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ABSTRACT

SCALED AND GRADUATED LEARNING IN DEEP RELU NETWORKS AND
RECONSTRUCTING DEEP INELASTIC SCATTERING KINEMATICS

Abdullah Ayar Farhat
Old Dominion University, 2024

Director: Dr. Yuesheng Xu

To address computational challenges in learning deep neural networks, properties of deep

RELU networks were studied to develop a multi-scale learning model. The multi-scale model

was compared to the multi-grade learning models. Unlike the deep neural network learned from

the standard single-scale, single-grade model, the multi-scale neural networks use low scale in-

formation from all hidden layers, and thusly provide a robust approximation method that requires

fewer parameters, lower computational time, and is resistant to noise. It is shown that the multi-

scale method is not subject to issues arising from the vanishing gradient problem. This allows very

deep multi-scale networks to be effectively trained. It is proven that the collection of multi-scale

neural networks are universal approximators in the space of continuous functions. The neural net-

work learned from a multi-grade model is the superposition of the neural networks, in a stair-shape,

each of which is learned from one grade of the learning. Three proof-of-concept numerical exam-

ples presented in the paper demonstrate that the multi-scale and multi-grade methods are superior

to the single-scale, single-grade networks. The extended analysis on reconstructing kinematic ob-

servables in deep inelastic scattering kinematics with multi-scale neural networks shows that not

only are those models effective for real world problems, but the power of the approximation is

sufficiently great, that it can outperform reconstruction methods based on physical laws.
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CHAPTER 1

INTRODUCTION

Inference from direct observation is one of the best tools for understanding the world around us.

Machine learning, and in particular, deep neural networks, provide an extremely powerful method

for making these inferences.

Deep neural networks have successfully been used towards solving a wide range of machine

learning problems. Some examples of this include facial recognition, speech recognition, game

intelligence, autonomous navigation, and natural language processing. The great success of deep

learning [2, 3] and its impact to science, technology and our society have been widely recog-

nized [4, 5, 6, 7, 8, 9, 10, 11].

Compared to the vast development in engineering and applications of deep neural networks,

research on the mathematical theory has yet to be completely developed, but is undergoing rapid

progress. Many papers on the approximation powers and expressiveness of deep neural networks

have been written recently. Here is a brief summary, however, more details can be found in two

surveys [12, 13]. Poggio, Mhaskar, Rosasco, Miranda, and Liao [14] proved that deep neural

networks approximate a class of functions with special compositional structure exponentially bet-

ter than shallow networks. Montanelli and Du [15] and Yarotsky [16] estimated the number of

parameters needed for deep neural networks to achieve a certain error tolerance in approximat-

ing functions in the Koborov space space and differential functions, respectively. Montanelli and

Yang [17] achieved error bounds for deep ReLU networks approximation of multivariate functions

using the Kolmogorov-Arnold superposition theorem. These three pieces of work indicated that

deep neural networks are able to lessen the curse of dimensionality. E and Wang proved that for

analytic functions in a low dimension, the convergence rate of the deep neural networks approxima-

tion is exponential. Zhou [18] established the universality of deep convolutional neural networks.

Daubechies, DeVore, Foucart, Hanin, and Petrova [19] showed that deep neural networks possess

greater approximation power than traditional methods of nonlinear approximation such as variable

knot splines and n-term approximation from dictionaries. Wang [20] presented a mathematical

introduction to generative adversarial nets.

There are four main factors that contribute to the success of deep neural networks. First is

the availability of vast amounts of training data. The second is the recent, dramatic, improve-

ments in computing power. The third one is a class of efficient numerical algorithms such as the

backpropagation training algorithm via the Stochastic Gradient Decent (SGD), Adaptive Boost-
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ing (AdaBoost) algorithms, and the Expectation-Maximization algorithm (EM). The fourth factor

is powerful neural network architectures, such as Convolutional Neural Networks (CNN), Long-

Short Time Memory (LSTM) networks, Recurrent Neural Networks (RNN), Generative Adver-

sarial Networks (GAN), Deep Belief Networks (DBN), and Residual Networks (ResNet), which

provide a superior way of representing data.

GAN’s have had particular attention recently, especially with ChatGPT, based on the genera-

tive pre-trained transformer, for its detailed responses and vast answers across many domains of

knowledge [21].

This work is also focused on fourth factor.

The deep neural networks are learned by solving optimization problems which determine their

parameters (weight matrices and bias vectors) that define them with activation functions. The

optimization problems are highly nonconvex and have large numbers of parameters. Solving such

optimization problems is challenging. Due to having large numbers of parameters, finding a global

minimizer is difficult. By employing the stochastic gradient descent method [22, 23] to solve

the optimization problems, most likely only local minimizers may be found, since gradient-based

optimization starting from random initialization appears to often get stuck in poor solutions [24].

Moreover, convergence of the iteration is very slow. This is a bug computational problem of deep

learning.

With an examination of the structure of the current model of deep neural networks, it can be

seen that simple information is encoded in the hidden layers that can be used to create a more

robust model. The consideration of the hidden layers induces a notion of scale and from it, a multi-

scale model can be created. The use of a multi-scale model can lead to smaller models that can

provide an equal, if not better, approximation capability.

Furthermore, the current model of neural networks train all parameters needed for the desired

deep neural network simultaneously, i.e. in one grade. We can separate the training process into

grades by sequentially training hidden layers according to a particular multi-grade training model.

The rest of this work will expand upon these notions and is organized as follows.

In chapter 2, the single-scale, single-grade model is described. The focus is then turned to

ReLU networks and an observation on the activation domains of the hidden layers. This provides

the foundation for the multi-scale neural network model. The multi-scale neural network model

is discussed in depth, and it is shown that the class of them form a set of universal approxima-

tors dense in the space of continuous functions. It is shown that multi-scale neural networks are

resistant to the vanishing gradient problem that effects the single-scale, single-grade neural net-

works. The multi-scale networks are compared to the multi-grade neural networks. Finally, there
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is a discussion on common practices for implementing the training regimes to find optimal neural

networks given a set of data.

In chapter 3, numerical examples are conducted to compare the different neural network archi-

tectures defined in chapter 2.

In chapter 4, an extended analysis is conducted on reconstructing kinematic observables in

deep inelastic scattering experiments.

In chapter 5, concluding remarks are provided.
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CHAPTER 2

DEEP LEARNING WITH RELU NETWORKS

Many real world problems can be expressed in the context of learning a particular function. Let

s, t ∈. Suppose that there are given N pairs of points (xk,yk), k ∈N := {1,2, ...,N}, where xk ∈s and

yk ∈t . The problem is to learn, from this set of data, a function f :s→t , which maps each xk to yk

and generalizes the intrinsic information embedded in the data. This function f is called the target

function.

Deep neural networks can provide a sufficient expression of the target function because of their

robust structure.

A general, fully connected, feed-forward neural network, put simply, is defined to be the con-

secutive composition of a sequence of both affine transformations and a nonlinear function. These

networks are called deep if the sequence is larger.

Let Ω ⊆s be a bounded input domain and t the output space. For each i ∈d , let mi ∈. Choose

m0 = s.

Select matrices Wi ∈mi×mi−1 and vectors b ∈mi . Wi and bi are called the weight matrices and

bias vectors, respectively.

Select a nonlinear function σ that acts componentwise on an vector input. In other words, for

any p ∈ and z = (z1,z2, . . . ,zp)
T ∈p,

σ (z) = (σ(z1),σ(z2), . . . ,σ(zp))
T .

This function σ is called the activation function.

A few common activation functions include the ReLU function

ReLU(x) := max(x,0), x ∈, (2.1)

the logistic sigmoid function

S(x) :=
1

1+ e−x , x ∈, (2.2)

and the Gaussian function

N(x) := e−x2
, x ∈ . (2.3)

There are particular rules on the selection of the activation function that establishes the theoret-

ical basis on which approximation via neural networks is justified. This will be simply expressed

later.
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For an input x ∈ Ω, define the ith hidden layer to be

x(i) = σ

(
Wix(i−1)+bi

)
, (2.4)

with x(0) = x.

Each element in x(i) is called a node. Each hidden layer has mi nodes.

Select matrix Wo ∈md×t and bo ∈t . Respectively, Wo and bo are the output weight matrix and

the output bias vector. Define

y = Wox(d)+bo. (2.5)

The selection of the above matrices, vectors, and activation function defines a fully connected,

feed-forward neural network that determines a continuous function mapping x to y from Ω to t .

This can be conveniently visualized with

x ∈ Ω
W1,b1−−−→

σ
x(1) W2,b2−−−→

σ
x(2) → ··· → x(d−1) Wd ,bd−−−−→

σ
x(d) Wo,bo−−−→

σ
y ∈t . (2.6)

The depth of the neural network is defined to be d and the width of hidden layer i is mi.

To express the neural network in a convenient way, we define the notation for the consecutive

composition of functions below.

Definition 2.0.1 (Consecutive composition). Let f1, f2, f3, . . . , fn be a finite sequence of functions

such that the range of fi is contained in the domain of fi+1, i ∈n−1, the consecutive composition of

{ fi}n
i=1 is defined to be the function

n⊙
i=1

fi := fn ◦ fn−1 ◦ · · · f2 ◦ f1

whose domain is the domain of f1.

Using the notation in definition 2.0.1, equations (2.4) and (2.5) can be rewritten as

x(i) =

(
i⊙

l=1

σ (Wl ·+bl)

)
(x), 1 ≤ l ≤ d (2.7)

and

y = Wo

(
d⊙

l=1

σ (Wl ·+bl)

)
(x)+bo, x ∈ Ω (2.8)

One indication of the robust and powerful structure of deep neural networks is elucidated in

their their classification as universal approximators in the following sense. The universal approx-

imation properties are discussed and proven in reference [25]. Particularly, for any continuous
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function f : Ω →t , for a fixed selection of the depth of the neural networks, and the selection of

non-constant activation function, and for any ε > 0, there exists some neural network of the pre-

ceding structure, call it φ , such that ρ( f ,φ)< ε , where:

ρ( f ,φ) = sup
x∈s

∥ f (x)−φ(x)∥ℓ1, (2.9)

and ∥ · ∥ℓ1 is the ℓ1-norm. That is, for any x = (x1,x2, ...,xm)
T ∈s, ∥x∥ℓ1 = ∑

s
i=1 |xi|.

This strong result guarantees the existence of some element in the class of neural networks that

is arbitrarily close to any continuous function. For this reason, we say that the set of deep neural

networks is dense in the space of continuous functions.

To conclude this initial discussion as a sufficient foundation for the purpose of this work, call

this general, fully connected, feed-forward neural network to be a single-scale, single-grade deep

neural network.

2.1 THE LEARNING PROBLEM

Now return to the problem of learning a function given a set of data. To approximate the target

function f with N pairs of data points (xk,yk), k ∈N , one can learn a deep neural network

y∗(x) := y({W∗
i ,b

∗
i }d

i=1;x), x ∈ Ω (2.10)

by solving for optimal parameters {W∗
i ,b∗

i }d
i=1, the weight matrices and bias vectors, from the

optimization problem

min

{
N

∑
k=1

∥y({Wi,bi}d
i=1;xk)−yk∥2

ℓ2
| Wi ∈mi×mi−1,bi ∈mi, i ∈d,Wo ∈mi×t ,bo ∈t

}
, (2.11)

where ∥ · ∥ℓ2 is the ℓ2-norm. That is, for any x = (x1,x2, ...,xm)
T ∈s, ∥x∥ℓ2 =

(
∑

s
i=1 x2

i
)1/2.

The function y∗ is called the best approximation from the set of neural networks with depth d

and fixed activation function σ to the function f.
Learning a deep neural network from discrete data is equivalent to finding the optimal weight

matrices and bias vectors by solving minimization problem (2.11).

To try to improve the quality of the approximation and computational costs required in solving

the minimization problem, by considering information from all hidden layers instead of just the

output layer, a notion of scale can be developed to construct a multi-scale deep neural network

model. By a further extension, a similarity can be found between the scaled approach and a grad-

uated learning model which focuses on the error of approximation.
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These ideas are now discussed in the context of deep neural networks with a ReLU activation

function.

