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A vertex z is said to distinguish between vertices u and O, whenever z misses precisely 
one of u, u. A clique is a set of pairwise adjacent vertices. A stable set is a set of 
pairwise nonadjacent vertices. We let P,+ (Ck) stand for the chordless path (cycle) 
on k vertices. 

To simplify our notation, a P4 with vertices a, b, c, d and edges ab, bc, cd will 
be denoted by abed. In this context, the vertices a and dare referred to as endpoints 
while b and c are termed midpoints of the Pd. For a set A c V inducing a P4 in G, 
we define To(A) as the set of all the vertices in V-A which miss no vertex in A, 
I,(A) as the set of all the vertices which miss every vertex in A, and Pa(A) as the 
set of all vertices which are adjacent to the midpoints of A and miss the endpoints 
ofA. 

Theorm 2.1. A graph G = ( V, E) is P4-sparse if and only if for every set A induc- 
ing a P4 in G, we have V= A W TG(A)U Po(A)U I&A). 

Proof. Follows trivially from the observation that for a vertex x’ outside A, A U (x} 

induces two distinct P4’s in G if and only if XE V- (A U To(A) U P&A) U 
MA)). a 

Theorem 2.1 implies the following characterization of P4-sparse graphs by for- 
bidden subgraphs (the justification is immediate and left to the reader). 

Comllary 2,2. A graph G is P4-sparse if and only if G contains no itiduced 
subgraph isomorphic to cne of the graphs F;, OS ic: 6, in Fig. 2. 

An underlying P4-sparse graph G = (V, E) together with a set A inducing a P4 
abed in G is assumed throughout. We let T(A), I(A), and P(A) stand for To(A)p 
Pa(A), and Io(A), respectively, since no confusion is possible. By ‘Theorem 2.1 we 
can write 

V=AUT(A)UP(A)UI(A). 

For further reference, we make note of the following simple results which follow 
directly from the definition and whose justification is immediate. 

Observation 2.3. No vertex in T(A) distingtiishes between adjacent vertices in 

P(A) u I(A). 

[Else, if a vertex I in 7(A) distinguishes between adjacent vertices ur u in 
P(A) U I(A), then {t, u, o,a,d} induces two distinct P4s, a contradiction.] 

Observation 2.4. No vertex in P(A) W I(A) distingl~ishes between nonadjacent ver- 
tices in T(A). 
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[If a vertex u in P(A) U /(A) distinguishes between nonadjacent vertices t, t’ in 
T(A), then the set {u, t, f, a,d} induces two distinct P4’s, contrary to our 
assumption.] 

Observation 2.5. If c is connected, then every vertex in T(A) misses some vertex 
in P(A) U I(A). 

[We may assume T(A) nonempty, for otherwise the statement is vacuously true. 
Since G is connected, it must be the case that P(A) U I(A) is nonempty. If the state- 
ment is false, then some vertex in T(A) is adjacent to all the vertices in P(A) U I(A). 
Let F stand for the component of the subgraph of G induced by T(A) containing 
t. Now the definition of T(A), the definition of F, and Observation 2.4 combined 
guarantee that every vertex in F is adjacent to all the vertices in 6 -F, contradicting 
the connectedness of G.] 

Observation 2.6. No vertex in P(A) misses more than one vertex in T(A). 

[Else, if a vertex p in P(A) misses distinct vertices t, f” in T(A), then the set 
{a, t, t’, c,p} induces two distinct P4’s, a contradiction.] 

Observation 2.1. No vertex in T(A) misses more than one vertex in P(A). 

[Else, if t E T(A) misses distinct vertkes p, p’ in P(A), then the set (a, t,c,p,p’) 
induces two distinct P4’s, a contradiction.] 

In our arguments, we shall often find it convenient to rely on the properties of 
a special graph that we are about to define. 

A graph G is termed a spider if the vertex set V of G admits a partition into sets 
S, K, R such that: 

(sl). js; = $7 2 2, S is stable, K is a clique. 
(~2). Every vertex in R is adjacent to all the vertices in K and misses all the vertices 

in S. 
(~3). There exists a bijekon f: S + K such that either 

NG(s) n K= (f(s)) for all vertices s in S, 
or else, 

NG(s) n K = K - (f(s)} for all vertices s in S. 

Note that the graph featured in Fig. 1 is a spider with S = (a, 6, c), K = (a’, b’, c’}, 

R=(d), and f=((a,a’),(b,b’),(c,c’)). 
It is easy to see that the complement of a spider is also a spider. 

