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ABSTRACT

The static and dynemic buckling behaviors of a shallow, simply
supported sinuscidal arch subjected to both a wiformly distributed
step pressure load and a purely impulsive load are considered. Five
equilibrium paths are obtained for the arch under static loading
conditions. Critical static loads corresponding to two different
instability modes and based on characteristics in the load displacement
curve are obtained numerically. Criticel dynemic loads, corresponding
to three different instability modes, are obtained from a numerical
procedure in which buckling criteria are based on characteristics in
the time response of the structure. The influence of damping on the
varicus dynamic stebility regions and the dynamic response of a pre-

loaded arch are cbserved and discussed.

ii



ABSTRACT .

NOTATION .

e
v iy o

TABLE OF

* # . - . - . .

ACKNOWLEDGMENTS « +¢ 4 o« o o o o &
LI ST OF TABIlE S L L] . L L] L] Ld L] L] .

LIST OF FIGURES « + « « « « » « &

INTRODUCTION

EQUATIONS

CONTENTS

Page
N . .. o oe s ii
. . . . . . v
"o . . . . . . i
. s e s e e . e . s it

. - . L] - - [] . L] - - L] - L] I} - - L] " ] . '] viii

1.1 Statement of Problem . . PN .. P 1
1.2 Background History . . . . . o . . . 2
1.3 Object and Scope . . « . . s . oe s o e . . L
Derivation of Governing Equation . . . . + « « « + « + & 6
Nondimensionalization .« « « + ¢ ¢ ¢ ¢ o o & o+ v s o 8
Finite Difference Representation . . + « « + « « + + « 9

Loading Conditions . . .
Initiel Geometry . . . .
Boundary Condition . . .

NUMERICAL FROCEDURE
3.1l gStatic Case . . + . «
3.2 Dynemic Case . « « + .« .
3.3 Prestress . . . . .

STABILITY CRITERIA

General . « + + & o o
Static Symmetric . . . .
Static Asymmetric . . .

Dynamic Symmetriec .

Dynamic Delsyed Snapping

Dynamic Asymmetric . . .

L N I T S I N :LO
4 e e F 4 & 4 & s 4 o s s & 2 ll

12
e I
o . . .. 17

. - - 19
. . .. . . . o1
. 21
21

. .. 22
.. e e e e e e e e 22
. .. 2%

iii



Page

5. RESULTS AND DISCUSSION
5l GENeral + o ¢ o 0 e 4 s e 4 4 4 e e 0 w4 e e e e 25
5.2 Btatic Case .« . « « o v v s e b e s e s e e e e s e 25
5.3 Dynamic CasSe o + o o o 4 4« 4 » ¢ o = + 2 o « 5 o 4+ ¢ » a7
SUMMARY & 4 & s v 6 o v 4 o 4 o 0 o b s s e e e e e e e e e 30
REFERENCES ¢ o v 4 & 4 o o s o o s o 6 o o « o o o o o o o« o & 4 32
TABIES o v ¢ ¢ & o v o o & 5 5 2 s o & 4 5 ¢ s o o s o+ o o o o« o 3h
APPENDIX 1 & 4 4 & v s 6 o o + o o o & o o & o o ¢ o « o o » o s 36
APPENDIX 2 ¢ 4 4 o v o 4 4 4 o 4 o o s o o o o o o o o s o o o 38

F IGURE S . = 4 L ] L] " e = « &8 & & . LI ] . o+ - * LI R ] 5 2

iv



ACENOWLEDGMENTS

The author extends his appreciation to Dr. Furman W. Barbon
for his continual supervision, advice, and suggestions as adviser
of this thesis. Thanks are also due NASA Langley Research Center for

thelr support of this study through Research Grant NGL 47-005-098.

David D. Loendorf



Table

1.

2.

LIST OF TABLES

Critical Static Ioads . . . .

Critical Dynamic Ioads . « . + + .

vi



Figure

12.
13.
14,
15.

16.

LI1ST OF FIGURES

Page
Shallow arch « o o ¢ ¢ o o ¢ ¢ ¢+ o ¢ 0 s o s o o &+ & « 52
Differential element . « « « « + v v ¢« v v v 4 v 4w o v .. 53
Static load deflection curve . « . . . ¢« . ¢« .+ + 4 . <« . 5h
Asymmetyric static load deflection curve . . . . + + ¢« .+ & 55
Symmebric response « + v ¢ 4 4 e 6 s e s s b e s e v e e« 56
Symmetric buckling criterisa . . . . . . . . . .. .. .. BT
Arch configurations during symmetric snap~through . . . . 58
Typical dynamic TeSPONSE + + « s s « » ¢ 4 2 s o o & & s 59
Arch configurations during delayed snapping . . . « « . . 60
Asymmetric buckling criteria « « + « « ¢+ ¢ v v e s 4 s s . 61
Static stability curve + « » « v 4 ¢ o 4+ & 4 4 4 e s 2 s 4 B2
Dynamic step buckling 1lodS .« « + « » « « &+ + o & o » + . 63
Dynamic impulsive buckling loads . . . + « « « + « o . . . 64
Asymmetric step buckling loads with damping . . . . . . . 65
Step buckling loads for delayed snapping with demping . . 66
Effect of static prestress on critical step

symmetric loads .+ + v « & ¢ v 4 e v b 4w e v e e e .. BT

vii



NOTATION

grea of arch cross section

vector of correction factors in Newbon-~-Raphson
technique; see equation (29)

damping parameter; see eguation (1)

critical damping paremeter = 2muy,

Young's modulus

nondimensional arch rise = H/k

force in impulse integral; see equation (16)

vector of constants in Newton-Raphson technique;
see equation (26)

arch rise; see figure 1

time interval

hegviside -step function

moment of inertia of arch cross section

-finite difference station

iteration step number

radius of gyration of arch cross section
span of arch

moment acting on differential element
mass per unit length

number of interior difference stations
arch mode number; see equation (31)

axial force

viii



=
M

p(}i,t)

a(x,t)

LI -1 B

®

=t

nondimensional axial force = NkLe/erI
time-dependent applied loading

nondimensional applied loading = p(x,t)Lu/ﬁhEIK
amplitude of‘sine load

amplitude of nondimensional distributed load
time

shear actiﬁg on differential element

- velocity; see equation {(30)

arch displacement; see figure 1

initial disblacement; see figure 1
nondimensional arch displacement = wik
nondimensional initial displacement = w,/k

antisymmetric response component

symmetric response component

coordinate along arch span

nondimensional damping parameter = 2\

Newmark's constant; see eguation (30)

finite difference space
delte function

duration of impulsive load
axial displacement

nondimensional damping coefficient = C/Qmmo

ix




nondimensional coordinate along arch axis
nondimensional time = @yt
nondimensional freQuency = 21{/112

frequency

/L



1. INTRODUCTTION

1.1 Statement of Problem

When a shallow curved structure, such as an arch or curved panel,
is‘subjected to a sufficiently large static load, buckling may occur.
Similarly, if the structure is loaded dynamically, a buckling condition
may'also be achieved. 1In the dynamic case, however, the total response
of the arch must be considered and the time dependency of the response,
in addition to the spatial dependency of the static case, considerably
complicates the analysis.

During recent years, much research has been conducted in the area
of shallow curved structures because of the aerospace industry's need
for a structure of minimum weight and maximum strength capable of
carrying substantial loads. Because such structures may be loaded
both statically and dynamically, & knowledge of their stability behavior
under such leadings 1s of great importance.

A broad‘definition of the term stability was presented in
reference [;ﬁ] and is included here because it represenits the bhasic
idea from which both the static and dynamic instability criteria will
be developed in this study.

| A structure is in a stable state if admissible
finite disturbances of its initial static or
dynamic equilibrium are followed by displacements
whose magnitude remains within allowable bounds
during the lifetime of the structure.

