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Abstract 

A number of problems in mobile computing, group-based collaboration, automated 
theorem proving, networking, scheduling, and cluster analysis suggested the study of graphs 
featuring certain “local density” characteristics. Typically, the notion of local density is equated 
with the absence of chordless paths of length three or more. Recently, a new metric for local 
density has been proposed, allowing a number of such induced paths to occur. More precisely, a 
graph G is called P4-sparse if no set of five vertices in G induces more than one chordless path 
of length three. P4-sparse graphs generalize the well-known class of cographs corresponding to a 
more stringent local density metric. One remarkable feature of P4-sparse graphs is that they ad- 
mit a tree representation unique up to isomorphism. In this work we present a parallel algorithm 
to recognize P4-sparse graphs and show how the data structures returned by the recognition al- 
gorithm can be used to construct the corresponding tree representation. With a graph G = ( I’, E) 
with /VI = n and I,!?/ = 111 as input, our algorithms run in 0( logn) time using O((n* + tnn); logn) 

processors in the EREW-PRAM model. 

Ke~~or&: Cographs; Mobile computing; Group-based collaboration; Scheduling; Cluster 
analysis; NC algorithms; Wireless networks; Parallel algorithms; P4-sparse graphs; Shared 
memory model 

1. Introduction and motivation 

In recent years a number of problems originating in mobile computing, network- 

ing, scheduling, group-based collaboration, and cluster analysis, have suggested the 

study of graphs featuring a number of “local density” properties (see [5, 6, 9, 11, 20, 

27, 311 for more details). Typically, researchers tend to equate the notion of local 

density with the absence of chordless paths of length three, hereinafter referred to 

as Pds. 
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In examination scheduling, for example, a conflict graph is readily constructed: the 

vertices represent different courses offered, while courses x and y are linked by an edge 

if, and only if, some student takes both of them. (In the weighted version, the weight 

of edge xy stands for the number of students taking both x and y.) Clearly, in any 

coloring of the conflict graph, vertices that are assigned the same color correspond to 

courses whose examinations can be held concurrently. It is usually anticipated that very 

few paths of length three will occur in the conflict graph. In the second application, to 

evaluate the clustering of, say, index terms, we construct a graph whose vertices are 

the index terms; an edge occurs between two index terms to denote self-referencing or 

semantic proximity. Again, very few Pas are expected to occur. 

These applications have motivated both the theoretical and algorithmic study of the 

classes of cographs [46, 15, 23, 24,28-301 and P4-reducible graphs [14, 151 corre- 

sponding, respectively, to the local density metrics (~1) and (~2) described 

below: 

(~1) the graph contains no induced P4; 

(~2) every vertex of the graph belongs to at most one induced P+ 
One of the most desirable properties of a graph G is a unique tree representation; more 

precisely, this involves associating with G a unique rooted tree T(G) whose leaves are 

elements of G (e.g. vertices, edges, maximal cliques, maximal stable sets, cutsets) and 

whose internal nodes correspond to certain graph operations. If T(G) can be obtained 

eficiently (i.e. in polynomial time in the size of the graph G), and if the leaves of 

T(G) can be tested for isomorphism in polynomial time, then the graph isomorphism 

problem (which is still open for arbitrary graphs) can be solved efficiently for G, 

since it reduces to tree isomorphism. Unique tree representations have been obtained 

for several classes of graphs including the cographs [23, 241, hook-up graphs [21], 

transitive series parallel digraphs [22], interval graphs [3], rooted directed path graphs 

[ 11, maximal outerplanar graphs, and P4-reducible graphs [14]. 

Recently, Hoang [lo] and Jamison and Olariu [ 161 proposed a new local density 

metric in graphs: 

(~3) no set of five vertices induces more than one P4, 
and argued that the class of graphs that naturally corresponds to this metric (the P4- 

sparse graphs) features a number of remarkable theoretical and algorithmic properties, 

including a unique tree representation up to isomorphism. In addition, in practical 

applications, metric (~3) is less restrictive and, hence, more realistic than both (~1) 

and (~2). At the same time, it is immediate that the P4-sparse graphs generalize both 

the cographs and the P4-reducible graphs. 

Quite recently, an incremental algorithm to recognize P4-sparse graphs and to con- 

struct the corresponding tree representation was proposed [17]. Although this algorithm 

runs in linear time (being, thus, optimal) its incremental nature does not lend itself 

naturally to parallel processing. The purpose of this paper is to propose a new char- 

acterization of PCsparse graphs and to show that it yields a fast parallel recognition 

algorithm for this class of graphs. Furthermore, our recognition algorithm is subse- 

quently used to obtain the unique tree associated with a P4-sparse graph. 
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The model of computation that we shall adopt is the parallel random access 

machine (PRAM, for short) in which all the processors have access to a common mem- 

ory and run synchronously. It is further assumed that simultaneous reading from the 

same memory location, as well as simultaneous writing by several processors into the 

same memory location is prohibited: this submodel is referred to as EREW-PRAM 

(see [ 121 for an excellent survey of different models). 

Our first major contribution is to provide a novel way of looking at P4-sparse graphs 

in terms of regular sets. The concept of a regular set is interesting in its own right and 

may find applications to elucidating the structure of other classes of graphs. 

Our second major contribution is to show that the new characterization of P4-sparse 

graphs in terms of regular sets can be exploited to obtain a fast parallel recogni- 

tion algorithm for this class of graphs. Specifically, with an arbitrary graph G with 

n vertices and m edges as input, our recognition algorithm runs in O(logn) time us- 

ing O((n2 + mn)/ logn) processors in the EREW model. In case G turns out to be a 

P4-sparse graph, our algorithm also constructs the corresponding tree representation. 

Our parallel recognition algorithm builds on the parallel cograph recognition 

algorithm that the authors have recently devised [25]. We note that other parallel 

recognition algorithms have been devised. For example, Dahlhaus [7] has proposed a 

recognition algorithm for cographs running in O(log’n) time using O(n+m) processors 

in the CREW-PRAM model of computation. Yet another such algorithm is contained 

in [8]. However, the algorithm in [8] runs in O(log’n) time using O(n + m) processors 

in the CRCW model of computation. It would be interesting to see if the cograph 

recognition algorithms of [7, 81 can be extended to recognize P4-sparse graphs. 

The remainder of this paper is organized as follows: Section 2 introduces the 

terminology and gives background information about cographs and P4-sparse graphs; 

Section 3 gives the new characterization for P4-sparse graphs which is at the heart 

of our parallel recognition for P4-sparse graphs; Section 4 presents the recognition 

algorithms; Section 5 deals with the task of constructing the tree representation of 

P4-sparse graphs; finally, Section 6 summarizes the results and proposes a number of 

open problems. 

