownames(pval results)<−paste(”g ”,1:numgene)

pval results$adj.eawop pval FB<−p.adjust(pval results$eawop pvalFB,

method = ”BH”)

pval results$pred.eawopFB<−ifelse(pval results$adj.eawop pval FB < 0.05,

1 , 0)

pval results$adj.eawop pval SB<−p.adjust(pval results$eawop pvalSB,

method = ”BH”)

pval results$pred.eawopSB<−ifelse(pval results$adj.eawop pval SB < 0.05,

1 , 0)

pval results$adj.eawop pval FHB<−p.adjust(pval results$eawop pvalFHB,

method = ”BH”)

pval results$pred.eawopFHB<−ifelse(pval results$adj.eawop pval FHB < 0.05,

1 , 0)

pval results$adj.eawop pval SHB<−p.adjust(pval results$eawop pvalSHB,

method = ”BH”)

pval results$pred.eawopSHB<−ifelse(pval results$adj.eawop pval SHB < 0.05,

1 , 0)

pval results$adj.wop pval FB<−p.adjust(pval results$wop pvalFB,

method = ”BH”)
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pval results$pred.wopFB<−ifelse(pval results$adj.wop pval FB < 0.05,

1 , 0)

pval results$adj.wop pval SB<−p.adjust(pval results$wop pvalSB,

method = ”BH”)

pval results$pred.wopSB<−ifelse(pval results$adj.wop pval SB < 0.05,

1 , 0)

pval results$adj.wop pval FHB<−p.adjust(pval results$wop pvalFHB,

method = ”BH”)

pval results$pred.wopFHB<−ifelse(pval results$adj.wop pval FHB < 0.05,

1 , 0)

pval results$adj.wop pval SHB<−p.adjust(pval results$wop pvalSHB,

method = ”BH”)

pval results$pred.wopSHB<−ifelse(pval results$adj.wop pval SHB < 0.05,

1 , 0)

#######################calculating performance

########################

EAFBsens<−sum(pval results$pred.eawopFB[pval results$truth==1]==1)/

sum(pval results$truth==1)

EAFBspeci<−sum(pval results$pred.eawopFB[pval results$truth==0]==0)/

sum(pval results$truth==0)

EAFBfdr<−sum(pval results$pred.eawopFB[pval results$truth==0]==1)/

sum(pval results$pred.eawopFB==1)

EAFBtype1error<−sum(pval results$pred.eawopFB[pval results$null==1]==1)/

sum(pval results$pred.eawopFB==1)

EASBsens<−sum(pval results$pred.eawopSB[pval results$truth==1]==1)/

sum(pval results$truth==1)

EASBspeci<−sum(pval results$pred.eawopSB[pval results$truth==0]==0)/

sum(pval results$truth==0)

EASBfdr<−sum(pval results$pred.eawopSB[pval results$truth==0]==1)/

sum(pval results$pred.eawopSB==1)
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EASBtype1error<−sum(pval results$pred.eawopSB[pval results$null==1]==1)/

sum(pval results$pred.eawopSB==1)

EAFHBsens<−sum(pval results$pred.eawopFHB[pval results$truth==1]==1)/

sum(pval results$truth==1)

EAFHBspeci<−sum(pval results$pred.eawopFHB[pval results$truth==0]==0)/

sum(pval results$truth==0)

EAFHBfdr<−sum(pval results$pred.eawopFHB[pval results$truth==0]==1)/

sum(pval results$pred.eawopFHB==1)

EAFHBtype1error<−sum(pval results$pred.eawopFHB[pval results$null==1]==1)/

sum(pval results$pred.eawopFHB==1)

EASHBsens<−sum(pval results$pred.eawopSHB[pval results$truth==1]==1)/

sum(pval results$truth==1)

EASHBspeci<−sum(pval results$pred.eawopSHB[pval results$truth==0]==0)/

sum(pval results$truth==0)

EASHBfdr<−sum(pval results$pred.eawopSHB[pval results$truth==0]==1)/

sum(pval results$pred.eawopSHB==1)

EASHBtype1error<−sum(pval results$pred.eawopSHB[pval results$null==1]==1)/

sum(pval results$pred.eawopSHB==1)

WOPFBsens<−sum(pval results$pred.wopFB[pval results$truth==1]==1)/

sum(pval results$truth==1)