2.2 RELU NETWORKS

From here on, the activation function will always be the the ReLU function. Many results are

applicable regardless of the selection of the activation function. In these cases, it will be noted.

It is understood that a ReLU network is a piece-wise linear function [12].

To unveil some key properties, an algebraic formulation of a deep ReLU network will be

introduced, as discussed in reference [26].

First, consider a one-layer ReLU network, φ .

φ(x) = Wox(1)(x)+bo, x ∈ Ω (2.12)

where

x(1)(x) = σ (W1x+b1) , x ∈ Ω, (2.13)

and σ is understood to be the ReLU activation function. Note that the m1 components of

W1x+b1 are linear functions. For convenience, call each component ℓ j(x), for j = 1,2, . . . ,m1.

Therefore,

x(1) = [σ(ℓ j(x)) | j = 1,2, . . . ,m1]
T. (2.14)

By the definition of the ReLU function, note that for each j = 1,2, . . . ,m1,

σ(ℓ j(x)) =

ℓ j(x), ℓ j(x)≥ 0

0, ℓ j(x)< 0.
(2.15)

A node in x(1) is said to be activated if ℓ j(x) ≥ 0, and it is said to be deactivated if ℓ j(x) < 0.

Simply counting will lead to at most 2m1 patterns for the activation status of the nodes in the

single layer. The patterns can be described further with a set of of m1 ×m1 diagonal matrices with

diagonal entries either 1 or 0. Particularly, define the set of all activation matrices by

Dm1 := {diag(a1,a2, . . . ,am1) | ak ∈ {0,1},k ∈m1}.

Define the support of an activation matrix J ∈ Dm1 by

supp J := {k | Jkk = 1,k ∈m1}
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.

It is easily seen that every activation matrix is uniquely determined by its corresponding sup-

port. It is convenient to use the set of activation matrices Dm1 as an index set.

Definition 2.2.1 (Activation domains of one layer network). For a weight matrix W with m rows

and a bias vector b ∈m, the activation domain of σ(Wx+ b) with respect to a diagonal matrix

J ∈ Dm is

DJ,W,b :=
{

x ∈m′
| (Wx+b) j > 0 for j ∈ supp J and (Wx+b) j ≤ 0 for j /∈ supp J

}

Note that the integer m′ in Definition 2.2.1 may be selected to be m0 when it is used for the

activation domains of the first layer, or the number of nodes mi when it is used to define activation

domains of the other layers.

In Definition 2.2.1, an activation matrix J ∈ Dm1 to correspond to an activation pattern of the

m1 components of Wx+b. Therefore, Definition 2.2.1 allows a construction of a partition of the

domain Ω that is associated with the piece-wise linear nature of the ReLU network φ . Specifically,

Ω =
⋃

I1∈Dm1

(DI1,W1,b1 ∩Ω) (2.16)

With equation (2.16), the single hidden layer can be rewritten

x(1)(x) = I1(W1x+b1), x ∈ DI1,W1,b1, for I1 ∈ Dm1 . (2.17)

It is clear that on each activation domain, x(1) is a linear function.

For a deep ReLU network with d hidden layers, it is necessary to have a sequence of d activa-

tion matrices

Id = (I1, I2, . . . , Id) ∈ (Dm1,Dm2, . . . ,Dmd)

where Ik denotes the activation pattern on the k-th hidden layer. Now, here is the definition of

activation domains for a multi-layer ReLU network.

Definition 2.2.2 (Activation domains of a multi-layer network). For Wd :=(W1,W2, . . . ,Wd)∈m1×m0

×m2×m1 ×·· ·×md×md−1 , the weight matrices, and bd = (b1,b2, . . . ,bd)∈m1 ×m2 ×·· ·×md , the bias

vectors, the activation domain of
d⊙

l=1

σ (Wl ·+bl)
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with respect to Id = (I1, I2, . . . , Id) ∈ (Dm1,Dm2, . . . ,Dmd) is defined recursively by

DI1,W1,b1
= DI1,W1,b1 ∩Ω

and

DId ,Wd ,bd
=

{
x ∈ DId−1,Wd−1,bd−1

|

(
d−1⊙
l=1

σ (Wl ·+bl)

)
(x) ∈ DId ,Wd ,bd .

}

The following observation is apparent regarding the activation domains.

Theorem 2.2.1. The sequence of the activation domains are nested, that is, for k ∈,

DIk+1,Wk+1,bk+1
⊆ DIk,Wk,bk

.

Proof. This result follows directly from definition 2.2.2.

This last result is the critical observation for developing a multi-scale method for using deep

ReLU networks.

2.3 SCALED LEARNING

Continue to consider the deep ReLU network with depth d. The nested nature of the activation

domains indicates that each subsequent hidden layer is associated with an activation domain that

provides a finer partition of the input domain Ω. This increasing fineness to the partition can be

considered to be the scale of the hidden layer. By weighting and summing the information from

each hidden layer, we can construct a multi-scale deep neural network. The details of this follow.

Using the notation in definition 2.0.1, the multi-scale model is defined by the function

y = Wo,0x+bo,0 +
d

∑
i=1

(
Wo,ix(i)(x)+bo,i

)
, x ∈ Ω (2.18)

where, for i ∈d , x(i) is defined as in equation (2.7), Wo,i ∈mi×t , and bo,i ∈t .

The illustration in figure 1 can help to visualize the multi-scale model.

As previously mentioned, there are results on the natural of single-scale, single-grade deep

neural networks as universal approximators in the space of continuous functions. The universality

property will be extended to the set of multi-scale networks, whose structure is defined in equa-

tion (2.18).

In particular, to guarantee the existence of a function in this class of multi-scale deep neural

networks that can approximate any continuous function to arbitrary accuracy, theorem 2.3.1 is now
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Fig. 1. A visualization of a multi-scale model with five scales as a superposition of five networks.

proven, providing similar universality properties as previously mentioned. Moreover, the theorem

also shows that the error necessarily decreases as the depth of the network increases, or, in other

words, as the number of terms in the summation in equation (2.18) increases.

Theorem 2.3.1. With fixed non-zero natural numbers d, s, t, m1, m2, ..., md , continuous function

f : Ω ⊆s→t , for any ε > 0, there exists some Wi ∈mi×mi−1 , bi ∈mi , Wo,i ∈mi×t , bo,i ∈t , for i =

0,1, . . . ,d, with m0 = s, such that for y defined in Equation (2.18),

ρ( f ,y)< ε,

where ρ is defined in Equation (2.9).

Moreover, for 1 ≤ k ≤ d, define

yk = Wo,0x+bo,0 +
k

∑
i=1

(
Wo,ix(i)(x)+bo,i

)
, x ∈ Ω,

and

εk = ρ(f,yk),

then the optimal, nontrivial, parameters defining y can be selected such that εk < εk−1.

Proof. We prove the result inductively on the depth d.

For any matrix Wo,0 ∈m0×t and vector bo,0 ∈t , define the continuous function

e0(x) := f(x)− (Wo,0x+bo,0), x ∈ Ω
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The function e0 : Ω ⊆s→t is a residual between the target function f and an initial linear approxi-

mation.

Due to the universality of single-layer neural networks, as previously mentioned, for any ε > 0

there exists some W1 ∈m1×m0 , b1 ∈m1 , Wo,1 ∈m1×t , bo,1 ∈t such that

ρ(e0,Wo,1σ (W1 ·+b1))+bo,1)< ε.

Therefore, by definition,

ρ(f,y1)< ε.

So, the collection of multi-scale networks with one hidden layer is dense in the space of continuous

functions.

Select W1 ∈m1×m0 , b1 ∈m1 , Wo,1 ∈m1×t , bo,1 ∈t to be optimal solutions to the minimization

problem:

min{ρ(f,y1)} ,

and define ε1 := ρ (f,y1).

Continue to define another continuous, residual function, e1 : Ω →t , by

e1(x) = f(x)−y1(x). (2.19)

Again, due to the universality of single-layer neural networks, there exists some W2 ∈m2×m1 ,

b2 ∈m2 , Wo,2 ∈m2×t , bo,2 ∈t such that

ρ(e1,Wo,2σ (W2 ·+b2))+bo,2)< ε.

Therefore, by definition,

ρ(f,y2)< ε.

So, the collection of multi-scale networks with two hidden layers is dense in the space of continu-

ous functions.

Again, select W2 ∈m2×m1 , b2 ∈m2 , Wo,2 ∈m2×t , bo,2 ∈t to be optimal solutions to the minimiza-

tion problem:

min{ρ(f,y2)} ,

and define ε2 := ρ (f,y2).

Then, excluding any trivial solutions for the previous minimization problem,

ε2 < ε1. (2.20)
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Now, for fixed k ∈, assume that the collection of multi-scale neural networks of depth k− 1

is dense in the space of continuous functions. Therefore, there exists some Wi ∈mi×mi−1 , bi ∈mi ,

Wo,i ∈mi×t , bo,i ∈t , for i = 0,1, . . . ,k−1, with m0 = s, such that for yk−1,

ρ( f ,yk−1)< ε.

Select those parameters to be optimal solutions to the minimization problem:

min{ρ(f,yk)} ,

and define εk−1 := ρ (f,yk−1).

Continue to define another continuous, residual function, ek−1 : Ω →t , by

ek−1(x) = f(x)−yk−1(x). (2.21)

Again, due to the universality of single-layer neural networks, there exists some Wk ∈mk×mk−1 ,

bk ∈mk , Wo,k ∈mk×t , bo,k ∈t such that

ρ(ek−1,Wo,kσ (Wk ·+bk))+bo,k)< ε.

Therefore, by definition,

ρ(f,yk)< ε.

So, the collection of multi-scale networks with k hidden layers is dense in the space of continuous

functions.

Again, select Wk ∈mk×mk−1 , bk ∈mk , Wo,k ∈mk×t , bo,k ∈t to be optimal solutions to the mini-

mization problem:

min{ρ(f,yk)} ,

and define εk := ρ (f,yk).

Then, again, excluding any trivial solutions for the previous minimization problem,

εk < εk−1. (2.22)

This concludes the proof that the collection of multi-scale neural networks is dense in the space

of continuous functions and that increasing the depth necessarily reduces the approximation error.

The previous result is not limited to only ReLU activation functions and justifies the use of

multi-scale neural networks, in the sense that they can universally approximate any continuous
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function. Furthermore, the nature of their structure indicates that the approximation error strictly

decreases as the number of hidden layers gets larger.

The fact that the increasing the number layers reduces the approximation error leads one to be-

lieve that a very deep network can be used to solve many tasks. Indeed, many nontrivial problems

have greatly benefited from very deep models [27, 28, 29, 30, 31, 32, 33]. An issue that arises with

training single-scale, single-grade neural networks is the problem of vanishing [34, 35]. The prob-

lem has been addressed in through techniques like normalized initialization [35, 29, 36, 37], and

intermediate normalization layers [38], which enable deep networks start converge for stochastic

gradient descent algorithm with backpropagation [39]. The structure of the multi-scale model is

such that this problem is essentially avoided all together. Some more details on this are provided

at the end of section 2.5.

Now, recognizing that the multi-scale network is a superposition of the hidden layers, we can

consider a graduated learning model, where subsequent hidden layers are trained consecutively.

This is described in the next section.

2.4 GRADUATED LEARNING

Learning a deep neural network from discrete data reduces to the task of finding the optimal

weight matrices and bias vectors by solving a minimization problem. The single-grade learning

model learns the parameters of all layers together in one single grade.

After a deep neural network is learned, if its accuracy is not satisfactory, then the training

regime needs to be repeated with more layers. This is not computationally efficient. To allow

updating the learned neural network to form a new one without training a complete new neural

network, the multi-grade learning model proposed in reference [40] addresses these issues. Here,

some specifics of the model are discussed.

In the multi-grade learning model, each grade is composed of training one set of parameters

that, when superposed, form the entire multi-grade model.

