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ABSTRACT

The static and dynamic buckling 'behaviors of a shallow, simply

supported sinusoidal arch subjected to both a uniformly distributed

step pressure load and a pure1y impulsive load are considered. Five

equilibrium paths are obtained for the arch under static loading

conditions. Critical static loads corresponding to two different

instability modes and based on characteristics in the load. displacement

curve are obtained numerically. Critical dynamic loads, corresponding

to three different instability modes, are obtained from a numerical

procedure in which buckling criteria are based on characteristics in

the time response of the structure. The influence of damping on the

various dynamic stability regions and the dynamic response of a pre-

loaded arch are observed and discussed..
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NOTATION

area of arch cross section

vector of correction factors in Newton-Raphson

technique; see equation (29)

damping parameter; see equation (1)

critical damping parameter = 2moo

Young's modulus

nondimensional arch rise = H/k

force in impulse integral; see equation (16)

vector of constants in Newton-Raphson technique&

see equation (26)

H

H(t)

N

Nx

arch rise; see figure 1

time interval

heaviside step function

moment of inertia of arch cross section

finite difference station

iteration step number

radius of gyration of arch cross section

span of arch

moment acting on differential element

mass per unit length

number of interior difference stations

arch mode number; see equation (51)

axial force



Nx

p(x,t)

q(x,t)

q

2 2nondimensional axial force = N L /s EI

time-dependent applied loading

nondimensional applied loading = p(x,t)L /x EIK

amplitude of sine load.

amplitude of nondimensional distributed load

time

W

w

wo

ws

g(t - o)

shear acting on differential element

velocity; see equation (30)

arch displacement; see figure 1

initia1 displacement; see figure 1

nondimensional arch displacement = w/k

nondimensional initial displacement = w /k0

antisymmetric response component

symmetric response component

coordinate along arch span

nondimensional damping parameter = 2X

Newmark's constant; see equation (30)

finite difference space

delta function

duration of impulsive load

axial displacement

nondimensional damping coefficient = 0/2mco



nondimensiona1 coordinate along arch axis = sxjL

nondimensional time = m t0

nondimensional frequency = 2s/n

frequency



1. INTRODUCTIOW

1.1 Statement of Problem

When a shallow curved. structure, such as an arch or curved. panel~

is subjected to a sufficiently large static load, buckling may occur.

Similarly, if the structure is loaded dynamically, a buckling condition

may also be achieved. In the dynamic case~ however, the total response

of the arch must be considered and the time dependency of the response,

in addition to the spatial dependency of the static case, considerably

complicates the analysis.

During recent years, much research has 'been conducted in the area

of shallow curved structures because of the aerospace industry's need.

f'r a structure of minimum weight and maximum strength capable of

carxying substantial loads. Because such structures may be loaded

both statica13y and. dynamically, a knowledge of their stability behavior

under such losdings is of great importance.

A broad. definition of the term stability was presented in

reference $13) and is included here because it represents the basic

idea from which both the static and dynamic instability criteria will

be developed in this study.

A structure is in a stable state if admissible
finite disturbances of its initial static or
dynamic equilibrium are followed. by displacements
whose magnitude remains within allowable bounds
during the lifetime of the structure.

The allowable displacements depend entirely on the intended use of the

structure. Therefore, snap-buckling which might be defined as a



complete reversal of curvature for some finite increase in loading

would. be one area of'nterest both statically and. dynamicaiiy. Equally

important, however, might be the case in which snap-buckling does not

occur, yet the dynamic growth in some response component becomes large

enough to render the structure useless. Classical or bifurcation

.:'buckling may occur in both the static and dynamic case but, in general,

is not the controlling form of instability for shs11ow structures.
'.2

, Past research of the buckling phenomena has been accomplished in

two different areas. The first, a static analysis, was observed by

Fun d Ka 1 [lj in 1952. A closed.-form solution for the critical

buckling load, as defined. by classical theory was obtained for shallow

sinusoidal arches under different loading conditions by approximating

the load, initial shape, snd. deflected shape in terms of Fourier series.

For small arch rises the buckling mode was found to be symmetric, and

for larger arch rises it was asymmetric. If a uniform load was used

instead of a sinusoidal one, the critical uniform load was s/4 times

the critical sinusoidal one. Fung and Kaplan also looked. at the effect

of initial shape and, found, that it had little effect on the buckling

load provided it was symmetric. Also that year, Hoff and. Bruce $2j
looked at this same static problem, with similar results, and. a1so

approached the second. area of'nterest, that of dynamic response

analysis. With the use of energy contours, a closed-form solution was

derived f'r critical buckling loads of shs11ow arches under the presence

of both step loadings of infinite duration and impulsive loadings.



Since that time most research has 'been directed toward the dynamic

analysis trying to define what is dynamic buckling or will a sudden3y

applied load, which is less than the critical static loadd cause

h kl dd ~ ~Hh * [3J 1966 ''g t 7-'6 kl dt d *6&1

arches by solving the nonlinear equations of motion numerically, using

the first six modes snd an approximate Galerkin technique. Results were

presented. for step and impulsive dynamic loadings. Lock [4,5] investi-

gated dynamic buckling for both sinusoidal uniform loadings and. pulse

loadings, using an analysis in which the arch displacement was repre-

sented by a finite series of normal modes (two-mode analysis). Lock

also began to look at two different instabilities associated. with dynamic

response, those of symmetric and asymmetric, along with the effect of

damping on the dynamic ana3ysis. Fu1ton and Barton [6], in a paper

presented. in 19679 used a finite difference approximation of the govern-

ing equations which gave them an H-mode solution9 where N was the

number of interior difference stations. The equations of motion were

solved. numericaljy and both symmetric and. asymmetric dynamic instabili-

ties studied9 including the suggestion for a new asymmetric buckling

't ' Mthhl [7j, '967, d'd kht 'l th t t'

dynamic 'buckling using a numerical approach, but was not able to

correlate the deflected shapes of the static analysis to actual buckled.

shapes. Rsu [16,17] looked at dynamic stability of shallow sinusoidal

arches for both impulsive loadings and timewise step loadings and pre-

sented a sufficiency criterion of dynamic stability against snap-through.

Schre er and Masur [12] used an energy approach to study static buckling



of clamped. shallow circular arches under uniform loadings and obtained.

results similar to flj . Other work in the area of stability of shallow

I I I pl'd.bl H ''2 [18) ~Ch

Bubcock $8j, Smitses P.Oj, ~Cheun t9$ , snd VshicLi Illj .

As msy 'be observed., there has been considerable research accomp-

lished in the area of snap-buckling of shallow structures, both static

and dynamic, 'but there does not seem to be any established. criteria for

defining the other instabilities associated with these structures.

There is not even a consistent definition of dynamic buckling availa'ble.

Those papers that approached the problem using a Fourier series or an

energy approach have limitations in two areas. One is the number of

modes possible in the solution~ and second is the need for a new analysis

whenever a .parameter is to be changed. The energy approach also requires

a static solution for use in obtaining dynamic results, and there is no

consistent method. of solution for both static and. dynamic buckling.