2. Background and terminology 

All the graphs in this work are finite, with no loops or multiple edges. We use 

standard graph-theoretical terminology compatible with Bondy and Murty [2]. In addi- 

tion, we use some new terms that we are about to define. For a vertex x of a graph 

G = (V, E), N(x) will denote the set of all vertices of G which are adjacent to x: we as- 

sume adjacency to be non-reflexive, and so x $N(x); we let N[x] stand for N(x) U {x}. 

As usual, we let do(~) stand for IN(x A vertex z is said to distinguish between ver- 

tices u and v whenever z is adjacent to precisely one of U, v. In the remaining part 

of this work we shall often associate, in some way, rooted trees with graphs. In this 

context, we shall refer to the vertices of trees as nodes. For a node w in a tree T, 
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we let p(w) stand for the parent of w in T. The degree of a node w in T is denoted 

by d(w). 
To make this paper self-contained, we shall review some of the properties of cographs 

and P4-sparse graphs. To begin, Lerchs [23] showed how to associate with every 

cograph G a unique tree T(G) called the cotree of G, and defined as follows: 

l every internal node, except possibly for the root, has at least two children; 

l the internal nodes are labeled by either 0 (O-nodes) or 1 (l-nodes) in such a way 

that the root is always a l-node, and such that l-nodes and O-nodes alternate along 

every path in T(G) starting at the root; 

l the leaves of T(G) are precisely the vertices of G, such that vertices x and y are 

adjacent in G if, and only if, the lowest common ancestor of x and y in T(G) is a 

l-node. 

Lerchs [24] proved that the cographs are precisely the graphs obtained from single- 

vertex graphs by a finite sequence of @I and 0 operations defined as follows. Let 

GI = (VI ,Er ) and G2 = (VZ, E2) be arbitrary graphs with VI n V2 = 0. Now, set 

. G1@ G2 =(Vl u V2,El uE2); 

. GIOJGZ=(V,UV~,E,UEZU{X~(XEV,,~EV~}). 

For the purpose of obtaining a constructive characterization of PCsparse graphs, 

Jamison and Olariu [16] introduced a new graph operation defined as follows. Let the 

graphs Gr=(Vr,Q)) and Gz=(V2,E2) (V,nV2=0) with V2={v}UKUR be such that 

l ]KI=]V1I+ 132; 

l K is a clique; 

l Every vertex in R is adjacent to all vertices in K and non-adjacent to v; 

l There exists a vertex v’ in K such that 

&(V)={V’} Or N&)=K\{d}. 

Choose a bijection 

f : I’, -+K\{v’} 

and define 

G1@G2=(VluV2,E2uE’) (1) 

with 

E,= {xf(x)IxEVl] 

i 

whenever NG> (v) = {Y’}, 

{.= I x E VI > 2 E K\Lf(x)) whenever No,(v) = K\{v’}. 

For an illustration of this operation we refer the reader to Fig. 2. Here, the heavy edges 

are those in E’. 

The following result shows that the class of P4-sparse graphs is constructible from 

single-vertex graphs by a finite sequence of operations @, 0 , and 0. More precisely, 

we have 
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Fig. I. A P&parse graph and the corresponding ps-tree. 

Proposition 2.1 (Jamison and Olariu [16, Theorem 21). G is LI P4-sparsr qrqh if; 

und only {f; G is ohtainedfivm single-vertex graphs b?* a jnite sequence oj’opercrtions 

@, 0, and 0. 

A nice consequence of Proposition 2.1 is that the P4-sparse graphs have a tree repre- 

sentation unique up to (labeled) tree isomorphism. Given a P4-sparse graph G = (V, E), 

corresponding tree T(G) will be termed the ps-tree of G. We refer the reader to 

Fig. 1 featuring a P4-sparse graph and the corresponding ps-tree. 

3. A new characterization of PCsparse graphs 

Consider an arbitrary graph G = (V,E). To simplify the notation, a P4 with vertices 

CI, h,c,d and edges ab, bc,cd will be denoted by abed. In this context, the vertices a 

and d are referred to as endpoints, h and c are termed midpoints, while the edge hc 

is termed a midedge of this Pd. 
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a b 

G~=((becl,Q) 

Gz= ((a]u(a’,b’,c’)u(d),(aa’,a’b’,a’c’,b’c’,a’d,b’d,c’dJ) 

v=ll 
$=a’ 

K=(a’,b’,c’} 

R=(d) 

Fig. 2. Illustrating operation Q on the graph in 2. 

Fig. 3. Illustrating a regular set. 

A set C of vertices of G is termed regular (for an illustration the reader is referred 

to Fig. 3) if it admits a partition into non-empty, disjoint sets K and S satisfying the 

following conditions: 

(rl) lK( = (S( 22, S stable, K a clique. 

(r2) Every vertex in V\C belongs to one of the sets: 

l T(C) = {x 1 x adjacent to every vertex in C}; 

l I(C) = {X 1.x adjacent to no vertex in C}; 

l P(C) = {x j x adjacent to every vertex in K and to no vertex in S}. 
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(r3) there exists a bijection ,f : S + K such that 

l either N(x) n K = {f(x)} for every x in S, or else 

l N(x) f? K = K\{f(x)} for every x in S. 

For later reference we observe here that regular sets are invariant to edge comple- 

mentation. In other words, a set C is regular in a graph G if and only if it is regular 

in the complement G of G. From now on, we shall often denote a regular set C by 

the tuple (K,S,f’), with K, S, and J’ as in (rl)-(r3). Additionally, if a regular set C 

induces a P4 in G, we shall refer to the Pa itself as rrgulur. As it turns out, both regular 

sets and regular Pds are key ingredients in our new characterization of P4-sparse graphs 

as well as in our parallel recognition algorithm. To begin, however, we note that the 

following characterization of P4-sparse graphs is both well known (see [ 10, lo]) and, 

in addition, follows easily from the above definition by a routine argument. 

Proposition 3.1 (Jamison and Olariu [lo, Theorem]). A (lrupph G is P4 -spurs~ (f; mtl 
only* if; ewr~~ P4 in G is regulur. 

We shall now investigate a number of properties of regular sets in arbitrary graphs, 

not necessarily P4-sparse graphs. The first such property asserts that regular sets are 

hereditary in a sense that we are about to make precise. 

Lemma 3.2. Let C = (K,S, J’) he u reydur set in un arbitrary gruph G. mu’ let Z bc 

a mhsrt of’s lttith IZI < IS/ - 2. Then C’ = C\{x, ,f’(x) 1 .Y E Z} is u regulur set in G. 

Proof. Write K’ + K\{f(x) 1 x E Z}, S’ + S\Z. To see that (rl ) is satisfied we note 

that, since ,f is a bijection, IK’( = /S’( = IS\Zi 22, with K’ a clique and S’ stable. 

To see that (r2) is also satisfied, note that every vertex in T(C) belongs to T(C). 

every vertex in P(C) belongs to P(C’), and every vertex in Z(C) belongs to I( C’). 