The allowable displacements depend entirely on the intended use of the

structure. Therefore, snap-buckling which might be defined as a



complete reversal of curvature for some finite increase in loading
would be one area of interest both statically and dynamically. ZEquelly
important, however, might be the case in which snap-buckling does not
occur,‘yet the dynamic growth in some response component becomes large
enough to render the structure useless. (lassical or bifurcation
?;buckling may cccur in both the static and dynamic case bub, in general,
is ngéithe_gontrolliqg form of instability for shallow structures.

. Jl.él,Backéfound History

Past research of the buckling phenomena has been accomplished in
two dlfferent areas. The first, a static analysis, was observed by

“'Fung and thlan [}] in 1952. A closed~form solution for the critiecal

- buckllng load as defined by classical theory was obtained for shallow

- 31nusoidal arches under different loading conditions by sapproximating

the load, initial shape, and deflected shape in terms of Fourier series.
For small arch rises the buckling mode was found to be symmetric, and
for larger arch rises it was asymmetric. If a uniform load was used
instead of s sinusoidal one, the critical uniform load was =/% times
the critical sinusoidal one. Fung and Kaplan also looked at the effect
of initial shape and found that it had little effect on the buckling

load provided it was symmetric. Also that year, Hoff and Bruce [?]

locked at this same static problem, with similar results, and also
approached the second area of interest, that of dynamic response
analysis. With the use of energy contours, a closed-form solution was
derived for critical buckling loads of shallow arches under the presence

of both step loadings of infinite duration and impulsive loadings.
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Since that time most research has been directed toward the dynamic
”analysis trying to define what is dynamic buckling or will a suddenly
’applled 1oad, which is less than the critical static load, cause
'buckl:l.ng. Ehrexs EBJ in 1966 investigates snap-buckling of shallow
arches by solving the nonlinear eguations of motion nqmerically, using
the firgt s;x modes and an approximate Galerkin technigue. Results were

;.pyésepted for!step and impulsive dynamic loadings. Lock [ﬁ,ﬁ] investi-
{ | gated dynemic buckling for both sinusoidal uniform loadings and pulse

: loadlngs, using an analysis in which the arch displacement was repre-
rsented by a finite series of normal modes (two-mode analysis). Lock
alsc began to lock at two different instabilities associated with dynamic
response, those of symmetric and asymmetric, along with the effect of

damping on the dynamic analysis. Fulton and Barton [5:], in a paper

presented in 1967, used & finite difference spproximation of the govern-
ing eguations which gave them an N-mode soluticn, where N was the
number of interior difference stations. The equations of motion were
solved numerically and both symmetric and asymmetric dynamic instabili-
ties studied, including the suggestion for a new asymmetric buckling
criterion. McCullers [?J » in 1967, did an analysis of both static and
aynamic buckling using a numerical approach, but was not able to
correlate the deflected shapes of the static analysis to actual buckled
shapes. Hsu [16,17 ] looked at dynamic stability of shallow sinusoidal
arches for both impulsive loadings and timewise step loadings and pre-
sented a sufficiency criterion of dynamic stability against snap-through.

Schreyer and Masur [ié] used an energy approach to study static buckling
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of clamped shallow circular'aréhés under wniform loadings and obtained
results similar to [1]. Other work in the area of stability of shallow
arcﬁesvhas been accomplished by Hegemier and Teung [;8] » Che and
Bubcock [?:}, émitses [iéj » Cheung [9:], and Vahidi EL;] .

As may be observed, there has been considerable research accomp-

lished in the area of snap-buckling of shallow structures, both static
and'dynamic, but tﬁere does not seem to be any established criteria for
defihing the qther instabilities associated with these structures.

There is not even a consistent definition of dynamic buckling available.
‘Those papers thax é@proached the problem using a Fourier series or an
énergy approachlhave limitations in two areas. One iz the number of
modes poséible in the solution, and second is the need for a new analysis
whenever ajpﬁrameter is to 5e changed. The energy &pproacﬁ also reguires
a static sqlution for usé in obtaining dynamic results, and there is no

consistent method of solution for both static and dynamic buckling.

1;3 Object and Scope
‘ The equationé of motibn of the shallow arch are not as complicated
Qofﬁhardﬁ%o work with. as those of, say, a curved panel or shell. There-
fdfe; the'éhéilow arch, which possesses similar nonlinesr response
{kéha?écﬁér%étics of tﬁe nore compliéated curved structures, will bhe
Aadé@tédAés the representative shallow curved structure used in this
l ‘1f;:¢fkmheiob$§§t of this study is to investigate the stability of
ﬁhéha;iowfarches subjected to various static and dynamic loasdings. To

i

faéflitaﬁé the study, primary emphasis willl be placed on numerical



,sdiﬁtiohs of the governing differential equation to help develop and
G evaluate. numerical procedures necessary to obtain criteria for identi-

fying iﬁsﬁaﬁilities associated with both static and dynamic buckling.

... This.also-allows an essentially N-mode solution, where N is the number

fwof-nggésipsed to represenf the structure in the finite difference
g@p;oximation of the governing equation. Critical static buckling
lqaas, aiong with those instabilities associated with dynamic response,
will*be studied for the gene%él arch. Results obtained will be com-
pared with those obtained by previous investigators. Also, the effect
of various parameters on static—and dynamic buckling will be studied.
The initial shape of the arch will be sinusoidal for all cases studied

because, according to Fung and Kaplan [;:], the initial shape has very

1little effect on buckling characteristics provided it is shallow.
Varying arch rises will be observed for the case of pinned~pinned
suppo?té. The loading conditions will be those of a uniform load of
infinite duration for both the static and dynamic cases, and a purely
impulsive load for the dynemic case. The dynamic response will be
observed with'viscous‘damping present and alsc under the influence of

a preload.



2. EQUATIONS

2.1 Derivation of Governing Equation

Consider s shallow arch (fig. 1) of span I and rise H subjected
to somé time-dependent loading. Two methods are available for obtain-
mg the governmg differential equation of motion: An equilibrium
meéhpd wl;xlch sums forces and moments acting on a representative element
of 1ength dx, or an energy method which equates the Tirst variation of
tﬁe total p_c;*_q_en’dial energy of the element dx to zero. The equilibrium
meﬁi'xod'; :Lsusecl in this analysis.
Referr:r.ng to figuré 2 and summing moments, the following equation

is. obtained:

M+ p(x,t)(dx)(%) + (v + % d.x)dx -M - %ﬁ' dx

+ m g—z—g(d‘x)(%) + C -g—z(dx)(i;-) =0 (1)

Assuming higher degree terms are approximetely zeroc, the above

equation reduces to

_u

Summing the vertical forces, including inertia and demping terms,

the following equation is obtained.



v, aw) : mPw L Ow v
-V - (—al—c—-‘i'a +p(x,t)d§(-$‘2—'"cat+v+—&dx

Ny 3.\ [Fw 32)
"“(s;‘s;)(axe "5 = ©)

Again equating higher degree terms to zero reduces equation (3) to

Ry S & Puy O
P(X:t)d-x"m--a—;é-dx-C'-é-‘E‘dX"r&d.'}C'f'Nx(axe +§x-§dx=0 (h')

From equation (2),

"M
=28 < o1
2By ®)
Equation (6) results from substituting equation (5) into
equation (4), and is the nonlinear differential equation of motion
used in this study.

1o
-EI-Z—u-X§+Nx-a—x-g9+%il£ + p(x,t) - C

&g
%
E

i
B

/s
cf
o

(6)

N

s is the axial thrust of the arch obtained from the relationship

between the""aisplé.cement and axial force

NZ
=

(7)

&l



or rearranging

W, = 22 (8)

where A 1is the axial shortening of the arch as it deflects and is

equal to

L 3 2
A= % L/; o %§-5§9-+-(g¥> ax (9)

Substituting equation (9) into equation (8), the following

equation is obtained for IN,.

NX=—2E% OL 2%%9+(%)2& (10)
In equations (6) and (10), w, is the initial shape, w is the dis-
placement, measufed from w,, E is Young's modulus, I the moment of
inertia, p(x,t) the time-dependent aspplied loading, C the damping
coefficient, m +the mass, A the cross~-sectlonal area, and L the
span of the arch.

