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ABSTRACT

LANDSCAPE GENETICS OF THE GULF COAST TICK, AMBLYOMMA
MACULATUM

Sara Simmons Benham
Old Dominion University, 2023

Co-Directors: Dr. Holly Gaff
Dr. David Gauthier

Connectivity among populations helps to maintain genetic diversity, population stability,

and resilience. The Gulf Coast tick, Amblyomma maculatum, is a vector of the pathogen

Rickettsia parkeri. Persistence of tick populations with high rates of R. parkeri infection

poses health risks to humans and animals. Mitochondrial haplotypes were characterized

by sequencing a fragment of the mitochondrial 16S rRNA gene. A comparative study of

A. maculatum and Amblyomma americanum was conducted to identify similar and unique

patterns between the species within the same region. Next, I compared A. maculatum

sites across three different regions of the United States. This work examined diversity

and connectivity between and among A. maculatum populations to resolve questions

about the process of range expansion and population establishment. The first research

aim was to characterize the genetic diversity within A. maculatum populations and infer

connectivity among populations. These population genetics comparisons revealed that Gulf

Coast tick populations showed signs of isolation compared to A. americanum populations,

which have higher gene flow. One A. maculatum population was dominated by an

otherwise rare haplotype, an unusual pattern that signaled a possible founder effect from

a long-distance drop-off. Given the apparent isolation and unusual dominance within one

unique population, a landscape analysis was completed by examining remote-sensing data

to determine correlations between environmental variables and A. maculatum populations

for the purpose of identifying suitable and unsuitable habitat that could influence patterns

of movement and barriers to gene flow. None of the environmental variables had clear

correlations with A. maculatum population presence, so barriers could not be identified.

Finally, an agent-based model was created to simulate recurrent introductions of Gulf Coast

ticks in rasterized models of several field study sites. Propagule pressure was positively



associated with haplotype richness, whereas edge patches had a negative effect on richness.

The simulation results suggested that limited immigration as well as landscape configurations

could explain rare patterns of low diversity.
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CHAPTER 1

INTRODUCTION

The burden of tick-borne disease (TBD) in the United States presents a serious threat

to public health (Sonenshine, 2018). Understanding the ecology of TBDs, particularly the

environmental drivers that can influence host and tick population dynamics, thus influencing

disease spread, is an important complement to clinical work and biomedical research focusing

on the pathogen. Population dynamics and range expansions of ticks are especially critical to

understand if we intend to manage and control TBDs. Models that forecast mosquito-borne

illness risks (e.g. Barker, 2019) offer examples of remote-sensing applications and the use

of geospatial tools to address problems in the study of vector-borne disease. A similar

approach that incorporates environmental data with tick and pathogen surveillance can be

useful to understand TBD risks, with some modifications to use methods and spatio-temporal

scales appropriate for ticks. The basic premise of the work proposed here is that different

environmental variables can affect both tick and host populations. Quantifying those

variables that contribute most to changes in tick populations and geographic extent, by

considering the unique ecology of a focal tick species, can aid the development of better

forecasting and surveillance models for TBD.

The Gulf Coast tick (GCT), Amblyomma maculatum, is a vector of the bacterial

pathogen Rickettsia parkeri, the causative agent of R. parkeri rickettsiosis in humans, a

disease previously known as Tidewater spotted fever (Paddock et al., 2004). Spotted fever

rickettsiosis (SFR) is a diagnostic term that refers to disease caused by several Rickettsia

spp. pathogens. Rocky Mountain spotted fever (RMSF), caused by the agent R. rickettsii,

is a severe illness that has led to fatalities in about 3.4% of laboratory-confirmed cases in

the United States since the 1980s (Paddock et al., 1999). In contrast, R. parkeri rickettsiosis
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typically causes less severe disease than RMSF. Disease caused by R. parkeri is most often

differentiated from RMSF by the appearance of an eschar at the site of the tick bite, which

can reveal R. parkeri in tissue biopsies (Paddock et al., 2008). No fatalities have been

associated with R. parkeri rickettsiosis (Biggs et al., 2016). The incidence of SFR has been

increasing, with higher incidences in states that lie in the southeastern and central United

States. The regions with human cases of SFR generally overlap with the GCT range in

many areas, an ecological indication that GCTs are currently contributing to caseloads by

transmitting R. parkeri to humans. In fact, cases of R. parkeri rickettsiosis identified outside

of the documented GCT range in 2014 (Herrick et al., 2016) prompted further investigation

and ultimately new collection records for GCTs from Arizona and New Mexico (Allerdice

et al., 2017; Hecht et al., 2020). These additional collections strengthen the connection

between the presence of GCTs and a rising incidence of R. parkeri rickettsiosis.

Amblyomma maculatum populations have expanded north from the species’ historic

range in the southeastern United States and northern Gulf Coast (Teel et al., 2010).

This trend of range expansion has been accompanied by remarkable disparities in the

geographical pattern of R. parkeri prevalence. Populations along the northeastern margins

of this range, specifically in the Mid-Atlantic region, have 41.5–55.7% R. parkeri prevalence

(Fornadel et al., 2011; Nadolny et al., 2014; Paddock & Goddard, 2015; Wright et al., 2011),

compared to about 8–40% prevalence in southern states (Paddock & Goddard, 2015). This

prompts the question, what is the influence of geography on this vector-pathogen system?

This question must be answered for each part of the system: the animal host, the tick

vector, and the pathogen. Although these components are interconnected, the first step to

understanding this system comprehensively is to understand the effects of geography on each

part independently.
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1.1 RESEARCH AIMS

The aim of this work is to explore the relationship between the tick vector, GCT

populations in this case, and spatial landscape patterns. Prior attempts to evaluate

environmental influences on GCTs have used a species distribution modeling approach to

explore distributions of tick specimens of the A. maculatum species complex collected across

multiple continents (Cuervo et al., 2021). Niche conservatism is generally apparent across

species and morphotypes, with niche differentiation observed between several groups that

may lead to speciation. However, that work did not explore the mechanics at work within

populations at smaller geographic and temporal scales that contribute to the broader patterns

observed in realized niches. Specifically, the question remains how movement of ticks, via

hosts, could be directed or interrupted by geography, including environmental factors. How

does movement on smaller scales contribute to population mixing or isolation, and thus the

exchange of pathogens that might inhabit these population?

Here I propose a set of research questions that will focus on understanding tick

population mixing using a landscape genetic analysis. This analysis will consider changes

in populations and habitats within short time frames, for example across a single decade.

This time period is relevant to understanding how environment influences population

expansion and establishment in new areas. The landscape genetics approach will include:

1) genetic connectivity patterns derived from population genetics analyses 2) analysis of

remotely-sensed environmental variables that describe habitat associations of the tick, and

3) agent-based modeling and simulation to compare simulated theoretical and empirical data.
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1.2 KEY CONCEPTS AND TERMS

Connectivity – Evidence of gene flow between populations, inferred from estimates of

genetic structure or explored directly by looking at covariance among populations using

Population Graphs (Dyer & Nason, 2004), resistance analyses (McRae, 2006), or random

walk theories based on Sewall Wright’s fitness landscapes (Wright, 1932).

Drop-off – In tick biology, a drop-off refers to a single tick or cohort leaving a host after

completing a bloodmeal. The term is often used in the context of a tick present in isolation,

or in a location distant from the source population, which has been moved there by a host.

Expansion front – A reference to the geographic area at the extent, or margins, of a

species distribution during an ongoing range expansion.

Fixation/Fixation index – Fixation is lack of allelic diversity within a population resulting

from ecological, demographic, or evolutionary effects. Fixation indices, such as FST ,

GST , and φST , are used to calculate differences in heterozygosity between populations, or

between hierarchical groups (FSC and FCT ). These indices report a value from 0–1 where 0

indicates shared alleles between populations and 1 indicates fixation, inferring populations

are completely isolated from each other. Significantly non-zero values in between 0–1 are

evidence of fixation.

Founder effect – A founder effect describes the influence of a small group of first-generation

individuals on the genetic diversity of subsequent generations in a population. The founder

effect is often described in relation to phenotypes that have adverse effects on the fitness of

later generations as a result of fixation, but can also be used to describe any evidence of
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fixation of apparently neutral genetic variants as a result of non-evolutionary processes such

as genetic drift or bottlenecks.

Genetic distance – A measure derived from mathematical models that use categorical

genotypes (i.e. a classification such as haplotype) or the base-pair sequences to estimate

proximity in the lineages of individuals or populations. Many models exist to estimate

genetic distance, most often using assumptions about mutation rates to infer relationships

or connectivity.

Genetic diversity – In population genetics, genetic diversity is typically measured through

mathematical indices based on genotype classes (i.e. haplotypes) or sequences within the

same species. The basic components of diversity are: 1) composition, the identity, e.g.

haplotype; 2) richness, the number of unique identities within a population; 3) evenness, the

proportions or frequency of each identity in relation to the others. Some patterns of genetic

diversity can be associated with historical, population-level events such as demographic

expansion or contraction, and connectivity between populations.