1.3

The equations of motion of the shallow arch are not as complicated

or hard to work with as those of~ ssy~ a curved panel or shell. There-

fore, the she11ow arch, which possesses similar nonlinear response

characteristics of the more complicated curved structures, will be

adopted as the representative shallow curved. structure used in this

Study

The object of this study is to investigate the stability of

shallow arches subjected to various static and dynamic loadings. To

facilitate the study, primary emphasis will be placed, on numerical



solutions of the governing differentis1 equation to help develop snd

eyaluate numerical procedures necessary to obtain criteria for identi-

fying instabilities associated with both static and. dynamic 'buckling.

This,also'allows an essentially N-mode solution, where N is the number

of nodes used to represent the structure in the finite difference

approximation of the governing equation. Critical static buckling

loads, along with those instabilities associated. with dynamic response,

will be studied. for the gener'sl arch. Results obtained will be com-

pared with those obtained by previous investigators. Also, the effect

of various parameters on static and dynamic buckling will be studied,.

The initial shape of'he arch will be sinusoids1 for all cases studied.

because, according to
I ij, the initial shape has very

little effect on buckling characteristics provided. it is shallow.

Varying arch rises will be observed. for the case of pinned,-pinned

supports. The loading conditions will be those of a uniform load of

infinite duration for both the static and dynamic cases, and a purely

impulsive load f'r the dynamic case. The dynamic response will be

observed. with viscous damping present and. also under the influence of

a preload.



2 ~ EQUATIONS

2.1 Derivation of Governi E uation

Consider a shallow arch (fig. 1) of span L and rise H subjected

to some time-dependent loading. Two methods are available for obtain-

ing'he governing differential equation of motion: An equilibrium

method which sums forces and. moments acting on a representative element

of length dx~ or an energy method, which equates the first variation of

the total potential energy of the element dx to zero. The equilibrium

,. method i'..used. in this analysis

Referring to figure 2 and. summing moments, the following equation

is obtained.:

M + p(x~t){dx) — + (V + — dx dx - M - — dxcM

(2) ( a. ) CX

+ m —{dx) — + C ~(dx) — = O

Assuming higher degree terms are approximately zero, the above

equation reduces to

(2)

Summing the vertical f'orces, including inertia and damping terms,

the following equation is obtained.



/~o &we mAr hw hv
V - Nx — + — )+ P(x,t)dx - — - C — + V+ — dx

(cx cbL) 't2 ht cx

I 2
+N — + — +(— + —)dx = 0

Again equating higher degree terms to zero reduces equation (3) to

3 w hw 3V /cPwo cPw)
p(x~t)dx - m — dx - C — dx + ~ dx + N

(
— + z)dx = 0 (4)

gt2 Qt dx x Qx2 cxx

From equation (2),

dV &II b w

clx cx2 (5)

Equation (6) results from substituting equation (5) into

equation (4 ), snd, is the nonlinear differential equation of'otion

used. in this

study'EI~+N

a4w bw 92w+p(xt) - C — =m-
ht at2 (6)

N is the axial thrust of the arch obtained from the relationship

between the displacement and, axial force

NxLX

AE
(7)



or rearranging

AEA
N

X
(8)

where A is the axial shortening of the arch as it deflects and is

equal to

2
A= — 2~~+

Substituting equation (9) into equation (8), the following

equation is obtained for N .

(10)

In equations (6) and (10), wo is the initial shape~ w i.s the dis-

placement measured. from wo, E is Young's modulue, I the moment of

inertia, p(x,t) the time-dependent applied loading, C the damping

coefficient, m the mass, A the cross-sectional area, and L the

span of the arch.

2.2 Nondimensionalization

,Introduce the following nondimensional variables:

3' 0
w 'tp A p w wk

2mw
'

where ',i2/El&1/2
~
—

) ~ k = radius of gYration
~ I,)( J



Equations (6) and {10) then take the form

o B Bw B
2-

0+ w + (E r) w

BE2 BE2 Bz 'W2

BoB
elk 35 (I.2)

where

L4
q,(E T) = p(x t) ~x EIk

"xL
2EI

and

2.5 Finite Difference Re resentation

The central finite difference approximations used in this study

are

1+1 i-l

~w 1 2W +W+1 (I))

4-3
— wi 2

- 4wi 1 + 6wi - 4wi+I + wi+2
BE i
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where i is the ith finite difference station and 6 the station

spacing. If the spatial derivatives of equations (11) and (12) are

replaced by the appropriate finite difference approximationsp equa-

tion (11) is reduced. to a set of coupled., nonlinear, ordinary differen-

tial equations in time of the form

d wi dwi
2-— + a, — + f(w ,w 2~ ~ ~ ~ pw 2pA,N ) = q0 i— i+ x o (14)

(i = lp2p...pN)

and equation (12) becomes

N f '(wept ipwj+ipk)dh (i 1p2p pN) (15)
2s o

where N equals the number of interior finite difference stations

snd 4 the spacing.

2.4 'oadi Conditions

The primary loading conditions are those of a uniform step

pressure of infinite duration and a uniform impulsive load. The

uniform step pressure of infinite duration is dei'ined as

(z.6)

where H(v) is the heaviside step function and q the magnitude of

the load. The impulsive load is defined as

( t+E
Impulse = / F dt



Introducing the delta function 5(t - H) which has the following

properties

d(t-q) =O for all t jj q

f g(t - 7])d.t = 1
0

0& 7)&~

f f(t)g(t - n)dt = f(n) O & n &
0

and the fact that F dt = N dv, it can be seen that at time t = q

the impulse acting on the arch will result in a sudden change in the

velocity with essentially zero displacement. Therefore, impulsive

loadings have the following initial conditions:

'2.5

The initial shape of the arch will be sinusoidal

w = e sin E (2O)

whe're

H
e =—

h
(21)



2.,6 3ounda Condition

The, boundary condition corresponding to simple supports is

2
w

- w(o,v) = —(0,~)
/~2

= 0

(22)

= 0

In finite difference notation the boundary condition for simple

supports is

0

(22a)

n+1

wn+2
w

n

This will be the onjy boundary condition observed,



3 ~ NUMERICAL PROCEDURE

3 ' Static Case

. By taking equation (11) and reducing it to the static case by

disregarding the time-dependent terms and then expanding in terms of

the finite difference approximations of equation (13), the following

static equation of motion is obtained:

+ N+ ) ~ 1 + (6 + 2N+ ) ~ - (t + N

1+2 (23)

where primes denote differentiation with respect to 5 and N is

the nondimensional axial thrust which has the following form upon

substitution of'he finite difference approximations

N = — — (wo. - wo. )(will - wi 1)
0

+ -(will - wi 1) dE
2

(24 )

Equations (23) and (24) are now left with only two variables, q.1

and w , and, the response of the arch is determined by either of two

methods. In the numerical procedure, integration with respect to the

spatial Variable in equation (24 ) is performed using Simpson's rule

Also, a direct iteration approach, such as assuming a load and calcu-

lating a deflection will not yield. satisfactory load-deflection curves

13



'because of the multiple roots associated with the governing equations

under certain loading conditions. However, a method is developed in

this study whereby all roots of the governing equations are determined.