2.2 Nondimensionalization

Introduce the'following nondimensional variables:

X :
_Ea:T; T=WO

ﬁhere(f=

2 1l/2
. ({nY/ET / - . \
wo—-(i) (3?) , k = radius of gyration



Equations {6) and {10) then take the form

2.
3,73, %

|

- 2
- = 0%
YRR FY-aeyy- o <+ al,T) 2 (11)
= 1 7 O dw o\
Nt wm 252 5+ (S) Jee (12)
where -
. .
’ q(é,7) = p(x,t) ;EEEE
2
= ML
" %°EI
and
o = 2\

2.3 Finite Difference Representation

The central finite difference approximations used in this study
are

W) _ife g

YA oA | Vit T Yi-1

82{'} __l"' 2ﬁ+u
32)s | 21 T T T Ml

(13)

Il -
1{- - - - -
ggg)_ = Zg{%i-z - lwyg o bwg - Bwgyg + Wi+%}
1
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where i is the ith Tinlte difference station and A the station
spacing. If the spatial derivatives of equations (11) and (12) are
replaced by the appropriate finite difference approximations, egqua-
tion (11) is reduced to a set of coupled, nonlinear, ordinary differen-

tial equations in time of the fomm

2= -

a"w. dws - - -
i i -

dT2 + o dT + f(WO,Wi_E,oo o,wi+2,A,Nx) = qo (ll{.)

(i = 1,2,0...,0)
and eguation (12) becomes
1 7t
N, = 2—11 g (Wos Wiy s Wy41 D)6 (i =1,2,...,N) (15)

: o

"“1where: N equals the number of interior finite difference stations
snd A the spacing.

" 2.4 Ioading Conditions

The primary loading conditions are those of a uniform step
ﬁressure of infinite duration and a uniform impulsive load. The

uniform step pressure of infinite duration is defined as
a(&,) = q H(T) (16)

where H(T) is the heavigide step function and q, the magnitude of

the load. The impulsive load is defined as

t+e
Tmpulse =/ F dt (17)
Jog



1l

Introducing the delta function (%t - 1) which has the following

properties
5(t =) =0 for all & # 7

fmé‘)(t—n)d’czl 0< < ® (18)
.-

f £(t)5(t - 1)dt = £(n) o< < w®

C

and the fact that F at = M dv, it can be seen that at time + = 1
the impulse acting on the arch will result in & sudden change in the
velocity with essentially zero displacement. Therefore, impulsive

" loadings have the following initial conditions:

"

- F d7
-
'.'”t Wi = O; = (19)
- - =
Wom
"12§5.Qini€iél Geometry
'_i,The=initial shape of the arch will be sinusoidal
w= e sin & (20)
}wheie
e = E (21)
k



‘2.6 Boundary Condition

- Thezbdﬁndary condition corresponding to simple supports is

2w
- w
S w(0,T) = —(0,7T) = 0
- 2
(22)
‘-‘;'(?f:'r) = "“‘é‘(ﬂ:T) =
3
In finite difference notation the boundary condition for simple
supports is
ﬁé =0
Wl = _W5
(22a)
¥l 0
wh+2 - Wﬁ

This will be the only boundary condition observed.



" 3. NUMERICAL PROCEDURE

3.1 Static Case

i . By taking equation (11) ahd reducing it to the static case by
disregarding the time-dependent terms and then gxpanding in terms of
the finite difference approximations of equation (13), the following

static gduation of motion is obtained:

o - e+ BR800 + (6 PNy - O+ Pl

=0 | (23)

where primes denote differentiation with respect to & and ﬁ% is
the nondlmen31onal axlal thrust which has the following form upon
substltuﬁlon of the. flnlte difference approxlmatlons

= _1["a

Y T ed —EEW%;L " Voyp (e - Vi)

_ .2
+ 2y - Wi-l)]d§ (2k)

Equations (23) and (24t) are now left with only two variables, a4
’gnd %i’ énd the regponse of the arch is determined by either of two
blﬁéﬁhédg.i In—the numerical procedure, integration with respect to the
spatial varlable in equation (24 ) is performed using Simpson's rule.
-“Also, & dlrect iteration approach, such as assuming a load and calcu-

latlng a deflection will not yield satisfactory load-deflection curves

13



1h

because‘of the multiple roots associated with the governing equations
under certﬁin loading conditions. However, a method is-developed in
this study ﬁhereby all roots of the governing equations are determined.
Thé firsf method is limited %o symmetric displacements by working
with the left~hand side of the arch, setting the right-hand side
displacements and loads equal to the corresponding ones on the left.
Portions of the load-~deflection curve are obtained iteratively by
., assuming initial displacements at each node (%i) and solving eque-
tionsu(25) and (24) for the nodal loads (qi). An average nodal load
Cis ﬁhen'defermined by summing all the nodal loads and dividing by the
nuﬁbgr of nodes. This average load is then compared with each nodal
lqad.(qi) and adjustments made to the corresponding nodal displacements

f(ﬁf) according to the following relationship:

- - d; Ws .
W, =W + ABS| = x §+1 X factor (25)
ey Wi

where the ¥ sign would depend on whether the load needed to be increased
or decreased, and factor is a constant that may be changed toc help con-
vergencé. On the next iteration a new average load is determined and
adjustments made to the displacements as above. This procedure con-
tinues until ali nodal loads {g;) converge to the average load pertaining
to that iteration. It is interesting to note that an initial load on
which to converge is never specified, only an initial displacement. If
a sinusgidal load is desired, then the average load is used as a Gypax

from which the other q are determined and comparisons made as in the
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ahove procedure. This method will be referred to hereafter as the
”assﬁme& displacement method."

The second method of analysis is not restricted to symmetric shapes
and again uses equation (23) to form a set of coupled, nonlinear,
algebraic eguations in terms of the ﬁi's, which are solved using a

. Newton-Raphson technique as presented in reference [;5] s and dis-

cussed below. Assume

£, = eq. (23) I=

T, = eq.(23)} ..

"2 =4 (26)
£ = e (23) S

 : Using the recurrence formulas of reference [}5] s the following are

obtained

ofy. ofy | ofq
a, -—_:—J— + B.h_ ---:-JL-" b PSR a.N = -fl'
5 3 (3) S (k) "2 3 + 2) 3
afej (1)
- e . 7
> & (3) .
Ofy . of’ .
a ——gﬂ— + . v e . Bro TS al = «f
> 3 (3) Py +2) N
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where {ai} is the vector of correction factors
a‘i = W(l)j'l"l = W(l)j (J = 192,"‘) (28)

and i equals the ith difference station and J equals the jth
lteration.

In matrix notation, equations (27) are

ofy ofy o T N I B

v e e —e————— a -f
w(3)  ow(k) o + 2) || 2 1
af2

-f

3(3) T (29)
oty Afy
&(3) e s s s . s s m B'N-I-E -fN

By assuming an initial load g; and a deflected shape W,
equations (29) may be solved for the '{é} vector similtaneousliy
which gives the correction factors for the displacements w;-

In the previous method, convergence of nodal loads was Trequired.
In this method, convergence of nodal displacements is regquired for a
given loading. This method, which is not restricted to symmetric

displacements, will be referred to as the "assumed load method."

Appendix 2 contains a Fortran program of this method.
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3.2 Dynamic Case

It is assumed that at some time T, bthe acceleration, velocity,
and displacements of the finite difference stations represented in
equation (13) are known, but nothing is known about the stations at
time Tpyq. By the use of Newmark's beta method, presented in
reference Eﬁ{] and discussed here, an acceleration at time T, 1is

agssumed and velocities and displacements calculated from the following

relationships:

]

h
Vol = Vot 5(eg toany)

(30)

_ 1
Wn+l "'Wn +vnh + (-é- -

B)h2<an + Bagy)

where h ig the time interval and £ a multivalued constant which
describes the varistion in acceleration during the time interval. TFor
the purpoge of this study, S will be chosen equal to 1/6 which
corresponds to a linear variation of the acceleration during the time
interval. Convergence and stability criterla are Investigated by the
author of reference [}%] and it is determined that for a B = 1/6 if
the time interval is chosen for convergence, then the numerical pro-
cedure ig always stable. To determine what the required time interval
is, it will be necessary to look at the periods corresponding to the
N~modes of the arch where N is the number of difference stations.