Observation 2.8. If a graph G = (V, E) is a spider, then either 
(1) d&s) = 1 and d,(k) = IV/-ISI foreverysESandk6 or 
(2) do(s) = [K! - 1 and do(k) = 1 V( - 2 for every s E S and k E K. 



120 B. Janrison, S. Olariu 

[To begin, if IV&) fI K= {f(s)) for all vertices in S, then, clearly, &(s) = 1 and, 
consequently, d,(k) = 1+ IKI - 1 + IRI = IKI + lRl= I c/I -- ISI. The case N&I) = 

K- (f(s)) is similar.] 

Observation 2.9. If G = (S U KU R, E) is a spider and R is nonempty, then for every 
choice of vertices s, k, r in S, K, and R respectively, do(s) <do(r) < do(k). 

[Follows easily from Observation 2.8 and the definition of the spider.] 

Observation 2.10. If G is a spider, then the sets S, K, R are unique. 

[Follows by Observations 2.8 and 2.9 combined.] 

Observation 2.11. Let G be a spider. Every P4 in G has vertices in KU S or in R 
only. Furthermore, if a P4 has vertices in KU S, then it is induced by a set of the 
form (x, y, f (x), f (y)> with distinct x, y in S. 

[Let uvwz be a P4 in G with vertices from both KU S and R. We note that this 
P4 cannot contain more than one vertex in R, since there is no set of two or three 
vertices of a P4 which have exactly the same neighbors in the remaining part of the 
P4. Since every vertex in R is adjacent to all the vertices in Ki it follows that v, w 
are not in R. Symmetry allows us to assume that u E R. Now v E K and w E S. Since 
S is stable, and since no vertex in S is adjacent to vertices in R it follows that ZE K. 
But since v, z are nonadjacent we contradict that K is a clique. The second part of 
the claim follows directly from (s3).] 

Observation 2.12. Let G be a spider, G is P,-sparse if and only if the graph GR in- 
duced by R is P4-sparse. 

[Trivially, the definition of the spider together with Theorem 2.1 implies that the 
subgraph of G induced by KU S is P4-sparse. By Observation 2.11, no P4 in G con- 
tains vertices from both KIJ S and R. Hence, G is P4-sparse if and only if GR is 
PA-sparse, as claimed.] 

We are now in a position to state a characterization of P,-sparse graphs which 
is the key ingredient for most of our subsequent results. 

Theorem 2.63. For a graph G, the following conditions are equivalent: 
(i) G is a P,-sparse graph; 

(ii) for every ina’uced subgraph ii of G with at Ieast two vertices, exactly one of 
the following statements is satisfied: 
(ii. 1) H is disconnected; 
(ii.2) R is disconnected; 
(ii.3) H is isomorphic to a spider. 
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Proof. The proof of the implication (ii) + (i) is easy: we only need observe that for 
all the ,graphs FO, . . . , F6 in Fig. 2, (ii) fails. 

To prove the implication (i) + (ii), assume that G is a &sparse graph, and let H 
be an arbitrary induced subgraph of G. Since the conditions (ii.l), (ii.2), and (ii.3) 
cannot hold simultaneously, we onCy need prove that if (ii .I) and (ii.2) fail, then 
(ii.3) holds true. Since, by assumption, (ii.1) and (;i 2) fail, a resuh of Seinsche [17] 
guarantees that H contains a P4. We choose a set A inducing a P4 abed in H such 
that 1 PH(A)I is as large as possible. (We shall write, simply, T(A), P(A), and I(A) 
instead of T’(A), P&A), and I&l).) 

Since H is P4-sparse, Theorem 2.1 guarantees that every vertex in H belongs to 
exactly one of the sets A, T(A), P(A), I(A). We maJ assume that 

T(A)UI(A)#B (1) 

for otherwise there Js nothing to prove: setting S + {a, d), K + { 6, c), R + P(A), the 
statement (ii.3) follows instantly. 

By replacing H by n if necessary, (1) guarantees that 

T(A)#0. (2) 

Our proof of Theorem 2.13 relies on the following intermediate results which we 
present next. 

Observation 2.14. If I(A) is nonempty, then every vertex in T(A) misses a vertex 
in I(A). 