For convenience, generally express a neural network with depth n in the following way:

Nn(x) = Wo

(
n⊙

l=1

σ (Wl ·+bl)

)
(x)+bo, x ∈ Ω (2.23)

with weight matrices and bias vectors defined precisely as before.

To describe the multi-grade model, organize the training process into g grades. Particularly,

choose n j ∈, j ∈g, so that ∑
g
j=1 n j = n.

Begin with grade 1. The goal is to learn the neural network Nn1 that approximates the target

function f : Ω ⊆s→t .
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Define the error function of grade 1 by

e1(x) = f(x)−Nk1(x) (2.24)

where the parameters W j ∈m j×m j−1 , b j ∈m j , Wo ∈mk1×t , bo ∈t , for j = 1,2, . . . ,k1 are to be learned

from solving the optimization problem:

min
{
∥e1(x)∥2

ℓ2

}
(2.25)

Let N∗
k1

defined by these optimal parameters and define

f1(x) = N∗
k1
(x),

which is information about f learned in grade 1. Define the optimal error of grade 1 by

e∗1(x) = f(x)− f1(x) (2.26)

Usually the magnitude of the optimal error of grade 1 is not sufficiently small, so training will

continue to the next grade.

In grade 2, another shallow neural network will be learned on top of v f1 by approximating the

optimal error e∗1 of grade 1.

Define the error function of grade 2 as

e2(x) = f(x)−Nk2(x) (2.27)

where the parameters W j ∈m j×m j−1 , b j ∈m j , Wo ∈mk1×t , bo ∈t , for j = 1,2, . . . ,k2 are to be learned

from solving the optimization problem:

min
{
∥e2(x)∥2

ℓ2

}
(2.28)

Let N∗
k2

defined by these optimal parameters and define

f2(x) = (N∗
k2
◦N∗

k1
)(x),

which is the new network stacked on top of the previous one. Define the optimal error of grade 2

by

e∗2(x) = e∗1(x)− f2(x) (2.29)

Now, suppose that the neural networks N∗
k j

, for j ∈, have been learned and the optimal error

for grade i is given by e∗i . The error function for grade i+1 is

e∗i+1(x) = e∗i (x)− (N∗
ki+1

◦N∗
ki
◦ · · · ◦N∗

k1
)(x) (2.30)
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where N∗
ki+1

is to be learned in grade i+1 similarly to above by solving the optimization problem:

min
{
∥ei+1(x)∥2

ℓ2

}
. (2.31)

Define

fi+1(x) = (N∗
ki+1

◦N∗
ki
◦ · · · ◦N∗

k1
)(x). (2.32)

If this process is repeated for all g grades, then finally, the g grade learning model generates the

neural network

fg =
g

∑
i=1

fi (2.33)

Unlike the single-scale, single-grade neural network, the neural network fg defined by in equa-

tion (2.33) learned by the g grade model is the sum total of the information learned from all the

grades. Unlike the multi-scale neural network, the multi-grade neural network is equipped with

a directly approach to approximating the error of approximations with more shallow neural net-

works. In each grade, the system learns based on the knowledge gained from learning of the

previous grades. Mathematically, the multi-grade neural network is the superposition of the net-

works in each of the g grades, and each of these is a shallow network.

Fig. 2. A visualization of a multi-grade model with three as a superposition of three networks.

In general, the multi-grade neural network has a stairs-shape. In Figure 2, there is an illustration

of a three grade learning model, the sum of three networks: the network (left) learned from grade 1
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plus the network (center) learned from grade 2, which is stacked on the top of the network learned

in grade 1, and plus the network (right) learned from grade 3, which is stacked on the top of the

network learned in grade 2. The sections enclosed by dotted lines exact copies of the networks

learned from the previous grades and remain unchanged in training of a new grade.

2.5 IMPLEMENTATION

Now, three distinct neural network architectures have been introduced with corresponding

learning regimes. What follows in the remainder of this chapter is a brief discussion on the im-

plementation of the training regimes, or, in other words, solving for the optimal solutions of the

various minimization problems proposed above.

Recall the learning problem. Given a set of data, approximate the target function f : Ω ⊆s→t

with N pairs of data points (xk,yk), k ∈N .

Call the desired approximator the function φ : Ω→t , which is either a single-scale, single grade

neural network, a multi-scale neural network, or a multi-grade neural network.

Regardless of the selection of the type of network, each is determined by the elements of the

weight matrices and the bias vectors. For simplicity, let ω ∈p be the collection of all these elements,

where p is the total number of them. So, for any x ∈ Ω, express the network by

φ(x) = φω(x).

Choosing an optimal function from this class entails finding the collection of parameters ω in
p that minimises an empirical error over the given data set:

L (ω) :=
1
N

N

∑
i=1

ℓ(ω,xi,yi). (2.34)

where ℓ is some loss function measuring the discrepancy between the observed target value yi and

the predicted value φω(x), for i ∈N .

This summation in equation (2.34) is sometimes called the fidelity term, as it measures the

discrepancy between the data and model predictions. A commonly used fidelity term is the mean

square error, with:

ℓ(ω,xi,yi) = ∥yi −φω(xi)∥2
ℓ2
. (2.35)

Another is the the mean square logarithmic error:

ℓ(ω,xi,yi) = ∥ log(yi)− log(φω(xi))∥2
ℓ2
. (2.36)

Due to the universality of neural networks, there is a model that can achieve zero empirical

error. However, in the presence of noise this means the model can overfit to the data sample and

loose its generalizability [41].
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This problem can be addressed by adding a regularization term to the optimization problem as

a penalty for certain irregular behaviour. Common regularization terms include the ℓ2-norm, used

to limit the size of the parameters, and the ℓ1-norm, which can induce sparse solutions.

The Theorem 1.3 in [42] and Proposition 27 of [43] provide an evidence that minimising the

ℓ1 norm provides sparse optimal solutions with a minimal number of nonzero elements. Well-

constructed models should be able to generalize the information from one given sample to any

possible event. Thus, regularization with the ℓ1 norm produces a model determined by a minimal

number of parameters so that the optimal solution does not fit completely to the training set and

loose its generalizability.

Therefore, the determination of the optimal neural network model consists of minimizing this

final loss function, the sum of the sample fidelity term and a weighted regularization term:

min
ω∈p

1
N

N

∑
i=1

ℓ(ω,xi,yi)+R · ||ω||1, (2.37)

where ℓ is a pre-selected loss function and R is a hyperparameter to determine the magnitude of

the regularization.

Expression (2.37) can be minimised using stochastic gradient methods on batches of the data

sample [44, 23, 22].

The training can accelerated using classical momentum methods [45]. In particular, randomly

select an initial set of parameters ω0.

Select a sequence of step sizes, or learning rates, Lk that diminish to zero.

Randomly selecting a batch of data with indices I ⊂ {1, ...,N}.

Choose a momentum parameter µ .

By defining:

vk+1 = µvk −Lk
∇ωLI(ω

k), (2.38)

ω
k+1 = ω

k + vk+1. (2.39)

where

LI(ω) :=
1
|I|∑i∈I

ℓ(ω,xi,yi),

Then the sequence ωk converges to a set of parameters defining the optimal neural network

with the minimal generalisation error, in the sense described here.

There are further extensions of the stochastic gradient methods described above. Particularly,

the ADAM method [46], which will be used for some computational examples that follow.
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To conclude this section, some details will be provided on how the multi-scale method can

overcome the previously mentioned vanishing gradient problem.

Begin by considering the single-scale, single-grade neural network in equation (2.8).

Consider the task of finding the optimal solution while minimizing equation (2.34), with the

mean square error for the loss function, using the stochastic gradient descent algorithm with no

momentum. To do so, the gradient of the loss function needs to be computed. Observe the value

of the partial derivatives for the weight matrix of the first hidden layer has in it a product of the

partial derivatives every subsequent layer by the chain rule.

Here is where the vanishing gradient problem arises - when the derivatives of the weights in the

later hidden layers approach zero, the weights in the first hidden layer essentially stop updating.

This will either cause the stochastic gradient descent algorithm not to converge, or to converge to

some suboptimal solution.

By contrast, consider the multi-scale neural network in equation (2.18).

Again, consider the the value of the partial derivatives for the weight matrix. Notice that when it

is computed, because of the summation, there is a term that is completely independent of the partial

derivatives of the weight matrices from every subsequent layer by the chain rule. This effectively

frees the weights in all layers to be updated without influence from diminishing gradient values of

other layers. This allows a very deep networks to have a convergent training regime.

These remarks are formalized in the following theorem. First, two lemmas are expressed.

This first is in regards to single-scale, single-grade neural networks.

Lemma 2.5.1. In a single-scale, single-grade neural network, the partial derivatives of the loss

function with respect to parameters from any hidden layer include a product of partial derivatives

with respect to each subsequent layer.

Proof. The single-scale, single-grade neural network is defined by

y = Wox(d)+bo,

where

x(i) = σ

(
Wix(i−1)+bi

)
, i ∈d,

is the i-th hidden layer, with x(0) = x.

Take the loss function to be minimized to be

L =
1
N

N

∑
i=1

∥yi −y(xi)∥2
ℓ2
.

Consider its partial derivatives with respect to the weights of the i-th hidden layer, Wi.
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∂L

∂Wi
=

∂L

∂y
∂y

∂Wi

=
∂L

∂y
∂y

∂x(d)
∂x(d)

∂Wi

=
∂L

∂y
∂y

∂x(d)
∂x(d)

∂x(d−1)
∂x(d−1)

∂Wi
.

Note that for any j ∈d ,
∂x( j)

∂Wi
=

∂x( j)

∂x( j−1)
∂x( j−1)

∂Wi
.

So, by induction,
∂L

∂Wi
=

∂L

∂y
∂y

∂x(d)

(
d

∏
j=i+1

∂x(d+i− j+1)

∂x(d+i− j)

)
∂x(i)

∂Wi

The second lemma is in regards to multi-scale neural networks.

Lemma 2.5.2. In a multi-scale neural network, the partial derivatives of the loss function with

respect to parameters from any hidden layer have one term that is independent from partial deriva-

tives with respect to any subsequent layer.

Proof. The multi-scale network to be found is given by

y = Wo,0x+bo,0 +
d

∑
i=1

(
Wo,ix(i)(x)+bo,i

)
.

where where

x(i) = σ

(
Wix(i−1)+bi

)
, i ∈d,

is the i-th hidden layer, with x(0) = x.

Take the loss function to be minimized to be

L =
1
N

N

∑
i=1

∥yi −y(xi)∥2
ℓ2
.

Consider the partial derivatives with respect to the weights of the i-th hidden layer, Wi.

∂L

∂Wi
=

∂L

∂y
∂y

∂Wi

=
∂L

∂y

d

∑
j=1

(
Wo, j

∂x( j)

∂Wi

)
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Since, for i > j,
∂x(i)

∂Wi
= 0,

then,
∂L

∂Wi
=

d

∑
j=i

(
Wo, j

∂x( j)

∂Wi

)
.

Using the result from lemma 2.5.1,

∂L

∂Wi
=

d

∑
j=i

(
Wo, j

(
j

∏
k=i+1

∂x( j+i−k+1)

∂x( j+i−k)

)
∂x( j)

∂Wi

)
.

For convenience, when the lower limit on the product is larger than the upper limit, set the product

equal to one.

Notice that the first term in the above sum, when j = i, is

Wo,i
∂x(i)

∂Wi
.

Finally, the main theorem on how the multi-scale is suited to overcome the vanishing gradient

problem for single-scale, single-grade neural networks is presented.