The nondimensional freguency is defined as

T = %33‘ (= 1,25...,N) (31)
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where the fundamental frequency corresponds to an n = 1. It is
quite obvious that if convergence is established for the highest
possible mode, then convergence is established for all modes of the
system. Therefore, since this study is being made with 13 difference
stations and the fact that h/T < 0.3%89 (ref.Epa), the time inter-
val h used in this study will be 0.0l, which satisfies all convergence
criteria for all of the n-modes of the arch.

Consider now thé'numerical iterative procedure used. For a given
load and an assumed iﬁitial value of the acceleration at the (n+l)
time step, the velocity and displacements are calculated by use of
equation (30). These values of velocity and displacement are then used
in equation (14) to calculate an acceleration. A comparison is then
made between the assumed and calculated accelerations. If it is within
set tolerance limits, the process is complete for that time step;
if the tolerance is not satisfied, then the calculated acceleration is
used as the new assumed acceleration and the process repeated within
that time step until convergence is attained. The time is then incre-
mented and the above procedure repeated. At convergence, the accel-
eration, veloclty, and displacements are known for that given loading
condition and that particular point in time from which response plots
mey be made. The symmetric response component is defined in terms of

an average dlsplacement parameter

= m——— (32)
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and the antisymmetric response component, Wg s is defined as the
algebraic difference of the displacements at the quarter points normal-~

ized with respect to the corresponding w Normally, some asymmebry

0°
in the initial conditions is required to introduce antisymmetric com-
ponents in the response. In this study, computer roumd-off errors
are allowed to perform this function.

The nondimensional damping parameter in equation (11) is defined

as

a:g’}\:i (33)
0

Cos the critical demping factor, is defined as
C, = 2my, (34)
therefore, A is actually the.ggmping ratio
A= (35)
Ce

and for zero damping has a value of zero. For finite damping to be
included in the numerical analysis, A will have a v&iue equal, to
gome percentage of the critical damping and is accomplished by simply
changing an input parameter.
%3.% Prestress

When a prestress analysis is degired, the static and dynamic cases
are merged together in the following manner: Static displacements
corresponding to prestress or preload conditions are determined from

a static analysis as described in Section 3.1. A dynamic analysis is
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then made as described in Section 3.2 using the displacements calculated
in the static analysis as initial displacements rather than the previous

condition of zero displacements initially.



k. STABILITY CRITERIA

4.1 General

Previous investigators have used the general criteria for symmetric
buckling used in this study and discussed below. Limited use has been
made of the other criteria, especially that for the dynamic asymmetric
buckling. A3l criteria discussed below was confirmed by this study
before being applied.

h.2 Static Symmetric

Congider the static load deflection curve of figure 3. As the
uniform load on the arch 1s increased, the displacement follows the
almost linear portion of the curve from zero to A, provided the
initial shape of the arch is symmetric. At point A, any finite increase
in the load results in a large displacement to point C or, by definition,
sngp-buckling occurs. This is the criterion used to determine static
symmetric buckling and the load corresponding to point A of figure 3 is
called the critical static symmgtric load.

4.3 gtatic Asymmetric

The static symmetric criterion for buckling requires the arch to
be initially symmetric. In- actual strucbures this is rarely true and
an analysis is necessary which includes initial imperfections in the
arch geometry. Consider figure 4 which is a static load deflection
curve if the initial shape is given some imperfection of the second
mode. From zero to A, the arch may converge to either a symmetric

shape (represented by the line OA) or an asymmetric shape (represented
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by the line AB). TFor a load above point A, snap-through corresponding
to point C is the only possible configuration with imperfections
present in the initial geometry. Therefore, the load corresponding
to point A is called the critical static antisymmetric buckling load.

L.h Dynamic Symmetric

If the displacement response of the arch is plotted as a function
of time, as in figure 5, 1t is observed that for two different load
levels there is a large discrepancy in peak response during the first
period of oscillation. Tigure 6 is a plot of these peak displacements
as a function of loading and clearly shows a jump discontinuity or
snap-through. This large variation in peak values of the symmetric
response during the first period of oscillation 1s the criterion used
to obtain the critical dynamic symmetric buckling load. If the
response of the arch under the critical symmetric buckling load is
output on a cathode ray tube display unit, the arch configurations in
figure 7 are observed as the arch buckles. A complete set of buckling
configurations is shown in Appendix 1. Note the symmetry of the arch
during snap-through.

4.5 Dynamic Delayed Snapping

Consider the response plots shown in figure 8 which are for a
load less than the critical load required for dynamic symmebtric snap-
through. During the first few cycles of oscillation the symmetric
component of response is harmonic with amplitude much less than the
arch rige and the asymmetric component is essentially zero. However,

after several cycles of oscillation, snap-through again occurs and is
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due to the large and rapid growth in the asymmetric component. This
type of buckling is due to the coupling between the symmetric and
asymmetric components of response and referred to as dynamic delayed
snapping. ‘The criterion for obbaining dynamic delayed snapping loads
is the same as that used for dynamic symmetric with the exception that
it will occur sometime subseguent to the first periocd of oscillation.
The arch response again observed using the cathode ray tube is guite
different from the response of the symmetric case., The arch oscillates
in a symmetric mode for a number of cycles, or until the asymmetric
component begins to grow (fig. 8), at which time the arch response
becomes asymmetric. Figure 9 shows various arch shapes as snap-through
occurs, while Appendix 1 contains a complete set of configurations
observed during buckling. The coupling of the modes is quite obvious
when observed this way.

4.6 Dynamic Asymmetric

For certain conditions of arch geometry and loading, the asymmetric
component of response grows appreciably without any noticeable growth
in the symmetric component. This seems to point to the fact that cri-
teria based on the symmetric component are not sufficient to label the
instabilities of the arch under dynamic loading and a criterion based
on the asymmetric component of response is needed. Since in this study
the loading is symmetric, computer round-off is used Lo initiate the
growth in the asymmetric component. Conslder figure 10 which shows the
peak amplitude of the agymmetric component as a function of loading for

nondimensional response times of 20, 50, and 200. TFor sufficiently
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small Joads, no growth occurs. Above some critical value, however,
growth initiates immediately after load application and grows tc some
limiting value with time. The load at which growth in the asymmetric
component is initilated is used as the criterion for defining the
eritical dynamic antisymmetric buckling load. This same criterion was

suggested in an earlier study [6] .



5. RESULTS AND DISCUSSION

5.1 General

Initial numerical computation was accomplished using an IBM 1130
computing system because its interaction capabilities were very useful
during preliminary studies. However, due tc the volume of data cubpub
and the long response times required for portions of the dynamic
analysis, a high-speed CDC 6600 computing system was used to obtain
final instability data.

5.2 Static Case

Consider the static stability curve of figure 11 for an arch rise
of e = 8., The equilibrium points defining the five branches of the
curve are determined by assuming an equilibrium configuration corre-
sponding to a given applied load and converge to the correct shape
using the Newton-Raphson procedure described earlier in the "assumed
load method."