In addition, by virtue of (r3), with x standing for an arbitrary vertex in Z, ?I E /(C’) 

or x E P(C’) depending on whether or not N(x) = K\{f’(x)}; similarly, ,f(x) E T( C’) 

or ,f’(x)~ P(C’) depending on whether or not N(x)=K\{f(.u)}. 

Finally, to verify that (r3) holds, we only need observe that for every vertex x in 

S’, ,f’(_~) belongs to K’. This completes the proof of Lemma 3.2. KY 

Lemma 3.3. Let C = (K, S, f‘) be u m~ulur set in un urbitrary gruph G. For rrcy?~ 

pair of’distinct wrtices U,~J in S (resp. K), the unique PA in G containing both II und 

c is contuinrd in C. 

Proof. Write G = ( V,E); we claim that 

if both u and L’ belong to S, then U = {u, U, ,f(~), ,f(r)} induces the unique 

P4 in G containing both u and c. (2) 

To justify (2), observe that by (r3), U induces the unique P4 in C containing both u 

and z’. If (2) is false, then some set U’ = {u, c’, w,z} induces a P4 in G and contains 
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vertices from both C and V\C. We propose to show that this assumption leads to a 

contradiction. For this purpose, note that since U’ induces a P4, at least one of the ver- 

tices w,z distinguishes between u and u. Symmetry allows us to assume, without loss of 

generality, that wu E E and wu #E. Note that by (r2), no vertex in T(C) UP(C) U I( C) 

distinguishes between u and o; it follows that w E K. If z is adjacent to both u and u 

then z belongs to T(C) or z belongs to K. In either case zw E E, contradicting that U’ 

induces a P4. Therefore, z cannot be adjacent to both u and a. Since U’ induces a P4, 

some vertex in U’ is adjacent to v; as we saw, none of u and w is. It follows that z is 

adjacent to v and, by the above argument, to w. But now, U’ C K U S, a contradiction. 

Thus, (2) must hold. 

Next, we note that if both U, v belong to K, then the conclusion follows by (2) 

along with the noted invariance of regular sets with respect to complementation. This 

completes the proof of Lemma 3.3. 0 

Lemma 3.3 implies the following two results that we present next, 

Corollary 3.4. Let C = (K, S, f) he u regular set in a graph G. If a P4 in G shares 

precisely two vertices with C, then one of them belongs to S and the other one to K. 

Corollary 3.5. Let C = (K,S, f) be a regular set in a graph G = (V, E) and let z 

stand for a P4 containing vertices from both C and V\C. Then C and 7c share at 

most two vertices. 

Proof. Suppose not; since 71 contains vertices from V\C, it must be the case that C 

and rt share exactly three vertices. By virtue of (rl), (r2), and the fact that P4s are 

self-complementary, we may assume that two of these vertices belong to K. However, 

by Lemma 3.3, rc must be included in C, a contradiction. The conclusion follows. q 

A regular set C is termed maximal if no regular set strictly contains C. The fol- 

lowing result proposes a characterization of maximal regular sets which is both of an 

independent interest and an important ingredient in our algorithm. 

Theorem 3.6. A regular set C is maximal if and only ifi every regular P4 containing 

a vertex in C is included in C. 

Proof of Theorem 3.6. To prove the “if” part, assume that some regular set C is such 

that every regular P4 containing a vertex in C is included in C, yet C is not maximal. 

In particular, we find vertices v, w in V\C such that C’ +- C U {v, w} is a regular set. 

Write C’ = (K’,S’, f’) with K’ + K U {w}, S’ + S U {v}, and f’ = f U {(v, w)}. Let 

u be an arbitrary vertex in S. Since v @ C, u and v are distinct vertices in S’. 

Lemma 3.2 guarantees that {u, u, f(u), f(v)} d m uces a regular P4 in G; but now we 

have reached a contradiction: this P4 contains vertices from C and V\C. 

To prove the “only if” part, let C = (K, S, f) b e a maximal regular set in G. If the 
statement is false, then we find a regular P4 7~ containing vertices from both C and 
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V\C. We note that Corollary 3.5 implies that C and 71 share at most two vertices. This 

observation motivates us to distinguish between the following two cases. 

Cuse 1: C and n share exactly one vertex. Let a be the unique vertex common to 

both C and 71. By the invariance of regularity with respect to complementation, we 

may assume without loss of generality that a belongs to S. Let h stand for a vertex 

in S distinct from a. By (rl), S is stable and so ah +I! E. Let x stand for a vertex in 

K adjacent to a; by the assumption of this case, x E V\C; furthermore, (r2) guarantees 

that .X E T(C), and so xh E E. Since b is adjacent to x but not to a, the regularity of 

71 guarantees that a is an endpoint and that x is a midpoint of 71. Let ~3 stand for the 

midpoint of 71 distinct from X. Again, the regularity of 71 implies that h is adjacent to 

y, and, by (r2), ,’ E T(C). But now, yn E E, contradicting that 7c is a Pd. Therefore, 

Case 1 cannot occur. 

Cuse 2: C and n share exactly two vertices. By Corollaries 3.4, 3.5 and by the 

invariance of regular sets under complementation, we can think of these two vertices 

as being a and b with a ES, b E K, and ah E E. Let c and d be the remaining vertices 

of I-C. By (r2), neither c nor d can be adjacent to u and, consequently, a must be an 

endpoint of 71. It follows that c or d must be the other endpoint. This allows us to 

assume, up to change of notation that 71 has edges ah, bc. cd. Now, (r2) guarantees that 

c E P(C) and that d E I(C). We claim that 

c” + C U {L., d} is a regular set. 

To justify (3), note that since c E P(C) and d E I(C), 

(3) 

K’ -KU {c} is a clique 

and 

S’ t S U {d} is a stable set. 

Let z stand for an arbitrary vertex in V\C’. If z E T(C) then zb,za E E; the regularity 

of II implies that zc,zd E E and so, z E T(C’). Next, if z E P(C) then we have zb E E 

and za # E. The regularity of TL guarantees that zc E E and zd @ E, confirming that 

z E P(C’). Finally, if z E I(C), then z is adjacent to neither a nor b. Now the regularity 

of n guarantees that z is adjacent to none of c and _v; consequently, z E I(C’), and the 

conclusion follows. Thus, (3) must hold, contradicting the maximality of C. With this, 

the proof of Theorem 3.6 is complete. 0 

The interaction of maximal regular sets and regular PJS described by Theorem 3.6 can 

be extended to reveal the interaction pattern between two arbitrary maximal regular sets 

in an arbitrary graph G. As it turns out, distinct maximal regular sets cannot overlap. 

More precisely, we have the following result. 

Theorem 3.7. Two maximal regular sets in G coincide whenrwr the)> intcwrct. 