The first method is limited to symmetric displacements 'by working

with the left-hand side of the arch, setting the right-hand side

displacements and, loads equal to the corresponding ones on the left.
Portions of the load-deflection curve are obtained iteratively by

assuming initial displacements at each node (w ) and. solving equa-

tions (23) and (24 ) for the nodal loads (qi). An average nodal load

is then determined. by summing all the nodal loads snd dividing by the

number of nodes. This average load is then compared with each nodal

load (q.) and adjustments made to the corresponding nodal. displacements

(wi) according to the following relationship:

i wi+1w. = w. + ABS — x — x facto1 1 wi
(25)

where the + sign would, depend, on whether the load needed to be increased

or decreased, and. factor is a constant that may be changed. to help con-

vergence. On the next iteration a new average load is determined and

adjustments made to the displacements as above. This procedure con-

tinues until all nodal loads (qi) converge to the average load pertaining

to that iteration. It is interesting to note that an initial load. on

which to converge is never specified, onjy an initial displacement. If

a sinusoidal load. is desired, then the average load is used. as a q

from which the other q. are determined and. comparisons made as in thei
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above procedure. This method will be referred to hereafter as the

"assumed displacement method. "

The second method. of analysis is not restricted to symmetric shapes

snd again uses equation (25 ) to form a set of coupled, nonlinear,

algebraic equations in terms of the wi's~ which are solved using a

Newton-Raphson technique as presented. in reference
I 15] , and dis-

cussed,.below. Assume

z (eI~~
&

q. (25)~ ~ (26)

Using the recurrence formulas of reference $15j , the following are

obtained.

5 bw(5) bw(4) +2 'ow(N + 2)

hf2.J+
5 Xr(5)

(27)

N ~

a ~+
5 W(5)
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where la 3 is the vector of correction factors( i)

a = w(i). - w(i). (j = 1,2,...)j+I (28)

and. i equs1s the ith difference station and j equa1s the jth

iteration.

In matrix notation, equations (27) are

&fan Bfl hfI
ow(3) bw(4) bw(N + 2)

w(s)
f2

(29)

bw(& ) Xr(N + 2) N

By assuming an initial load q. and a deflected. shape w.,i
equations (29) msy be solved for the (a) vector simultaneous3y

which gives the correction factors for the displacements wi

In the previous method, convergence of nods1 loads was required..

In this method, convergence of nodal displacements is required for a

given loading. This method, which is not restricted to symmetric

displacements~ wild. be referred to as the "assumed load method."

Appendix 2 contains a Fortran program of this method..
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22 Cm
'

It is assumed. that at some time xn the acceleration, velocity,

and displacements of the finite difference stations represented in

equation. (1$ ) are knownx but nothing is known about the stations at

time xn+I. Hy the u.se of Newmark's beta method, presented in

reference (14j and. discussed here, an acceleration at time m+1 is

assumed and velocities and. displacements cs1culated from the following

relationships:

+1 2 n n+1
h

wn+1 = w. + vnh + — - » (an + &++I)
!1

)

(SC)

where h is the time interval and 5 a multivalued constant, which

descri'bes the variation in acceleration during the time interval. For

the purpose of this study, p will be chosen equs1 to 1/6 which

corresponds to a linear variation of the accelex'ation during the time

interval. Convergence and. stability criteria are investigated by the

author of reference [lhj and it is detexmined. that fox a 9 = 1/6 if
the time interval is chosen for convergence, then the numerical pro-

cedure is always stable. To detexmine what the required time interval

is, it will be necessary to look at the period.s corresponding to the

N-modes of the arch where N is the number of difference stations.

The nondimensional frequency is defined. as

T = -2 (n = 1,2, ~ ,N)23t
n
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where the fundamental frequency corresponds to an n = 1. It is

quite obvious that if convergence is established for the highest

possible mode, then convergence is established for all modes of the

system. Therefore, since this study is being made with 13 difference

stations and. the fact, that h/'I & 0.)89 (ref.[14]), the time inter-

val h used in this study will be 0.01, which satisfies all convergence

criteria for all of the n-modes of the arch.

Consider now the numerical iterative procedure used.. For a given

load. and an assumed initial value of the acceleration at the (n+1)

time step, the velocity and displacements are calculated. by use of

equation ()0). These values of velocity and. displacement are then used

in equation (14 ) to calculate an acceleration. A comparison is then

made between the assumed and calculated accelerations. If it is within

set tolerance limits, the process is complete for that time step;

if the tolerance is not satisfied, then the calculated. acceleration is

used, as the new assumed. acceleration and the process repeated within

that time step until convergence is attained. The time is then incre-

mented and. the above procedure repeated. At convergence~ the accel-

eration, velocity, and displacements are known for that given loading

condition and that particular point in time from which response plots

msy 'be made. The symmetric response component is defined in terms of

an average displacement parameter

wS
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and the antisymmetric response component, w , is defined as the

algebraic difference of the displacements at the quarter points normal-

ized with respect, to the corresponding w . Normally~ some asymmetry

in the initial conditions is required to introduce sntisymmetric com-

ponents in the response. In this study, computer round-off errors

are allowed to perform this fcnction.

The nondimensione1 damping parameter in equation (11) is defined

C
K = 2X

IIKD(

Cc, the critical damping factor, is defined as

2srco

therefore, 'A is actually the damping ratio

C

C
(35 )

snd i'or zero damping has a value of zero. For finite damping to be

included in the numerical analysis, A will have a va1ue equa1 to

some percentage of the critical damping and is accomplished, by simply

changing an input parameter.

3.3 Frestress

When a prestress snajysis is desired., the static and dynamic cases

are merged. together in the following manner: Static displacements

corresponding to prestress or preload conditions are determined from

a static anajysis as described in Section 3.1. A dynamic analysis is
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then made as described in Section 3.2 using the displacements calculated.

in the static ans1ysis as initial displacements rather than the previous

condition oi'ero displacements initial+.



4 ~ STABILITY CRITERIA

4.1 General

Previous investigators have used the general criteria for symmetric

'buckling used in this study and discussed below. Limited use has been

made of the other criteria, especially that for the dynamic asymmetric

'buckling. All criteria discussed. below was confirmed. by this study

before being applied.

Consider the static load deflection curve of figure 3. As the

uniform load. on the arch is increased, the displacement follows the

almost linear portion of the curve from zero to A, provided the

initial shape of the arch is symmetric. At point A, any finite increase

in the load results in a large displacement to point C or, by definition,

snap-buckling occurs. This is the criterion used to determine static
symmetric buckling and the load. corresponding to point A of figure 3 is

called the critical static symmetric load.

Static A etric

The static symmetric criterion for buckling requires the arch to

be initialjy symmetric. In actual structures this is rarely true and

an analysis is necessary which includes initial imperfections in the

arch geometry. Consider figure 0 which is a static load deflection

curve if the initial shape is given some imperfection of the second.

mode. From zero to A, the arch may converge to either a symmetric

shape (represented. by the line OA) or an asymmetric shape (represented



by the line AB). For a load above point A~ snap-through corresponding

to point C is the only possible configuration with imperfections

present in the initial geometry, Therefore, the load corresponding

to point A is called the critics1 static antisymmetric buckling load.

If the displacement response of the arch is plotted as a function

of time, as in figure 5, it is observed that for two different load

levels there is a large discrepancy in peak response during the first
period of oscillation. Figure 6 is a plot of these peak displacements

as a function of loading and clearly shows a jump discontinuity or

snap-through. This large variation in peak vs1ues of the symmetric

response during the first period of oscillation is the criterion used

to obtain the critical dynamic symmetric buckling load.. If the

response of the arch under the critical symmetric buckling load is

output on a cathode ray tube display unit, the arch configurations in

figure 7 are observed. as the arch buckles. A complete set of buckling

configurations is shown in Appendix 1. Note the symmetry of the arch

during snap-through.