Specifically, the stable symmetric branch OAB is determined
directly by assuming an initial shape that is symmetric and then using
the last converged shape as the new assumed shape while incrementing
the load. Point B, corresponding to a load of P = 31.9, is the
eritical symmetric buckling load as defined by criterion previcusly
discussed. Once snap-buckling has occurred, the snapped egquilibrium
branch HGFE is determined as above by assuming the converged shape as
the new assumed shape and then decrementing the load. At point F, the

arch will snap back to the original upright position. The determination

a5
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of the unstable branches AG, €D, and BE requires a slight modification
in the direct procedure. For branch AG, various amounts of the second
mede, or first antigymmetric mode, are assumed in the initial shape and
the Newton-Raphson procedure used to converge to the correct shape. Al
some point in the loading, the assumed initial asymmetry is such that
convergence is to the unstable asymmetric branch AG. This asymmetric
shape is then assumed as the new initial shape and the load incremented
and/or decremented ag required to complete the branch. Point 4,
corresponding to a load of P = 22.24, is the critical asymmetric
buckling load as defined by criterion. Since branches AG and OA are
nearly linear, thelr intersection point is easily determined numerically
once two points on each branch are determined. This intersection point
ig defined as the critical asymmetric load. The unstable symmetric
branches BE and €D are cobtained in a manner similar to the asymmetric
branch AG, only now the initisal shape has various combinations of the
first and third modes present. The critical symmetric loads and
equilibrium points on branches OAB and BE are alsc determined using
the "assumed displacement method." Results are ldentical to those
obtained using the "assumed load method" and provide an excellent
check on the numerical process.

Critical static buckling loads for various arch geometries,
determined in the same manner as those for the arch rise of e = 8,
are given in table 1 along with the critical loads as determined from
reference [i:]. The discrepancy in the critical symmetric loads is

explained by again considering figure 11. The dotted portion of the
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unstable symmetric branch CD is assumed, using the critical load deter-
mined from reference [}] which uses a single-term approximation for the
deflected shape. In this study the deflected shape has 13 modes and,
numericalliy, the arch buckies prior to reaching the dotted portion.

The five equilibriuvwm paths, two stable and three unstable, are also
observed in reference [8] .

5.3 Dynamic Case

Dynamic buckling loads, corresponding to three modes of dynamic
instability, are plotted as a function of arch rise for wniform loads
in figure 12 and for impuilsive loads in figure 13. Also included in
each figure 1s a curve representing the static buckling loads determined
previously in this study.

Considering figures 12 and 13, the curves for symmetric buckling
indicate the significantly larger loads required for snapping by a
purely symnetric response. The effect of antisymmetric modes in the
response is indicated by the decresse in critical loads for delayed
snapping. The stability curves for asymmetric buckling differ markedly
from the curves corresponding to snap-buckling.

Asymmetric buckling loads are consistently lower than the other
and, in fact, tend toward zero in two places along the boundaries.
However, these lower boundaries represent only the initiation of growth
in the antisymmetric response and not snap-through. Nevertheless,
asymmetric buckling should not be disregarded. Growth in the asymmetric
response is sufficient for digplacements to achieve a magnitude on the

order of 20 percent of the arch rise along the lower boundaries of the
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asymmetric buckling region and, just prior to delayed snapping, the
magnitude of the asymmetric response is of the order of the arch rise.

The results show the somewhat similar buckling response observed
for the wniformly distributed step load and the uniformly distributed
impulse. 'The values of arch rise for which the asymmetric buckling
resistance approaches zero are identical for the two leoading conditions.
However, asymmetric buckling for the uniform step load is only defined
for values of e less than approximately 11, while asymmetric buckling
associated with the uniform impulsive load was present for all values
of arch rise. Flgures 12 and 13 also show that for the larger values
of arch rise, critical step loads for delayed snapping are only slightly
less than the static snap-buckling loads, while critical impulsive loads
required for delayed snapping are significantly less.

When damping 1s retained in the analysis the criteria for identi-
fyilng the three modes of instability remain valid. As would be
expected, the influence of damping has negligible effect on the critical
symnetric buckling loads for both of the loading conditions studied.
However, stability boundaries defined by delayed snapping and asymmetric
buckling are modified appreciably by the effects of damping.-

Critical uniform.step loads for asymmetric buckling are plotted
in figure 14 as a function of arch rise for damping ratios corre-
sponding to zero and 1L percent of critical damping. As indicated, the
critical loads are increased with the addition of damping and the
asymmetric growth is correspondingly reduced, particularly in the two

regions of low stability resistance. Numerical results indicate that
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damping ratios above spproximately 5 percent are sufficient to eliminate
the asymmetric buckling mode entirely. The presence of damping also
serves to appreciably increase critical uniform step loads for delayed
snapping as indicated in figure 15. For an arch rise greater than
approximately e = 9, the critical uniform step load for delsyed
snapping is the same as the static buckling load for any finite value
of damping. A similar observation was reported in [;8] .

For an arch subjected to a uniform impulse load, the presence of
damping had noticeable effect only on the critical loads.for delayed
snapping; in fact, the delayed snapping form of dynamic buckling is
completely eliminated with damping present. Critical impulsive loads
for asymmetric buckling are increased slightly for finite amounts of
damping.

The effect of initial static prestress on critical symmetric loads
is shown in figure 16. As expected, for a prestress load of zero the
critical symmetric load is that given in table 2, and for a prestress
load equal to the critical static load the critical. symmetric load is
zero. For all values of prestress between these two extremes, the
critical symmetric load is linearly related to the level of prestress.

A similar result is observed in reference [7] .




SUMMARY

The static and dynamic buckling behavior of a shallow sinusoidal
arch with pinned ends ls studied. The loadings consgidered consist of
a uniformly distributed step load of infinite duraticn and a purely
impulsive load. The effects of finite damping and static prestress are
also observed.

A method is devised whereby static equilibrium branches of the load
displacement curve are determined numerically using the same discrete
model adopted for the dynamic analysis. Specifically, the static
differential equation is reduced to a set of nonlinear salgebraic equa-
tions ueing finite difference approximations and then solved using a
Newton-Raphson procedure. Critical static loasds for symmetric and
asymmetric buckling are determined from criteris based on character-
istics in the equilibrium branches.

The dynamic analysis consists of e direct numerical integration of
the nonlinear equations of motion obtained from a finite difference
approximation. Critical symmetric, asymmetric, and delasyed snapping
loads, for both loading conditions, are determined from criteria based
on characteristics in the time response of the arch. Results indicate
somewhat similar buckling response for both loading conditions. How=
ever, critical impulsive loads are always less than corresponding
critical step loads. Regions of extremely low asymmetric step buckling
loads correspond identically to regions of extremely low asymmetric

impulse buckling loads.

30
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The influence of damping on critical loads is studied for both step
and impulsive loads. Sufficient dampi?g markedly reduces those regions
of asymmetric step buckling where the critical load approaches zero but
hag little effect on those regions defined for asymmetric impulsive
buckling. For finite values of damping, the critical step load for
delgyed snapping is the same as the static snapping load for sufficiently
large arch rises. TFor the impulse leoading, damping completely eliminates
delayed snapping, and the only two instability mechanisms present are
the gymmetric and asymmetric.

Results for a structure with prescribed prestress subjected to a
suddenly applied dynamic load indicate a linear relationship bebween

the critical dynamic load and the level of prestress.
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TABLE 1.~ CRITICAL STATIC LOADS

Arch geomebry Symmetric - Asymmetric
e Present  Ref. El_-_} Present, Relf. [l]

k.5 9.00 8.48 -—— -

5.0 12,00 11.20 — 10.99
5.5 15.00 1h.48 1%5.16 13.21
6.0 18.00 18.39 15.1% 15.24
6.5 22.00 22.98 16.97 17.17
7.0 26.00 £8.%1 - 18.76 19.03
75 29.00 3 .43 20. 53 20.83
8.0 32.00 hl.h 22,24 22.60
8.5 36.00 49.29 2%, 9k 2L, 3L
9.0 33.00 58,13 25.63 26.06
9.5 -~ h2.00 68.00 27.27 27.76
10.0 45,00 78.9k 28.92 29.4)
10.5 48.00 91.02 30.57 31.12
11.0 50.00  10%.28 32.18 32,78
11.5 53,00  118.80 33,81 343
12.0 56.00  13k.61 36.08
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TABLE 2.~ CRITICAL DYNAMIC LOADS - O PERCENT DAMPING

Arch geometry Symmetric ) Asymmetric Delayed snapping

e UNIF ™MP UNIF iy UNIF  IMP
h.5 6.00 6.80 5.0 - D.8. 3.h ———

5.0 8.00 8.00 5.0 - D.8. 2. 8.2

5.5 11.00 9.20 8.0 - D.8. 8. 9.5

6.0 13.00 10.80 9.0 - D.8. 6.6 11.1

6.5 16.00 12.20 9.0 ~ D.8. 12.6 10.
7.0 19.00 13.60 9.0 - D.S. 5.2 .1 11,7
7.5 22.00 15.00 9.0 - D.8. k4.6 15.7 12.5
8.0 25.00 16.60 8.0 - b.8. k.o 17.5  13.h4
8.5 28.00 18.20 8.0 - D.S. 3.0 18.8 1ik.s
9.0 31.00 19.60 7.0 - D.8. 2.6 20.4  15.3
9.5 34.00 21.20 2. 16.4
10.0 37.00  23.00 k.o - 19.0 2. 27. 17.5
10.5 40.00 24.60 2.0 - 11.0 1. 30, 19.0
11.0 13,00 26.40 0 33,8 20,
11.5 k6.00 2B8.00 0 %5.6 20,
12.0 49,00 29.80 1. 37. 22.