[We may asstime that P(A) 20 for otherwise the conclusion follows trivially from 
Observation 2.5. Consider a vertex t in T(A) adjacent to all the vertices in I(A). By 
Observation 2.5, t misses some vertex p in P(A). Note that, by Observation 2.3, p 
is adjacent to no vertices in I(A). However, for an arbitrary vertex x in I(A), the 
set (x, t,p, b, c) induces two distinct P4’s, a contradiction.] 

Fact 2.15. I(A) = 0. 

Proof. Suppose not; let t be a vertex in T(A) such that 

lIV(t)n (P(A) U I(A))1 is as large as possible. 

By Observation 2.14, there exists a vertex in I(A) nonadjacent to t. Let C stand 
for the component of the subgraph of H induced by P(A) U I(A), containing this 
vertex. By Observation 2,3, t misses all the vertices in C. We claim that 

Cc I(A). 

[To prove (3), note that by Observation 2.7, C and P(A) have at most one vertex 
p in common. By the connectedness of C, there exists a vertex i in Cfl I(A) with 
pie E. But now, (t, b,c,p,i) induces two distinct P4’;, a contradiction.] 
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Since H is connected, some vertex z in C must have a neighbour t’ in T(A). By 
Observation 2.4, ttk E. By our choice of t, there exists a vertex z’ in P(A) U I(A) 
adjacent to t but not to t’. By Observation 2.3, zz’$E. 

Trivially, Z’E I(A), for otherwise it, t’, b, z, z’} induces two distinct P4’s. Notice 
that the set X= {t, t’, z, z’) induces a. P4 in H with edges zt’, t’t, tz’. 

We claim that 

P(A) c P(X). (4) 

[To see that this is the case, let p stand for an arbitrary vertex in P(A) - P(X). 

By Observation 2.3, p $ T(X) (see vertices t, z, and p). By Theorem 2.1, p belongs 
to I(X), contradicting Observation 2.6 (see vertices p, t, t’). To show that the con- 
tainment in (4) is strict, note that A C P(X) and A C P(A).] 

To complete the proof of Fact 2.15, we only need observe that (4) contradicts our 
choice of A. 0 

By Observation 2.6, we write 

P(A)=P,UP, 

in such a way that p E PI if and only if p misses some vertex in T(A). Note that 
Fact 2.15, Observations 2.6 and 2.7 combined guarantee that 

We claim that 

T(A) is a clique and P, is a stable set. (6) 

[To prove (6), let t, t’ be arbitrary vertices in T(A). By Observation 2.5 and Fact 
2.15 combined, we find a vertex p in P, such that tp@ E. By Observation 2.6, 
ptk E. Now Observation 2.4 guarantees that tt’e E. The proof that P, is stable is 
similar.] 

Next, we claim that 

no edge in H has one endpoint in PO and the at her in Pl. (7) 

[Let pp’ be an edge in H with p E PI and pk PO. By the definition of P, , there ex- 
ists a unique vertex t in T(A) that misses p. Since p’c PO, we have p’t E E. But now 
t, p, p’ contradict Observation 2.3.1 

Proof of Theorem 2.13 (continued). Finally, to complete the proof of Theorem 
2.13, we claim that with the assignment 

K+T(A)U(b,c}; S+P,U(a,d); R+Po 

H is a spider. 
Trivially, by (6) K is a clique and S is a stable set; by (5) we have IKI = ISI; (7), 

Observations 2.6 and 2.7 combined, guarantee that every vertex in S misses exactly 
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one vertex in K, and every vertex in R is adjacent to all the vertices in K and to none 
in S. Cl 

Our constructive characterization of the &-sparse graphs relies, in part, on two 
graph operations devised by Lerchs [14] for the purpose of characterizing the class 
of cographs. More precisely, let Gt = (Vi, Et) and G2 = (I$, E2) be disjoint graphs. 
Define 

l G1@G2=(VlU V2,E,UE2); 
l G,@G2=(& U V&E, UEzU {xy IXE ?</I, YE V,)); 

It is easy to see the operations @ and @ reflect (ii. I) and (ii.2), respectively, in 
Theorem 2.13. For the purpose of constructing the &sparse graphs, we need to in- 
troduce a third graph operation to reflect (ii.3). 