4.5 smic Del ed Sna i
Consider the response plots shown in figure 8 which are for a

load less than the critical load required for dynamic symmetric snap-

through. 33uring the first few cycles of oscillation the symmetric

component of response is harmonic with amplitude much less than the

arch rise and the asymmetric component is essentially zero. However,

after severs1 cycles of oscillation, snap-through again occurs snd. is



due to the large and rapid growth in the asymmetric component. This

type of 'buckling is due to the coupling between the symmetric and.

asymmetric components of response and referred. to as dynamic delayed

snapping. The criterion for obtaining dynamic delayed. snapping loads

is the same as that used for dynamic symmetric with the exception that

it will occur sometime subsequent to the first period of oscillation.

The arch response again observed using the cathode rsy tube is quite

different from the response of the symmetric case. The arch oscillates

in a symmetric mode for a number of cycles~ or until the asymmetric

component 'begins to grow (fig. 8), at which time the arch response

becomes asymmetric. Figure 9 shows various arch shapes as snap-through

occurs~ while Appendix 1 contains a complete set of configurations

observed during buckling. The coupling of the modes is quite obvious

when observed this wsy.

4.6

For certain conditions of'rch geometry and loading~ the asymmetric

component of response grows appreciably'ithout any noticeable growth

in the symmetric component. This seems to point to the fact that cri-

teria based on the symmetric component are not sufficient to label the

instabilities of the arch under dynamic loading and a criterion based.

on the asymmetric component of'esponse is needed. Since in, this study

the loading is symmetric, computer round-off is used to initiate the

growth in the asymmetric component. Consider figure 10 which shows the

peak amplitude of the asymmetric component as a function of loading for

nondimensional response times of 20~ 50~ and 200. For sufficiently



small loads, no growth occurs. Above some critics1 value, however,

growth initiates immediatejy after load application and grows to some

limiting vs1ue with time. The load at which growth in the asymmetric

component is initiated is used. as the criterion for defining the

critical dynamic antisymmetric buckling load. This same criterion was

suggested in an earlier study L6] .



5. RESULTS AND DISCUSSION

5.1 General

Initis1 numerics1 computation was accomplished using an IBM 1130

computing system because its interaction capabilities were vexy useful

during preliminary studies. However, due to the volume of data output

and the long response times required for portions of the dynamic

analysis, a high-speed. CDC 6600 computing system was used, to obtain

final instability data.

5.2 Static Case

Consider the static stability curve of figure 11 for sn arch rise

of e = 8. The equilibrium points defining the five branches of the

curve are determined by assuming an equilibrium configuration corre-

sponding to a given applied load snd converge to the cox'rect shape

using the Newton-Raphson procedure described earlier in the "assumed.

load method. "

Specifically, the stable symmetric 'branch OAR is determined

directly by assuming an initial shape that is symmetric and then using

the last converged, shape as the new assumed shape while incrementing

the load. Point 3, corresponding to a load of P = 31.9~ is the

critics1 symmetric buckling load as defined by criterion previousjy

discussed. Once snap-buckling has occurred, the snapped equilibrium

branch HGFE is determined as above 'by assuming the converged shape as

the new assumed shape and. then decrementing the load. At point F, the

arch will snap back to the original upright position. The determination
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of the unstable branches AG, CD, and BE requ.ires a slight mod.ification

in the direct pxocedure, For branch AG, various amounts of the second.

mode, or first antisymmetric mode, are assumed in the initial shape and

the Newton-Raphson procedure used to converge to the correct, shape. At,

some point in the loading, the assumed. initial asymmetry is such that

convergence is to the unsta'ble asymmetric 'branch AG. This asymmetric

shape is then assumed as the new initial shape and the load. incx'emented.

and/or decremented as required to complete the branch. Point A,

corx'esponding to a load of P = 22.24, is the critica1 asymmetric

buckling load as defined by criterion. Since branches AG and OA are

nearly linear, their intersection point is easily determined. numerically

once two points on each branch are determined. This intersection point

is defined as the critical asymmetric load. The unstable symmetric

branches BE and CD ax'e obtained in a manner similax'o the asymmetric

branch AG, only now the initial shape has various combinations of the

fixst and third modes present. The critical symmetric loads and

equilibrium points on branches OAB and BE are s1so determined using

the "assumed displacement method." Results are identice1 to those

obtained using the "assumed load method," and provide an excellent

check on the numerical process.

Critics1 static buckling loads for various arch geometries,

determined. in the same manner as those for the arch rise of e = B,

are given in table 1 along with the critical loads as determined from

reference Llj . The discrepancy in the critical symmetric loads is

explained. by again considering figure 11. The dotted portion of the
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unstable symmetxic branch CD is assumed, using the critical load cLeter-

mined from reference tll which uses a single-term approximation for the

deflected shape. In this study the deflected, shape has 15 mocles ancl,

numerica13y5 the arch buckles prior to reaching the dotted. portion.

The five equilibrium paths, two stable ancl thxee unstable, are also

observed in reference t8 ] .

5.5 m
'

Dynamic buckling loads, corresponding to three modes of dynamic

instability, are plotted as a function of axch rise for unifoxm loacls

in figure 12 encl fox'mpulsive loacls in figure 13. Also inclucLed. in

each figure is a curve representing the static buckling loacls determined.

previously in this study.

Considering figures 12 and 135 the curves for symmetric buckling

inclicate the significant'arger loads recLuired for snapping by a

purely symmetric xesponse. The effect of antisymmetric modes in the

response is indicated by the decrease in cxitical loads for delayed.

snapping. The sta'bility curves for asymmetric buckling diffex markedly

from the curves corresponding to snap-buckling.

Asymmetric buckling load.s are consistently lower than the other

and., in fact, tend. toward. zero in two places along the boundaries.

However, these lower 'boundaries represent only the initiation of growth

in the antisymmetric response ancl not snap-through. Nevertheless,

asymmetric buckling should not be disregarded. Growth in the asymmetric

response is sufficient for displacements to achieve a magnitude on the

ordex'f 20 percent of the arch rise s1ong the lower 'bounclaries of the



asymmetric buckling region and, just priox to delayed snappingx the

magnitude of the asymmetric response is of the order of the arch rise.

The results show the somewhat similar buckling response observed

for the uniformly distributed step load and. the uniformly distributed

impulse. The values of ax'ch rise for which the asymmetric buckling

resistance appxoaches zero ax'e identical f'r the two loading conditions.

However, asymmetric buckling for the uniform step load is only defined.

for values of e less than approximately 11, while asymmetric buckling

associated. with the unifoxm impulsive load was present for all values

of arch rise. Figures 12 and. 13 also show that for the larger values

of arch rise, critical step loads for delayed snapping are only slightly

less than the static snap-buckling loads, while critical impulsive loads

required. for delayed snapping are significant+ less.

When damping is xetained in the analysis the criteria for identi-

fying the three modes of instability remain valid.. As would be

expected, the influence of clamping has negligible effect on the critical
symmetxic buckling loads for both of the loading conditions studied.

However, sta'bility boundaries defined by delayed. snapping and asymmetric

'buckling are modified appreciably by the effects of damping.