Proof of Theorem 3.7. Let C = (K,S, f‘) and C’ = (K’,S’, f’) be distinct maximal 

regular sets in G such that C n C’ # 8. To show that C and C’ must coincide, we shall 

proceed by induction on the size of G. 
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G* 

a 

Fig. 4. Illustrating the graph G* corresponding to the graph G in Fig. 2 

If the statement is false, then (C\C’) U (C’\C) # 0. Symmetry allows us to assume, 

without loss of generality that C\C’ # 0. We claim that 

for every vertex x in C\C’, f(x) or f-‘(x) belongs to C n C’ depending 

on whether x ES or x E K. 

Let x be a counterexample to (4) and let C” stand for 

C\{x,f(x)) =(K\UO)}) u (S\(x)) 

in case x E S, and for 

(4) 

c\{x,f-‘(xl) = (K\(x)) U (S\{f-‘(x)H 
in case x E K. 

By Lemma 3.2, C” is a regular set in G; in fact, since C is a maximal regular set 

in G, it follows instantly that with G’ standing for G\{x,f(x)} or for G\{x,f-‘(x)}, 

depending on whether or not N(x) f’K = {f(x)}, C ” is a maximal regular set in G’. We 

note that C’ and C” intersect: this follows trivially by the assumption that C n C’ # 8 

together with the fact that x is a counterexample. By the induction hypothesis, C’ and 

C” coincide in G’. However, this, guarantees that, in G, C’ = Cl’ c C, contradicting the 

maximality of C’. Thus, (4) must hold. 

Now (4) guarantees that for every x in C\C’, f(x) or f-'(x) belongs to CnC’. No- 

tice that for an arbitrary vertex y in C with x #f(y) and y #f(x), {x, y, f (x), f (y)} 
induces a regular P4 n in G. Visibly, rr and C’ have at least one vertex in common 

(namely, f(x) or f-‘(x)); now Theorem 3.6 guarantees that x E C’, contradicting the 

assumption that x E C\C’. 

With this, the proof of Theorem 3.7 is complete. 0 

Let G be an arbitrary graph. The graph G* obtained from G by removing in every 

maximal regular set C = (K, S, f) all the vertices in S except for an arbitrary one will 

be referred to as the reduced graph of G. For an illustration the reader is referred to 

Fig. 4. The uniqueness of G* implicit in the definition is justified by the following 

result. 
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Lemma 3.8. For every graph G, the reduced graph G* is unique up to isomorphism. 

Proof. We shall proceed by induction on the number of maximal regular sets in G. 

Trivially, if G contains no such set, then G and G” coincide, and there is nothing to 

prove. Let, therefore, C = (K, S, f) be a maximal regular set in G. By the induction 

hypothesis, the reduced graph G’” corresponding to G’ = G\S is unique up to isomor- 

phism. To complete the proof of Lemma 3.8, we only need observe that we obtain G” 

from G’* by adding an arbitrary vertex from S. Now the conclusion follows from (r2 ) 

and (r3) combined. 0 

Let C = (K,S,,f’) be a maximal regular set in a graph G. Note that Lemma 3.8 

implies that for the purpose of constructing the reduced graph G”, the choice of the 

unique vertex in S that belongs to G* is immaterial. We shall exploit this freedom later, 

without mentioning it again. We are now in a position to propose a new characterization 

of P4-sparse graphs in terms of their reduced graphs. 

Theorem 3.9. For an arbitrary graph G the follon’ing stutements arc eyuiculent: 

(i ) G is P4 -sparse; 

Proof of Theorem 3.9. Let G = (V,E) be an arbitrary graph. To settle the implication 

(i)-(ii), we note that if G is a P4-sparse graph, then by Proposition 3.1 every f3 in 

G is regular; by Theorem 3.6 and Theorem 3.7, combined, every Pd in G belongs to 

a unique maximal regular set. Consequently, the reduced graph G* is a cograph, as 

claimed. 

To prove the implication (ii)-(i), we shall rely on the following intermediate result. 

Lemma 3.10. Let C = (K, S, f) be LI moximul regular set in G = (V, E). ~j’.romr certrs 

in S belongs to u P4 containing vertices from both C and V\C, then ever!3 vertex in 

S belongs to SUCII u P4; furthermore, these Pds inrolvr the same vertices in V\C. 

Proof. Let u be a vertex in S belonging to a P4 induced by the set X = {u,x. J;z}, 

containing vertices from both C and V\S. By Lemma 3.3, none of the vertices .Y,,I’,I 

belongs to S; we claim that 

exactly one of the vertices x, y, z belongs to C. (5) 

[To justify (5), note that Corollary 3.5, implies that at most one of the vertices X, y.z 

belongs to C. Further, we only need to show that at least one of the vertices x, J’,Z 

belongs to C. Otherwise, since by (r3) the vertices u and v have the same adjacencies 

in V\C, it follows instantly that {v,x, y,z} induces a P4 in G, and we are done. Thus, 

(5) must hold, as claimed.] 

Let c be an arbitrary vertex in S\(U). We propose to show that c belongs to some 

P4 with vertices from both C and V\S, featuring the same vertices from V\C as the 
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P4 induced by X. To this end, recall that by Lemma 3.2, {u, v, f(u), f(v)} induces 

a regular P4 7~ in G. To simplify the notation, we assume that rt features the edges 

uw, it, tv with {w, t} = {f(u), f(v)}. 

By (5), we may assume, without loss of generality that 

z belongs to C and x, y, belong to V\C. 

Recall that, as noted before, z and v are distinct. 

If z = w, then by (r2) N(u) n (V\C) c N(w) n (V\C), and so, one of the vertices 

X, y must belong to P(C) and the other to I(C). Symmetry allows us to assume that 

x E P(C) and y E I(C). But now, {v, t,x, y} induces a PJ in G with edges vt, tx, xy; 

If z = t then, obviously, uz $Z E; symmetry allows us to assume that WC E E. Clearly, 

(r2) guarantees that x E T(C). This, in turn, implies that y E P(C). But now, 

{v, w,x, y} induces a P4 in G with edges vx, xw, wy, and the proof of Lemma 3.10 

is complete. 0 

We now return to the proof of Theorem 3.9. Suppose that the statement is false: 

G* is a cograph, yet G is not P4-sparse. We find a maximal regular set C = (K, S, f), 

a vertex w in S but not in G*, and a special P4 rc, containing w. By definition, we 

find a unique vertex u in S which belongs to G*. By Lemma 3.10, u is contained in 

a special P4 rt involving the same vertices in V\C as rc,,. 

Since u belongs to G* and yet, by assumption, G* is a cograph, at least one of the 

vertices of n is removed in the process of going from G to G*: let w’ be an arbitrary 

such vertex. Trivially, there exists a maximal regular set C’ = K’US’ with w’ E S’ (note 

that Theorem 3.7 guarantees that C and C’ are vertex-disjoint). 