Consider disjoint graphs Gt = (I& 0) and G2 = (I$, E2) with VZ = (0) U KU R such 
that 

(a) IK(=(hl+lr2; 
(b) K is a clique; 
(c) every vertex in R is adjacent to all the vertices in K and nonadjacent to u; 
(d) there exists a vertex o’ in K such that &$J) = (0’) or A++) = K - { 0’). 
Choose a bijection f: b + K - { 0’) and define 

G,@G2=(V,U b,E2UE’) (8) 
with 

E’= &J(x)I= v.1, whenever NGZ (v) = { 0’1, 

{xz 1 XE 5, ZEK- {f(x)}), whenever No? (0) = K - ( 0’). 
(9) 

The relationship between the @ operation and (ii.3) of Theorem 2.13 will be 
made more precise by the following facts. 

Fact 2.16. A graph G is a spider if and only if it arises from two of its proper in- 
duced subgraphs by a @ operation. 

Proof. Write G = (V, E); if G is a spider then Vpartitions into sets S, K, R satisfying 
the conditions (sl)-(~3). Let o be an arbitrary vertex in 5. Now it is a routine task 
to check that G arises from the graphs Gt = (S- { 0>,0) and G2 = ((0) U KU R, E2) 
with E2=E-{xy(xeS-{u), ycK}, by a@ operation. 

Conversely, assume that G arises from two of its proper induced subgraphs Gi 
and GZ by a @ operation. We only need verify that the conditions (sl)-(~3) hold 
true. For this purpose, write G1 = (4, O), G2 = ({o} UK U R, E2), S + Vi U (0) such 
that (a)-(d) and (8), (9) are satisfied. 

To see that (sl) is true, note that S is stable; by (b), K is a clique; by (a), 
Is( = IKI ~2. Next, (~2) follows trivially from (c) and (9) combined. Finally, (~3) 
follows from (8) and (9) combined. Cl 
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Fact 2.11. If G is a spider, then G= Gl@Gz with G,, G2 unique tip to 
isomorphism. 

Proof. By Observation 2.10, the vertex set V of G admits a unique decomposition 
into disjoint sets S, K, R satisfying (sl)-(~3). If the statement is false, then we have 
G = G@G2 and G= G@Gi such that either Gr #G; or G,#G;. 

Write G2=(VZ,E2); G;=(V.,E;). Clearly, KURc V2 and KURG Vi. In fact, we 
can write I$=: (u2) U KU R and Vi= (v;] U KU R. It is easy to see that the only 
way G2 # G; is that I&Z(v2) n KI + IN&&) n K( . Since v2, V$E S, this contradicts 
(~3). Similarly, it is easy to see that Gr #G; leads to a contradiction. Cl 

As it turns out, all P4-sparse graphs are constructible by means of the operations 
@, 0, and 0, M ore p recisely, we state the following result. 

Theorem 2.18. For a graph G the following statements are equivalent: 
(ij G is a P4-sparse graph; 
(ii) G is obtained from single-vertex graphs by a finite sequence of operations @, 

030. 

Proof. Let G = (V, E) be obtained from single-vertex graphs by a finite sequence o 
of zero or more operations @, 0, @. We prove the implication (iij + (i) by induc- 
tion on the length of o. Write Q = sosl . . . s,, (nz 0); assume the statement true for 
graphs obtained by sequences involving fewer operations than CJ. If s,, involves the 
nonempty graphs Gr = (I$, E,) and G2 = (V2, E2) then, by the induction hypothesis 
both G, and G2 are P4-sparse graphs. 

Furthermore, if s, is one of the operations @ or 0, then we are done by the in- 
duction hypothesis: no P4 in G has vertices from both v and I& implying that G 
is P,-sparse. 

If s,, is a @ operation then, by Fact 2.16, G is a spider; now the induction hypo- 
thesis, together with Observations 2.11 and 2.12 combined guarantee that G is 
P4-sparse. 

To prove the implication (i) --) (ii), we proceed by induction on the size of G. If 
G contains a single vertex, then there is nothing to prove. Assuming the implication 
true for all the P4-sparse graphs with fewer vertices than G, we propose to show 
that G itself satisfies the implication. 

For this purpose, note that if G is disconnected, then G arises from two of its 
proper induced subgraphs by a @ operation; if G is disconnected, then G arises 
from two of its proper induced subgraphs by a @ operation. Finally, by Theorem 
2.13, if both G and G are connected, then G is a spider. Now Fact 2.16 guarantees 
that G arises by a @ operation from two of its proper induced subgraphs, and the 
proof of Theorem 2.18 is complete. Cl 
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Theorems 2.13 and 2.18 suggest a natural way of associating with every P,-sparse 
mph G a tree T(G) (called the ps-tree of G). We describe the formal construction 
of the ps-tree of a P4-sparse graph G by the following recursive procedure. 