Critical uniform step loads for asymmetxic buckling are plotted

in figure 14 as a function of arch rise for damping ratios corre-

sponding to zero and. 1 percent of critical clamping. As indicated, the

critical loads are increased with the addition of damping and the

asymmetric growth is correspondingly reduced& particularly in the two

regions of low sta'bility resistance. Numerical results indicate that
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damping ratios a'bove approximately 5 percent are sufficient to eliminate

the asymmetric buckling mode entirely. The presence of damping also

serves to appreciably increase critica1 uniform step loads for delayed

snapping as indicated in figure 15. For sn arch rise greater than

approximately e = 9, the critical uniform step load for delayed.

snapping is the same as the static buckling load for any finite vs1ue

of damping. A similar o'bservation was reported. in [18] .

For an arch subjected to a uniform impulse load, the presence of

damping had noticeable effect on1y on the critical loads for delayed

snapping; in fact, the delayed snapping form of dynamic buckling is

completely eliminated with damping present. Critical impulsive loads

for asymmetric buckling are increased slightly for finite amounts of

damping.

The effect of initial static prestress on critical symmetric loads

is shown in figure 16. As expected, for a prestress load of zero the

critica1 symmetric load is that given in table 2, and for a prestress

load equal to the critical static load the critical symmetric load is

zero. For sll va1ues of prestress between these two extremes, the

critical symmetric load is linearly related to the level of prestress.

A similar result is observed in reference (77 .



The static and dynamic buckling behavior of a shallow sinusoids1

arch with pinned end.s is studied. The losdings consid.ered consist of

a uniformly distributed step load of infinite duration and. a purely

impulsive load. The effects of finite damping and. static prestress are

also observed.

A method is devised whereby static equilibrium branches of the load.

displacement curve are determined numerically using the same discrete

model adopted for the dynamic ana1ysis. Specifically, the static

differential equation is reduced to a set of nonlinear algebraic equa-

tions using finite difference approximations and then solved using a

Newton-Raphson procedure. Critical static loads for symmetric and

asymmetric buckling are determined from criteria based on character-

istics in the equilibrium branches.

The dynamic analysis consists of a direct numerics1 integration of

the nonlinear equations of motion obtained from a finite difference

approximation. Critical symmetric, asymmetric, snd delayed snapping

loads, for both loading conditions, are determined from criteria based

on characteristics in the time response of the arch. Results indicate

somewhat similar buckling response for both loading conditions. How-

ever, critical impulsive load.s are always less than corresponding

critica1 step loads. Regions of extremely low asymmetric step buckling

loads correspond identicaUy to regions of extremely low asymmetric

impulse buckling loads.

$0



The influence of damping on critical load.s is studied for both step

and. impulsive loads. Rufficient damping markedly reduces those regions

of asymmetric step buckling where the critical load approaches zero but

has little effect on those regions defined. for asymmetric impulsive

buckling. For finite values of damping, the critical step load for

delayed snapping is the same as the static snapping load for sufficiently

large arch rises. For the impulse loading, damping completely eliminates

d.eleyed snapping, and. the only two instability mechanisms present are

the symmetric and asymmetric.

Results f'r a structure with prescribed prestress subjected to a

suddenly applied dynamic load indicate a linear relationship between

the critical dynamic load and the level of prestress.
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TABLZ 1. - CRITICAL STATIC LOADS

~lh * t

5. 0
55
6.o
6.5
7 ~ 0
7 5
B.o
8.5
9.0
95

10. 0
10. 5
11. 0
11 5
12. 0

~nmetric

Present Ref. 1

9. oo 8.48
12.00 11.20
15.oo 14..48
18.00 18.39
22 00 22.98
26.00 28.31
29 00 34 43
32. oo 41.41
36.00 49.29
39.00 58 13
42.oo 68.oo
4.5.oo 78 94
48.0o 91 o2
50.00 104.28
53 00 118.80
56.oo 134.61

R~lt "

P * t ~RP It

10. 99
13.16 13,21
15.14 15. 24
16.97
18.76 19,03
20. 53 20. 83
22.24 22.60

24.34
25.63 26.o6
27 '7 27.76
28.92 29.44
30.57 31.12
32.18 32.78
33.81 34 43

36.o8



TABLE 2.- CRITICAL DYNAMIC LOADS - 0 PERCENT DAMPING

~AA A t ~etric ~At Delayed snapping

5. 0
55
6.o
6.5
7. 0
7 5
B.o
8.5
9. 0
95

10. 0
10. 5
11. 0
11 '
12 '

6.oo 6.8o
B.oo B.oo

11.00 9.20
13.00 10.80
16.00 12.20
19.00 13.60
22 F 00 15.00
25.00 16.60
28.00 18.20
31 00 19.60
34.00 21.20
37.00 23.00
40. 00 24 ~ 60
43. oo 26.4o
46. 00 28. 00
49.00 29.80

5 ~ 0 - D.S.
5.0 - D.S.
BO-D.S.
9.0 - D.S.
9.0 D. S.
9.0 - D.S.
90-D.S.
8.0 - D.S.
BO-D.S.
7.0 - D.S.

4.0 - 19.0
2 ~ 0 - 11.0

8.
6.6

5 2
4.6
4.o
3.0
2.6
2 ~

2 ~

1.
0
0
1.

8.2
95

11. 1
12.6
14.1
15 7
17 5
18.8
2o.4

27
30 ~

33. 8
35 6
37 1

10 ~

11 7
12 5
13.4
14. 5
15 3
16.4
17 '
19. 0
20.
20.
22.

D. S. - Delayed. Snapping



Symmetric resjtoaee comfleirations

,1 21

1 22

23

1 21

23



Asymmetric response configurations



APPENDIX 2

Fortran IV program for static analysis

C
C'

C
C

C
C

C
C

C

PROGRAM STBUCKI INPUT ~ (R)TPUT eTAP~ INPUT' TAPEdeOUTPUT 1

THIS IS A FORTRAN IV PROGRAH PRESEN)'LY
SEI'P TO CALCULATE CRITICAL 5'YHHETRIC
AND ASYMMETRIC BUCKLING LOADS OF
SHALLOW ARCHES USING A NEWTON-RAPHSON
PROCEDURE ~ WITH SLIGHT MODIFICATION
IT HAY ALSO BE USED TO DETERMINE
EQUILIBRIUM PATHS OF THE LOAD
DEFLECTION CURVE

INTEGER OUI
REAL NX
EXTERNAL FUNCT+FUNCI
DIMENSION NAME(4)
DIMENSION EQUA(151
DIMENSION WOXX(151 ~ WO(15) ~ Fill ~ ill eG(ll ~ 11
DIHENS ICN IPIVOT(11)
COMMON Pl eNXiW(15) ~ WX(15)eWOX(151 ~ Q(15)

NAME ~ TITLE
E ARCH RI SE
EN NUMBER OF INTERIOR FINITE DIFFERENCE STATIONS
QL INITIAL LOAD
0 INC LOAD INCREMENI
QF = FINAL LOAD
EPS1 TOLERANCE FACTOR
S20 BEGINNING FACTOR FOR ANT ISYHHETRIC COHPONENT
SZE = END FACTOR FOR ANT I SYMMETRIC COMPONENT
S2(NC m INCREHENT FOR ANT)SYMMETRIC FAC'TOR
538 ~ BEGINNING FACT CR FOR THIRD MODE COMPONENT
33E ~ END FACTOR FOR THIRD HODE COMPONENT
S3UNC = INCREMENT FOR THIRD MODE FAC)'OR
102 ~ 1 DECREHENT THE LOAD
ID2 = 2 INCREHENT THE LOAD
l05 = I NORMAL SOLUTION
105 = 2 SYHMETRIC BUCKLING LOAD ONLY
ID6 ~ 1 INCREMENT ON THIRD MODE COMPONENT
ID6 ~ 2 INCREHENT ON ANT(SYMMETRIC COMPONENT