Theorem 2.5.1. For a neural network of depth d, and for all j ∈d , if there exists some ξ ∈ (0,1)

such that

0 ≤ ∂x( j)

∂x( j−1)
< ξ and 0 ≤ ∂y

∂x(d)
< ξ ,

or

−ξ <
∂x( j)

∂x( j−1)
≤ 0 and −ξ <

∂y
∂x(d)

≤ 0,

then, for i ∈,

1. for a single-scale, single-grade neural network,∣∣∣∣ ∂L

∂Wi

∣∣∣∣< ∣∣∣∣∂L

∂y

∣∣∣∣ |ξ |d−i

∣∣∣∣∣∂x(i)

∂Wi

∣∣∣∣∣ and lim
d→∞

∣∣∣∣ ∂L

∂Wi

∣∣∣∣= 0,

and

2. for a multi-scale neural network,∣∣∣∣ ∂L

∂Wi

∣∣∣∣> ∣∣∣∣ ∂L

∂Wi

∣∣∣∣ |ξ |
∣∣∣∣∣∂x(i)

∂Wi

∣∣∣∣∣ .
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Proof. First, consider a single-scale, single-grade neural network.

Using lemma 2.5.1, ∣∣∣∣ ∂L

∂Wi

∣∣∣∣=
∣∣∣∣∣∂L

∂y
∂y

∂x(d)

(
d

∏
j=i+1

∂x(d+i− j+1)

∂x(d+i− j)

)
∂x(i)

∂Wi

∣∣∣∣∣
<

∣∣∣∣∂L

∂y

∣∣∣∣ξ d−i

∣∣∣∣∣∂x(i)

∂Wi

∣∣∣∣∣ .
Letting the depth of the network approach infinity,

lim
d→∞

∣∣∣∣ ∂L

∂Wi

∣∣∣∣= 0.

Now, consider a multi-scale neural network.

Using lemma 2.5.2,∣∣∣∣ ∂L

∂Wi

∣∣∣∣=
∣∣∣∣∣∂L

∂y

d

∑
j=i

(
Wo, j

(
j

∏
k=i+1

∂x( j+i−k+1)

∂x( j+i−k)

)
∂x( j)

∂Wi

)∣∣∣∣∣
=

∣∣∣∣∂L

∂y

∣∣∣∣ d

∑
j=i

(∣∣Wo, j
∣∣ j

∏
k=i+1

∣∣∣∣∣∂x( j+i−k+1)

∂x( j+i−k)

∣∣∣∣∣
∣∣∣∣∣∂x( j)

∂Wi

∣∣∣∣∣
)

≥
∣∣∣∣∂L

∂y

∣∣∣∣ |Wo,i|

∣∣∣∣∣∂x(i)

∂Wi

∣∣∣∣∣ .
By applying the assumed bounds in the theorem,∣∣∣∣ ∂L

∂Wi

∣∣∣∣> ∣∣∣∣∂L

∂y

∣∣∣∣ |ξ |
∣∣∣∣∣∂x(i)

∂Wi

∣∣∣∣∣ .

Including the assumptions on the sign and magnitude of the derivatives of the loss function, the

consequences of this theorem are that the single-scale, single-grade neural network will succumb to

the vanishing gradient problem as the depth gets larger. Meanwhile, the multi-scale neural network

has a lower bound on the partial derivatives involved in the gradient based descent methods that

allows it to be resistant to the same vanishing gradient problem.

It will be seen that the multi-scale neural network outperforms the single-scale, single-grade

neural network in terms of minimizing the loss function. This is in part due to the above theorem,

that the multi-scale neural network is resistant to the vanishing gradient problem.

Now, all three models described previously can provide optimal solutions to the minimization

problems given a set of data. Even with theoretical comparisons of the methods, there is still the
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task of practically implementing the optimization methods with the appropriate selection of the

training regime.

The following chapter provides such an implementation for three examples with either periodic

or non-smooth behaviour.

In practice, there are different things to consider, and so here, two additional models are pro-

vided in addition to the standard, single-scale, single-grade deep neural networks as a tool to add

additional robustness to desired approximators and/or a reduction in computational complexity.
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CHAPTER 3

NUMERICAL EXAMPLES

Here, three numerical examples are provided as a proof-of-concept to compare the robustness

of the single-scale, single-grade network, the multi-scale network, and the multi-grade model. Two

periodic functions and one nonsmooth function are considered. These cases are considered both

with noise and without noise.

All three of the experiments reported in this chapter are performed with Python on an Intel(R)

Xeon Gold 6310 CPU at 2.1GHz with two Nvidia Tesla V100 GPU to accelerate the computing.

Below is a description of the experimental data set for a given function f dependent on the

example. For N = 8000, {(xn,yn)}N
n=1 ⊂ [a,b]× is the data set, where xn’s are equally spaced on

[a,b], and given xn, the corresponding yn is computed by yn = f (xn)+ en. For the noise free case,

en = 0, and for the noisy case, the en’s are independent and identically distributed Gaussian random

variables with mean 0 and standard deviation 0.05.

Of this data set, 80% is randomly selected for the training set and the remaining 20% is selected

for the testing set.

The loss function selected for training the models is the mean square error. In these examples,

no regularization term is incorporated into the loss function.

All models were trained using the ADAM optimization method with a learning rate decay of

10−2.

The architectures of the models are described here. Note that the activation function for every

layer is the ReLU function.

• Single-scale, single-grade (SSSG):

The architecture can be described by the following schematic.

[1]→ [256]→ [256]→ [128]→ [128]→ [64]→ [64]→ [32]→ [32]→ [1] (3.1)

Here, for any n ∈, [n] indicates a fully-connected layer with n neurons.

• Multi-scale (MS):
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There are four multi-scale models considered, corresponding to the following networks

MS-2: [1]→ [256]→ [256]→ [1]

MS-4: [1]→ [256]→ [256]→ [128]→ [128]→ [1]

MS-6: [1]→ [256]→ [256]→ [128]→ [128]→ [64]→ [64]→ [1]

MS-8: [1]→ [256]→ [256]→ [128]→ [128]→ [64]→ [64]→ [32]→ [32]→ [1]

Note that the output of each hidden layer is weighted and summed to the produce the final

output. All four of the above multi-scale networks are trained independently.

• Multi-grade (MG):

The multi-grade model has three grades.

Grade 1: [1]→ [256]→ [256]→ [1]

Grade 2: [1]→ [256]F → [256]F → [128]→ [128]→ [64]→ [1]

Grade 3: [1]→ [256]F → [256]F → [128]F → [128]F → [64]F → [64]→ [32]→ [32]→ [1]

Here, similarly, for any n ∈, [n]F indicates [n] with all parameters fixed during training.

3.1 EXAMPLE 1

Consider the task of approximating the periodic function

f (x) = sin(24πx), x ∈ [0,1] (3.2)

For training all models, 300 epochs are used. The single-scale, single-grade network and the

multi-scale networks use a batch size of 16 and an initial learning rate of 10−4. The number of

epochs, batch size, and initial learning rate per grade for the multi-grade model are described in

Table 2 for the noise-free case and Table 5 for the noisy case.

The training data for the noise-free case are plotted in Figure 3.

Numerical results for training for this noise-free case are listed in Tables 3, 1, and 2. A corre-

sponding figure is plotted in Figure 4.

The prediction from each method for the noise-free case is plotted in Figure 7. A plot of output

from each scale of the multi-scale method with 8 scales is given in Figure 5. A plot of the output

from each grade of the multi-grade method with 3 grades is given in Figure 6.
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Fig. 3. The example 1 (noise free) target data set.

Fig. 4. For example 1 (noise free), the loss curves during training for the single-scale, single grade

method, the multi-scale method with two, four, six, and eight scales, and the multi-grade method

with 3 grades.
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TABLE 1

For example 1 (noise free), training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 289.9385 0.3238

4 340.2780 0.0466

6 384.3652 0.0037

8 418.5224 0.0065

TABLE 2

For example 1 (noise free), the training time and accuracy for each grade of the Multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 16 40 39.7909 0.4829

2 10−4 16 160 150.3363 0.1863

3 10−4 4 100 311.1016 0.0429

TABLE 3

For example 1 (noise free), a comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 371.4200 0.1423

Multi-scale 418.5224 0.0065

Multi-grade 501.2288 0.0429
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A

B

C

Fig. 5. For example 1 (noise free), a comparison of each scale in the multi-scale method, where

each figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 5. Continued.
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Fig. 5. Continued.
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Fig. 6. For example 1 (noise free), a comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 7. For example 1 (noise free), the target function compared to the (A) single-scale, single

grade model, (B) multi-scale model with eight scales, and (C) multi-grade model with three

grades.
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Fig. 8. The example 1 (noisy) target data set.

The training data for the noisy case are plotted in Figure 8. Numerical results for training for

this noisy case are listed in Tables 6, 4, and 5. A corresponding figure is plotted in Figure 9.
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Fig. 9. For example 1 (noisy), the loss curves during training for the single-scale, single grade

method, the multi-scale method with two, four, six, and eight scales, and the multi-grade method

with 3 grades.

TABLE 4

For example 1 (noisy), the training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 319.7761 0.3243

4 363.8955 0.0087

6 410.8616 0.0077

8 454.9396 0.0127
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TABLE 5

For example 1 (noisy), the training time and accuracy for each grade of the multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 16 40 139.2121 0.4605

2 10−4 16 160 152.4621 0.2724

3 10−4 4 100 305.8536 0.2352

TABLE 6

For example 1 (noisy), a comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 365.9769 0.1308

Multi-scale 454.9396 0.0127

Multi-grade 305.8536 0.2352

The prediction from each method for the noisy case is plotted in Figure 12. A plot of output

from each scale of the multi-scale method with 8 scales is given in Figure 10. A plot of the output

from each grade of the multi-grade method with 3 grades is given in Figure 11.
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C

Fig. 10. For example 1 (noisy), the comparison of each scale in the multi-scale method, where

each figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 10. Continued.
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Fig. 10. Continued.
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Fig. 11. For example 1 (noisy), the comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 12. For example 1 (noisy), the target function compared to the (A) single-scale, single grade

model, (B) multi-scale model with eight scales, and (C) multi-grade model with three grades.
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3.2 EXAMPLE 2

Consider the task of approximating the oscillatory function

f (x) = xsin(24πx), x ∈ [0,1] (3.3)

For training all models, 300 epochs are used. The single-scale, single-grade network and the

multi-scale networks use a batch size of 16 and an initial learning rate of 10−4. The number of

epochs, batch size, and initial learning rate per grade for the multi-grade model are described in

Table 8 for the noise-free case and Table 11 for the noisy case.

The training data for the noise-free case are plotted in Figure 13.

Fig. 13. The example 2 (noise free) target data set.

Numerical results for training for this noise-free case are listed in Tables 9, 7, and 8. A corre-

sponding figure is plotted in Figure 14.
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Fig. 14. For example 2 (noise free), the loss curves during training for the single-scale, single

grade method, the multi-scale method with two, four, six, and eight scales, and the multi-grade

method with 3 grades.

TABLE 7

For example 2 (noise free), the training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 297.3770 0.0947

4 402.8942 0.0065

6 409.0968 0.0006

8 438.5784 0.0005
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TABLE 8

For example 2 (noise free), thee training time and accuracy for each grade of the multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 16 40 39.7909 0.4829

2 10−4 16 160 150.3363 0.1863

3 10−4 4 100 311.1016 0.0429

TABLE 9

For example 2 (noise free), a comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 367.9119 0.0020

Multi-scale 438.5784 0.0005

Multi-grade 501.2288 0.0429

The prediction from each method for the noise-free case is plotted in Figure 17. A plot of

output from each scale of the multi-scale method with 8 scales is given in Figure 15. A plot of the

output from each grade of the multi-grade method with 3 grades is given in Figure 16.
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C

Fig. 15. For example 2 (noise free), the comparison of each scale in the multi-scale method,

where each figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 15. Continued.
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Fig. 15. Continued.
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Fig. 16. For example 2 (noise free), a comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 17. For example 2 (noise free), the target function compared to the (A) single-scale, single

grade model, (B) multi-scale model with eight scales, and (C) multi-grade model with three

grades.
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Fig. 18. The example 2 (noisy) target data set.

The training data for the noisy case are plotted in Figure 18. Numerical results for training for

this noisy case are listed in Tables 12, 10, and 11. A corresponding figure is plotted in Figure 19.
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Fig. 19. For example 2 (noisy), the loss curves during training for the single-scale, single grade

method, the multi-scale method with two, four, six, and eight scales, and the multi-grade method

with 3 grades.