Procedure Build-tree(G); 
(Input: a P4-sparse graph G = (K E); 
Output: the ps-tree T(G) corresponding to G} 

begin 
if 1 VI = 1 then 

return the tree T(G) consisting of the unique vertex of G; 
if G (G) is disconnected then 
begin 

let G1,Gz, . . . . Gp (~12) be the components of G (G); 
let T,, T& . . . . TP be the corresponding ps-trees rooted at rl, r2, . . . , rp; 

return the tree T(G) obtained by adding rl, r2, . . . , rp as children of 
a node labelled 0 (1); 

end 
else 
begin . 

{now both G and G are connected) 
write G= G@G2 as in (8) and (9); 
let Ti, T2 be the corresponding ps-trees rooted at rl and p2; 
return the tree T(G) obtained by adding rr, r2 as children of a 
node labelled 2 

end 
end; {Build-tree) 

Clearly, Procedure Build-tree runs in polynomial time. To see this, note that the 
connected components of G (or G) can be found efficiently by performing a depth- 
first search on G or G, respectively. in case both G and G are connected, then the 
unique set S featured in Theorem 2.13 can be found in linear time by selecting all 
vertices of lowest degree, as guaranteed by Observation 2.8 and 2.9. 

Furthermore, by Theorem 2.13, Fact 2.17, and Theorem 2.18 combined, the ps- 
tree of a P4-sparse graph G is unique up to isomorphism. In addition, it is easy to 
see that 

l the leaves of T(G) are precisely the vertices of G; 
l an internal node w of T(G) is labelled by 0, 1, or 2 according to the following 

rule: 

0, 
label(w) = 1, 

2, 

iff GL(,,,) is disconnected, 

iff GL(,,,) is disconnected, 

otherwise. 
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[Here, L(w) is the set of all the leaf descendants of w.] 
An interesting computational problem, given a graph G, asks for the largest in- 

duced subgraph of G which contains no P4. As mentioned in the introduction, the 
general problem is known to be intractable (see Corneil et al. [S]) but, as it turns 
out, it can be solved efficiently for P,-sparse graphs. 

Let G = (V, E) be a Pa-sparse graph. The canonical cograph C(G) associated with 
G is the induced subgraph of G obtained by the following procedure. 

Procedure Greedy(G); 
{Input: a P4-sparse graph G; 
Output: the canonical cograph C(G)} 

begin 
C(G) c- G; 
while there exist Pa’s in C(G) do 
begin 

pick a P4 uvxy in C(G); 
pick z at random in (u, y); 

C(G) + C(G) - {z> 
end; 
return(C(G)) 

end; 

An easy inductive argument shows that for every induced subgraph H of G which 
satisfies (ii.3) in Theorem 2.13, Procedure Greedy removes all the vertices in S, ex- 
cept for an arbitrary one. Clearly, the graph C(G) returned by Greedy is a cograph; 
the fact that C(G) is as large as possible follows from Observation 2.11, Theorem 
2.13 and an easy inductive argument. The uniqueness implied by the definition is 
justified by the following stronger result. 

Theorem 2.19. For a graph G with no induced CS, the following statements are 
equivaten t : 

(i) G is P,-sparse; 
(ii) for every induced subgraph H of G, C(H) is unique up to isomorphism. 

Proof. To prove the implication (ii)---)(i), we shall use the characterization of 
P,-sparse graphs by forbidden subgraphs given in Corollary 2.2. We need only 
observe that for each of the graphs Fi, 1~ ir6, C(Fi) is rot unique. 

To prove the implication (i) --) (ii), we proceed by induction on the size of G. 1f 
G contains a single vertex, then we are done. Assume the statement true for all 
Pa-sparse graphs with fewer vertices than G. 

If G or G is disconnected, then we are done by the induction hypothesis since no 
P4 in G has vertices in distinct components of G or G. We may assume, therefore, 
that both G and G are connected. Now Theorem 2.13 guarantees that G is a spider. 
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By virtue of Observation 2.10, the vertex set of G partitions uniquely into sets S, 
K, and R satisfying (sl)-(s3). By the induction hypothesis, the subgraph G’of G in- 
duced by KU R has a canonical cograph C(G’) unique up to isomorphism. To com- 
plete the proof of Theorem 2.19, we note that a canonical cograph C(G) is obtained 
from C(G’) by adding a single vertex from S. The conclusion follows by (~3) and 
Observation 2.8. 0 

Our next result, Theorem 2.21, shows that the canonical cograph associated with 
a Pa-sparse graph can be used to solve the four optimization problems (mentioned 
in the introduction) for P4-sparse graphs by reducing them to the corresponding 
optimization problems on cographs [7,8]. Our proof of Theorem 2.21 relies on the 
following resuIt. 