READ 500~NAME
500 FORMAT(AA)0)



PRINT 82

BYNAME

82 FORMAT( IHliAA10)
CON = 0 ~

ID2 = 2
ID3 = 1

ID5 = 1
ID6 = 2
READ 1 E EN QL QINC EPSI QF
READ I iSZBiSZE ~ SZINC e S38 ~ S3E ~ S3 INC

1 FORMAT(6FIO 5)
C
C INITIALIZATION OF PROGRAM PARAMETERS
C

N= EN
PI = 3 1815926536
DX = P I /(EN-I ~ )

ICR = ( N+3) /2
16 CONT'INUE

XIS = 0 ~

X2S = 0 ~

YIS = 0 ~

YZS = 0
XIAS = 0
X2AS = 0
YIAS = 0
Y2AS = 0.
IBIFIR = I
IWAV = 0
52= 0
53= 0,

35 CONTINUE
DI SL = 0J= N+1
DO 13 ( = Z~J
EQUA( I ) = 0 ~

WO(I) = 0
WOX( I) = 0 ~

WOXX ( I) = 0 ~

Q(I)=QL
WX( I) = 0 ~

13 W(I) = C

DO 17 I=i'll
DO 17 P=I ~ ll



4o

17 F(leM) = 0 ~

00 18 I=l ~ ll
18 G( I I = C

C

C BOUNCARY CONDII'IONS
C

W(l) = -W(3)
W(15) = -W()3)

C

C INITIAL GECMETRY
C

00 2 I = 2 '
AI=I-2
WO( I) = -E4SIN(DX4AI)
WOX( I ) = -E4COS(DX4AI)
WOXX( I ) = -WO( I )
W( I ) = — COMAWO( I )

2 CONTINUE
61 CONTINUE

IF(Q( ICR)-QF) 80s80s81
81 S38 = 538 4 S3(NC

S28 = S28 + S2INC
GO TO 35

80 CONTINUE
40 CONTINUE

C

C BEGIN hEWTON-RAPHSON PROC(CURE
C

W(1) = -W(3)
W(N+2) = -W(N)
DO 3 I = 2tJ

3 WX( I ) = ( I /(2 40X) ) 4(-W( I-1)+W( I+I ) )
C

C CALCULATICN OF NX
C

CALL SIMP(DX ~ N ~

FUNCTUS

NX)
C
C MATRIX SETUP FOR SOLUTICN
C

CALL MATSI(PI+NX ~ DXiWtWOX ~ WOXXtF ~ G+0)
C

C SOI.UT(0h OF MATRIX EQUAT ICNS
C



CALL S(MEQ(F ~ 11 ~ G 1 ~ OETERM IPIVO)' ll ~ ISCALE)

TOLERANCE CHECK

DOG Il = 1 ~ 11
A = ABS(G(II ~ 1))
IF(A-EPSI) Be 8 ~ 9

CORRECTION OF ASSUMED DEFLECTED SHAPE

9 DO 11 I=l ~ 11
W(IF2) = W(IF2)FG(I )

11 CONTINUE
GO TO 40

8 CONTINUE

NEWTON-RAPHSON SOLUTICN COMPLETE FOR
GIVEN LOAD 4ND INITIAL GECMETRY

W(1) = -W(3I
W(N+2) = -W(N)

CALCULATION OF 4VERAGE DEFLECTION

C4LL SIMPIDX ~ NtFUNClr WAV)
40 = 0( ICR)
WAY = WAVn I

THE FOLLOWING PART OF THE PROGRAM
DETERMINES WHICH EOUILBRIUM BRANCH
THE SOLUTION HAS CONVERGED ON
AFTER TWO SOLUTIONS HAVE BEEN
OBTAINED FOR THE ASYMMETRIC ER4NCH
THE PROGRAM THEN PROCEEDS TO FINO
THE CR(T ICAL SYMMETRIC LOAD WITHOUT
STORING ANYMORE 4SYMME)'RIC PO(NTS

IF(IWAV)(2tAe12
4 IF(WAV GT' 34E) GO TO 15

WAVB WAV

IWAV = 1
12 CONTINUE

IF(ABS(WAVB-WAV) GT 10 ~ E-A ANO ~ WAV LT I ~ 34E ~ AND IBIFIR LT 3)



))2

I GO TO 14
GO TO 24

14 IF( IBIFIR EQ I) GO TO 19
X25 = WAVB
Y2S = Q(ICR)
X2AS = WAV

YZAS = Q(ICR)
GO TO 20

19 XIS = WAVB
YIS = Q(ICR)
X1AS = WAV

Y1AS = C( ICR)
20 CONTINUE

IBIFIR = IBIFIR + I
24 CDNTINUE

GO TO (50 '1) ~ [05
50 IF(SZ)52 ~ 53152
53 IF( S3l52 ~ 54 '2
54 SI = W( ICR)
52 CONTINUE

GO TO (64i65) ~ [06
65 IF(S2-S2E)55 '6+56
55 S2 = 52 + 52(NC

S3 = S38
GO TO 66

64 IF(S3-S3E)63 '6 '6
63 S3 = 53 + S3INC

S2 = S28
66 DO 57 I = F 14

AI = 1-2
W(I)=S[WSIN(AI40X)FS245[N(2,4AI40X)FS34SIN(3.4A[4DX)

57 CONTINUE
GO TC 61

56 DO 58 I = 2 AD [4
AI = [-2
W( I I = S[4S [N(A [4DX)

58 CONTINUE
52= 0
53= 0
[WAV = 0

51 CONTINUE
GO TO (30 '9) ~ ID2

29 DO 5 [=2 AD [4



4y

5 Qll I ~ Gill + QINC
GO TO 10

30 00 31 I = 2+14
31 Qll I = Qt II - QINC
10 CONTINUE

GO TO 61
15 CONTINUE

C

C OUTPUT
C

IFIX15,EQ 0 ~ OR ~ X2S ~ EQ,O I GO TO 22

CALCULATION OF CRIT ICAL ASYMMETRIC
LOAO FROM THE THO POINTS OBTAINEO
ABOVE

A1S = Y25-V15
815 = X25-X ls
Cls = X254V15 — XISFY25
alas = v2as-vlas
81AS = XZAS-X1AS
Clas = X2ASWYIAS-XIA54Y2AS
QAS = ( a 1ASFC 1S-Clasaals I I ( A1A 54'8 15-B laseals)
PRINT 123 E ~ Qas QO

123 FORMAT(4 FOR AN ARCH RISE OF 4FS 14 THE CRITICAL ANTISYN LOAD IS 4
1F10 ~ 44 ANO THE CRI'I ICAL SYHM LOAO ls 4FB ~ 31

GO TO 23
22 PRINT 122 E ~ 00

122 FORMATIF FOR AN ARCH RISE OF 4F5 14 THE CRITICAL ANT ISYM LOAD ls U
INOEF INEO ANO THE CRITICAL SYMN LOAO IS 6FB ~ 3I