D.S. - Delayed Snapping




APPERDIX 1

Symmetric response configurations

T3
Y21
/N
Y22
‘.—"‘f—"’—F—_—;tT;_“‘~hﬁ;H“5“‘

T-24
=23
;//"—T\n \‘_-_—‘/



Asymmetric response configurations

m 1-32
/_T-_w.a\A 1-74
/:Nﬂ T-n6
m T-78

T-200
T-240
T-202
T=2U2
T-204
T-R4
T=2446
T-H6
F-208
T-243

T-28



APPENDIX 2

Fortran IV program for static analysis

A0S naaOn0

s Ooataboonnatcaoannn

PROGRAN STOUCKIINPUT » DUTPUT o TAPES~ INPUT, TAPES-DUTPUT)

THIS IS A FORTRAN IV PROGRAM PRESENTLY
SET UP TO CALCULATE CRITICAL SYMMETRIC
AND ASYMMETRIC BUCKLING LOADS OF
SHALLOW ARGHES USING A NEWTON-RAPHSCGN
PROCEDURE, WITH SLIGHT MODIFICATION
IT MAY ALSO BE USED TO DETERMINE
EQUILYBRIUM PATHS OF THE LOAD
DEFLECTION CURVE.

INTEGER OQUT

REAL NX

EXTERNAL FUNCT,FUNCL

DIMENSION NAME(4)

DIMENSION EQUA(LS)

DIMENSION WOXXEE5)3+WO(L5)oFILEe1L)sGLLsL)
OIMENSICN IPIVOT{(L1)

COMMON PI JNXoWI15F4WX(150,M0X{15},0Q(15)

NAME = TITLE

€ = ARCH RISE

EN = NUMBER OF INTERJIOR FINITE DIFFERENCE STATIONS
QL = INITIAL LDAD

QINC = LOAD INCREMENT

OF = FINAL LOAD

EPSL = TOLERANCE FACTOR

528 = BEGINNING FACTOR FOR ANTISYMMETRIC COMPONENT
SZE = END FACTOR FOR ANTISYMMETRIC COMPONENT

SZINC = INCREMENT FOR ANTISYMMETRIC FACTOR

$38 = BEGINNING FACTER FOR THIRC MGDE COMPONENT
S3E = END FACTOR FOR THIRD MODE COMPONENT

S3UNC = INCREMENY FOR THIRD MODE FACTYOR

102 = } DECREMENT THE LOAD

Ib2 = 2 INCREMENT THE LOAD

It = 1 NORMAL SOLUTICN

105 = 2 SYMMETRIC BUCKLEING LOAD UNLY

{06 = 1 INCREMENY ON THIRD MODE COMPONENT
D6 = 2 INCREMENT ON ANTISYMMETRIC COMPONENT

READ S00.NAME

500 FORMATI4A10)

38



[sEalx]

82

i6

35

i3

PRINT 82 .NAME
FORMAT{1H1+4A10}

CON = 0.
102 = 2
103 =1
ios = 1
D6 = 2

READ L+EsENsQL+QINC+EPSL1,QF
READ L+S2B+S2E+S2INC,538453E453INC
FORMAT(6F10.5)

INITIALIZATION OF PROGRAM PARAMETERS

N = EN

PI = 3,1415926536
DX = PI/LEN~1.)
ICR = (N#3) /72
CONT INUE

X1S Q.

X25 0.
0.
0.

0.

0.

0.

0-
[BIFIR = )
IWAV = 0

t HOH

>
N
>
wn
[ I ]

53 = 0.
CONTINUE
DISL = 0.
J = N+l
Do 13 1
EQUACT)
WOlL} = 0.
WOX(I) = C.
WoxXx (1) = o,

244
O.

nn

Qll=0L
WX¢I) = 0.
Wit) = C,.

DO 17 I=1,11
DO 17 M=l,11

59



[aEeN s

[zlul

e N e Nl

1T FLUI.N) = 0.
BQ 18 I=1.11
18 6iIY = C.

BOUNEARY CONDITIONS

Will = ~-W(3}
W{is) = -wl13}

INITIAL GECMETRY

DQ 2 I = 244

Al=Y-2
WOEI) = ~EXSINIDX#*AL)
WOX({ILY = —-ExCOS{DX%AL)
WOXX{I} = ~-WO(1}
Wil) = — CONKWO(IL)

2 CONTTNUE

61 CONYINUE

81

80

IF{QLICRY-QF)80,80,81
$38 = 528 ¢ S3INC

S2B = S2B + S2INC

GO To 35

CONYINUE

CONTINUE

BEGIN NEWTON-RAPHSON PROCECURE

Wil) = ~HW(3}
WiN+2) = —W{N]
D0 3 1 = 244

4o

e EaNal ~a OO0 e ReRe

3WXCI) = (Lal{2.%DX) I % {—W{T~1)4W{T+1)}
CALCULATICN OF NX
CALL SIMPIDX«NeFUNCT yNX)
MATRIX SETUP FOR SOLUTICN
GALL MATSLAPI sNX DXy Wy WOX 4WOXX 4F4GoDQ)

SOLUTICN OF MATRIX EQUATIENS



[z EnXul

(2N aNa]

[aNeNaYn]

iz EaXal

OO0 0m

11

12

CALL SIMEQ(F+11+Gel +CETERM,IPIVOT.114ISCALE)
TOLERANCE CHECK

DO 8 Il = 1,11
A = ABS(GILI+11})
IFCA-EP51)84+8,+9

CORRECTION OF ASSUMED DEFLECTED SHAPE

D0 11 I=1l.11

Wil#2) = WlIe2)#G(1)
CONT INUE

GO T4 49

CONT INUE

NEWTON-RAPHSON SOLUYICN COMPLETE FOR
GIVEN LGAD AND INITIAL GECMETRY

Wil) = —Wi3}
WiN+2)} = ~HIN]}

CALCULATICN OF AVERAGE DEFLECTION

CALL STEMPI{DXeN, FUNC 1, WAV)
Q0 = Q{ICR}
WAV = MWAV/PI

THE FOLLOWENG PART OF THE PROGRAM
DETERMINES WHICH £QUILBRIUM BRANCH
THE SOLUTICN HAS CONVERGED ON.
AFTER TwO SOLUTIONS HAVE BEEN
OBTAINED FOR THE ASYMMETRIC BRANCH
THE PROGRAM THEN PROCEEDBS TO FIND
THE CRITICAL SYMMETRIC LOAD WITHOUT
STORING ANYMORE ASYMMETRIC POENTS

IFLIWAVILIZ s44 12

IF{WAV.GT.1.3%E) GO T4 15

WAVB = WAY

EWAY = 1

CONTINUE
IF(ABSI{NAVB-WAY) oGT o 10+ E~4<AND WAV LY. 1. 3*E,AND. IBIFIR.LT. 3}

b1
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1 60O YO 14

GO 1O 24
14 IF(IBIFIR.EQ.1} GO TO 19

X25 = WAVB

Y25 = QUICR}

X2AS LY

Y2AS C{ICR)