TABLE 10

For example 2 (noisy), the training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 290.0700 0.1087

4 396.3188 0.0127

6 409.2024 0.0073

8 429.1318 0.0045
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TABLE 11

For example 2 (noisy), the training time and accuracy for each grade of the multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 4 40 145.8970 0.1509

2 10−4 16 160 156.8009 0.0479

3 10−4 4 100 325.1570 0.0171

TABLE 12

For example 2 (noisy), the comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 403.5050 0.0125

Multi-scale 429.1318 0.0045

Multi-grade 627.8549 0.0171

The prediction from each method for the noisy case is plotted in Figure 22. A plot of output

from each scale of the multi-scale method with 8 scales is given in Figure 20. A plot of the output

from each grade of the multi-grade method with 3 grades is given in Figure 21.
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C

Fig. 20. For example 2 (noisy), a comparison of each scale in the multi-scale method, where each

figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 20. Continued.
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Fig. 20. Continued.
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Fig. 21. For example 2 (noisy), a comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 22. For example 2 (noisy), the target function compared to the (A) single-scale, single grade

model, (B) multi-scale model with eight scales, and (C) multi-grade model with three grades.
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3.3 EXAMPLE 3

Consider the task of approximating the nonsmooth function

f (x) = (x+1)( f4 ◦ f3 ◦ f2 ◦ f1)(x), x ∈ [−1,1], (3.4)

where

f1(x) = |cos(π(x−0.3))−0.7|,

f2(x) = |cos(2π(x−0.5))−0.5|,

f3(x) =−|x−1.3|+1.3,

f4(x) =−|x−0.9|+0.9.

For training all models, 250 epochs are used. The single-scale, single-grade network and the

multi-scale networks use a batch size of 16 and an initial learning rate of 10−4. The number of

epochs, batch size, and initial learning rate per grade for the multi-grade model are described in

Table 14 for the noise-free case and Table 17 for the noisy case.

The training data for the noise-free case are plotted in Figure 23.

Fig. 23. The example 3 (noise free) target data set.
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Numerical results for training for this noise-free case are listed in Tables 15, 13, and 14. A

corresponding figure is plotted in Figure 24.

Fig. 24. For example 3 (noise free), the loss curves during training for the single-scale, single

grade method, the multi-scale method with two, four, six, and eight scales, and the multi-grade

method with 3 grades.

The prediction from each method for the noise-free case is plotted in Figure 27. A plot of

output from each scale of the multi-scale method with 8 scales is given in Figure 25. A plot of the

output from each grade of the multi-grade method with 3 grades is given in Figure 26.

The training data for the noisy case are plotted in Figure 28. Numerical results for training for

this noisy case are listed in Tables 18, 16, and 17. A corresponding figure is plotted in Figure 29.
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TABLE 13

For example 3 (noise free), the training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 246.9515 0.0249

4 150.3363 0.1863

6 256.1678 0.0005

8 322.9416 0.0003

TABLE 14

For example 3 (noise free), the training time and accuracy for each grade of the multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 4 5 19.8238 0.0563

2 10−4 16 115 115.9054 0.0083

3 10−4 4 130 424.5047 0.0005

TABLE 15

For example 3 (noise free), a comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 306.6797 0.0003

Multi-scale 322.9416 0.0003

Multi-grade 560.2339 0.0429
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C

Fig. 25. For example 3 (noise free), a comparison of each scale in the multi-scale method, where

each figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 25. Continued.
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G

H

Fig. 25. Continued.

TABLE 16

For example 3 (noisy), the training time and accuracy multi-scale model with varying scales.

Scale Training Time (seconds) MSE

2 259.7693 0.0272

4 313.5776 0.0056

6 371.6165 0.0036

8 366.1987 0.0042



62

A

B

C

Fig. 26. For example 3 (noise free), a comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 27. For example 3 (noise free), the target function compared to the (A) single-scale, single

grade model, (B) multi-scale model with eight scales, and (C) multi-grade model with three

grades.
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Fig. 28. The example 3 (noisy) target data set.

Fig. 29. For example 3 (noisy), the loss curves during training for the single-scale, single grade

method, the multi-scale method with two, four, six, and eight scales, and the multi-grade method

with 3 grades.
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TABLE 17

For example 3 (noisy), the training time and accuracy for each grade of the multi-grade model.

Grade Learning Rate Batch Size Epochs Training Time (seconds) MSE

1 10−4 4 40 19.7853 0.0585

2 10−4 16 115 116.1317 0.0127

3 10−4 4 130 431.3353 0.0009

TABLE 18

For example 3 (noisy), a comparison of training time and accuracy for each model.

Method Training Time (seconds) MSE

Single-scale, single-grade 322.5063 0.0143

Multi-scale 366.1987 0.0042

Multi-grade 567.2523 0.0009

The prediction from each method for the noisy case is plotted in Figure 32. A plot of output

from each scale of the multi-scale method with 8 scales is given in Figure 30. A plot of the output

from each grade of the multi-grade method with 3 grades is given in Figure 31.
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Fig. 30. For example 3 (noisy), a comparison of each scale in the multi-scale method, where each

figure labeled A through H corresponds to scales one through eight, respectively.
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Fig. 30. Continued.



68

G

H

Fig. 30. Continued.
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Fig. 31. For example 3 (noisy), a comparison of each grade in the multi-grade method, where

each figure labeled A through C corresponds to grades one through three, respectively.
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Fig. 32. For example 3 (noisy), the target function compared to the (A) single-scale, single grade

model, (B) multi-scale model with eight scales, and (C) multi-grade model with three grades.



71

3.4 REMARKS

Observe from the numerical results presented in this section that for all examples (for both

noise free and noisy cases), the multi-scale and multi-grade models outperforms the single-scale,

single-grade model in many in terms of training time and accuracy. They are most resistant to

noise. Moreover, multi-grade models provide a more customizable training regime.
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CHAPTER 4

DEEPLY LEARNING DEEP INELASTIC SCATTERING KINEMATICS

Now, the multi-scale methods will be applied directly to a real world problem. The results

presented here were part of a study conducted by the author [5].

Measurements of deep-inelastic scattering (DIS) by a multitude of experiments all-over the

world [47, 48, 49, 50, 51] and the study of these measurements by the theoretical and experimental

communities [51] have revealed information on the quark-gluon structure of nuclear matter and

established quantum chromodynamics (QCD) as the theory of the strong interaction. The exper-

iments at the HERA collider facility at the DESY research centre in Hamburg, Germany have

played an important role in these studies. HERA has been the only electron-proton collider built

so far [52]. The data collected in the years 1992 - 2007 have provided truly unique information on

the internal structure of the proton and other hadrons [53].

The key component in these studies has been a precise reconstruction of the DIS kinematics,

using information from the accelerator and the detectors. Multiple methods have been applied at

the HERA experiments [54] to reach an optimal precision in each particular measurement. Each of

the classical reconstruction methods uses only partial information from the DIS event and is subject

to specific limitations, either arising from the detector or the assumptions used in the method.

With the DIS measurements at the upcoming Electron-Ion Collider in mind [55], a novel

method using deep neural networks for the reconstruction of DIS kinematics based on supervised

machine learning and study its performance using Monte Carlo simulated data from the ZEUS

experiment [56] at HERA. the deep neural network models are optimised for the problem and are

allowed to take full information from the DIS event into account. DNN models are trained on

simulated data from the ZEUS experiment. The reconstruction is compared between the results

from our trained model and the results from the classical reconstruction methods.

It is shown that the reconstruction of the DIS kinematics using deep neural networks provides

a rigorous, data-driven method to combine and outperform classical reconstruction methods over

a wide kinematic range. In the past, neural networks had already been used in the context of DIS

experiments [57] and it is expected that this novel method and similar approaches will play an even

more important role in ongoing and future DIS experiments [58, 59].

4.1 DEEP INELASTIC SCATTERING

Deep inelastic scattering is a process in which a high-energy lepton (l) scatters off a nucleon
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or nucleus target (h) with large momentum transfer (the momentum of each entity is given in

parenthesis):

l(k)+h(P)→ l′(k′)+H (P′)+ remnant. (4.1)

The detectors in collider experiments are designed to measure the final state of the DIS process,

consisting of the scattered lepton l′ and the hadronic final state (HFS) H . The latter consists of

hadrons with a relatively long lifetime as well as some photons and leptons but does not include

the hadron remnant. The H1 [60] and ZEUS experiments were not able to register the remnant of

the target due to its proximity to the proton beam pipe.

4.1.1 Deep Inelastic Scattering At Born Level

In the leading order (Born) approximation, the leptons interact with quarks in the hadrons by

the exchange of a single virtual γ or Z boson in the neutral current (NC) reaction, and the exchange

of single W± boson in the charged current (CC) reaction. The kinematics of the leading order DIS

process in a Feynman diagram-like form is shown in Fig. 33.

l(k) l′(k′)

h(P ) Hadronremnant

H(P ′)xP

Z/γ∗/W±(q)

Fig. 33. Schematic representation of Deep Inelastic Scattering process at Born level.

In this paper, we will only consider the neutral current electron scattering off a proton in a

collider experiment. In this reaction, the final state lepton is a charged particle (electron or positron)

that can be easily registered and identified in the detector.

With a fixed centre-of-mass energy,
√

s =
√

(k+P)2, two independent, Lorentz-invariant,

scalar quantities are sufficient to describe the deep inelastic scattering event kinematics in the
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Born approximation. Typically, the used quantities are:

• the negative squared four-momentum of the exchanged electroweak gauge boson:

Q2 =−q ·q =−(k− k′)2, (4.2)

• the Bjorken scaling variable, interpreted in the frame of a fast moving nucleon as the fraction

of incoming nucleon longitudinal momentum carried by the struck parton:

x =
Q2

2P ·q
. (4.3)

In addition to that, the inelasticity y is used to define the kinematic region of interest. It is defined

as the fraction of incoming electron energy taken by the exchanged boson in the proton rest frame

y =
P ·q
P · k

. (4.4)

Therefore, for the DIS an equation

Q2 = syx (4.5)

holds. However, the Born-level picture of the DIS process is not sufficient for the description of

the observed physics phenomena. A realistic description of DIS requires the inclusion of higher

order QED and QCD processes [61].

4.1.2 Higher Order Corrections to Deep-Inelastic Scattering Process

The DIS process with leading order QED corrections can be written as

l(k)+h(P)→ l′(k′)+ γ(Pγ)+X(P′)+ remnant, (4.6)

so the kinematics is defined not only by the kinematic of the scattered electron and the struck par-

ton, but also by the momentum of the radiated photon, Pγ . The lowest order electroweak radiative

corrections can be depicted in a form of Feynman diagrams as shown in Fig. 34 A)-D) and should

be considered together with the virtual corrections E)-G).
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Fig. 34. Feynman diagrams for Deep Inelastic Scattering process with some leading order

electroweak corrections A)-G) and QCD corrections H)-K). The proton remnant is omitted.
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The Fig. 34 a),d) correspond to the initial state radiation (ISR) and the Fig. 34 b),c) to the final

state radiation (FSR).

With the virtual corrections taken into account in the DIS process, Eq. (4.2) no longer holds,

i.e.

q ·q ̸=−(k− k′)2. (4.7)

The presence of higher order QCD processes, (e.g. the boson-gluon fusion in Fig. 34 h) and QCD

Compton Fig. 34 i),j)) makes the kinematic description of the DIS process even more complicated.

Therefore, the exact definitions of the kinematic observables used in the analysis of the DIS events

and the corresponding simulations are essential for the correct physics interpretation.

4.1.3 The Simulation of the DIS Events and the Kinematic Variables in the Simulated Events

The simulation of the inclusive DIS events in the Monte Carlo event generators (MCEGs) starts

from the simulation at the parton level, i.e. the simulation of the hard scattering process and the

kinematics of the involved partons, e.g. given by parton distribution functions (PDFs) [62] for the

given hadron and considering processes with all types of partons in the initial state. The modelling

of the hard scattering process combines the calculations of the perturbative QED and/or QCD

matrix elements for the 2 → n processes at parton level with the different QCD parton cascade

algorithms designed to take into account at least some parts of the higher order perturbative QCD

corrections not present in the calculations of matrix elements.