Fact 2.20 (Meyniel [15]). Let G be an urbi@ary graph and let u, v be nonadjacent 
vertices in G such that u and v are not the endpoints of the same P4 in G. The 
graph G’, obtained from G by deleting v and by joining u by an edge to all the ver- 
tices in No(u), satisfies o(G’) =w(G). 

Since the Pa-sparse graphs are closed under complementation, we let C(G) stand 
for the canonical cograph of the complement G of G. 

Theorem 2.21. Let G be a P,-sparse graph and let C(G) be the canonical subgraph 
of G. The following statements are satisfied 

(4.1) w(G) = w(C(G)), 
(4.2) X(G) =x(C(G)), 
(4.3) a(G) = w(C(@), 
(4.4) B(G) =x(C(@). 

Proof. If G is a cograph, then there is nothing to prove: G and C(G) coincide. 
We shali, therefore, assume that G contains a Pd. Let A = (a, b, c, d} induce a P4 

in G with edges ab, bc, cd. We claim that 

[Let a’ be an arbitrary vertex in NC(a). If a’ misses c, then we contradict 
Theorem 2.1. The inclusion is strict since c is adjacent to d, while a is not.] 

Consider the graph G’ obtained from G be removing a and making all the 
neighbours of a adjacent to c. By (lo), 

G’ is an induced subgraph of G. 

By Fact 2.20, and the fact that a and c are not the endpoints of the same P4 in 
G, we ha.ve 

co(G) = w(G’). 
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Now Theorem 2.19 together with an easy inductive argument, shows that (4.1) must 
be true. 

To settle (4.2), note that the cographs are perfect (see [8], for example). It follows 
that 

He(G)) = c@(G)). 

Observe that every colouring of C(G) using x(C(G)) colours extends trivially into 
a colouring of G with the same number of colours. But now, obviously, 

and so equality must hold throughout. 
TO settle (4.3). we note that, trivially, cr(G)=w(G). Now (4.1) guarantees that 

a(G) = o(C(@). 
Finally, to settle (4.4), we note that B(G)=x(G) and the result follows by 

(4.2). iJ 

3. Discussion 

In this work we have investigated the class of P,-sparse graphs for which a tree 
representation unique up to isomorphism has been developed. The conversion be- 
tween a Pa-sparse graph and the corresponding tree representation can be carried 
out in polynomial time and, consequently, the graph isomorphism problem can be 
solved in polynomial time for P,-sparse graphs. It would be of interest to further 
investigate this tree structure for the purpose of solving efficiently other computa- 
tional problems important in applications such as: clustering, minimum fill-in, 
minimum weight dominating set, hamiltonicity and others. 

It is interesting to note that Theorem 2.13 leads, quite naturally, to a ditferent 
decomposition of P,-sparse graphs as follows: 

l if the graph G is disconnected, then decompose each component separately; 
l if the complement is disconnected, then decompose each conaected component 

of the complement separately; 
@ otherwise, by Theorem 2.13, G is a spider with the vertex set partitioned into 

S, K, R; if R is not empty, decompose G into GsUK and G,. 
At the end of such a decomposition, we obtain isoIated vertices and spiders with 

an empty set R. The obvious disadvantage of this decomposition is that the leaves 
of the obtained tree are no longer single vertices. However, in such a decomposition 
the PJ's are restricted to leaves. This makes it possible to see at a glance that 
P,-sparse graphs are superbrittle [16] and that a perfect order for P4-sparse graphs 
is easy to obtain. 

Finally, note that our characterization of P4-sparse graphs by a finite number of 
forbidden configurations immediately suggests a naive (but polynomial) recognition 
algorithm: form all O(n’) distinct subsets of five vertices of G and for each of 
them check in constant rime whether they are isomorphic to one of the forbidden 
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graphs. In [8,10] linear-time recognition algorithms sic given for cographs and 
&reducible graphs. We conjecture that the &sparse graphs can be recognized in 
linear time by using similar techniques. 
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