Let U’ stand for the unique vertex in S’ that also belongs to G*. We propose to 

show that 

there exists a Pd in G containing u and U’ but not w’. (6) 

[To justify (6), note that Lemma 3.10 guarantees that for a suitably chosen P4 rc’ 

containing u’,rt and rc’ share all the vertices in V\S’. In particular, both u and U’ 

belong to rc’. Thus, (6) must hold.] 

Since w’ was an arbitrary vertex in rc, (6) guarantees that G* contains a Pa, a 

contradiction. This completes the proof of Theorem 3.9. 0 

Theorem 3.9 suggests a simple algorithm for recognizing P4-sparse graphs that we 

outline below. We assume that an arbitrary graph G is input to the algorithm. 

Algorithm Recognize(G); 

Step 1. Find all maximal regular sets in G; 

Step 2. Compute G” by removing in every maximal regular set C = (K,S, f), all 

vertices in S, except for an arbitrary one; 

Step 3. if G* is not a cograph then retum(“no”); 

Step 4. retum(“yes”). 
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4. The recognition algorithm 

In the remainder of this paper we shall focus on demonstrating that this simple 

algorithm can be implemented efficiently in parallel. 

To begin, we assume that each processor can perform standard arithmetic and boolean 

operations in one time unit, and can read from and write into shared memory. For 

convenience, we assume that the processors also have a small amount of local memory. 

As stated before, in the EREW model of computation, simultaneous read operations 

from the same memory cell as well as simultaneous write operations into the same 

memory cell are disallowed. At any moment in time, a processor is either idle (masked 

out) or executes the same instruction as the other active processors. 

To make our exposition more transparent, we shall present, first, a number of ba- 

sic assumptions related to the data structures used throughout the remainder of this 

work. An arbitrary graph G = (V, E) with / V) = n and jEl = m is assumed as input to 

our recognition algorithm. As usual, the graph G is represented by its adjacency list; 

moreover, with every entry in this adjacency lists we associate a processor, for a total 

of O(m) processors. 

In addition, we shall enumerate the vertices and the edges of G, in an arbitrary 

way, as 

CI.zy,...,C, (7) 

and 

(8) 

respectively. 

We shall find it convenient to represent sets of vertices of G by their characteristic 

vector; specifically, for a set S c V, this is an n-bit vector (zi,zz,. . . ,z,) such that, for 

all i = 1,2,. , II, Zi = 1 if ui E S, and 0 otherwise. In this representation, the cardinality 

]S( of a set S can be computed in O(logn) EREW time using O(n/logn) processors 

in the obvious way. Similarly, given sets S, S’ c V, the task of computing S\S’ can 

be performed by the same technique in O(logn) time using O(n/logn) processors. 

For a vertex x of G we compute the set N[x] in the following two stages: 

l in O(logn) time using O(n/logn) processors, initialize N[.x] to 0, and then 

l in 0( 1) time the do(x) processors associated with the adjacency list of x set to 1 

the corresponding bit of N[x]. 

Consequently, to compute all the sets N[x] we need O(logn) time and O(n’/logn 

+ m) c O((n2 + mn)/log n) processors. 

For later reference, we shall associate with every edge e; = (0. w}, 1 + [n/lognl 

processors, referred to as P(ei, 0), P(ei, l), . . . , P(ei, m/log nl). Here, P(ei,O) is used for 

both computational and bookkeeping purposes, as we are about to describe, while 

P(e;, 1 ), . . . , P(e;, [n/log n1) are used for computational tasks only. It is easy to see that, 

altogether, O(mn/logn) processors are associated with the edges of G. 
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At the same time, for every edge ei = {o, w} of G, we compute the following 

l N,, =N[u]\N[w], and 

. N,, = N[w]\N[o]. 

The motivation for computing these sets is provided by the following simple result. 

Lemma 4.1. An edge e; = {v, w} is the midedge of a regular P4 in G only if IN,, I= 

IN,, ( = 1 and uz @‘I!$ with u,z standing jbr the unique vertex in N,, und NW,, respec- 

tively. 

Proof. To see that this is the case, let uuwz stand for a regular P4 having VW as a 

midedge. Trivially, u E N,,, while z E N,,,,. Note that every vertex in Nc,y\{~} distin- 

guishes between v and w and, therefore, the assumption that uuwz is a regular P4 

implies N,,, = {u}; similarly, N,, = {z}. 0 

Next, we claim that for every edge e; = {v, w} of G, the sets N,, = N[v]\N[w] and 

N,, = N[w]\N[v] can be computed in O(log n) time using O(n/log n) processors. This 

is trivial once the O(n/logn) processors associated with ei know N[u] and N[w]. Since 

no read conflicts are allowed, for every vertex v of G, N[v] will have to be broadcast 

to all the de(v) edges incident with v. To restrict the running time to O(logn), we use 

rdc(n)llog nl “superprocessors” for every vertex v of G: each of these “superproces- 

sors” can be thought of as a set of n processors which will be used to transfer an n-bit 

vector in O(1) time. With this trick, to broadcast N[r;] to the dG(v) edges incident with 

v we do the following: 

in O(log[do(v)/lognl) C O(logn) time N[o] will be broadcast to the [dc(u)/lognl 

super- 

processors (equivalently, to [do(v)/logn] edges incident with v); 

each of the [$&)I superprocessors will broadcast the value of N[v], sequentially, 

to logn edges in O(log n) time. 

Visibly, the broadcast operation takes O(logn) time altogether using 

of the processors available. 

As it turns out, there is no need to compute the set of all the regular P4s in G 

explicitly. Instead, it will be stored by the subset of all the flagged processors P(ei,O). 

The details are spelled out in the following procedure. 

procedure Find_Regular_P4s( G); 

0. begin 

1. for every edge ei = {Y, w} of G pardo 

2. Nw + Nvl\N[wl; 
3. NW, + N[wl\Nul; 
4. if (NO,1 = IN,,( = 1 then {let N,, = {u}, N,, = {z}, U = {u, v, w,z}) 
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5. if uz @E then begin 

6. for all vertices x in V\{u, CI, w,z} pardo 

7. if x $! T(U) U P(U) U Z(U) then 

8. some processor P(ei, t) (t # 0) marks itself; 

9. if no processor is marked then P(e;.O) 

IO. remembers U, u, IV, z; 

1 I. flags itself 

12. end {if} 

13. endfor 

14. end; { Find_Regular_P4s} 

Lemma 4.2. Procedure FinhReyulur_P4s correctly% computes the set oj’all the re~qulm 

Pds in G in O(logn) EREW time usiny 0((n2 + mn)/logn) processors. 

Proof. The correctness of the procedure follows directly from the definition of regular 

Pbs together with Lemma 4.1. 

To argue for the complexity, we note that computing all the sets N[x] for x E V 

requires O(log n) time using 0(n2/log n) processors. Further, recall that the broadcasting 

required for the purpose of the computation in lines 2-3 takes O(1ogn) time and 

O(nm/logn) processors. We note, further, that in line 7 we do not compute the sets 

T(U), P(U), and I(U). Instead, for every x in V\U we verify the following conditions: 

l x is adjacent to all of U, r, w,z, or else 

l .Y is adjacent to c and w and non-adjacent to u and z, or else 

l x is non-adjacent to all of U, C, w,z. 