Genetic structure – The appearance of clades or clustering among populations, regions,

or other a priori groups. The most common measures of structure in population genetics,

derived from FST , use fixation indices to estimate the probability of two populations or

groups being connected through gene flow based on relative heterozygosity among alleles.

Haplotype – A classification of genotypes based on genetic sequences along a specific portion

of DNA. Variants that make up the DNA sequence of a haplotype tend to be inherited as

a whole, which enables ancestral and population genetic inferences. Haplotypes here are

classified based on single base-pair variations.
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Heterozygosity – A measure of gene diversity. Heterozygosity is calculated as shown

in Equation 1:

H =
n

n− 1
(1 −

k∑
i=1

p2i ) (1)

where p is the frequency of an allele for all alleles i through k, for a population of size n.

Landscape – An area that includes a mix of environmental conditions, e.g. a core habitat

and the surrounding environment, which are expected to have different effects on an outcome

of interest (Gergel & Turner, 2017).

Landscape genetics – An integrative set of methods or techniques used to relate genetic

distances to geographic or ecological distance to identify barriers to gene flow. Landscape

genetics typically implies a shorter time period than phylogeography, and is often used to

measure species adaptation or non-evolutionary genetic responses to rapid changes in the

landscape.

Niche conservatism – The retention of traits that enable a species to occupy a specific

niche over time.

Patch – In landscape ecology, a patch refers to a contiguous area of similar habitat within

a broader heterogeneous landscape. In agent-based modeling, a patch is the smallest spatial

unit represented, more similar to the grain in landscape ecology. When necessary, a patch

in the landscape ecology sense will be called a “habitat patch”.
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Propagule pressure – A concept in invasion biology that describes the number of

individuals and introduction events that accompany a species invasion. Propagule pressure

is an important component of establishment success in non-native species.

Sensitivity analysis – A test of model parameters to identify the direct effects and relative

influence of inputs on the measured outcomes of a model.

Succession – The ecological progression of vegetation from open habitat to a climax

community over time in the absence of disturbance. Climax communities vary by region,

but are typically mixed or deciduous forests in temperate regions of the United States. A

classic example of succession is “old field succession”, which describes a transition from a

field or pasture to a dense forested area after maintenance or grazing pressure discontinues.
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CHAPTER 2

COMPARATIVE POPULATION GENETICS OF AMBLYOMMA

MACULATUM AND AMBLYOMMA AMERICANUM IN THE

MID-ATLANTIC UNITED STATES

PREFACE

The content of this chapter is adapted with permission from Benham, S. A., H. D. Gaff,

Z. J. Bement, C. Blaise, H. K. Cummins, R. Ferrara, J. Moreno, E. Parker, A. Phan, T.

Rose, S. Azher, D. Price, and D. T. Gauthier. 2021. “Comparative Population Genetics of

Amblyomma maculatum and Amblyomma americanum in the Mid-Atlantic United States.”

Ticks and Tick-borne Diseases 12: 101600. Copyright 2021. Elsevier. The manuscript can

be found online at https://doi.org/10.1016/j.ttbdis.2020.101600

2.1 INTRODUCTION

The Gulf Coast tick, Amblyomma maculatum, and the lone star tick, Amblyomma

americanum, are hard ticks (Family: Ixodidae) that occur primarily in the southeastern

United States. Both A. americanum and A. maculatum are three-host, non-nidicolous

ticks that are known to bite humans; however, ecological differences include host utilization

at different life stages and suitable habitats (Childs & Paddock, 2003; Nadolny & Gaff,

2018b; Paddock & Goddard, 2015). Adults of both A. maculatum and A. americanum

parasitize large mammals such as humans, cattle (Bos taurus), dogs (Canis familiaris),

coyotes (Canis latrans), and white-tailed deer (Odocoileus virginianus) (Nadolny & Gaff,

2018b; Paddock & Goddard, 2015). Immature A. maculatum are most frequently collected
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from hosts such as rodents and small birds (Paddock & Goddard, 2015) but rarely by flagging

or dragging (Goddard, 2007). Amblyomma americanum strongly prefers large-mammal hosts

at all life stages, and so A. americanum larvae and nymphs can be readily collected by

flagging vegetation (Childs & Paddock, 2003).

Geographic range expansions of human-biting tick species present a public health

challenge. Little is currently known about the source of new populations, the mechanisms

by which new populations become established, and how these factors influence pathogen

persistence (Sonenshine, 2018). Across their geographic range, A. maculatum adults are

typically collected in open habitats with sparse canopy cover, especially sites where early- to

mid-successional vegetation is maintained by regular disturbance, such as mowing, grazing,

wind and wave activity, hurricanes, or fire (Gleim et al., 2016; Nadolny & Gaff, 2018a;

Teel et al., 2010). Amblyomma maculatum tick populations are likely restricted to habitat

that can support both rodent populations for immature life stages and larger mammals for

successful adult feeding. In contrast, A. americanum are collected from multiple habitat

types and are associated with high densities of white-tailed deer and other large mammals

(Childs & Paddock, 2003).

Historically, A. maculatum populations occurred throughout the southern United States

within 240 km of the Gulf of Mexico and southern Atlantic coastlines (Teel et al., 2010).

The occurrence of A. maculatum south of the United States border overlaps with the closely

related Amblyomma triste, but with clear morphological and genetic distinctions (Lado et al.,

2018). Despite an apparent A. maculatum-A. triste overlap in parts of the southernmost

range of A. maculatum (Lado et al., 2018), expansion of members of this species complex into

the United States Mid-Atlantic region currently appears to be restricted to A. maculatum.

Amblyomma americanum has likely been established in Virginia since the 1910s (Springer

et al., 2014) and established in larger populations by the 1970s, such that a multi-year

population study ( > 10,000 ticks collected) could be carried out within two sites located
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in Piedmont and Tidewater areas of Virginia over a three-year period (Sonenshine & Levy,

1971). Populations of A. americanum in the Northern Atlantic states, such as Maine, have

been documented only since the 1990s (Springer et al., 2014). This paper focuses on the

expansion of A. maculatum along the United States Atlantic coastline, particularly the

current leading edge of this expansion in Virginia, in comparison to A. americanum, which

has been established in this area for many more decades.

Newly recorded populations of A. maculatum in Virginia are associated with higher

prevalence of the human pathogen Rickettsia parkeri, than has been reported inthe historical

range along the southeastern US coastline. Reported prevalence of R. parkeri in Virginia

by county ranges from 37 to 56%, (Fornadel et al., 2011; Nadolny et al., 2014), whereas

prevalence in the historic range along the Gulf Coast is generally lower, ranging between

8 and 40% (Paddock & Goddard, 2015). Rickettsia parkeri is an obligate intracellular

endosymbiont associated with A. maculatum that has been identified as the causative agent

of R. parkeri rickettsiosis, also called Tidewater spotted fever.

The biotic and abiotic factors involved in apparently increased prevalence of R. parkeri

in the invasion range of A. maculatum are unknown. Information on local- and broad-scale

patterns of A. maculatum dispersal will likely be informative on this subject; however,

previous studies have been equivocal in this area. In the most recent work, Nadolny et al.

(2015) examined sites in three Mid-Atlantic states (North Carolina, Virginia, Maryland),

Southern Appalachia (Kentucky and Tennessee), and Mississippi using an mtDNA marker.

Nearly all sites, including those in close spatial proximity, were significantly different from

one another with respect to haplotype composition, and no clear overall population structure

of A. maculatum was resolved. This lack of spatial structuring indicates that long-range

dispersal may be important in A. maculatum expansion since it appears that closely spaced

populations of A. maculatum are not routinely intermixing. One potential test of this concept

is to compare the connectivity of A. maculatum in study sites with that of A. americanum
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from the same sites. Amblyomma americanum population connectivity has not previously

been explored in Virginia; however, several previous studies in other locations suggest that A.

americanum readily disperses over short distances, and that populations are highly connected

at state-wide scales (Mixson et al., 2006; Trout et al., 2010).

In this study, we compare the population genetics of A. maculatum and A. americanum

ticks within same study sites in southeastern Virginia. We expected to observe low genetic

variation among A. americanum at these sites, particularly those not separated by distinct

geographic barriers, whereas we hypothesized low connectivity among A. maculatum at all

study sites.