WOPFBspeci<−sum(pval results$pred.wopFB[pval results$truth==0]==0)/

sum(pval results$truth==0)

WOPFBfdr<−sum(pval results$pred.wopFB[pval results$truth==0]==1)/

sum(pval results$pred.wopFB==1)

WOPFBtype1error<−sum(pval results$pred.wopFB[pval results$null==1]==1)/

sum(pval results$pred.wopFB==1)

WOPSBsens<−sum(pval results$pred.wopSB[pval results$truth==1]==1)/

sum(pval results$truth==1)

WOPSBspeci<−sum(pval results$pred.wopSB[pval results$truth==0]==0)/

sum(pval results$truth==0)

WOPSBfdr<−sum(pval results$pred.wopSB[pval results$truth==0]==1)/

sum(pval results$pred.wopSB==1)
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WOPSBtype1error<−sum(pval results$pred.wopSB[pval results$null==1]==1)/

sum(pval results$pred.wopSB==1)

WOPFHBsens<−sum(pval results$pred.wopFHB[pval results$truth==1]==1)/

sum(pval results$truth==1)

WOPFHBspeci<−sum(pval results$pred.wopFHB[pval results$truth==0]==0)/

sum(pval results$truth==0)

WOPFHBfdr<−sum(pval results$pred.wopFHB[pval results$truth==0]==1)/

sum(pval results$pred.wopFHB==1)

WOPFHBtype1error<−sum(pval results$pred.wopFHB[pval results$null==1]==1)/

sum(pval results$pred.wopFHB==1)

WOPSHBsens<−sum(pval results$pred.wopSHB[pval results$truth==1]==1)/

sum(pval results$truth==1)

WOPSHBspeci<−sum(pval results$pred.wopSHB[pval results$truth==0]==0)/

sum(pval results$truth==0)

WOPSHBfdr<−sum(pval results$pred.wopSHB[pval results$truth==0]==1)/

sum(pval results$pred.wopSHB==1)

WOPSHBtype1error<−sum(pval results$pred.wopSHB[pval results$null==1]==1)/

sum(pval results$pred.wopSHB==1)

sensitivity[l,]<−c(EAFBsens,EASBsens,EAFHBsens,EASHBsens,

WOPFBsens,WOPSBsens,WOPFHBsens,WOPSHBsens)

specificity[l,]<−c(EAFBspeci,EASBspeci,EAFHBspeci,EASHBspeci,

WOPFBspeci,WOPSBspeci,WOPFHBspeci,WOPSHBspeci)

FDR[l,]<−c(EAFBfdr,EASBfdr,EAFHBfdr,EASHBfdr,WOPFBfdr,

WOPSBfdr,WOPFHBfdr,WOPSHBfdr)

type1error[l,]<−c(EAFBtype1error,EASBtype1error,EAFHBtype1error,

EASHBtype1error,WOPFBtype1error,WOPSBtype1error,WOPFHBtype1error,

WOPSHBtype1error)

}

colnames(sensitivity)<−c(”sens EAFB”,”sens EASB”,”sens EAFHB”,

”sens EASHB”,”sens WOPFB”,”sens WOPSB”,”sens WOPFHB”,”sens WOPSHB”)

colnames(specificity)<−c(”speci EAFB”,”speci EASB”,”speci EAFHB”,
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”speci EASHB”,”speci WOPFB”,”speci WOPSB”,”speci WOPFHB”,”speci WOPSHB”)

colnames(FDR)<−c(”fdr EAFB”,”fdr EASB”,”fdr EAFHB”,”fdr EASHB”,

”fdr WOPFB”,”fdr WOPSB”,”fdr WOPFHB”,”fdr WOPSHB”)

colnames(type1error)<−c(”type1error EAFB”,”type1error EASB”,

”type1error EAFHB”,”type1error EASHB”,”type1error WOPFB”,

”type1error WOPSB”,”type1error WOPFHB”,”type1error WOPSHB”)

(avg sensitivity<−apply(sensitivity,2,mean))

(avg specificity<−apply(specificity,2,mean))

(avg FDR<−apply(FDR,2,mean))

(avg type1error<−apply(type1error,2,mean))
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APPENDIX B

R SCRIPT FOR CHAPTER 3

The following R code is used to implement Empirical Bayes Adjusted and Bacon Ad-

justed methods in the presence of hidden variable that act as a confounder.