For every edge e, = {u:, w} the processors P(e,, l), P(e,,2), , P(e;, [(n-4)/lognl) are 

assigned to check the conditions above: more precisely, every processor P(ei,j)( 1 <j < 

r(fl - 4Vlog fll ) verifies, roughly, O(log n) vertices in V\U sequentially. Since every 

vertex can be checked in constant time, line 7 takes O(1ogn) time and uses only pro- 

cessors that have been assigned already (i.e. no extra processors are needed). Finally. 

line 9 requires broadcasting (since no concurrent write is allowed). This can be per- 

formed in O(log[(n - 4)/lognl) = O(log n) time using [(n - 4)/lag nj processors for 

every edge e,. Therefore, the running time of FindRegular_P4s is bounded by O(log N) 

using 0((n2 + mn)/logn) processors in the EREW model, as claimed. 0 

From now on, every edge ej releases [n/lognj of its allocated processors which, 

thus, become available to perform other tasks, as we are about to explain. We shall 

assume, without loss of generality, that every edge retains processor P(ei,O) which will 

be referred to, simply, as P(j). 

For later reference we need to introduce some new terminology; in every requlrr Pd 

ucwz with endpoints u = rj and z = z’k and j <k, we shall refer to u as the lo& winner 

and to z as the local loser. For the purpose of constructing the tree representation of 

G, should G turn out to be a P4-sparse graph, we need to record relevant information 

about local losers and winners. 
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Every flagged processor P(i) writes the identity of the local loser into A[i], and 

the local winner into B[i]: here A, B are one-dimensional arrays of m elements each, 

initialized to 0. (We note that initializing A and B to 0 takes 0( 1) time using the 

processors P(i) (1 d id m).) 

Furthermore, using an optimal sorting algorithm, we can sort all non-zero entries in 

A and B and eliminate all duplicates in O(logm) = O(logn) EREW time using O(m) 

processors. We assume that at the end of the sorting stage, A[ 11, A[2], . . . , A[k] contains 

the set of all the local losers with no duplicates; similarly, B[l], B[2], . . . , B[l] contains 

the set of all the local winners with no duplicates. For the purpose of constructing 

the reduced graph G* corresponding to G, we shall find it convenient to compress the 

information in A into an n-bit vector L: bit i of L is set to one if, and only if, vertex 

Ui is a local loser. Note that once A is sorted with all duplicates removed, constructing 

the bit-vector L takes O(logn) time and, at most, O(n/logn) processors. 

An endpoint u of a regular P4 will be called a global winner if the bit corresponding 

to u is set to 0 in L: this terminology is motivated by the observation that a local 

winner may turn out to be a local loser in a different regular P4. For the purpose 

of recording the set of all the global winners, we introduce a bit-vector W that we 

initialize in the following way: set the i-th bit of W to 1 if ui is a local winner. Note 

that, once the information in the array B is available with no duplicates, obtaining W 

from B can be done trivially in O(logn) time using O(n/logn) processors. Next, the 

assignment 

w + W\L 

yields the characteristic vector of the set of all global winners. 

Once the characteristic vector W of all the global winners is available, every flagged 

processor P(i) finds out whether its local winner is also a global winner. If this is the 

case, then P(i) will be referred to as essential. The details are spelled out in the 

following procedure. 

procedure Find_Winners_and_Losers( G); 

0. begin 

1. A[1 : m] + B[l : m] +- 0; 

2. LtWcO; 

3. for every flagged processor P(i) pardo 

4. A[i] + local loser corresponding to ei; 

5. B[i] +- local winner corresponding to ei; 

6. endfor; 

7. let A[l],A[2],..., A[k] be the non-zero entries of A 

in sorted order with all duplicates removed; 

8. let B[ 11, B[2], . . , B[Z] be the non-zero entries of B 

in sorted order with all duplicates removed; 

9. for all i c 1 to k pardo 
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10. set the A[i]-th bit of L to 1; 

11. for all i t 1 to 1 pardo 

12. set the B[i]-th bit of W to 1; 

13. W + W\L; {find global winners} 

14. broadcast W to all the processors P(i); 

15. for every flagged processor P(i) pardo 

16. if the local winner of e, is in W then 

17. P(i) does the following: 

18. remembers that its local winner is a global winner; 

19. marks itself as “essential” 

20. return(l, W) 

2 1. end; {Find-Winners-and-Losers} 

Lemma 4.3. Procedure Find- Winners_and_Losers correctly computes the set of’ ~111 

global ~c+mers crnd losers in O(logn) EREW time using O(mn/logn) processors. 

Proof. To address the correctness, note that by virtue of Theorem 3.7, two maximal 

regular sets are either disjoint or else coincide. By Theorem 3.6, every P4 that shares 

vertices with some maximal regular set is contained in that regular set. Consequently, 

our strategy of finding losers guarantees that in every maximal regular set C = (K, S, ,f‘) 

exactly one vertex in S is a global winner, namely the one that comes first in the order 

~1, ~2.. . , c,, that we assumed. 

To address the complexity note that, by the previous discussion, lines l-6 take 0( 1) 

time and O(max{m,n}) processors. Similarly, lines 7 and 8 take O(logm) = O(log n) 

EREW time using O(m) processors by using any optimal sorting algorithm [ 121. Lines 

9-12 also take 0( 1) time and require O(n) processors; line 13 takes O(logn) time and 

O(n/logn) processors. To broadcast the bit vector W to all the m processors P(i), we 

use the trick described at the end of Lemma 4.1. 

Specifically, we use [m/log nl super-processors to broadcast W; as already mentioned, 

each of these superprocessors can be thought of as a set of n processors which will 

be used to transfer an n-bit vector in 0( 1) time. With this trick, the task of broadcast 

W to the m processors P(i) involves the following: 

l in O(log[m/lognl ) C O(log n) time W will be broadcast to the [m/log n1 superpro- 

cessors; 

l each of the [m/lognl superprocessors will broadcast the value of W, sequentially, 

to log n other processors in O(log n) time. 

The reader should have no difficulty confirming that the broadcast operation detailed 

above takes O(logn) time altogether using O(mnilogn) of the processors. The conclu- 

sion follows. 0 

In addition, our arguments about recognizing P4-sparse graphs rely, in part. on the 

following result concerning the recognition of cographs. 
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Proposition 4.4 (Lin and Olariu [25, Theorem 41). For an urbitrury graph G=( V,E) 

with IVI=n and IEl= m as input, membership in the class of cogruphs can be detected 

in O(log n) time using 0((n2 + mn)/logn) processors in the EREW model. 