2.2 MATERIALS AND METHODS

2.2.1 SAMPLE COLLECTION

Unfed questing adult ticks were collected by flagging at eight sites within eastern and

central Virginia, northeastern North Carolina, and three Virginia barrier islands between

2015 and 2018 (Figure 1.). Ticks were identified by morphology (Keirans & Lacombe, 1998;

Sonenshine, 1979) and stored at -20°C. Sites were selected based on locations where both

A. maculatum and A. americanum were present during surveillance sweeps prior to this

study. The active season for adult A. maculatum in Virginia typically extends from May

through August. Transects were established and flagging was conducted bi-weekly from

April through October at these sites: VB2, DN1, NC1, TP1, BI2, CH1. In addition, two

nearby barrier islands (BI1 and BI3) along the Eastern Shore of Virginia were included in

this comparative analysis because sample sizes were large enough to consider A. maculatum

on BI1 and A. americanum on BI3. Samples were collected from barrier island sites twice

per year (June and July) in both 2015 and 2016, and once each year (June) in 2017 and

2018.
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FIGURE 1. Locations of study sites in Virginia and North Carolina. Site codes are
intended to de-identify sensitive locations. Codes are generally derived from geographic
boundaries or features, e.g. barrier islands sites are “BI”. Figure and legend adapted from
Benham et al. (2021) with permission.

2.2.2 DNA EXTRACTION AND PURIFICATION

Each adult tick was bilaterally dissected. One half was stored at -80°C, and the other half

was extracted for DNA. Tick halves were placed individually in 2 mL microcentrifuge tubes

containing a single 5 mm and 150 mg of 1 mm glass beads and were disrupted in a beadmill
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(BioSpec Products, Inc., Bartlesville, OK) at setting 4500 rpm for 45 s. After mechanical

disruption, DNA was extracted using the GeneJET Genomic DNA Purification kit (Thermo

Fisher Scientific, Waltham, MA) according to manufacturer’s instructions, eluting to a final

volume of 200 µl.

2.2.3 POLYMERASE CHAIN REACTION

A portion of the mitochondrial 16S gene was amplified in 15 µL PCR reactions.

Reactions included 1X EconoTaq PLUS GREEN mastermix (Lucigen, Alexandria, MN),

and 1µM each F/R primer: 16S+1.aa 5’- CTGCTCAATGAATTATTTAAATTGCTGT

-3’ [modified from (de la Fuente et al., 2001; Nadolny et al., 2015)], and Aa 6993F 5’-

TCCAACATCGAGGTCGCAAA-3. Two µL of DNA template was added to all reactions,

with ddH2O added instead of DNA to no-template controls. Thermal cycling conditions

were 95°C for 3 min, 30 cycles of 95°C for 30 s, 52°C for 45 s, and 72°C for 1 min, and final

extension cycle at 72°C for 7 min (Nadolny et al., 2015).

2.2.4 SEQUENCING

Amplicons were visualized on 1.5% agarose gels. Correctly sized products were purified

using ExoSAP-IT according to manufacturer’s directions (Affymetrix Ltd., Santa Clara, CA).

Purified amplicons were then sequenced using BigDye Terminator v3.1 sequencing reactions

with the same 16S forward and reverse primers used for amplification (Applied Biosystems,

Foster City, CA) on an Applied Biosystems 3130xl sequencer.

2.2.5 SEQUENCE CURATION

Haplotypes were assigned to individual ticks by generating consensus sequences from

chromatograms with at least two bidirectional unambiguous coverage of the 16S rRNA gene.

Fragment sizes analyzed included 216–218 base pairs from A. maculatum and 250–252 base
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pairs from A. americanum. Nucleotide sequences were aligned and curated for each sample

using Geneious R9 (https://www.geneious.com [Kearse et al. 2012]). Consensus sequences

were compared against the NCBI nr databases using BLAST to match identical sequences

(Altschul et al., 1990). Three novel A. maculatum haplotypes, MAC37–39 were submitted

to GenBank (Clark et al., 2016) (Accession numbers MK749996, MK749997, MK749998,

respectively).

2.2.6 POPULATION GENETIC STRUCTURE AND CONNECTIVITY

We started exploring population genetic structure first with a temporal analysis to

understand whether populations within a site were changing substantially from on year

to the next. We considered previously reported data from Nadolny et al. (2015) for CH1 and

VB2 in our analyses, as we had additional archived A. maculatum samples from VB2, and

A. americanum specimens from the same sites and similar time period to add for comparison.

Initially, a matrix was created listing haplotypes by site and year for both A. maculatum and

A. americanum using the R packages haplotyper and sidier (Muñoz-Pajares, 2013; Simondi

et al., 2016) to sort consensus alignments generated in Geneious. Sites with fewer than

five haplotyped adult ticks in any year were excluded from all analyses (Tables 3. and 4.).

An initial AMOVA and pairwise φST analysis was run in Arlequin v. 3.5 (Excoffier &

Lischer, 2010). Where no significant temporal variation was identified, individuals were

pooled by site across all years for further analysis. Spatial population genetic structure

and connectivity were evaluated for pooled populations using pairwise φST and AMOVA.

AMOVA was performed using Tamura-Nei distance with 20000 permutations to explore the

effect of population groupings on global variance (FST ), as well as among groups (FCT ) and

among populations (FSC). For both species, we explored mainland/island groups, as well as

coastal, inland and island comparisons to test for significant structure (FCT ) based on these

geographic categories. We also used a Mantel Test to explore isolation by distance.
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2.2.7 GENETIC DIVERSITY ANALYSIS

ChaoJost estimated diversity and observed Simpson’s diversity were generated with the

R package SpadeR, using bootstrapping to obtain confidence interval for both values (Chao

et al., 2016). Sample coverage, Chao1 and ACE estimators were generated from SpadeR and

reported for each site to estimate sample completeness.

2.2.8 NON-METRIC MULTIDIMENSIONAL SCALING

We visualized the genetic distances using non-metric multidimensional scaling (NMDS),

which optimizes placement of points through an iterative process using a pairwise distance

matrix. NMDS plot distances were calculated separately for A. maculatum and A.

americanum from the Tamura-Nei pairwise φST matrices using the Euclidean distance

formula for NMDS in Primer v6 (Clarke & Gorley, 2006). NMDS was performed for 50

restarts. Single linkage hierarchical cluster analysis identified nearest-neighbor distances

between clusters. The clustering distances displayed in the ordinations are based on the

cluster analysis and correspond to the significant spatial structure (FCT ) in the AMOVA

analyses. Minimum stress was set to 0.01.

2.3 RESULTS

2.3.1 POPULATION GENETIC STRUCTURE AND CONNECTIVITY

Temporal variation

Both A. americanum and A. maculatum populations were largely stable within sites

across years. AMOVA analysis of temporal variation in A. americanum sites demonstrated

non-significant temporal (FSC = 0.001; p = 0.16; df = 2) and spatial variation (FCT =

0.085; p = 0.229; df = 6) when groups were defined by sites with years pooled for the
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temporal analysis, rather than the maximized spatial grouping (Section 2.3.1). No pairwise

comparisons of φST within-sites and among years were significant. Samples were consequently

pooled by site. For A. maculatum, AMOVA of individual years grouped by site similarly

demonstrated nonsignificant temporal (FSC = -0.008; p = 0.71; df = 7), but significant

spatial variation (FCT = 0.215; p = 0.0004, df = 7). Although temporal variation was

non-significant overall, pairwise φST comparisons indicated BI1 2016 differed from BI1 2015

and 2018 samples (p < 0.05). This site also differed markedly from the other two years in

diversity and composition (Section 2.3.2). BI1 samples from 2015 and 2018 were consequently

pooled, and BI1 2016 was removed from the analysis. All other pairwise comparisons of

A. maculatum within sites and among years were non-significant where multi-year data were

available.

Spatial structure

Both Amblyomma species showed evidence of genetic differences among populations,

but clear spatial structure was only observed in A. americanum. Among-groups structure

(FCT ) was maximized for A. americanum when the two barrier island sites were considered

one group (FCT = 0.19, 19.40% of variance; p = 0.047). Further, pairwise φST values for

A. americanum indicated that two barrier island sites BI2 and BI3 were not significantly

different from each other, but were distinct from all other sites except DN1 (n = 7) when

adjusted for false-discovery rates (FDR) using a two-stage sharpened method (Benjamini

et al., 2006) (Table 1.). In contrast, maximal FCT for A. maculatum occurred when sites

VB2, BI1 and DN1 were grouped, and other sites were individual (FCT = 0.24; 24.06%

of variance; p = 0.03; df = 4). Pairwise φST values indicated A. maculatum populations

between most sites were genetically distinct (Table 2.) after FDR adjustment. The AMOVA

results did not support a grouping of sites by mainland or island groups, nor by any other

clear geographic barriers. Neither species exhibited isolation by distance at this scale.
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TABLE 1. Tamura-Nei distance-based pairwise φST matrix for A. americanum with
FDR-adjusted q values. Pairwise φST values are in the lower triangle, and q values are in
the upper triangle. Significant q values and corresponding φST after FDR adjustment are in
bold.