23 CONTINUEE~E+ 5
IFlE ~ GT 12 I STOP
GO TO 16



4)g

FUNCTION FUNCTII )

FUNCT IS USEO IN SIMP TO CRLCULATE
THE XXI AL FORCE NX

COMMON Pl ~ NX ~ N)15) ~ NXI)5) ~ NOX(15) 0115)
FUNCTUS t I ~ I)2 ~ RPI ) ) Rl 2oeNOXI )) RNX) I ) PNX) I ) PWXI I ) )
RETURN
ENO



FUNCT ION FUNC I I I I

FUNCI I 5 USEO IN 5 INP TO CALCULATE
AN AVERAGE CEFLECTION

CONNON Pl ~ NXeMI 15) sMXI 151 ~ NOXI 151 tOI 151
FUNC1 ~ XIII
RE I'URN
ENO



SUBROUTINE SIHPIH NefUNCT ~ ANS)
C

C THE SUBROUTINE SINP PROVIDES THE
C NUHER ICAL INTEGRATION TECHNIQUE
C

DIHENS ION Y)15)
N3 N+1
DO I I'~2tN3

1 Y( I)MFUKCTII)
ANS)~0 ~ 0
Dn 2 l=3 ~ Ne2

2 ANSI+ANSI+A PYl I )
N2=N I
ANS2=0 0
DO 3 I 0 ~ N2i2

3 ANS2~ANS2+2 ~ PYII)
ANS~H+&Y)2)+ANSI+ANS2tYIN3)I/3 ~

RETURN
END



SUBROUTINE MATSIIPI ~ NXsDX«WtMOXtWOXX ~ F ~ G&Q)

THE SUBROUTINE NATSI SETS UP 7HE
ENTIRE SET OF MATRIX EQUATIONS
NEEDED IN THE NEWTON-RAPHSON PROCEDURE

PNXI « PARTIAL OF NX WRT W(f)
F(l ~ J) = PARTIAL OF F(I) WRT M(J)

I «I ~ 2 ~ 3 ~ ~ N
J = 3 ~ 4e 5s ~ N+2

G(l ~ I) « -F(l)
REAL NX
DIMENSION M(15l ~ WOX(15) eMCXX(15) ~ CFH(15) ~ F(11 ~ 11) tGI 11 ~ I) tQ( 15)
DEL2 = OX»DX
CF1 = 4 ~ + NX»DEL2
CF2 = 6 ~ + 2 ~ »NX»'DEL2
CF3 = 5 ~ + 2»NX»DEL2
CF5 « NX»'DEL2»DEL2
CF7 « DEL2»(2 »'W(3)-W(4)-DEL2»WOXX(3))
CFMM DEL2»(-W(12)+2 ~ »W(13)-DEL2»MOXX(13) )

DO I I«3sll
CFM( I ) «OEL2»l-W( I )+2 ~ »W( I+I)-W( I+2)-OEL2»WOXX( I+I) )
CF9=1 /(6 ~ »'Pl I

CF10«1 ~ /I 3 ~ »Pl)
G(1 ~ I)« -(CF3»W(3)-CFI»W(4)+W(5) CF5»WOXX(3)-Q(3)»DEL2»»'2)
0( 2 ~ 1 ) -(-CF 1»W( 3) +CF 2»'W( 4)-CF I»'W( 5)»W I 6)-CF5»'WOXX(4 )-Q(4)»DEL2»»2

I)
G(3 ~ I) «-( W(3)-CFI»W(4)+CF2»W(5)-CFI»WI&)+M(7)-CF5»WOXX(5)-Q(5)»C

IEL2»»2)
G(4 I)«-(W(4)WFI»W(5)+CF2»'W(6)-CFI»W(7)+W(8)-CF5»'MOXX(6)-Q(6)»DEL

12»»2)
G(5 ~ I) -(W( 5)-CFI»'W l6)+CF2»M(7)-CFI»W(8)+W(9)-CF5»WOXXt 7) Q(7)»D

LEL2»»21
Gte, I& - -(W(e)-CFI»W(7)»CF2»W(e)-CFI»W(9)+W( 10)-CF5»MOXX(S)-C(8)»

1DEL2»»21
G(7 ~ I) -(W(7)-CF1»WIB)»CF2»M(9)-CFI»W(10)»W(11)-CF5»WOXX(9)-0('I)

l»DEL2»»2)

G(Gal &

« -()t(8)-CFI»'W(9)+CF2»W(10)-CFI»W(11)»W(12)-CF5»WOXX(10)-C(
110)*DEL2»»2)
G(9el) « -(M(9)-CFI»W(10)»CF2»W(11)-CF1»W(12)+W(13)-CF5»WOXX(11)-C

I ( I I I »0 EL 2»»2 )
G(10 ~ I) « -(W(10)-CFI»W(11)+CF2»M(12)-CFI»W(13)-CF5»'WOXX(12)-Q(12)



LPOEL2442)
0& 11 ~ I I -IWI11) CFLPM(12 I+tCF2-1 ~ )4M()3 }-CF56MOXX& 13) 0( L))PDEL2

&442)
PNX3 CF94(2,4(MOX(2}-WOX(4) )+I 3 4W(3)-M& 5) I /DX)
PNX6 CF)06&2.6WOX(3)-2.6WOX&5}+(2.6W(a)-W(e) )/DX)
PNX5 CF94(2 ~ 9(WOXI4) WAX&6) ) i (2 4M(5}-W( 3)-'M(7) )/DXI
PNX6 ~ CF(04(2 ~ 4(WOX(5} WOX(7} I+(2 ~ PM(6}-M(4)-M(SI I/OXI
PNX7 ~ CF94(2 ~ 4WOX(6}t(W(T) W(5))/OX}
PNXS~CFLOM(2 4&MOX(7) MOX&9) }+I 2 ~ PM(8}-M& 6}-M( 10} }/OX}
PNX9~CF94 l2 Pl}}OX't8 1-WOX I LOI )+(2 MMI 9}-W(7)-W(11 } )/DX)
PNXIO CF LOP(2.9(MOX(9)-MOX( } I ) ) )& 2.9M((0}-W& 8)-W& }2) ) /nx}
PNX11 CF94 &2.6&}}OXIIO}-MOX(12) ) i(2.4W& ll)-W(9)-MI13} }/OXI
PNX(2~CF}06(2o4(WOX(11} WOX(13) } & (2 ~ PM(12l-W(10) )/DX)
PHXL3~CF94(2 ~ P(MOX( 12)-WOX& L4) )+(3 ~ PM( 13)-Wl Ill ) /DX)
F I I ~ I }~CFTPPNX3+CF3
F I 2 ~ 1)~CFHI 3 I6PNX3-CF 1
F(3 ')~CPM&4)6PNX3+I
F(6 ~ 1} CFH(5I4PNX3
FI5 ~ I }~CFH(6)4PNX3
F (6 ~ 1 } ~CFHI 7) 6PNX3
F I 7 ~ 1 )~CFH( 8}PPNX3
FIS ~ I) CFP(9)4PNX3
F I 9 ~ I ) «CFH( 10)PPNX3
F I 10 ~ I )~CFHI I I I 4PNX3
F I 11 ~ 1 lwCFHH'4PNX3
F I 1 ~ 2 I ~CFTPPNX4-CF I
FI2 ~ 2}aCFH&3}PPNX6+CF2
F(3+2)WF}&l4)4PNX6 CFL
F l6 ~ 2 ) «C F HI 5) 4P NX4+ I ~