We are now in a position to show how the different pieces fit together in our 

recognition algorithm for PCsparse graphs. 

procedure Recognize_P4sparse( G); 

{Input: an arbitrary graph G=(V,E) with IV1 =n and IE] =m; 

Output: “yes” or “no” depending on whether or not G is P4-sparse;} 

0. begin 

1. Find-Regular_P4s( G); 

2. Find_Winners_and-Losers( G); 

3. using the information contained in L construct the graph G”; 

4. if Cograph( G* ) then 

5. return(“yes”); 

6. return( “no”) 

7. end; {Recognize_P4sparse} 

Theorem 4.5. Procedure Recognize_P4sparse correctly determines whether an urbi- 

trary graph G = (V, E) with I VI = n and IEl = m is a P4-sparse graph in O(logn) time 

using O((n2 + mn)/logn) processors in the EREW-PRAM model. 

Proof of Theorem 4.5. The correctness follows directly from Lemmas 4.1-4.3 and 

Theorem 3.9, combined. 

To argue for the complexity, note that line 1 runs in O(logn) time using O((n2 

+ mn)/logn) processors. The test in line 2 takes, by virtue of Lemma 4.3, O(logn) 

time, using O(mn/log n) C O((n2 + mn)/log n) processors. 

Next, constructing G* in easy, once we know L; finally, for the purpose of perform- 

ing the test in line 4 efficiently, we can use the cograph recognition algorithm in [25], 

running in O(logn) EREW time and using O((n* + mn)/logn) processors. 

Altogether, therefore, the entire procedure takes O(logn) time using O((n* + mn)/ 

logn) processors, as claimed. With this the proof of Theorem 4.5 is complete. 0 

5. Constructing the tree representation for P4-sparse graphs 

For convenience, we shall inherit the entire context and data structures of the pre- 

vious sections. It is worth noting that an important byproduct of the cograph recognition 
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algorithm in [2.5] is that, upon successful recognition, the corresponding cotree is 

also constructed. This implies, in particular, that when our recognition algorithm for 

P4-sparse graphs terminates with a “yes” answer, the cotree T(G) of the reduced 

(co)graph G* of G is also constructed. 

To make our exposition of the tree-constructing algorithm for P4-sparse graphs more 

transparent and easier to follow, we shall enumerate the maximal regular sets in G, ar- 

bitrarily, as CI = (KI, SI, _/“I ), CZ = (Kz, S,, ,f2), , C, = (I&, S,, ,&,) for some p 3 0. We 

note that if G and G* coincide then there are no (maximal) regular sets in G and 

p = 0. It is also useful to note that at the end of the (successful) recognition of a 

P4-sparse graph G, the relevant information about the graph is stored by the tuple 

(T(G), SK( G)): here, T(G) is the cotree associated with G*; SK(G) is a structure that 

we are about to describe. 

We can think of SK(G) as a one-dimensional array, with SK[i] (1 < i < p # 0) con- 

taining the following information: 

l characteristic vectors of Ki and S,; 

l the identity of the unique vertex 1~‘~ in S, that belongs to G*; 

l the identity of J;(Iv~); 

0 Y, = lK;/ = S/. 

For algorithmic purposes it is convenient (as is done in [2.5]) to represent T(G) by 

parent pointers, that is, every node in T(G) points to its unique parent, with the root 

of T(G) pointing to itself. We also assume that, for every vertex 1: in G, a pointer is 

maintained to the location of 2: in T(G) or SK(G), as the case may be. 

For simplicity, we shall assume that the global winners are ~‘1, ~2,. . , CL’~, (trivially, 

the identity of these vertices is available instantly from W). Recall that every essential 

processor is aware of the identity of its local winner, say. wi. 

Now computing S, for all i (1 < i < p) is easy: after having initialized S, by setting 

to 1 the bit corresponding to w,, every essential processor whose local winner is wi, 

sets the ,jth bit of S,, with ri standing for its local loser. 

To compute Kj we proceed along similar lines: in O(log m) = O(logn) time we 

identify, for every i ( 1 < i < p), the subset P(il ), P(i2), , P(iti ) of the essential pro- 

cessors whose local winner is cry[;]. Note that this ordering can be readily computed in 

O(logn) time and O(n) processors, by using an optimal sorting algorithm. After this, 

processor P(il ) broadcasts to P(i2), . . , P(it;) the identity of the midpoints of the regu- 

lar P4 that is remembered in line 10 of procedure FinddRegularP4s. Every processor 

P(i,j) (2 <,j < t,) marks its own midpoint coinciding with one received by broadcasting. 

Finally, every processor P(il), P(i2),. .,P(iti) sets to 1 the bit of K, correspond- 

ing to the unmarked midpoint it stores. Note that this operation leads to no write 

conflicts. 

Now computing ,fi(w;) is easy: if jN(w,)nK,I = 1 then fi(wi) is precisely the unique 

vertex in N(wi)nK,; otherwise, ,fi(w,) is the unique vertex in K;\N(n>,). 

Finally, the value of Yi = IS,1 = IK,I can be computed, for every i (1 < id p) in 

O(logn) time using O(n/logn) processors. We present the details in the following 

procedure. 
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procedure Construct_ SK(G); 

0. begin 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

let wl, ~2,. . , w,, stand for the global winners; 

for i t 1 to p pardo 

if processor P(i) is essential then begin 

processor P(i) sets to 1 the bit of Si corresponding to Wi; 

let P(il), P(i2), . . . , P(itj) (1 <id p) be the 

essential processors whose local winner is wi; 

for j t 1 to ti pardo 

processor P(ij) sets the kth bit of Si with 

vk standing for its local loser; 

processor P(il ) broadcasts to P( i2), . . . , P( it, ) 

the identity of the two midpoints it stores; 

for j t- 2 to ti pardo 

processor P(ij) marks the midpoint it stores coinciding 

with one of the midpoints received; 

for j c 1 to ti pardo 

processor P(ij) sets to 1 the bit of Kj corresponding 

to its unmarked midpoint; 

rl + IKiI = IW; 
if IN(wi)fIKil = 1 then 

f;(wi) +- the unique vertex in N(wi)nKi 

else 

fi(wi) +- the unique vertex in Ki\N(wi) 

endif; 

return(SK(G)) 

20. begin; {ConstructtSK} 

To summarize our previous discussion, we state the following result. 

Lemma 5.1. Procedure Construct-SK correctly computes the information in every 

SK[i], (1 < i < p), in O(log n) time using O(n2/log n) processors in the ERE W-PRAM 

model. 

Proof. The correctness of procedure Construct-SK follows from Theorem 3.6 and 

Theorem 3.7. To argue about the complexity, we note, as before, that line 5 takes 

O(log n) time and O(m/log n) processors; to broadcast in line 8, we spend O(log n) time 

using O(t,/log n) processors for every i (I< i < p). Line 14 assumes that N(wi) n Ki 

has been computed; visibly, this takes O(logn) time and O(n/logn) processors for 

every i. Since p is at most II the conclusion follows. 0 
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We now address the problem of efficiently constructing the ps-tree representation 

of G. Our arguments rely heavily on the following results. 