NC1 CH1 VB2 DN1 TP1 BI3 BI2
(n = 43) (n = 23) (n = 18) (n = 7) (n = 16) (n = 17) (n = 10)

NC1 * 0.521 0.435 0.521 0.41 0.003 0.027
CH1 -0.005 * 0.15 0.521 0.365 0.008 0.027
VB2 -0.001 0.015 * 0.41 0.3 0.004 0.014
DN1 -0.035 -0.04 0.005 * 0.719 0.365 0.365
TP1 0 0.009 0.027 -0.088 * 0.042 0.039
BI3 0.198 0.199 0.203 0.03 0.139 * 0.521
BI2 0.15 0.163 0.163 0.013 0.14 -0.033 *

Table and legend adapted from Benham et al. (2021) with permission.
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TABLE 2. Tamura-Nei distance-based pairwise φST matrix for A. maculatum with
FDR-adjusted q values. Pairwise φST values are in the lower triangle, and q values are
in the upper triangle. Significant q values and corresponding φST after FDR adjustment are
in bold.

NC1 CH1 VB2 DN1 TP1 BI1 BI2
(n = 42) (n = 82) (n = 50) (n = 46) (n = 42) (n = 71) (n = 20)

NC1 * 0.014 0 0.002 0 0 0.039
CH1 0.038 * 0 0.009 0 0 0.022
VB2 0.197 0.117 * 0.032 0 0.12 0.005
DN1 0.079 0.05 0.027 * 0 0.101 0.105
TP1 0.444 0.42 0.644 0.521 * 0 0
BI1 0.159 0.106 0 0.004 0.597 * 0.022
BI2 0.038 0.056 0.134 0.007 0.606 0.0689 *

Table and legend adapted from Benham et al. (2021) with permission.

2.3.2 GENETIC DIVERSITY

Amblyomma maculatum populations were more diverse at NC1, less diverse at TP1, and

generally similar in diversity measures to A. americanum populations from other sites (Tables

3. and 4.). The uniquely low diversity associated with the A. maculatum population at TP1

stood out compared to other A. maculatum populations. This site persistently differed

from all other sites in diversity measures (Table 3.), as well as φST (Table 2.) because of

the overwhelming presence of a single haplotype that was not present at any other site in

Virginia. This haplotype (MAC6) had been reported only from Kentucky and Mississippi in

prior work, in which it was initially identified (Nadolny et al., 2015).

Temporal variation in diversity was only observed in BI1 between 2015 and 2016 samples
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(Table 3.). Site BI1 in 2016 was unique from other BI1 years because a single, common

haplotype (MAC16) dominated the data (72% of sample relative abundance), with only

two other haplotypes present in that sample. We concluded that BI1 was undersampled in

2016, or suffered from another sampling artifact, since BI1 samples were otherwise diverse.

Haplotype composition differed in VB2 during the year 2016, compared to 2010 and 2014

samples, in that 90% of the haplotypes sampled in 2016 were not present in samples from

the same site during prior years. These years were pooled, however, based on non-significant

genetic distance among years.
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TABLE 3. Amblyomma maculatum haplotypes by year collected from sites throughout Virginia and eastern North
Carolina. Site codes are intended to de-identify sensitive locations. Codes are generally derived from geographic
boundaries or features, e.g. barrier islands sites are “BI”. Years are indicated in the second part of each sample
ID, e.g. VB2 10 describes site: VB2, and year: 2010.
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VB2 10 2 4 3 9
VB2 11 3 1 1 5
VB2 12 7 8 2 2 7 1 27
VB2 16 1 4 4 9
VB2 9 16 3 2 11 4 1 4 50
DN1 17 2 1 1 4 1 9
DN1 18 8 2 1 2 5 5 3 2 6 1 1 1 37
DN1 10 2 1 2 2 9 5 4 2 6 1 1 1 46
BI1 15 21 11 3 4 11 3 1 1 55
BI1 16** 2 1 8 11
BI1 17* 2 2
BI1 18 5 3 1 1 4 2 16
BI1 26 14 1 3 5 17 3 3 1 73
NC1 17 1 1 6 1 2 3 1 1 1 3 20
NC1 18 1 1 4 7 1 2 1 1 4 22
NC1 1 1 1 5 13 1 3 5 2 2 1 3 4 42
TP1 18 1 3 37 1 42
BI2 16* 2 1 3
BI2 17 5 1 1 2 6 1 4 20
BI2 18* 1 1 1 1 4
BI2 8 1 1 2 8 1 5 23
CH1 11 7 1 3 2 1 7 10 3 6 3 43
CH1 12 13 1 5 4 9 2 3 2 39
CH1 20 1 4 2 6 11 19 3 2 9 2 3 82
GRAND TOTAL 358

*Samples were removed from the analyses if n < 5. Bold indicates site totals included in the analyses.
**Sample BI1 16 was removed from the analysis as described in Section 2.3.1.
Table and legend adapted from Benham et al. (2021) with permission.
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TABLE 4. Amblyomma americanum haplotypes by year collected from sites throughout Virginia and eastern North
Carolina. Site codes are intended to de-identify sensitive locations. Codes are generally derived from geographic
boundaries or features, e.g. barrier islands sites are “BI”. Years are indicated in the second part of each sample
ID, e.g. VB2 11 is the sample from the site VB2 and the year 2011.
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VB2 11* 1 1 2
VB2 14 7 1 1 1 1 3 1 1 16
VB2 8 1 1 1 1 4 1 1 18
DN1 18 4 1 1 1 7
BI3 17 4 7 1 2 1 2 17
NC1 17 14 1 2 4 1 1 23
NC1 18 12 2 2 3 1 20
NC1 26 1 2 2 2 7 1 1 1 43
TP1 18 10 2 1 1 1 1 16
BI2 17 2 1 1 2 6
BI2 18 2 1 1 4
BI2 4 1 1 3 1 10
CH1 12 5 1 1 7
CH1 14 9 1 1 3 1 1 16
CH1 14 1 1 1 1 3 1 1 23
GRAND TOTAL 134

*Samples were removed from the analyses if n < 5. Bold indicates site totals included in the analyses.
Table and legend adapted from Benham et al. (2021) with permission.
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2.3.3 NON-METRIC MULTIDIMENSIONAL SCALING

Ordination of A. americanum populations (Figure 2.) showed the single-linkage clustering

of island sites apart from mainland sites with φST distances < 0.01 (Section 2.3.1: Spatial

structure). The distances displayed were chosen to highlight the minimum clustering

distances that match the significant A. maculatum groups resulting from the AMOVA

analysis. Geographic structure is not apparent in A. maculatum. TP1 is unique, as the

distance from the nearest neighbor (CH1) is much greater (φST = 0.42) than the minimum

distances joining all other sites (φST < 0.04).
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FIGURE 2. Ordination of genetic distances between sites based on A) A. americanum and
B) A. maculatum 16S fragment sequences. Site codes are intended to de-identify sensitive
locations. Codes are generally derived from geographic boundaries or features, e.g. barrier
islands sites are “BI”. Dotted lines identify distances from the single linkage hierarchical
clustering analysis that correspond to maximized grouping in the AMOVA results. Dashed
lines show that all sites are linked below φST = 0.04, except TP1 in the A. maculatum plot.
The solid ellipse highlights the distance of TP1 from all other sites in the A. maculatum
plot. Figure and legend adapted from Benham et al. (2021) with permission.
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2.4 DISCUSSION

2.4.1 POPULATION ESTABLISHMENT AND CONNECTIVITY

Pairwise genetic structure was significant between most A. maculatum sites, suggesting

multiple Virginia populations with little gene flow between them, in contrast with relatively

few significant pairwise φST values for A. americanum. Amblyomma maculatum populations

in Virginia do not therefore appear to be well-connected, even at spatial scales where

migration of individuals among A. americanum populations is apparent. The data also

presented unexpected findings that improve our understanding of the biology of both

Amblyomma species. The first, most striking pattern in the mtDNA data was at site

TP1, where we identified one dominant haplotype within a much less diverse population

compared to other sites. TP1 is a grassland managed with annual or semi-annual prescribed

burning and adjacent to a riparian forest-wetland complex near the Rappahannock River.

A single A. maculatum was first flagged from this site in 2014 as part of a statewide survey

(2012–present), along with a single adult male collected from a roadkilled deer. No A.

maculatum were collected from this site again until 2017 when, again, one adult male was

flagged. In 2018, 83 adults were collected from the site. This increase resulted in part from

increased sampling frequency during June and July, however, overall density of ticks during

2018 was higher for each single sampling event. Compared to prior years, an average of

11.8 ticks were collected on each of 7 sampling events in 2018, whereas no single sampling

event yielded more than one individual in any previous year. Interestingly, the dominant

haplotype (MAC6) at this site in 2018 had not been previously observed from any other site

in Virginia, during any other year of sampling between 2010 and 2018 (Nadolny et al., 2015).