GO TQ 20
19 X15 = WAVB

Y1S = Q{ICR}

X1A5 = WAV

Y1AS = QCUICR)
20 CONTINUE

IBIFIR = IBIFIR + 1
24 CONTINUE

GO ¥O (50.51).105
50 IFIS521524+53,52
53 IF{S53)52+54452
54 51 = W(ICR}
52 CONTINUE

GO TO (64+465),1ID6
65 IF{S2-52FE)55+56.+56
55 52 = 52 + SZINC

53 = 538

G0 10 66
64 JF{S3—-53E)63,56.+56
63 53 = S§3 + 53INC

52 = 528
66 DO 37T I = 2414
Al = I-2

WOEI=SL*SIN(AT#DX +S2%SINE 2. 2AT#DXI +53%SINI3, :AT*DX)
5T CONTINUE

GC TG &l
56 DO 58 1 = 2,14

Al = [-2

W{I) = S1*SIN{ATI*DX)
58 CONYINUE

$2 = 0.
53 = 0.
[RAV = ©

51 CONTINUE
GO TQ (30+29),1ID2
29 DO 5 I=2.14



IzEz R EzXR) o

5 oll1 = Q(I) + QINC
GO TO 1IC
30 DO 31 I = 2414
31 QLI = QUE) - QINC
10 CONTINUE
G0 TG 61
15 CONTINUE

OUTPUT
IF{X15.EQu0+ORaX25.EQe0.} GO TO 22

CALCULATION OF CRITICAL ASYMMETRIC
LOAD FROM THE THWO POINTS OBTAINED
ABOVE

AlS = Y25-Y1S
B1S = X25-X1§
ClS = X25%Y1S — X1S#Y2$
ALAS = Y2AS5~YI1AS
BLAS = X2AS5-X1AS
CIAS = X2AS*YIAS-X]1AS*Y2AS
QAS = (ALAS*CES-CLAS*ALS)/(ALAS#BLS~-BLIAS*ALS)
PRINT 123,E,QA5,Q0
123 FORMAT{* FOR AN ARCH RISE OF *F5,1% THE CRITICAL ANTISYM LOAD IS =»
LF10.4% AND THE CRITICAL SYMM LOAD IS *F8.3)
60O TD 23
22 PRINT 122,E.Q0
122 FORMAT(* FOR AN ARCH RISE OF *F5.1% THE CRITICAL ANTISYM LDAD IS U
INDEFENED AND THE CRITICAL SYMM LOAD IS ®F8.3)
23 CONTEINUE
E=E + .5
IFLE.GT.12.) STOP
GO Y0 16 -

END



[N alal

FUNCTIOKN FUNCT{(I)

FUNCT IS USED IN SIMP TO CALCULATE
THE AXIAL FORCE NX

COMMON PIGNXeW{15)oWX{15)WOXI1S5).00(15])

FUNCTo{ 1. 7C2.%PTH) (2. 8MOX{ DI *uX(THoux(TIowX(I))
RETURN

END
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[ EaXaNal

FUNCT ION FUNCL(I)

FUNCL 15 USED IN SIMP TO CALCULATE
AN AVERAGE CEFLECTION

COMMON PIsNXoMILS5)WXIL51,WOX{15),00(15)
FUNC1 = W(I)}

RETURN

END
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(s sX3K s

SUBROUT INE STMP{HN,FUNCT,ANS)

THE SUBROUTINE SIMP PROVIDES THE
NUMERICAL INTEGRATION TECHNIQUE

DINENSICN Y{15)
N3=N+1

NG 1 I=2,N3
YUI)=FUNCYLL S
ANS1=0,0

o0 2 I=34Ns2
ANSL1=ANSLI#& . *Y(I}
N2=N-1

ANS2=0.0

DO 3 I=4,N2,2

ANS 2= ANSZ42,.%Y( )
ANS=H*® (Y (2)+ANSL+ANS24Y (N3} )}/2,
RETURN

END



sl EalzNoaRelz Nzl

SUBROUTINE MATSLI{PI +NXeDX oW HOXwOXX+FeG,yQ)

THE SUBROUTINE MATSL SEYS UP THE
ENTIRE SET DF MAYRIX EQUATIONS
NEEDED IN THE NEWTON~-RAPHSON PROCEDURE
PNXE = PARTIAL OF NX WRY WLI)
FEl.J) = PARTEIAL OF FUI)} WRT #WtJ)
I =2 102930l
J = by SresaN+2
GlI.i} = =F(1)

REAL NX
DIMENSTON WIL15) «WOX{15) ¢ WOCXXULS4CFMILISY4F{LLoLL)oGl11,1),Q115)
DELZ = DX*DX

CFL = 4, + NX*DEL2

CF2 = 6. + 2.%NX*DEL2Z

CF3 = 5. ¢+ 2.#NX#*DEL2

CFS5 = NX*DEL2*DEL2

CFT = DEL2%(2.%W{3)}~W(4)-DEL 2%WDXX(3})

CEMM=DEL2*{-WI{L12142 . #W{13)-DEL2*A0XX{12))

D0 1 I=3.11

CFM{I) = DELZ*(~WIT )2 . ¥E1+1)-U(L1+2)-DEL2*WOXX{I+1})
CFRI9z=1./{6G.*PL)

CFLO=1./13.%P[}

Gllell= —{CFIxNWIB)=CFI*R{4)+W{S}-CF5¥HOXX{3)}-QE3)&DEL 2%%2}
Gl2+1)=={~CFI*W(3ILCF2¥W{4)-CRL&WI5) +WI6}-CFS*¥HONX{4)-0(4 }*DEL2*%2
1) :

G341 == WIBV-CRLIPHIGI+CF2FW(SI-CFIMW{A) +MITI-CFS*WOXXI5)-Q(5)*C
LEL2%%2)

Gléas L)==tWIL)=CFLOM (5} +CF2OW{E6)~CFL#WI TN I BI-CFRSMMOXXT 6)1=Q( 6)2DEL
L2%%2 )

G(5+s1) = =(W{(S)-CFLAWLAY+CFZHLTI~CFLIRWI S84 W )~CFS&RONX{ TI~Q{T)*D
1EL2%%2)

Gloel) = ~(WIGI-CRLIFWLTIHCR2ENIEBI-CFLI*W{G}+ W10} ~CFSRUOXXIB)~CLB)*
IDEL2®*2) .
GiTel) = —(W{TI-CFLIEW{BI#CF2EN(S)~CFLR¥W(10) +W {11 ) -CFSEROXX{IDI-QLS)
1*DEL2%%2} .

G(B8sl) = ~{R{B)—CFI*NII+CF2*W{10I-CFINWI{LLI4WIL2)I-CFORNOXN{ LD )~CH
110)%DEL 2%%2 )} )

G{9sl}t = ~{W(II=CFLEWLLIOI+CF2*W{LL)}-CRI*#W(12)+W{13)~CFERROXX{11)~C
LULL)*DEL2%%2)

G{lOel) = —~(W{ID}~CFIMW{L1I+CF2M{L12)-CFI*W{LI3)-CFS*WOXXT12)~Q(12)
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1#DEL 2% %2)

GELLsl} = —~(WUILLI~CFRLOWIL2}4LCF2-1. ) ONI 13 )-CFS™MOXX(13)~QL 1 3)*DEL2
1#%2)

PNX3IaCFROS (2.2 {NOX{ZI-WOXLA b4 LI WI3)I=WIS) ) IDX)
PNX4=CFLO*{2. ¥WDXI3 Y -2, %WOX{SI+{2. %W {4 )-H (6 I/OX)

PNXS = CRFIR{2.#{NOXIA)=NOXI6)) + (2. ¥WIS5)-W{3)-4W(T))/DX}
PNXE = CFLOR(2,*(WOX{S)-WOX(TII4+{2.%W{6)}-W{4)I~-W(B)}/DX]
PNXT = CFOR{2.%WAX(6) +{W{T)I-M{5})/DX)

PNXB=CFLIO*{ 2.8 (NOX{ T I=-WOXLG) ) +{ 2. 8W{B)~WIG)-W({ LO} ) /OX)}
PNXG=CPGe (2. ¥ (WOXIBI-HOXTLOI )+ {220 (9)-WIT)-WILL}}/OX)
PNXLO=CFLO# (2. %{WOX{O)-WOXI 1LY #{ 2. %W{10}~W{B)~H{12})/DX})
PNXLL=CFO* 2. #(WOXL10}-WOXIL12) (2. #W{LL )~WI(S}-WL13)} ) /DX)
PNXL2=CF1O0® 2. ¢ IROX(LE)-WOXIL3YD #I2, %W (22)~KI10))/DX)
PNXL3=CFI% {2, #INOXTL12)-0OX{14) b {3, *W( 13)~-Wl11}) /DX)
Fll.1}=CFT7#PNX3+CF3

FL2+1)=CFM{3)RPNXA-CF]

FI341)1=CFM{4)*PNX3+]1.