Proposition 5.2 (Jamison and Olariu [ 17, Theorem 41). For each i (1 < i < p), thur 

exist (I unique O-node R(i) and a l-node A’(i) in T(G) such thut, setting z = w,, ,for 

any c, w E Ki with ZIJ 6 E, zw E E, the ~fi)llo\t~iny are satisfied: 

k(i) = p(z); l_‘(i) = p(w); A’(i) = p(i,(i)). 

Furthermore, 

either A(i) = p(u) or else i,“(i) = p(c) with l.(i) = p(i.“(i)). 

To construct the tree representation of a P4-sparse graph G, we need a way of 

incorporating the local users into the tree structure. For this purpose, a new type of 

node is needed; this is the 2-node which has precisely two children: a O-node and a 

1 -node. Obviously, the 2-node corresponds to the 0 defined in ( 1). The details of this 

tree construction can be found in [ 171. 

We shall also rely on the following result which guarantees the correctness of the 

construction. 

Proposition 5.3 (Jamison and Olariu [17, Theorem 51). With a P4-sparse graph G us 

input, the tree T(G) can be computed in time linear in the size of’ G. 

As it turns out, procedure Build_ps_Tree presented in [ 161 can be easily parallelized, 

in such a way that the computation can be carried out in the EREW model. We present 

the parallel version of Build-ps_Tree next. 

procedure Parallel_Build_ps_Tree(G ); 

{Input: a P4-sparse graph represented as (T(G), SK( G)) 

Output: the corresponding ps-tree T(G), rooted at R;} 

0. begin 

1. for every essential processor P(i) pardo 

2. create a 2-node /ZI; 

3. create a l-node y; 

4. add y as a child of p; 

5. add i as a child of 3’; 

6. if r, = 2 then begin 

7. add the unique vertex in S;\{wi} as a child of fi; 

8. add f,(v) as a child of ;j 

9. end 

10. else begin 

11. create a O-node cc; 

12. add N as a child of p; 

13. add all vertices in Si\{wi} as children of X; 
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14. if wi is adjacent to fj(wi) then 

15. add fi(wi) as a child of y 

16. else 

17. add all vertices in Kl\{wi} as children of y 

18. endif; 

19. if d(A’) # iN(wi) n Kil + 1 then 

20. add /?J as a child of 3,’ 

21. else begin 

22. add /I as a child of ~(2’); 

23. delete %’ 

24. endif; 

25. endfor; 

26. if d(R) = 1 then R t unique child of R; 

27. retum( T( G)) 

28. end; {Parallel_Builddps_Tree} 

Theorem 5.4. Procedure Parallel_ Build_ps_ Tree correctly constructs the ps-tree of 

a P4-sparse graph G = ( V, E) with ) V 1 = n and IEl =m in O(logn) EREW time using 

O(n/log n) processors. 

Proof of Theorem 5.4. The correctness follows immediately from Propositions 5.2, 

5.3 and Lemma 5.1, combined. We propose to show that the computation inherent 

in procedure Parallel-Build-Tree can be performed in O(logn) EREW time by O(n) 

processors. To justify this claim we note that 

l lines 2-12 take constant time to execute and no read or write conflicts can occur; 

l line 13 requires broadcasting the address of c( to all the vertices in Si\{wi}; trivially, 

this takes at most O(log n) time using 0( JSi I/log n) p rocessors; altogether, therefore, 

line 13 runs in O(logn) time using O(Cp=, (Sjl/log n) = O(n/logn) processors; 

l similarly, line 17 requires broadcasting the address of y to all the vertices in K;\{wi}; 

as before, this takes O(logn) time using 0( IKil/logn) processors; altogether, there- 

fore, line 13 runs in O(log n) time using O(c,“_, IKiI/log n) = O(n/logn) processors; 

l to add /? as a child of 2’ (resp. ~(2’) in lines 20 (resp. 22) we only need pick up the 

address of 3”’ from A (resp. the address of p(A’) from A’), and so no broadcasting 

is needed. 

This completes the proof of Theorem 5.4. 0 

A graph G is P4-reducible if every vertex of G belongs to at most one P4 (refer to 

Fig. 5 for an example). As pointed out in [15], every PCreducible graph is P4-sparse, 

but not conversely. It is not hard to see that a PCsparse graph is P4-reducible if 

and only if every maximal regular ser C = (K, S, f) has the property that Ikl = JSJ = 2. 

Consequently, Theorems 4.5 and 5.4 have the following consequence. A similar result 

has been obtained in [13]. 
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a h C d 

Fig. 5. A PI-reducible graph 

Corollary 5.5. The task of recognizing whether u graph G = ( V, E) with ( V 1 = n und 

lEl = m edcqes is P4-reducible can be perfbrmed in O(logn) time using 

O((n’ + mn)/logn) processors in the EREW-PRAM model. Moreotler, should 

G be PI-reducible the corresponding tree representation can he built in the same 

complexity. 

6. Conclusion and open problems 

The class of P4-sparse graphs corresponds naturally to a new local density metric: 

specifically, we allow chordless paths of length three to occur, provided no set of five 

vertices induces more than one such path. The class of P4-sparse graphs strictly contains 

the class of cographs and P4-reducible graphs that correspond to more stringent local 

density metrics. 

Our first major contribution was to provide a novel way of looking at P4-sparse 

graphs in terms of regular sets. The concept of a regular set is interesting in its own 

right and may find applications to elucidating the structure of other classes of graphs. 

Our second main contribution was to have presented a parallel algorithm to recognize 

P4-sparse graphs and to construct their unique tree representation. With an arbitrary 

graph G=(V,E) with IVI= n and IE( = m as input, our algorithm runs in O(log n) 

time using O((n2 + mn)/logn) processors in the EREW-PRAM model of computation. 

Our algorithm is not cost-optimal. Nonetheless, the method used in this paper may 

help to develop a cost-optimal parallel recognition algorithm for this class of graphs. 

As our structural theorem shows, the major bottleneck in the task of recognizing 

P4-sparse graphs is cograph recognition. To date, in spite of persistent efforts by several 

researchers, no cost-optimal recognition algorithm for cographs is known. 

Yet another bottleneck in the recognition algorithm that we presented is the com- 

putation of NC,+ = N(r) - N(w) and N,,., = N(w) - N(C). The only case of interest is 

when the sizes of the two neighborhoods differ by one, otherwise this is not a can- 

didate edge for the mid-edge of a Pd. Therefore, only min{d(u),d(w)} processors are 
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needed for the computation. Moreover, it is relatively straightforward to show that 

c vwEE min{d(v), d(w)} E O(m312 ). In the case of sparse graphs this leads to a better 

bound. Using this observation it may be possible to reduce the processor bound. This 

is an interesting area for further investigations. 
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