The simulated collision events on the particle (hadron) level are obtained using the parton level

simulations as input and applying phenomenological hadronisation and particle decay models to

them.

As of 2022, multiple MCEG programs are capable of simulating the inclusive DIS process at

the hadron level with different levels of theory precision and sophistication of modelling of hadro-

nisation, beam remnant and parton cascades, e.g. Pythia6 [63], Pythia8 [64], SHERPA-MC [65],

WHIZARD [66] and Herwig7 [67]. In addition to that, the Lepto [68], Ariadne [69], Cascade [70]

and Rapgap [71] programs can simulate the DIS process using parts of the Pythia6 framework

for the simulation of hadronisation processes and decays of particles.

As it was discussed above, DIS beyond the Born approximation has a complicated struc-

ture which involves QCD and QED corrections [55]. The most recent MCEG programs, e.g.

Herwig7, Pythia8, SHERPA-MC, or WHIZARD, contain these corrections as a particular case of their

own general-purpose frameworks or are able to use specialised packages like OpenLoops [72],

blackhat [73] or MadGraph [74]. In general, the modern MCEGs do not specify their definitions

of the DIS kinematic observables, but in some cases they can be calculated from the kinematics of
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the initial and final state, both for the true and reconstructed kinematics. For instance, under some

assumptions, the Q2 in the event could be calculated according to Eq. (4.2). The total elimination

of the ambiguities for such calculations is not possible, as the final state kinematics even at the

parton level depend on the kinematics of all the emitted partons. The calculations of the kinematic

observables from the momenta of particles at hadron level add an additional ambiguity related to

the identification of the scattered lepton and the distinction of that lepton from the leptons pro-

duced in the hadronisation and decay processes.

Contrary to the approaches adopted in modern MCEG programs, the MCEGs used for the

HERA experiments relied upon generator-by-generator implementations of the higher order QED

and QCD corrections specific for DIS or alternatively applied HERACLES [61] for the corrections.

The way to get a simulation of the DIS collision even in a specific detector is the same as for

any other type of particle collision event. It involves simulation of the particle transport through the

detector material, simulation of detector response and is typically performed in Geant [75, 76] or

similar tools. The simulated detector response is passed to the experiment-specific reconstruction

programs and should be indistinguishable from the real data recorded by the detector and processed

in the same way.

4.1.4 Reconstruction of the Kinematic Variables At the Detector Level

The kinematics of the DIS events are reconstructed in collider experiments by identifying and

measuring the momentum of the scattered lepton l′ and/or the measurements of the hadronic final

state (H ). The identification of the scattered lepton is ambiguous even at the particle level of

the simulated DIS collision events. The same ambiguity is present in the reconstructed real and

simulated data at the detector level. Therefore, the identification of the scattered electron candidate

for the purposes of physics analyses is a complicated task on itself and was a subject of multiple

studies in the past, some of which also involved neural network-related techniques [57]. In our

paper, we rely on the standard method of the electron identification at the ZEUS experiment [57]

and discuss solely the reconstruction of the kinematic variables using the identified electron and

other quantities measured in the detector.

The physics analyses performed in the experiments at HERA relied on the following quantities

for the calculation of the kinematic observables x and Q2:

• The energy (El′) and polar angle (θl′) of the scattered electron. Most of the DIS experiments

are equipped to register the scattered electron using the tracking and calorimeter detector

subsystems. While the tracking system is able to provide information on the momentum

of the scattered electron, the calorimeter system can be used to estimate the energy of the
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electron and the total energy of the collinear radiation emitted by the electron. At the de-

tector level, the estimation of these energies can be done by comparing the momentum of

the electron reconstructed in the tracking system and the energy deposits registered in the

calorimeter system around the extrapolated path of the electron in the calorimeter.

• The energy of the HFS expressed in terms of the following convenient variables:

δH = ∑
i∈H

Ei −PZ,i (4.8)

and

PT,H =

√√√√(
∑

i∈H

PX ,i

)
+

(
∑

i∈H

PY,i

)
, (4.9)

where the sums run over the registered objects i excluding the scattered electron. Depending on

the analysis requirements, the used objects could be either registered tracks, energy deposits in the

calorimeter system, or a combination of both.

The measurements of the quantities listed above overconstrain the reconstruction of the DIS

kinematics. Therefore, in the simplest case, any subset of two observables in El′ , θl′ , δH , and

PT,H , can be used for the reconstruction.

In our analysis, we consider three specific classical reconstruction methods based on these

observables which were used by the ZEUS collaboration in the past: the electron, the Jacques-

Blondel, and the double-angle methods. We briefly provide some details on the methods in this

section, while a more detailed description can be found elsewhere [77].

The electron (EL) method uses only measurements of the scattered lepton, El′ and θl′ , to do the

reconstruction of Q2 and x. The kinematic variables calculated from these measurements are given

by:

Q2
EL = 2ElEl′(1+ cosθl′) (4.10)

and

xEL =
ElEl′(1+ cosθl′)

EP(2El −El′(1− cosθl′))
. (4.11)

The electron method provides precise reconstruction of kinematics, but, since it uses only infor-

mation from the scattered lepton, this method is affected by initial and final state QED radiation.

Namely, the QED radiation registered in the detector separately from the scattered electron will

not be taken into account in the calculations with this method. Practically, the reconstruction with

this method gives reasonable results when El and El′ are significantly different from one another,

but the resolution and stability becomes poor otherwise.
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The Jacques-Blondel (JB) method uses only measurements of the final state hadronic system,

δH and PT,H , for the reconstruction. The kinematic variables are calculated from these by:

Q2
JB =

2ElP2
T,H

2El −δH
, (4.12)

xJB =
2ElQ2

JB
sδH

. (4.13)

The JB method is resistant to possible biases because of unaccounted QED FSR, but requires pre-

cise measurements of the particles momenta in the hadronic final state. The factors that limit the

precision of the measurements are the uncertainties in the particle identification, the finite resolu-

tion of the calorimeter and tracking detectors, the inefficiencies of these detectors, the impossibility

of the particle detection around the beampipe, and the presence of objects that avoid detection (e.g.

neutrinos from particle decays).

The double-angle (DA) method combines measurements from the scattered lepton and the

final-state hadronic system, θl′ and γH , to perform the kinematic reconstruction as follows:

Q2
DA =

4E2
l sinγH (1+ cosθl′)

sinγH + sinθl′ − sin(γH +θl′)
, (4.14)

xDA =
El sinγH (1+ cosθl′)

EP sinθl′(1− cosγH )
, (4.15)

where the angle γH is defined as

cosγH =
P2

T,H −δ 2
H

P2
T,H +δ 2

H

. (4.16)

The angle γH depends on the ratio of the measured quantities δH and PT,H , and thus, uncertainties

in the hadronic energy measurement tend to cancel, leading to good stability of the reconstructed

kinematic variables. Similar to the electron method, when El and El′ are significantly different from

one another, the double-angle method provides reliable results, but the resolution and stability are

poor otherwise.

4.1.5 The Methodology of Measurements in the Deep Inelastic ep Collisions

The methodology of measurements at lepton-hadron colliders in general is similar to the method-

ologies used at e+e− and hadron-hadron colliders. Briefly, in the most cases the quantity of interest

is measured from the real data registered in the detector corrected for detector effects. The cor-

rections are estimated by comparing the analysis at the detector level with the same analysis at
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particle level using detailed simulations of the collision events with the inclusion of higher order

QED and QCD processes.

The main difference between the measurements at lepton-hadron colliders and elsewhere, is in

the way the measurements involve collision kinematics. At e+e− colliders, the initial kinematics

of the interactions is given by the lepton energies that are known parameters of the accelerators.

Therefore, it is straightforward for most of the measurements in the e+e− experiments to estimate

the centre-of-mass energy of the hard collision process. In hadron-hadron collider experiments,

there is no way to measure the kinematic properties of the partons initiating the collision process,

as the involved partons cannot be observed in a free state and most measurements in the hadron-

hadron collisions are inclusive in the kinematics of the initial state. The DIS collisions at electron-

proton colliders take a middle stance between these cases. The kinematic observables of the DIS

process are measured on an event-by-event basis at the detector level using the methods described

above.

In an experiment, the measurements of event kinematics is affected by various effects. For

a proper comparison of the measurements of HFS, e.g. jet cross-sections or event shape observ-

ables to corresponding perturbative QCD (pQCD) predictions, the detector-level measurements are

unfolded for detector effects while hadronisation correction factors are calculated using MCEGs

or specialised programs and applied to the pQCD predictions [78, 79, 80, 81]. The prescription

for calculation of those correction factors vary depending on the HFS quantities measured and the

used definitions of the kinematic observables. Typically, at ZEUS and other experiments at HERA,

after the unfolding of the detector effects, the measurements were also scaled by radiation correc-

tion factors to facilitate a comparison to theoretical calculations available at Born level in QED,

see e.g. Ref. [82]. The factors were obtained from separate high-statistics MC simulations. This

is a well-understood Monte Carlo approach and our deep learning technique can be used with it

in exactly the same way as the classical methods, both for the experimental and the MC data. For

future DIS measurements, e.g. at the upcoming Electron-Ion Collider, it is expected that the ef-

fects of QED and QCD radiation can be treated in an unified formalism [81], with the QED effects

taken into account into a factorised approach. Our DNN-based reconstruction of DIS kinematics

is compatible with such a factorised approach as well.

Therefore, in this analysis, we keep the calculation of correction factors for QED and hadroni-

sation effects out of scope and limit the discussion to detector-level measurements. At particle-level

in the MC generated events, we use a single definition of “true” kinematic observables that is based

on the kinematics of the exchanged boson extracted from the MC event information.

Namely, we use the definitions of the true-level observables Q2
true and xtrue that follow the defi-
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nitions implemented in ZEUS Common NTuples [83, 84] and were used in many ZEUS analyses.

With these definitions the Q2
true is calculated directly from the squared four-momentum of the ex-

change boson qboson,

Q2
true =−|qboson|2. (4.17)

The xtrue is calculated according to the formula

xtrue =
Q2

true
yafter ISRsafter ISR

, (4.18)

with

yafter ISR =
qboson ·Pproton beam

(Plepton beam −PISR radiation) ·Pproton beam
(4.19)

and

safter ISR = |Pproton beam +Plepton beam −PISR radiation|2, (4.20)

where Pproton beam, Plepton beam and PISR radiation represent the four-momenta of the proton beam

particles, lepton beam particles and the momenta lost by the lepton beam particles to ISR. Thus,

yafter ISR corresponds to the fraction of energy of the bare lepton (i.e. without the ISR) transferred

to the HFS in the centre of mass of the proton and safter ISR to the centre-of-mass-energy squared

of the proton and the incoming bare electron.

4.2 MULTI-SCALE LEARNING METHODS

The reconstruction of DIS event kinematics is overconstrained by the previously mentioned

measurements, El′ , θl′ , δH , and PT,H . We trained an ensemble of multi-scale neural networks

(NN) to reconstruct x and Q2 by correcting results from classical reconstruction methods using the

information on the scattered lepton and the final-state hadronic system.

The ensemble NN method presented here is a new approach designed specifically to address

this reconstruction problem. The remainder of this section discusses in detail specifics of the NN

architectures, the specific optimisation methods used to find the optimal parameters defining the

DNNs, and the specific structure of the ensemble models. The main motivation for using the multi-

scale model is:

• the universal approximation capabilities

• the necessary reduction in the approximation error with the increase in the depth

• avoidance of a degradation problem [85] in training due to the residual structure of the mod-

els.
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We use a logarithmic loss function. The specifics of the model follow. However, due to the

large size of the models, to avoid overfitting, we use ℓ1 regularization.