This haplotype was rarely observed (4/370; 1.1% of total ticks) in a previous study, and then

only from Mississippi and Kentucky and not from North Carolina, Delaware, or Maryland
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(Nadolny et al., 2015). We conclude that the population at TP1 was established between

2013 and 2018 following the drop-off of one or more MAC6 females. The first generation

likely occurred in or before 2016, leading to a substantial cohort of MAC6 adults in 2018.

Dominance of a single mitochondrial haplotype in A. maculatum populations is atypical

in studies thus far, yet the presence of this pattern at TP1 indicates that new populations can

arise largely from a single maternal lineage. Further, the dominance (88%) of a regionally

unique haplotype is suggestive of a long-distance founding event. This lends support to the

hypothesis that some A. maculatum populations are established via long-distance dispersal,

with important implications for movement of R. parkeri across these same distances.

The appearance of a single founding lineage at the TP1 site strongly contrasts with the

otherwise high haplotype diversity within Virginia sites observed for both A. maculatum

and A. americanum in the current study, and in previous population genetic studies of

A. maculatum (Nadolny et al., 2015). Our results are consistent with prior work that suggests

that A. maculatum populations typically arise where there is high propagule pressure from

multiple sources on ecologically permissive sites, leading to high-diversity populations with

distinct haplotype compositions (Nadolny & Gaff, 2018b), but we have also found that a

founder effect can be observed in sites where either immigration is reduced or reproductive

success is limited to few individuals, leaving the signature of a predominantly single-lineage

population.

Whereas A. maculatum demonstrated little to no clear regional connectivity, regular

mixing among A. americanum populations appears common, as indicated by non-significant

differences in haplotype frequencies among many sites. This regional homogeneity is

consistent with previous state-level studies of the lone star tick (Mixson et al., 2006; Trout

et al., 2010). The only remarkable pattern we observed in A. americanum was a significant

structure identified between mainland and barrier island populations in the AMOVA analysis.

The Chesapeake Bay presents a substantial barrier (at least 17 km of open water) to
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movement of large mammals from the mainland to the peninsula of the Eastern Shore of

Virginia. Therefore, this pattern is likely driven by host preference of A. americanum.

2.4.2 TEMPORAL VARIATION IN GENETIC STRUCTURE

Temporal variation within sites was not expected, because we assumed that cohorts

from earlier years would contribute substantially to subsequent generations consistent with

the 2–3 year life cycle of Amblyomma ticks. We looked for temporal patterns, however,

because of the possibility that high turnover or propagule pressure could contribute to

punctuated shifts in genetic structure or composition among years. Most sites for both

A. maculatum and A. americanum were temporally stable, as evidenced by pairwise φST

values and FSC from AMOVA when groups were defined by multiple sample years within the

same site. VB2 displayed a notable shift in haplotype frequency in A. maculatum between

the years 2014 and 2016 (Section 2.3.1- POPULATION GENETIC STRUCTURE AND

CONNECTIVITY, Temporal variation). This shift may have resulted from immigration to

the site via drop-offs from hosts, but no clear source population, host, or distance could

be determined. Alternatively, this relatively small sample from VB2 2016 might indicate a

phenomenon of substructure within the local site that led to shift at that transect between

years. Although A. maculatum juveniles have been collected from migratory birds (Florin

et al., 2014), population establishment appears to be associated with habitat that supports

rodent hosts for immature ticks (Cumbie et al., 2020; Nadolny & Gaff, 2018b). Therefore,

substructure within a site might reflect short-distance dispersal of immature ticks on rodent

hosts. Genetic substructure could be particularly distinct if sibling cohorts tend to cluster

during host-seeking, for example questing together as larval masses (e.g. Leal et al., 2020).

Although this type of clustering has not been definitively observed among adults in the field,

observations of immature A. americanum in the lab and field, and A. maculatum larvae and

nymphs raised from colonies in the lab suggest that Amblyomma cohorts may quest together
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in all life stages leading up to adulthood. This observation leads to a second consideration

regarding the mechanisms of population establishment. Long-distance dispersal of siblings

may occur if spatial clustering means siblings are more likely to feed together, either as

immatures feeding on migrating birds, or adults feeding on large mammals. Such behavior

could contribute to a founder effect, as we saw at TP1, in sites where adult female siblings

feed in clusters, then drop off together, leading to a population founded predominantly by

a single maternal lineage. In these instances, some half-sibling or unrelated females may be

present such that additional mitochondrial haplotypes would also be represented in the new

population. A different pattern would be expected if more frequent drop-offs occur in high

host-traffic sites, or if there is no relationship between relatedness and clustered feeding. In

this case, even newly established populations could be highly diverse.

2.4.3 GENETIC MARKERS

Mitochondrial loci are useful in comparative studies to uncover congruency, or the

lack thereof, in the spatial genetic structure among different taxa (Bowen et al., 2014).

Initial mtDNA studies can help in determining which additional molecular tools will

help to answer unresolved questions about the biology of the system. Among the tools

available, new molecular technologies, such as RADseq and other reduced representation

techniques (e.g. Monzón et al., 2016), provide a large volume of information about individual

genotypes, vastly increasing genetic resolution within populations. Multi-locus genotypic

data can identify relatedness among individuals and can also be used in conjunction with

individual-based modeling to understand the mechanisms driving genetic patterns observed

at the population level (Landguth et al., 2012). Given that we have identified a population

of A. maculatum that appears to be the result of a founder event based on mtDNA, a

deeper look at the genetic diversity within mitochondrial haplotype backgrounds would be

appropriate to understand whether these individuals are indeed closely related, and if the
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founder effect is apparent across a larger number of loci.

2.4.4 CONCLUSIONS

The establishment of new A. maculatum populations appears, at least in part, to be

a result of long-distance dispersal events. Shorter-distance regional dispersals seem likely

given the host utilization of adult A. maculatum but these short-distance dispersals do

not sufficiently homogenize genetic structure in the region. In contrast, A. americanum

populations in this region display higher connectivity, with some structure imposed by

the geographical barrier of the Chesapeake Bay. Genetic structure of Amblyomma ticks in

southeastern Virginia is consistent with novel A. maculatum populations formed by drop-off

events resulting from long-distance host migration, and regional dispersal of A. americanum

on hosts restricted by water barriers.
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CHAPTER 3

SPATIOTEMPORAL ANALYSIS OF INTRASPECIFIC DIVERSITY IN

AMBLYOMMA MACULATUM POPULATIONS

3.1 INTRODUCTION

The Gulf Coast tick (GCT), Amblyomma maculatum, has been undergoing an expansion

of its North American range. A steady increase in the number of populations identified

beyond the historic extent, along the United States (U.S.) Gulf Coast region (Teel et al.,

2010), indicates a clear, progressive spread into northern latitudes. Established populations

have been reported in Virginia for over a decade. An adult GCT was associated with the first

confirmed diagnosis of Tidewater Spotted Fever (Paddock et al., 2004), now more commonly

called Rickettsia parkeri rickettsiosis. Within the last decade the known distribution of Gulf

Coast ticks has also expanded, in order of reported establishment, to Delaware, Arizona,

Illinois, Connecticut, and New York (Bajwa et al., 2022; Florin et al., 2014; Herrick et al.,

2016; Molaei et al., 2021; Phillips et al., 2020; Wright et al., 2011). The ongoing expansion

of GCT range prompts public health concerns because GCT is a vector of two pathogens

of medical and veterinary importance, Rickettsia parkeri and Hepatozoon americanum,

and can acquire and transmit Ehrlichia ruminantium in the lab (Paddock & Goddard,

2015). Rickettsia parkeri is a pathogen of particular concern for humans because it has

been identified as a causative agent of spotted fever rickettsiosis (SFR) (Paddock et al.,

2004). Reports of SFRs in humans are not typically diagnosed by causative agent because

commonly-used serological tests do not distinguish between different species of spotted fever

group rickettsiae (Heitman et al., 2019). Delaware, North Carolina, and Virginia all have an
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annual incidence of > 15 infections per one million people (CDC, 2019). North Carolina

and Virginia are among the five states that make up more than 50% of human cases of

SFR in the United States, alongside Arkansas, Missouri, and Tennessee. High incidences of

SFR, combined with high R. parkeri prevalence in ticks collected in emergent populations

throughout the Mid-Atlantic U.S. (Nadolny et al., 2014) have prompted studies aiming to

identify the sources of and patterns driving GCT expansion into new regions.