library(limma)

library(locfdr)

library(bacon)

N=10 # replicates

g<−10000 # no of genes

sg<−1000 # no of sig genes

m=10 # no of experiments

Ssize<−40 #sample size in each group

geneID<−1:g

delta<−2

Control results<−matrix(NA,nrow=g,ncol=Ssize)

Trt results<−matrix(NA,nrow=g,ncol=Ssize)

z<−matrix(NA,nrow=g,ncol=m)

we<−matrix(NA,nrow=g,ncol=m)

b<−matrix(NA,nrow=g,ncol=m)

originalhypo<−matrix(NA,nrow=N,ncol=9)

for(l in 1: N) {

for(j in 1:m){

for(i in 1:Ssize){
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####Control group####

gv1<−rep(c(−2,2,0),c(sg/2,sg/2,g −(sg)))

s i1k<−rbinom(g,1,0.4)

datac<−data.frame(ID=geneID,s i1k=s i1k,gv1=gv1)

genec 1<−datac[1:(sg/2),]

genec 2<−datac[((sg/2)+1):(sg),]

genec 3<−datac[((sg)+1): g,]

w 11k<−ifelse(genec 1$s i1k==1,rnorm(1,(−1+j),0.01),0)

w 21k<−ifelse(genec 2$s i1k==1,rnorm(1,(2+j),0.01),0)

w 31k<−ifelse(genec 3$s i1k==1,rnorm(1,(5+j),0.01),0)

datac$w i1k<−c(w 11k,w 21k,w 31k)

e11<−c(rep(rnorm(1,0,1),1000),rep(0,1000),

rep(rnorm(1,0,1),1000),rep(0,3000),

rep(rnorm(1,0,1),1000),rep(0,1000),

rep(rnorm(1,0,1),1000),rep(0,1000))

e12<−rnorm(10000,0,2)

erdat1<−cbind(e11,e12)

ec11<−((1/sqrt(2))∗(erdat1[1:1000,1]+erdat1[1:1000,2]))

ec12<−erdat1[1001:2000,2]

ec13<−((1/sqrt(2))∗(erdat1[2001:3000,1]+erdat1[2001:3000,2]))

ec14<−erdat1[3001:6000,2]

ec15<−((1/sqrt(2))∗(erdat1[6001:7000,1]+erdat1[6001:7000,2]))

ec16<−erdat1[7001:8000,2]

ec17<−((1/sqrt(2))∗(erdat1[8001:9000,1]+erdat1[8001:9000,2]))

ec18<−erdat1[9001:10000,2]

ei1k<−c(ec11,ec12,ec13,ec14,ec15,ec16,ec17,ec18)

y i1k<−datac$gv1+datac$w i1k+ei1k

Control results[,i]<−y i1k
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####Treatment group####

gv2<−rep(c(2,−2,0),c(sg/2,sg/2, g −(sg)))

s i2k<−rbinom(g,1,0.4)

datat<−data.frame(ID=geneID,s i2k=s i2k,gv2=gv2)

genet 1<−datat[1:(sg/2),]

genet 2<−datat[((sg/2)+1):(sg),]

genet 3<−datat[((sg)+1): g,]

w 12k<−ifelse(genet 1$s i2k==1,rnorm(1,(−1+j+delta),0.01),0)

w 22k<−ifelse(genet 2$s i2k==1,rnorm(1,(2+j+delta),0.01),0)

w 32k<−ifelse(genet 3$s i2k==1,rnorm(1,(5+j+delta),0.01),0)

datat$w i2k<−c(w 12k,w 22k,w 32k)

e21<−c(rep(rnorm(1,0,1),1000),rep(0,1000),

rep(rnorm(1,0,1),1000),rep(0,3000),

rep(rnorm(1,0,1),1000),rep(0,1000),

rep(rnorm(1,0,1),1000),rep(0,1000))

e22<−rnorm(10000,0,2)

erdat2<−cbind(e21,e22)

ec21<−((1/sqrt(2))∗(erdat2[1:1000,1]+erdat2[1:1000,2]))

ec22<−erdat2[1001:2000,2]

ec23<−((1/sqrt(2))∗(erdat2[2001:3000,1]+erdat2[2001:3000,2]))

ec24<−erdat2[3001:6000,2]

ec25<−((1/sqrt(2))∗(erdat2[6001:7000,1]+erdat2[6001:7000,2]))

ec26<−erdat2[7001:8000,2]

ec27<−((1/sqrt(2))∗(erdat2[8001:9000,1]+erdat2[8001:9000,2]))

ec28<−erdat2[9001:10000,2]

ei2k<−c(ec21,ec22,ec23,ec24,ec25,ec26,ec27,ec28)

y i2k<−datat$gv2+datat$w i2k+ei2k
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Trt results[,i]<−y i2k