We use the stochastic gradient descent algorithm with momentum for the optimizer to solve for

the optimal parameters in the optimization problem.

We construct a model to rigorously weight classically derived reconstructions of x and Q2 with

corrections based on measurements from the final state lepton and hadronic system. The final

reconstruction of these observables with the neural network approach are labelled below as Q2
NN

and xNN respectively.

The constructed model is an ensemble of networks from the previously defined function class

multi-scale deep neural networks, where the activation function σ is the rectified linear unit ReLU.

The values of the depth and width of each hidden layer varies with each network in the ensemble.

The NC DIS events studied in this analysis are by definition the events containing the scat-

tered electron in the final state, therefore we aim to reconstruct the Q2
NN primarily from the related

observables, i.e. using the properties of the electron directly measured in the experiment. In par-

ticular, we use as inputs three set of variables: the classically reconstructed kinematic observables(
Q2

EL,Q
2
DA,Q

2
JB
)
, measurements on the scattered lepton (El′,θl′), and measurements on the final-

state hadronic system
(
δH ,PT,H

)
. We reconstruct the Q2 in the form:

Q2
NN = AQ2

(
Q2

EL,Q
2
DA,Q

2
JB
)
+LQ2

(
AQ2,El′,θl′

)
+

+HQ2
(
AQ2,δH ,PT,H

)
,

(4.21)

in which AQ2 could be understood as a rigorous average of classically derived reconstructions,

LQ2 is a correction term computed from the scattered lepton, and HQ2 is another correction term

computed from the final-state hadronic system. In our analysis AQ2 , LQ2 , HQ2 are simultaneously

trained multi-scale networks in mapping three inputs to one output, with 5 hidden layers. Each

hidden layer of the networks contains 2000 nodes.

The x observable for the NC DIS events is actually calculated from the electron-related observ-

ables as well. Therefore, we reconstruct xNN , with Q2
NN also as an input, for a total of eight inputs

(xEL,xDA,xJB,El′,θl′ ,δH , PT,H ,Q2
NN), in the form:

xNN = Ax (xEL,xDA,xJB)+Lx
(
Ax,Q2

NN ,El′,θl′
)
+

+Hx
(
Ax,Q2

NN ,δH ,PT,H
)
,

(4.22)

where Ax, Lx, and Hx are defined similarly to AQ2 , LQ2 , and HQ2 , but Ax is a multi-scale network

with 20 hidden layers, where each hidden layer contains 1000 nodes, and Lx, Hx are multi-scale

networks with 10 hidden layers, where each hidden layer contains 500 nodes.
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The number of hidden layers and the number of nodes in each hidden layer were each progres-

sively increased until sufficiently desirable results were achieved. Smaller networks provided good

results on average, but larger networks were needed to find best results in small, specific regions

of the kinematic space. A further increasing of the numbers of hidden layers and nodes per layer

beyond the chosen values was found to not significantly alter the performance of the kinematic

reconstruction, due to the convergence results of deep neural networks. The convergence theorems

of deep neural networks with the ReLU activation function as the number of layers increases were

recently established in [26, 86].

In the ensemble neural network model, we used the ReLU function as the nonlinear activation

function.

It has been shown [87] that with a gradient descent algorithm, using the ReLU function as the

activation function provides a smaller training time compared to that with the use of functions with

saturating nonlinearities, such as a sigmoid or hyperbolic tangent function. The reduced training

time enabled us to experiment with more sophisticated networks. In addition to this, the ReLU
functions do not need input normalisation to prevent them from saturating, which is a desirable

property for the present analysis.

Moreover, it was shown in [26] that the selection of the ReLU activation function produces a

neural network as a piecewise linear function over a nonuniform partition, of the domain. Such a

structure ensures a good representability of the neural network and can overcome the problem of

underfitting.

To accommodate for the large range of the Q2 and x variables in the analysis, we select the loss

function defined in Eq. (2.37) for the training of the NN models.

4.3 EXPERIMENTAL SETUP

The Monte Carlo simulated events used to train our deep neural networks were specifically

generated using the conditions of e±p scattering in the ZEUS detector at HERA. A detailed de-

scription of the ZEUS detector can be found elsewhere [56].

In our analysis, we have used two samples of Monte Carlo simulated e+p DIS events that are

provided by the ZEUS collaboration. These samples were generated with an inclusion of QED

and higher order QCD radiative effects using the HERACLES 4.6.6 [61] package with DJANGOH

1.6 [88] interface and the ARIADNE 4.12 and LEPTO 6.5.1 packages for the simulation of the

parton cascade. For both samples the same set of kinematic cuts was applied during the gener-

ation, the same set of PDFs were used, CTEQ5D [89] and the same hadronisation settings were

used to model the hadronisation with the Pythia6 program. Therefore, the essential difference
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between the two samples is the way the higher order corrections are partially modelled with the

corresponding algorithms (QCD cascades). Namely, the LEPTO MCEG utilises the parton shower

approach [90], while ARIADNE implements a color-dipole model [91]. Accordingly, we label the

data-sets produced by the LEPTO generator as “CDM” data sets and those with ARIADNE as “MEPS”

data sets.

The generated particle-level events were passed through the ZEUS detector and trigger simula-

tion programs based on Geant 3.21 [75], assuming the running conditions of the ZEUS experiment

in the year 2007 with a proton beam energy of 920 GeV. The simulated detector response was pro-

cessed and reconstructed using exactly the same software chain and the same procedures as being

used for real data. The results of the processing were saved in ROOT [92] files in a form of

ZEUS Common NTuples [83, 84], a format that can be easily used for physics analysis without

any ZEUS-specific software.

4.4 EVENT SELECTION

The selection of events for the neural network training is motivated by the selection procedure

applied in the previous ZEUS analyses [93, 94, 95, 96, 97, 98]. Even though the presented analysis

performed on the Monte Carlo simulated events, the selection cuts are choosen and applied as if the

analysis is performed on real data for the purpose of being as close as possible to the measurements.

The general motivation for these cuts is the same as in many analyses performed by the ZEUS

collaboration: to define unambiguously the phase space of the measurement, ensure low fraction

of background events, and a reasonable description of the detector acceptance by Monte Carlo

simulations.

4.4.1 Phase Space Selection

The phase space for the training of the neural networks in this analysis is selected as 100GeV2 <

Q2 < 20480GeV2, being close to the phase space of the physics analysis in Ref. [97].

In the phase-space region at low x and very low inelasticity y, the QED predictions from the

Monte Carlo simulations are not reliable because of a limit of higher orders in the calculations [99].

To avoid these phase-space regions, the events are required to have yJB · (1− xDA)
2 > 0.004 and

yJB > 0.04 [99]. To ensure optimal electron identification and electron energy resolution, similar

to the previous physics analyses, a kinematic cut 0.2 < yEL < 0.7 is used.

4.4.2 Event Selection

The deep inelastic scattering events of interest are those characterised by the presence of a
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scattered electron in the final state and a significant deposit of energy in the calorimeter from

the hadronic final state. The scattered electrons are registered in the detector as localised energy

depositions primarily in the electromagnetic part of the calorimeter, with little energy flow into the

hadronic part of the calorimeter. On the other hand, hadronic showers propagate in the detector

much more extensively, both transversely and longitudinally.

In addition to the DIS process, there are also background processes which leave similar sig-

natures in the detector as those described above. Therefore, the correct and efficient identification

of the scattered lepton is crucial for the selection of the NC DIS events. For this analysis, the

SINISTRA algorithm is used to identify lepton candidates [57]. Based on the information from the

detector and the results of the SINISTRA algorithm, the following selection criteria are applied to

select the events for the further analysis:

• Detector status: It is required that for all the events the detector was fully functional.

• Electron energy: At least one electron candidate with energy greater than 10GeV [97] is

identified in the event.

• Electron identification probability: The SINISTRA [57] probability of a lepton candidate

being the DIS lepton was required to be greater than 90%. If several lepton candidates satisfy

this condition, the candidate with the highest probability is used. In addition to this, there

must be no problems reported by the SINISTRA algorithm.

• Electron isolation: To assist in removing events where the energy deposits from the hadron

system overlap with those of the scattered lepton, the fraction of the energy not associated to

the lepton is required to be less than 10% over the total energy deposited within a cone around

the lepton candidate. The cone is defined with a radius of 0.7 units in the pseudorapidity-

azimuth plane around the lepton momentum direction [97].

• Electron track matching: The tracking system covers the region of polar angles restricted

to 0.3 < θ < 2.85 rad. Electromagnetic clusters within that region that have no matching

track are most likely photons. If the lepton candidate is within this region, the presence of a

matched track is required. This track must have a distance of closest approach between the

track extrapolation point at the front surface of the CAL and the cluster centre-of-gravity-

position of less than 10 cm. The track energy must be greater than 3 GeV [97].

• Electron position: To minimise the impact of imperfect simulation of some detector re-

gions, additional requirements on the position of the electromagnetic shower are imposed.
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The events in which the lepton is found in the following regions (x,y and z being the cartesian

coordinates in the ZEUS detector) are rejected [100]:

–
√

x2 + y2 < 18 cm, regions close the beam pipe

– z < −148 cm and y > 90 cm and −14 < x < 12 cm, a part of the RCAL where the

depth was reduced due to the cooling pipe for the solenoid (chimney),

– −104 < z < −98.5 cm or 164 < z < 174 cm, regions in-between calorimeter sections

(super-crack).

• Primary vertex position: It was required that the reconstructed primary vertex position is

close to the central region of the detector, applying the selection −28.5<Zvtx < 26.7 cm [97].

• Energy-longitudinal momentum balance: To suppress photoproduction and beam-gas in-

teraction background events and imperfect Monte Carlo simulations of those, restrictions are

put on the energy-longitudinal momentum balance. This quantity is defined as:

δ = δl +δH = (El′ −Pz,l′)+(EH −Pz,H ) = ∑
i
(Ei −Pz,i), (4.23)

where the final summation index runs over all energy deposits in the detector. In this analysis,

we apply a condition of 38 < δ < 65GeV [97].

• Missing transverse energy: To remove beam-related background and cosmic-ray events,

a cut on the missing energy is imposed. PT,miss/
√

ET < 2.5GeV1/2, where ET is the total

transverse energy in the CAL and PT,miss is the missing transverse momentum, the transverse

component of the vector sum of the hadronic final state and scattered electron momenta.

4.5 TRAINING THE NN MODELS

We use the neural network models defined in Sec. 4.2 and consider them as optimisation prob-

lem in terms of Eq. (2.37), i.e., we minimise the loss function across the selected training set and

satisfy sparse regularity conditions. Every neural network making the ensemble model for x and

Q2 are trained simultaneously. The optimal regularity condition depends on the selection of the

training set, the events batch size, the initial learning rate, and the regularisation parameter. We

aim to select these in a way that minimises overfitting in particular regions of the kinematic space

while still maximising the mean accuracy of the model.

We select a set of events from the “MEPS” data sets for training, as described in Sec. 4.4, and

define the true values of the x and Q2 as described in Sec. 4.1.3. Fig. 35 shows a distribution of

selected events in the (xtrue,Q2
true) plane and the boundaries of the chosen analysis bins.
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Fig. 35. Distribution of events from the training set in (xtrue,Q2
true) plane and the boundaries of the

analysis bins from Tab. 21.

First, we train the network to reconstruct Q2 by optimizing Eq. (2.37) with an initial learning

rate of L = 1.0×10−5 and a regularisation parameter of R = 1.0×10−5. We select a batch size of

10000.

The reconstruction of x is more complex. We fix the regularization parameter to R= 1.0×10−5

and select optimal parameters for the learning rate L and batch size B experimentally by varying

the learning rate against the batch size. The appropriate selection of these parameters ensures fast

convergence of the stochastic gradient method by balancing noise in the gradients with the stability

of the algorithm. For each set of parameters, ten attempts are made and the best result in terms

of the mean square error of the x reconstruction model over the training set is chosen. The results

are listed in Tab. 19. The smaller learning rate assures a higher stability of the results than a larger

learning rate. It prolongs the training process but avoids a poor convergence of the learning process

as observed for larger learning rates. The larger batch size does not offer any advantages in our

analysis as shown in Tab. 19. We select an initial learning rate of 10−5 with a minimal batch size.
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TABLE 19

Resolution of logx reconstruction after 200 epochs of training with different values of initial learning rate

L and batch size B.