Population genetics is one tool for uncovering some of the underlying mechanisms of

this range expansion, including a fundamental question of how introductions occur and

the patterns of connectivity among populations. Connectivity can facilitate exchange of

genetic diversity in both the ticks and the pathogens. A “drop-off” in tick biology refers

to a single tick or cohort leaving a host, typically in a location some distance from the

source population. Not all drop-offs contribute to a population. Drop-offs are important to

population establishment or gene flow only after ticks feed to repletion and then successfully

produce offspring. Long-distance dispersal of adults ticks on hosts, followed by drop-offs

appears to contribute to successful population establishment. Benham et al. (2021) described

a GCT population in which population genetic analyses indicated a founder event, likely a

drop-off of a single successful female, based on the genetic patterns as well as the population

history at the site. Such populations would have genetic identities in common with a source

population. Depending on the number of genetically distinct individuals in the initial drop-off

and the ongoing immigration of new individuals to a site (i.e. propagule pressure during a

species invasion or range expansion), the founder’s genetics might dominate the population.

At least one population could have been founded by a single female from an initial drop-off,

where an apparent founder effect was observed (Benham et al., 2021). Here I investigated

how haplotype diversity changed or remained stable in this population in subsequent years,

and whether newly established GCT populations in other geographic regions show similar

genetic signals. I hypothesized that newly established populations should exhibit dominant
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haplotypes and/or low haplotype diversity. I also included two additional years of data

collection from sites with active populations in the Mid-Atlantic to complete a temporal

analysis of change in genetic signatures over time.

We followed mitochondrial 16S haplotyping methods (Benham et al., 2021; Nadolny

et al., 2015) to haplotype individual ticks collected from North American populations in

Virginia, Delaware, and Illinois, with the latter two containing GCT populations that have

only been observed within the last 5 years. Mitochondrial DNA (mtDNA) 16S rRNA gene

fragments provide a means to track intraspecific diversity across time and space. Population

structure and connectivity can be readily evaluated using mtDNA, insofar as researchers

remain aware of some of the limitations and assumptions of using this marker. The major

limitation of mtDNA, in general, is that it is specific to the maternal lineage, thus the paternal

contribution is not considered. The reproductive biology of metastriate ticks ameliorates this

concern, in that mating occurs on-host. In GCTs specifically, females begin feeding where

conspecific males have already initiated feeding (Teel et al., 2010). Based on this mating

behavior, the male parent of any offspring is likely to be from a location near where the female

originated, even in the cases of long-distance host migration. If both parents are from the

same source population, I did not anticipate a significant loss of genetic information relevant

to intraspecific diversity as I focused on maternal lineages and excluded paternal DNA.

Three key assumptions guide the development of the founder hypothesis here: 1) male

drop-offs at a new location are less informative than female drop-offs if adult ticks are

the primary founders of new populations, because males will die within weeks of mating,

with no further interactions, 2) paternal mitochondrial leakage occurs infrequently in GCTs

(Nadolny et al., 2015) and 3) migration of reproducing adult GCTs on large animals

promotes successful invasion (Nadolny & Gaff, 2018a). Following these assumptions, I

demonstrated how tracking maternal lineages (mtDNA) can clarify mechanisms of population

establishment by revealing patterns that can be used to infer how many females have
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successfully contributed to the established population. Female ticks that are infected with

the pathogen R. parkeri can transmit the bacteria to offspring via transovarial transmission

(Wright et al., 2015), which means infected females can contribute to R. parkeri prevalence

in subsequent generations. Greater genetic diversity within tick populations may have a

significant effect on R. parkeri prevalence, although the direction of that effect (i.e. positive

or negative) is unknown. Diversity within vertebrate host communities has been associated

with negative effects on pathogen prevalence, with some controversy regarding this dilution

effect (Huang et al., 2016). However, whether any similar effect can be seen as a result

of intraspecific diversity is yet to be determined. Ultimately, high prevalence of R. parkeri

in ticks is likely an important component of exposure to humans, thus a risk to public

health. Although the relationship between tick diversity and pathogen prevalence is not yet

clear, establishing the patterns of diversity in ticks and what these patterns imply about the

populations over time is an essential first step to investigate the broader question. Here, I

continued to explore mtDNA because a substantial collection of mtDNA haplotypes exists

from across the range of A. maculatum, which facilitated this spatial and temporal analysis

as well as comparison to prior work.

This study focused on mitochondrial 16S rRNA gene fragment haplotype markers to

measure intraspecific genetic diversity in populations of the sexually-reproducing metastriate

species A. maculatum. I characterized diversity in existing populations, considering

spatiotemporal stability and variation. The temporal analysis considered change in diversity

measures over time to look for significant shifts or trends. The spatial analysis included a

deeper look at dissimilarity among sites, as well as overall connectivity based on population

haplotype frequencies.
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3.2 MATERIALS AND METHODS

3.2.1 COLLECTION

Collection methods in Virginia continued as described in prior work (Benham et al.,

2021; Nadolny et al., 2015). Mid-Atlantic tick samples were collected as part of a surveillance

project at Old Dominion University that has been ongoing since 2008. Flagging is conducted

year-round, with bi-weekly sampling during the GCT active season (April through October).

A total of seven populations from Virginia were included in this analysis, including a

historical population (CH0) with individuals collected between 2010 and 2013. DNA samples

from four populations in Illinois and three populations in Delaware were obtained from

personnel at University of Illinois (Phillips et al., 2020) and Delaware Technical Community

College (Maestas et al., 2020). In total, I evaluated ticks from fifteen sampling locations

(“sites”) three higher level groups (“regions”), which were Virginia, Delaware and Illinois

(Figure 3.). The spatial analysis pertains to this collection of sites.
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FIGURE 3. Amblyomma maculatum collection sites in Virginia, Delaware, and Illinois. Site codes are intended to
de-identify sensitive locations. Codes are generally derived from geographic boundaries or features, e.g. barrier islands
sites are “BI”. Illinois and Delaware site codes are prefixed with “IL” and “DE” in the text.
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A separate temporal analysis was completed for the seven sites in Virginia by partitioning

populations based on year of collection. The population HM2 was excluded from the

temporal analysis because the site was added to the surveillance project in 2020 and we

only had one year of sampling data. In addition, two years of sampling from CH0 (2010,

2013) were excluded because only one tick was collected in each of these years. The remaining

site/year combinations had a minimum of 8 individuals haplotyped.

Temporal diversity and similarity in Virginia

The sites and years that were included in the temporal analysis were CH3, 2019–2020;

BI1, 2018–2019; NC1, 2017–2019; TP1, 2018 and 2020; and CH0, 2011–2012. Two sites

(TP1 and DN1) did not have enough individuals collected and haplotyped in 2019 to obtain

diversity estimates using the package SpadeR (Chao et al., 2016) in R 4.2.1 (R Core Team,

2023), so only basic statistics are reported for these sites. The primary purpose of the

temporal analyses was to examine the null hypothesis that sites did not have significant

differences in any diversity measures from year to year. Failing to reject the null would

justify pooling data and assuming that a single year of data in the spatial dataset would

be representative of a population. Further, following up on year-to-year dynamics would

support intepretations about genetic stability in these populations, particularly at the site

that showed an initial founder effect.

Subsampling within three sites

Subsampling occurred in 2019 within three sites where GCTs were collected within the

site, but beyond the original transect. These three sites included two barrier island sites

(BI1 and BI3) subsampled by flagging five distinct clusters of woody vegetation that were

separated by an open, grassy habitat matrix. Vegetation clusters were naturally occurring

and separated from each other by approximately 30 m. An additional transect was added
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to the site TP1, approximately 600 m from the transect established in 2018. Variation

in vegetation structure between transects at this site was less pronounced than at the

barrier islands. The grassy matrix between barrier island vegetation clusters was flagged

to account for presence, but no ticks were collected in this habitat. The hypothesis was that

haplotypes cluster at a fine scale, for example between transects or sampling units within

sites. Clustering would indicate that siblings tend to remain together across life stages and

increase the likelihood that closely-related ticks (e.g. ticks of the same haplotype) would

colonize a site together as a founding group, leaving the signature of a dominant haplotype

on site.

3.2.2 HAPLOTYPING

Haplotypes were identified by curating sequences and searching NCBI (BLAST) (Altschul

et al., 1990) for 100% pairwise matches along a 225 base pair (bp) sequence of the

mitochondrial 16S gene. I followed methods from prior work (Benham et al., 2021; Nadolny

et al., 2015), but used a slightly longer bp fragment to accurately align sequences with

insertions or deletions. The haplotyped region ranged from 216 to 218 bp (Benham et al.,

2021).

3.2.3 INTRASPECIFIC DIVERSITY

A haplotype-by-site matrix was generated by grouping population by site and year to

calculate dissimilarity in SpadeR. I also derived a genetic distance matrix using Tamura-Nei

genetic distances to calculate φST in Arlequin based on FASTA sequences sorted by site.