}

s<−cbind(Control results,Trt results)

colnames(s)<−rep(c(”C”,”T”),each=Ssize)

f<−factor(colnames(s))

design <− model.matrix(˜f)

fit <− lmFit(s,design)

beta<−fit$coefficients[,2]

se<−(fit$stdev.unscaled∗fit$sigma)[,2]

z[,j]<−beta/se

we[,j]<−1/seˆ2

b[,j]<−beta

}

##############P−value####################

cbeta<−apply(b∗we,1,sum)/apply(we,1,sum)

zval<−cbeta/apply(we,1,function(x) sqrt(1/sum(x)))

pval<−2 ∗ pnorm( abs(zval), lower.tail=FALSE)

###########emp.adj Bayes#################

zres2<−as.vector(zval)

wtry2<−try(locfdr(zres2,plot=0,nulltype = 2),silent=TRUE)

if(’try−error’ %in% class(wtry2)) next

else w2<−wtry2

mu2<−w2$fp0[”cmest”,”delta”]

sigma2<−w2$fp0[”cmest”,”sigma”]

ezval2<−(zval−mu2)/sigma2
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epval2<−2 ∗ pnorm( abs(ezval2), lower.tail=FALSE)

###########bacon pval #################

bc<−bacon(zres2)

#fit(bc)

#posteriors(bc)

w0<−estimates(bc)

mu0<−w0[1,4]

sigma0<−w0[1,7]

ezval0<−(zval−mu0)/sigma0

epval0<−2 ∗ pnorm( abs(ezval0), lower.tail=FALSE)

###############performance original hypo

######################

pval results<−data.frame(truth=c(rep(1,sg),rep(0,(g−sg))),

pval=pval,epval2=epval2,epval0=epval0)

pval results$adj pval<−p.adjust(pval results$pval, method = ”BH”)

pval results$adj epval2<−p.adjust(pval results$epval2, method = ”BH”)

pval results$adj epval0<−p.adjust(pval results$epval0, method = ”BH”)

pval results$pred<−ifelse(pval results$adj pval < 0.05 , 1 , 0)

pval results$epred2<−ifelse(pval results$adj epval2 < 0.05 , 1 , 0)

pval results$epred0<−ifelse(pval results$adj epval0 < 0.05 , 1 , 0)

osens<−sum(pval results$pred[pval results$truth==1]==1)/

sum(pval results$truth==1)

ospeci<−sum(pval results$pred[pval results$truth==0]==0)/

sum(pval results$truth==0)

ofdr<−sum(pval results$pred[pval results$truth==0]==1)/

sum(pval results$pred==1)

oesens2<−sum(pval results$epred2[pval results$truth==1]==1)/

sum(pval results$truth==1)

oespeci2<−sum(pval results$epred2[pval results$truth==0]==0)/

sum(pval results$truth==0)
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oefdr2<−sum(pval results$epred2[pval results$truth==0]==1)/

sum(pval results$epred2==1)

oesens0<−sum(pval results$epred0[pval results$truth==1]==1)/

sum(pval results$truth==1)

oespeci0<−sum(pval results$epred0[pval results$truth==0]==0)/

sum(pval results$truth==0)

oefdr0<−sum(pval results$epred0[pval results$truth==0]==1)/

sum(pval results$epred0==1)

originalhypo[l,]<−c(osens,ospeci,ofdr,oesens2,

oespeci2,oefdr2,oesens0,oespeci0,oefdr0)

}

colnames(originalhypo)<−c(”original sens”,”original speci”,”original fdr”,

”EAsens Bayes”,”EAspeci Bayes”,”EAfdr Bayes”,

”EAsens Bacon”,”EAspeci Bacon”,”EAfdr Bacon”)

(avg original<−apply(originalhypo,2,mean,na.rm=TRUE))
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