Fl4ae LY=CFM{S5)%PNX3

FiS«1)=CFM{6)#PNX2

FLo«LI=CFMITI®PAXD

Fi7.1)=CFMI{BIEPNX2

Fl8e 1 1=CFMI9)*PNX3

FU9« 1 )=CFMILOIRPNX

F{10,1)=CFM{11)#PNX3

Fillel)uCFRM®PNXS

Fll.2)1=CFT*PNX4-CF]

FU2y2)1=CFN{3 ) *PNX4+LF2

Fl3,2)=CFMI4)*PNXA~CF

Flh o2 1uCFM(S)*PNX4+]L.

FIS.2)=CFM{S)*PNX4

FL62)=CFN{TI*PNXA

F(Te2)1=CFN(B)*PNKS

FUB, 2)=CFNI 9)*PNX4A

F{9:21=CFM(10)*PNKS

FI10.2)=CFMELLY¥PNXS

Fllle2¥=CFMMEPNIA

FlLe3)=CFTHPNXS+],

Fl2:3)=CFRI3)}SPNXS=LF ]

FL33InCFRIA)OPNNSHLER

Flay3}=CFN{5)#PNRS~CF 1

F{S5.3)nCFM{6)*PNXS+],

Fl6:3)=CFMLT)*PNXS

FUTe3)=CER{ BY*PNXS
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Fi1B:3)aCFM{9)*PNXS
F{9,31=CFML10)EPNXS
FL{LO A }=CFM{LL)*PNXS
FUIle 3 =CRMMEPNXS
Fll+41=CFT®PNXG
Fl2:4)Y=CFM{3) SPNXG+] .
Fi3,4)=CEME4)*PNXS~CF ]
Fl&ay4)aCFM (51 *PNXL+CF2
FlS.4)=CFM{6I*PNXE~CF]
Fl6,:4)}=CFM{TI*PNXG+],
FlT.4)=CFN{B}«PNXS
FiBy&)=CEN(9) *PNXS
Fl9,4)=CFNMIL10}*PNXS
FL10s4)sCFM{ L1 )®PNXS
FULLs & }=LFMMEDNXS
FLLe5)=CFT#PNXT
FU2.5¥=CFN(3)*PNXT
FlA.5)i=CENI4)XPNXTH],
Flas5)=CFML5)*PNAT~CF]
FIS.5I=CFM{6 ) *PNXT+LCE2
FL&s5)=LFMLTI*PNXT~CF)
FiT+SIaCFMIBI*PNXTH],
FIBsSh=CFMIGYEPNXT
Fi9.5)=CFM{10)wPNXT
FELO#SICFMELL)#PNXT
FULLo5)=CFMMNePNXT
Fll:6)1=CFTePNXS
Fl2:5)=CFMI{3)«PNXB
FL3,6)=CFM{4)*PNXD
Fla.b6)=CFM{5)oPNXEL],
FiS5.8)aCFM(&)¥PNXE-CF]

FL6,6)=CFN(TISPNXA+CF 2

FLT.6=CF¥(B)*PNXB~CFL
F(B+8)=CFMI9)*PNXBE] .,
Fl9.6)=CFM{10)*PNXS
FL10.,6)=CFM{L11)*PNXA
FUl11l.6)=CFMMePNXS
FLLT)=CFTHPNXY
Fl2.TI=CFML3)*PNXS
F(3.7)=CFMI4)*PNXD
Fl4,71=CENIS)*PNX9
FiS.T)=CEM{6)*PNXIr L,
FU6s TI=CFM{TI*PNXS~CF1L
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FIUT,TI=CFMLBI*PNXI+(F2
FUB, TI=CFM{ 9} *#PNXI-CF]
FLO, TIsCFMELOVEPNXS ¢+,
FCLO»TI=CFMIL1)*PNX9D
FlLLe TI=CFMMEPNXI
Fli+81=CFISPNX10
F(2,81=CFM(31*PNXLD
F{3,8)=CFMI %) *PNX10
FlbteB)=CFMLS5 ) *PNXLO
F(5,8)=CFMI{&)*PNXLO
Fl6+BI=CFMIT)I*PNX1D+1,
E{T+8)=CFMNLB) *PNXLO~CF]
FUB,0)=CFMI9) #PNXLOF2
FL9.8=CFN{10)*PNX10-CF]
F{10.,81=CFM(111#PNXLO+1,
Fl11,8)=CFMMEPNX10
Fl(ls9)=CFT¥PNX1]
FL2.9)=CFMI3}ePNXLL
F{3+9)=CFM{4)*PNXL]
F{4,9)=CFM{S)*PNX11
FIS5,9)=CFM{6)*PNX1]
FEo+91=CFMITIHPNXLL
FiT«9)=CFM{BI*PNX1]1¢].
F{B+I1=CFM{I)#PNX]L1-CFl
FL19.9=CFMI10)*PNXLL1#CF2
FIU10.9)=CFM{11)¢PNX11-CF]
FOLL»9)=CFMMSPNXLL+].
Fll.10)1=CFToPNX]12
FlZ+10)1=CFMI3)*PNX]2
FU310VwCFH{4)*PNXL2
Flas10)=CFMI5)*PNX]L2
FUS,10)=CFMIS)*PNXL2
Fi6,10)=CFM(TI*PNX]12
FUT+10)=CFMLBISPNXL2
FLB.10¥=CFMI9)*PNX]12¢1,
Fl9,10I=CFRILO}*PNX12-CFL
FLLOLLO)=CFNILL F#PNXL2+CF2
FILL 10 I=CFHN*PNX12-CF]
Fil+l1t=CFPoPNXL3
F(2111uCFN{3)®PNX1Y
Fl3,11)}=CFN{4)®PNXL]
.Flasl1l)=LFRISIEPNXLS
FiS5¢11)}=CFNLG61EPNXLT



Fl6.11 =CFR{T)®PNXLD
FI{T.111=CFM{B8)*PNX13
F{B.,11)=CFR{9}&PNX13
Fi9«¢11)=CFMEL10)*PNX13 ],
FL10.11)=CFMLLL )*PNX13~CF1]
F{LL.L1)=CFMM*PNXL3+CF2~1.
RETURN

END
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Figure 1l.- Shallow arch.
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Figure 2.« Differential element.
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Figure 3.- Static load deflection curve.
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Deftection

Figure 4.~ Asymmetric static load deflection curve.
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Time T

Figure 5.~ Symmetric response.
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Figure 6.- Symmetric buckling criteria.
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Figure 8.- Typical dynamic response.
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Figure 10. Asymmetric buckling criteria.
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Figure 11.- Static stability curve.
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Figure 12.- Dynamic step buckiing loads.
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Figure 13.~ Dynamic impulsive buckling loads.
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Figure 1h.- Asymmetric step buckling loads with damping.
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Figure 15.~ Step buckling loads for delayed snapping with damping.
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Figure 16.- Effect of static prestress on ecritical step
symmetric loads.
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