Similarly, a haplotype-by-site × year matrix was created for the temporal dataset, which was

then analyzed with the same methods, except without considering connectivity. I repeated

the same process for subsampling, using only the sites and transects mentioned in Section

3.2.1.
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I used SpadeR to generate dissimilarity and diversity statistics along with estimators of

sample coverage. I examined population evenness using two evenness indices: EQ (Equation

2) and Evar (Equation 3). Both EQ and Evar were selected because these indices calculate

evenness independent of richness (Smith & Wilson, 1996), whereas Simpson’s evenness is a

classic measure included for comparison. Evenness indices EQ, Evar, and Simpson’s evenness

were calculated in the R package codyn (Hallett et al., 2020), using the following equations

for EQ, Evar:

EQ = −2/π arctan(b’), (2)

Evar = 1 − 2/π arctan

{
S∑

s=1

(
ln(xs) −

S∑
t=1

ln(xt)/S
)2/

S

}
(3)

where b’ in Equation 2 is the slope of the log abundance by the rank of abundance.

For each population in the dataset, rank-abundance curves were fitted to models by

plotting log abundance (y) against haplotype rank (x), then using least squares regression to

determine the model fit using the radfit routine in the R package vegan (Oksanen et al., 2022).

Rank-abundance models are used primarily to identify dominance of a species or class (e.g.

haplotype) in relation to overall diversity in a sample, where the relative steepness of the slope

can be interpreted in terms of ecological or evolutionary processes (Whittaker, 1965; Wilson,

1992). Here, rank-abundance model fitting was used to compare and contrast patterns of

dominance, identify populations that appear to deviate from the general patterns observed,

and apply ecological insights to explain underlying processes that could be contributing

to differing patterns. The analysis was applied here to intraspecific diversity, rather than

community diversity, which requires a different interpretation. However, some basics can

be inferred from the overall picture of dominance/diversity. The radfit algorithm fits

each sample to five different rank-abundance models: Null (broken-stick), Preemption,
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Lognormal, Zipf, and Zipf-Mandelbrot. The models and ecological interpretations for

different model fits are discussed primarily in relation to plants (Whittaker, 1965; Wilson,

1992). A null model fits a random distribution of haplotypes, and would be expected

if all haplotypes arrive at the same time and succeed according to random probabilities.

Preemption models, also called geometric series or Motomura models (Whittaker, 1965),

are common in difficult to moderately harsh environments with relatively limited (low to

moderate) richness. A Zipf or Zipf-Mandelbrot model fit is typically observed when serial

introductions occur, such as successional shifts in plant communities (Wilson, 1992).

Two analyses of variance relevant to population genetics were used to examine

hierarchical structure based on genetic distance (analysis of molecular variance, AMOVA)

and dissimilarity. The AMOVA algorithm in Arlequin (Excoffier & Lischer, 2010) calculates

genetic distances from haplotype sequences and partitions the variances by hierarchical

groups (Site and Region) (Excoffier et al., 1992). For a PERMANOVA design, I used a

second set of distance matrices that was generated in the packages ‘gstudio’ (Dyer, 2014a,

A) using the amova distance method and Horn dissimilarity (C1,2) from SpadeR. I used the

R package vegan to evaluate dispersion and perform a PERMANOVA test on the effects of

Site and Region separately.

3.2.4 STRUCTURE AND CONNECTIVITY

Population Graphs (Dyer & Nason, 2004) are used here to explore the overall connectivity

among sites. We inferred in Benham et al. (2021) that GCT populations had little

connectivity in the Mid-Atlantic based on significantly non-zero φST results, but I wanted

to explore this further with more geographic regions included. Population Graphs were

generated for spatial groups using the R package popgraph (Dyer, 2014b). In contrast to

AMOVA and PERMANOVA, which have a similar hierarchical structure, Population Graphs

do not require an a priori grouping, but instead this graph approach creates a network of
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populations based on covariances between site pairs (Dyer & Nason, 2004). A Population

Graph consists of nodes and edges that form a network showing pairwise connectivity between

populations based on genetic covariance. Nodes are the populations studied and edges are

derived from the genetic covariances between populations. Conditional graph distance (cGD)

denotes the shortest distance between populations, which implies higher gene flow either

between the two populations, or indirectly via a third (i.e. source) population. Saturation

and degree of the graphs were considered in evaluation (Dyer et al., 2010). Saturation occurs

when all of the nodes are connected to one another, in contrast with nonsaturated networks,

in which at least one edge is missing between nodes. Degree is a measure of the number of

edges connecting to a node.

3.3 RESULTS

A total of 41 unique haplotypes were identified among 15 populations, including the

historical population CH0. Unique haplotypes per population ranged from 6 to 17.

Compared to previous reports (Benham et al., 2021; Ketchum et al., 2009; Nadolny et al.,

2015), 13 novel haplotypes were identified. Of these 13, five were collected only in Virginia,

five only in Illinois, one was detected in both Virginia (BI3) and Illinois, and two were

collected only in Delaware. Overall, diversity was high among all samples. Sample

coverage was estimated to be between 68 and 97% (Table 5.). A non-metric dimensional

scaling (NMDS) ordination of Tamura-Nei genetic distances illustrates pairwise relationships

between populations (Figure 4.).
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TABLE 5. Diversity estimates for each population. Values are: n = number of individuals,
H = haplotypes, Cov. = sample coverage, Chao1 = Chao 1 minimum richness estimator
(Chao, 1984), ACE = abundance-based coverage estimator (Chao & Lee, 1992), s.e. =
standard error, Shannon = Shannon diversity index, EQ and Evar = evenness indices (Smith
& Wilson, 1996). Site codes are intended to de-identify sensitive locations. Codes are
generally derived from geographic boundaries or features, e.g. barrier islands sites are “BI”.
Illinois and Delaware site codes are prefixed with “IL” and “DE”.

Diversity Estimators

n H Cov. Chao1 s.e. ACE s.e. Shannon s.e. EQ Evar

ILSN 48 13 0.92 16.90 5.20 16.30 3.30 9.84 1.04 0.24 0.62
ILMC 42 9 0.93 11.90 4.40 10.70 2.40 7.06 0.44 0.20 0.54
ILPK 33 11 0.88 18.80 11.30 14.20 3.40 8.70 1.28 0.27 0.67
ILHD 49 8 0.96 10.00 3.70 9.00 2.10 5.45 0.62 0.18 0.46
DECS 12 6 0.75 8.80 4.10 8.40 3.30 5.26 0.53 0.32 0.78
DEPH 54 11 0.93 14.90 5.20 15.00 4.20 6.26 0.92 0.19 0.47
DEBH 22 6 0.86 10.30 6.90 10.60 6.10 3.53 0.90 0.20 0.48
NC1 82 17 0.94 29.30 16.90 19.80 2.90 11.63 1.11 0.21 0.55
BI1 70 9 0.96 12.00 4.00 12.60 4.60 5.61 0.46 0.17 0.37
BI3 21 8 0.81 15.60 11.10 12.80 5.40 6.06 1.03 0.26 0.65
HM2 16 6 0.88 7.90 3.50 7.20 1.90 5.11 0.98 0.29 0.72
TP1 73 7 0.97 9.00 3.70 9.00 2.80 2.71 0.43 0.14 0.31
DN1 35 13 0.86 15.40 2.90 17.80 4.60 9.05 1.50 0.23 0.68
CH3 54 11 0.87 31.60 16.90 39.40 29.20 5.72 0.23 0.18 0.38
CH0 84 12 0.99 12.20 0.50 12.50 1.00 8.14 0.86 0.19 0.53
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FIGURE 4. Non-metric dimensional scaling ordination of genetic distances from the spatial dataset. Regional groupings
are indicated by shape and color of icons. Site codes are intended to de-identify sensitive locations. Codes are generally
derived from geographic boundaries or features, e.g. barrier islands sites are “BI”. Illinois and Delaware site codes are
prefixed with “IL” and “DE”. Solids lines identify clusters from a single-linkage hierarchical cluster analysis based on
Tamura-Nei distances < 0.14, for which distances among clustered populations were non-significant in AMOVA results.



42

3.3.1 INTRASPECIFIC DIVERSITY

The most abundant haplotypes overall were MAC8, MAC9, and MAC16. Virginia site

TP1 stood out in that the most dominant haplotype collected from this site, MAC6, made

up roughly 73% of the total abundance with no significant changes in diversity or evenness

among years (Table 6.). A Delaware site, DEBH, was dominated by MAC8, which made up

59% of the total abundance. The dominant haplotype in the remaining sites ranged from 20

to 43% of total abundance in those sites. On average, the most abundant haplotype from

any given site comprised approximately 35% of total abundance, with a median of 31%.

The appropriate model fit for rank-abundance curves was selected using AIC values

(Table 7.). Hereafter, ”fit” refers to selected fit. The majority of the sites fit a null, or

broken stick model of haplotype distributions. Several sites fit a preemption or Zipf model.

The Zipf model follows the proportion of the dominant haplotype, possibly resulting from

serial introductions as described in Section 3.2.3. The sites that fit this model were: DN1,

TP1, and DEPH. The sites CH3 and DECS both fit a preemption model, likely because

of low richness which could be a result of poor habitat quality or, alternately, poor sample

coverage (particulary DECS, see Table 5.).