RMS of logx− logxtrue

L B B B

10000 50000 100000

1.0×10−7 0.1507 0.1523 0.1598

5.0×10−7 0.1568 0.1575 0.1575

1.0×10−6 0.1504 0.1585 0.1547

5.0×10−6 0.2384 0.2284 0.1829

1.0×10−5 0.2182 2.5972 2.2767

1.5×10−5 0.2122 1.7751 1.6028

2.0×10−5 3.0258 0.2607 0.2852

5.0×10−5 3.6962 2.4858 3.1231

To choose the regularization parameter close to the optimal one, we vary its value with constant

batch size of 10000 and initial learning rate of 10−5 and again observe the mean square error of

the x reconstruction model over the training set. For each set of parameters, ten attempts are made

and the best result is chosen. The results are presented in Tab. 20. Accordingly, we choose a

regularization parameter of 10−6. Using this regularization, the neural network models for both x

and Q2 are defined by weight parameters, of which 50% are effectively zero, or less than 10−8

Following the suggestions in Ref. [101], we start with a small batch size, and increase it in

initial training epochs.

We test this approach by comparing the mean square error of the x reconstruction model over

the training set over the first 200 epochs of training over three different training regimes. The

results are summarised in Fig. 36 and imply to use a gradually increasing batch size up to a maxi-

mum batch size of 1000.

4.6 RESULTS

We evaluate the performance of our approach for the reconstruction of DIS kinematics by

applying it to detailed Monte Carlo simulations from the ZEUS experiment and by comparing our

results to the results from the electron, double-angle, and Jacques-Blondel reconstruction methods.
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TABLE 20

Resolution of logx reconstruction after 200 epochs of training with different values of regularisation

parameter R.

R RMS of logx− logxtrue

1.0×10−6 0.1493

1.0×10−5 0.1494

1.0×10−4 0.1484
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RMS for log x − log xtrue with JB method

Fig. 36. Training history for x reconstruction model using different training parameters but the

same Q2 reconstruction model obtained with L = 1.0×10−5, R = 1.0×10−6 and B = 10000. In

each of the cases, the initial learning rate was set to L = 1.0×10−5 and the regularisation

parameter to R = 1.0×10−6.



90

TABLE 21

Kinematic bins in x and Q2, see also Fig. 35.

Bin Q2 (GeV2) x

1 120 - 160 0.0024 - 0.010

2 160 - 320 0.0024 - 0.010

3 320 - 640 0.01 - 0.05

4 640 - 1280 0.01 - 0.05

5 1280 - 2560 0.025 - 0.150

6 2560 - 5120 0.05 - 0.25

7 5120 - 10240 0.06 - 0.40

8 10240 - 20480 0.10 - 0.60

For the comparison, we use various combinations of statistically independent data sets, one for

the training, and another for the evaluation. In our systematic studies, we have found no signs of

overtraining and also no indication that the results depend on the selected Monte Carlo simulations.

For the results presented in this section, we use the “MEPS” data set for the training and the

“CDM” data set for evaluation. The main quantities of the comparison are the resolutions of the

reconstructed variables logQ2/1GeV2 and logx as measured in selected x−Q2 regions (bins). The

resolutions are defined as√
N

∑
i

(
logQ2

i /1GeV2 − logQ2
i,true/1GeV2

)2
/N

and √
N

∑
i
(logxi − logxi,true)

2 /N,

where N stands for the number events in the corresponding bin. The boundaries of the bins are

given in Tab. 21 and are chosen to be close to the bins used in ZEUS DIS analyses, e.g. in Ref. [95].

The distributions of the logQ2/1GeV2 − logQ2
true/1GeV2 and logx− logxtrue quantities are

given in the Fig. 37 and Fig. 38, respectively. The numerical values for the resolution are sum-

marised for all the bins and methods in Tab. 22. The NN optimization procedure minimises the gen-

eralization error described in Eq. (2.37) plus the regularization penalty, so distributions in Figs. 37

and 38 do not necessarily peak at zero. In addition to that, Fig. 39 and Fig. 40 show the two
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dimensional distributions of events in logQ2/1GeV2 vs. logQ2
true/1GeV2 and logx vs. logxtrue

planes.

The comparison of the NN-based approach with the classical methods demonstrates that the

NN-based approach is well suited for the reconstruction of DIS kinematics. Specifically, for most

of the bins, our approach provides the best resolution as measured by the standard deviation of

the logarithmic differences of true and reconstructed variables. The better performance of the NN-

based approach in most of the bins is a consequence of using additional available information about

the final state. In this respect, the NN-based approach is similar to averaging of the values provided

by the classical methods with some weights or to alternative approaches for the same task, e.g. see

kinematic fitting in Ref. [102]. However, in addition to a better resolution, the reconstruction

with the NN has an important advantage over the classical methods or any simple combination of

them. It allows to combine the methods without the intrinsic biases of each method and enables an

extension of the model with additional physics observables in a robust way.
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Fig. 37. Distributions of logQ2/1GeV2 − logQ2
true/1GeV2 for various reconstruction methods in

individual analysis bins. For better visibility, the data points for each reconstruction method are

connected with straight lines.



93

D

−0.2−0.15−0.1−0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

logQ2
reco/Q

2
true

ar
bi

tr
ar

y
un

it
s

Bin 4
Neural network
Double angle
Electron
Jaquet-Blondel

E

−0.2−0.15−0.1−0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

logQ2
reco/Q

2
true

ar
bi

tr
ar

y
un

it
s

Bin 5
Neural network
Double angle
Electron
Jaquet-Blondel

F

−0.2−0.15−0.1−0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

logQ2
reco/Q

2
true

ar
bi

tr
ar

y
un

it
s

Bin 6
Neural network
Double angle
Electron
Jaquet-Blondel

Fig. 37. Continued.
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Fig. 37. Continued.
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Fig. 38. Distributions of logx− logxtrue for various reconstruction methods in individual analysis

bins. For better visibility, the data points for each reconstruction method are connected with

straight lines.
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Fig. 38. Continued.
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Fig. 38. Continued.
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TABLE 22

Resolution of the reconstructed kinematic variables in bins of x and Q2. The resolution for x and Q2 is

defined as the RMS of the distributions log(x)− log(xtrue) and log(Q2)− log(Q2
true) respectively.

Bin Events Resolution of Resolution of

logx, ×103 logQ2/1GeV2, ×103

1 301780 NN: 70 EL: 83 NN: 35 EL: 35

JB: 180 DA: 103 JB: 203 DA: 62

2 350530 NN: 69 EL: 82 NN: 40 EL: 43

JB: 167 DA: 96 JB: 192 DA: 64

3 138456 NN: 98 EL: 130 NN: 55 EL: 53
JB: 138 DA: 100 JB: 150 DA: 77

4 74844 NN: 67 EL: 84 NN: 44 EL: 46

JB: 117 DA: 77 JB: 138 DA: 63

5 31043 NN: 64 EL: 91 NN: 36 EL: 41

JB: 102 DA: 73 JB: 117 DA: 53

6 11475 NN: 53 EL: 79 NN: 33 EL: 36

JB: 83 DA: 61 JB: 100 DA: 45

7 3454 NN: 50 EL: 69 NN: 36 EL: 38

JB: 74 DA: 55 JB: 93 DA: 42

8 624 NN: 36 EL: 55 NN: 33 EL: 37

JB: 67 DA: 45 JB: 95 DA: 41
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Fig. 39. Distribution of events in Lreco = logQ2/1GeV2 versus Ltrue = logQ2
true/1GeV2 plane for

different reconstruction methods in individual analysis bins.

The resolution is improved by the NN-based approach in two ways. For the first couple of bins,

the main improvement is caused by the more precise estimation of the reconstructed observables.

This is clearly seen in Figs. 37 and 38. For the bins with higher Q2 and x the main improvement

is due to the rejection of outliers, which can be seen in Figs. 39 and 40. The bins with higher Q2

and x also demonstrate another, very specific advantage on the DNN approach. Due to the low

number of training events in the high Q2 and x region, it would not be possible to train a DNN

model or combine the Q2 and x observables with other methods using information from this region

only. However, the DNN training process benefits from the constraints from the higher number of
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Fig. 40. Distribution of events in Lreco = logx versus Ltrue = logxtrue plane for different

reconstruction methods in individual analysis bins.
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events available elsewhere in the kinematical space and delivers models that perform well even in

the bins with highest Q2 and x.

4.7 CONCLUSIONS

We have presented the use of NN to reconstruct the kinematic observables Q2 and x in the

study of neutral current DIS events at the ZEUS experiment at HERA. The NN models are spe-

cially designed to be effective in their universal approximation capability, robust in the sense that

increasing the depth of the networks will necessarily reduce empirical error, and computationally

efficient with a structure that avoids “vanishing” gradients arising in the backpropagation algo-

rithm.

Compared to the classical reconstruction methods, the NN-based approach enables significant

improvements in the resolution of Q2 and x. At the same time, it is evident that the usage of the

NN approach allows to match easily any definition of Q2 and x at the true level that is preferred for

a given physics analysis.

The large samples of simulated data required for the training of the NN can be generated rapidly

at modern data centers. Also, NN allow to effectively extract information from large data sets. This

suggests that the new approach for the reconstruction of DIS kinematics can serve as a rigorous

method to combine and outperform the classical reconstruction methods at ongoing or upcoming

DIS experiments. We will extend the approach beyond inclusive DIS measurements and will study

next the use of NN for the reconstruction of event kinematics in semi-inclusive and exclusive DIS

measurements.

4.8 SOFTWARE USED

The ROOT package [92] of version 6.22 was used to read the ZEUS data, provided by the

data preservation at Max-Planck for Physics [1], analyze it and prepare plain text (or ROOT

files) with selected information to be used with the ML tools. The selected information from

the plain text (or ROOT) files was piped using the pandas package [103] into Keras [104] in-

terface to tensorflow [105] 2.3.0 library to train the ML models. The packages Eigen [106],

frugally-deep [107], JSON for Modern C++ [108] and FunctionalPlus [109] were used

for execution of the trained models after these were converted into frugally-deep model for-

mat [107] to be used with C++ application. The dependencies for the tensorflow were supplied

from the PyPi repository. The training was performed using libraries for computing on GPUs from

the CUDA [110] framework of version 10.1. We are grateful to MPCDF1 for the ability to compile

1Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748 Garching
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and execute the codes on the HPC cluster “Cobra” in [111]. The operation system used was Linux

on x86_64 architecture using gcc [112] of version 7.3 and python [113] of version 3.6.8.

The figures with the final results were produced with the PGFPlots [114] package.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

To address computational challenges in learning deep neural networks, properties of deep

ReLU networks were studied to develop a multi-scale learning model. The multi-scale model

was compared to the multi-grade learning models.

Unlike the deep neural network learned from the standard single-scale, single-grade model, the

multi-scale neural networks use low scale information from all hidden layers, and thusly provide

a robust approximation method that requires fewer parameters, lower computational time, and is

resistant to noise. In addition to this, the multi-scale method can overcome the vanishing gradient

problem.

It was proven that the collection of multi-scale neural networks are universal approximators in

the space of continuous functions.

The neural network learned from a multi-grade model is the superposition of the neural net-

works, in a stair-shape, each of which is learned from one grade of the learning.

Three proof-of-concept numerical examples presented in the paper demonstrate that the multi-

scale and multi-grade methods are superior to the single-scale, single-grade networks.

The extended analysis on reconstructing kinematic observables in deep inelastic scattering

kinematics with multi-scale neural networks shows that not only are those models effective for

real world problems, but the power of the approximation is sufficiently great, that it can outper-

form reconstruction methods based on physical laws.

In the future, many more methods of these kinds can be formed to improve the clarity of our

inference.
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