FI5o2 I~CFNISISPNX6
F(6 ')~CFHIT)6PNX6
F&7 ~ 2 I~CF}&IS}PNNX4
F(8e2)~CPM&9}6PNX4
F(9 '}~CFHILOIPPNX4
FILO'I~CFN&11)4PNX6.
FILE 2}wCFNHPPNX4
F( 1 ~ 3)~CFTPPNX5+I ~

F I 2» 3 ICPM& 3) PPHX5-CF I
F l3 ~ 3 }wCFHI 6)6PNX59CF2
F(4e3)~CFH(5)6PNX5 CFI
F&S ~ 3)~CFH(6)4'PNX56) ~

F(6 ')~CFHIT)6PNX5
FIT 3) CF}&IS)4PNX5



F(Se3)»CFM(9)PPNX5
F(9 3) CFM(LO)PPNX5
F(LO»3)~CFH(LL)4|PNX5
F( I 1 ~ 3) »CFHMPPNX5
F(1»4&«CF74PNXd
F (2 ~ 4 &eCF H(3&PPNX6+ I ~

F(3 ~ 4) CPM(4l ~ PNX6 CF1
F(4 ')eCFF(5)PPNX6+CF2
F(5 ')»CFM(6)OPNX6-CFI
F(F

4)~CPM(TIPPNX6»I'(7

')~CFP(8)PPNX6
F(8 ')»CFH(9)PPNXd
f(9,«& CFM()0)PPNX6
F ( 10 ~ 4) »CPM( 11)PPNX6
F(11 F 4)~CFHMPPNX6
F( I ~ 5)eCFTPPNXT
F(2 '&»CFM(3IPPNX7
F(3 ~ 5)~CFM(4&4PNXT+L ~

F(4 ~ 5I~CFM(5)PPNX7 CFL
FI5 5) CFH(6&PPNXT+CF2
F(6 ~ 5) CFH(7)4|PNXT CFI
F(7 '&~CFM(8)PPNX74)
F(8 ')~CFH(9)PPNXT
F(9 ~ 5) »CFH( 10)4PNXT
FI10 ~ 5)~CFMILLIPPNX7
F I 11 ~ 5 I mCFHHPPNXT
F ( I ~ 6 I ~CFT(tPNXS
F I 2 ~ 6 I »CFPI 3 I PPNXS
F(3ed)~CFN(4)PPNXS
F(4»dl&CFH(5)PPNXS+L ~

F(5 ~ dl CFH(6)PPNXS-CFL
F(6 ~ 6) CFN(7)PPNXS)CF2
F(ad) CFP(8)PPNXB-CFL
F(8»6)eCFMI9)PPNX84) ~

F19 ~ 6&~CPM(10)PPNXS
F(10 ~ 6) CFM(LLIOPNXB
F I 11 ~ 6leCFHHPPNXS
F ( 1 ~ 7 I ~CFTPPNX9
f I 2 ~ 7 I ~CPM( 3) PPNX9
fl3 ~ 7)~CPM(4)PPNX9
F(4 ')~CPM(5)4PNX9
F(5 ')~CPM(6)PPNX941,
F(6 ~ 7& CFF(7&4PHX9-tf1



F(7 ')«CFM(8&4PNX9+CF2
F(8 ')«CFM(9)4PNX9 CFL
F(9 ')«CFHt)O)KPNX9+I ~

F(10 ')»CFMILL)PPNX9
F ( I 1 ~ 7 I «CFKM4PNX9
F(1«8)«CF74PNXLO
F(2 'l»CFM(3&PPNXLO
F(3 ~ 8)«CFM(4)MPNXLO
F(4 ')»CFM(5)4PNXLO
F(5 ')«CFM(6)»PNXLO
F(6 ')»CFM(7)OPNXLOt) ~

F(7 ')«CFM(S)4PNXLO CFL
F(8 ')«CFM(9)ePNXLO»CF2
F (9 ~ 8 )»Cf M(10 ) 4PNXLO-CF I
F ( 10 ~ 8) «CFM( I 1&SPNX I 0+1
F (LL e 8 )«CFMM4PMXLO
F ( I ~ 9) «CF 74PMXL I
F(2 ~ 9 &»CFM( 3) 4PNX IL
F(3 ')«CFHt4)PPNXLL
F(4 ~ 9)«CFN(5)PPNXll
F(5 ~ 9&«CFM(6)PPNXIL
FI6 ~ 9)«CFM(7)4PNXLL
F(7,9)«CFM(8)SPNX)ti).
F(8.9)«CFMt9)SPNXLL-CFL
F 19 ~ 9)«CFNI 10)SPNXL I+CF2
F(10 ~ 9)«CFHILL)4PNXLLWFL
F(ll ~ '9)«CFMMSPNXL)41
F(l ~ 10&«CF74PNX12
F I 2 ~ 10)«Cf M(319('NX12
f I 5 ~ 101«CFNI4)OPNX)2
F t4 ~ 10)»CFN(5)PPNX12
Ft 5 ~ 10)«CfN(6) SPNXL2
F I 6 ~ 10 I «C FHI 7 I SPNX1 2
FI7 ~ IOI CFM(SISPNXL2
F I 8 ~ 10 I «CF HI 9) PPNXL 2+1 ~
F (9 ~ 10)»CFM(10)4'PNX12 CFL
FI 10 ~ 10)»CF MILL I SPNX124CF2
Fill ~ 10)«CFNMSPNXL2 Cfl
f I 1 ~ I I )»CF79PNX13
F1 2 ~ ll )«Cf Nt3&SPNXL3
f 13 ~ 11 )»CFM(4)SPNXI3

. F(4 ~ 11)«CFM(5)SPNXL3
F (5 ~ 11 ) «CFM(6)SPNX15
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F(8 ~ 11I~CFNITIRPNX13
F (7 ~ II I~CFN(8(4'PNX(3
F(8 ~ 11I~CFN(914PNX13
F(9 ~ 11I~CFN(IOIOPNX13I I ~

F(IO ~ 11 I~CFN(ll IFPNX13 CFI
F(ll ~ III~CFNNRPNX13+CFE-1
RETURN
ENO
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Figure 1.- Sha11ow arch.
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Nx+~ dxBNx
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Figure 2.- Differential element.



Deflection

Figure 3.- Static load def1ection curve.
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Deflection

Figure 4.- Asymmetric static load deflection curve.
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Figure 5.- Symmetric response.
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Figure 6.- Symmetric buckling criteria.



Pigure 7.- Arch configurations Curing symmetric snap-through.
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Figure 8.- Typica1 6ynsnd.c response.
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Figure 9.- Arch configurations during delayed, snapping.
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Figure 10. Asymmetric buckling criteria.
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Figure 11.- Static stability curve.
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Figure 12.- Dynamic step buckling loads.
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Figure 13.- Dynamic impulsive buckling loads.



40

30

20
0

10

0
4

Arch rise e

10

Figure lh.- Asymmetric stew 'budQing loads with damging.
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Figure 15.- Step 'buckling loads for delsyed snapping ~nith damping.
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Figure 16.- Effect of static prestress on critical step
symmetric loads.
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