The diversity profiles show that the three sites that fit a Zipf model of haplotype

dominance appear to have different underlying reasons for fitting this model rather than a

null model. DN1 stands out because of a relatively high species richness for the abundance,

which leads to an even sample with much uncertainty in estimated species richness. In

contrast, TP1 and DEPH are both driven by the dominance of a single haplotype, MAC6

and MAC9 respectively, that cause deviation from the null model. DECS has the greatest

evenness and TP1 has the least (Table 5.).
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TABLE 6. Diversity estimates for temporal dataset. Values are: n = number of individuals,
H = haplotypes, Cov. = sample coverage, Chao1 = Chao 1 minimum richness estimator
(Chao, 1984), ACE = abundance-based coverage estimator (Chao & Lee, 1992), s.e. =
standard error, Shannon = Shannon diversity index, EQ = evenness index (Smith & Wilson,
1996). Site codes are intended to de-identify sensitive locations. Codes are generally derived
from geographic boundaries or features, e.g. barrier islands sites are “BI”. Illinois and
Delaware site codes are prefixed with “IL” and “DE”.

Diversity Estimators

n H Cov. Chao1 s.e. ACE s.e. Shannon s.e. EQ

NC1 2017 34 15 0.74 37.40 19.60 36.20 15.50 10.35 1.86 0.28
NC1 2018 19 9 0.68 23.20 12.80 19.20 10.60 6.94 0.33 0.22
NC1 2019 29 10 0.86 13.90 5.10 14.80 4.80 7.33 1.06 0.26

BI1 2018 16 6 0.88 6.90 2.10 7.10 1.70 5.22 0.64 0.28
BI1 2019 54 7 0.96 8.00 2.20 8.00 1.70 4.67 0.45 0.16

TP1 2018 46 5 0.94 7.90 4.30 13.70 4.80 2.00 0.13 0.14
TP1 2019 8 4 – – – – – – – 0.31
TP1 2020 19 5 0.84 7.80 4.20 12.60 11.70 2.76 0.29 0.19

DN1 2017 10 5 0.70 9.10 6.50 10.30 7.00 3.89 1.00 0.29
DN1 2018 17 10 0.71 13.90 4.60 14.20 3.60 9.03 1.28 0.40
DN1 2019 8 6 – – – – – – – 0.381

CH3 2019 34 11 0.79 34.80 30.20 25.30 13.10 6.86 1.43 0.22
CH3 2020 20 4 1.00 4.00 0.50 4.00 0.50 3.28 0.42 0.26

CH0 2011 44 10 0.96 12.00 3.70 10.90 1.40 8.00 0.93 0.23
CH0 2012 38 8 0.97 8.20 0.70 8.60 1.10 5.98 0.84 0.22
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TABLE 7. Model fit results for rank-abundance curves. Par(1,2,3) = parameters 1, 2,
and 3, Dev = deviance, AIC = Aikake information criterion, BIC = Bayesian information
criterion. Site codes are intended to de-identify sensitive locations. Codes are generally
derived from geographic boundaries or features, e.g. barrier islands sites are “BI”. Illinois
and Delaware site codes are prefixed with “IL” and “DE”.

Site Par 1 Par 2 Par 3 Dev AIC BIC

BI1

Null 4.97 35.24 35.24

Preemption 0.35 3.56 35.83 36.03

Lognormal 1.53 1.20 3.10 37.35 37.75

Zipf 0.42 -1.22 6.43 40.70 41.09

Mandelbrot 2.40E+108 -52.42 118.19 3.53 39.80 40.39

BI3

Null 1.62 22.57 22.57

Preemption 0.30 1.00 23.95 24.03

Lognormal 0.69 0.87 1.07 26.02 26.18

Zipf 0.36 -0.98 1.047 26.00 26.16

Mandelbrot 20.96 -2.56 4.03 0.71 27.66 27.90

CH0

Null 4.24 45.16 45.16

Preemption 0.25 2.38 45.3028 45.79

Lognormal 1.55 0.96 4.60 49.52 50.49

Zipf 0.32 -0.99 7.97 52.89 53.86

Mandelbrot Inf -419 1468 2.28 49.20 50.66
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TABLE 7 Continued.

Site Par 1 Par 2 Par 3 Dev AIC BIC

CH3

Null 14.05 44.77 44.77

Preemption 0.35 6.77 39.49 39.88

Lognormal 0.94 1.26 9.67 44.39 45.19

Zipf 0.43 -1.31 10.24 44.96 45.76

Mandelbrot 12824 -4.90 7.41 5.71 42.43 43.62

DN1

Null 4.92 38.89 38.89

Preemption 0.21 4.61 40.58 41.14

Lognormal 0.64 0.90 2.56 40.53 41.66

Zipf 0.31 -0.98 0.86 38.83 39.96

Mandelbrot 0.31 -0.98 6.55E-06 0.86 40.83 42.53

HM2

Null 1.06 17.41 17.41

Preemption 0.31 0.40 18.76 18.55

Lognormal 0.82 0.69 0.33 20.68 20.26

Zipf 0.36 -0.81 0.75 21.10 20.68

Mandelbrot Inf -8.90E+06 2.58E+07 0.18 22.53 21.90

NC1

Null 4.87 57.32 57.32

Preemption 0.17 6.47 60.92 61.75

Lognormal 1.18 0.93 2.64 59.09 60.76

Zipf 0.26 -0.91 4.35 60.80 62.47

Mandelbrot 0.60 -1.23 1.09 4.02 62.48 64.98
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TABLE 7 Continued.

Site Par 1 Par 2 Par 3 Dev AIC BIC

TP1

Null 39.05 61.79 61.79

Preemption 0.62 11.15 35.88 35.83

Lognormal 1.02 2.10 5.40 32.14 32.03

Zipf 0.71 -2.20 0.97 27.71 27.60

Mandelbrot 0.71 -2.20 7.53E-07 0.97 29.71 29.54

DEBH

Null 3.88 20.17 20.17

Preemption 0.50 2.08 20.38 20.17

Lognormal 0.70 1.38 1.53 21.83 21.41

Zipf 0.58 -1.63 0.24 20.53 20.12

Mandelbrot 0.58 -1.63 5.31E-06 0.24 22.53 21.91

DECS

Null 2.40 17.37 17.37

Preemption 0.28 1.14 18.12 17.91

Lognormal 0.60 0.52 0.95 19.92 19.51

Zipf 0.31 -0.62 1.23 20.21 19.79

Mandelbrot Inf -1.29E+08 4.81E+08 0.78 21.75 21.13

DEPH

Null 7.71 40.16 40.16

Preemption 0.32 5.10 39.55 39.95

Lognormal 0.97 1.23 2.47 38.92 39.72

Zipf 0.43 -1.29 1.70 38.16 38.95

Mandelbrot 0.72 -1.53 0.43 1.62 40.07 41.27
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TABLE 7 Continued.

Site Par 1 Par 2 Par 3 Dev AIC BIC

ILHD

Null 1.76 27.82 27.82

Preemption 0.35 1.71 29.78 29.86

Lognormal 1.40 1.08 1.48 31.55 31.71

Zipf 0.41 -1.15 3.42 33.49 33.65

Mandelbrot 2.33E+272 -112.76 261.72 1.66 33.72 33.96

ILMC

Null 4.5583 32.71 32.71

Preemption 0.24 4.10 34.24 34.44

Lognormal 1.33 0.75 3.79 35.93 36.33

Zipf 0.29 -0.78 6.21 38.36 38.76

Mandelbrot Inf -6.39E+05 2.45E+06 3.73 37.88 38.47

ILPK

Null 2.25 32.74 32.74

Preemption 0.21 1.03 33.52 33.92

Lognormal 0.87 0.73 0.97 35.46 36.25

Zipf 0.27 -0.81 1.71 36.19 36.99

Mandelbrot 9.90E+06 -5.74 20.41 0.78 37.27 38.47

ILSN

Null 2.26 40.18 40.18

Preemption 0.20 1.10 41.02 41.59

Lognormal 1.03 0.80 1.54 43.44 44.59

Zipf 0.26 -0.83 3.24 45.17 46.30

Mandelbrot Inf -6.04E+07 2.82E+08 0.92 44.84 46.53
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Temporal analysis

Considering the six sites included in the temporal analysis, 4/6 experienced a net loss of

haplotypes over time (Table 8.). For two of those sites that had multiple years included, losses

had a greater impact on richness than years in which there was a gain, particularly at NC1.

Overall the change in haplotype rank was generally low, meaning losses and gains tended to

occur among rare haplotypes with little impact on the rank structure (Table 8.). Therefore,

stability appeared to be the general rule from year to year, absent major disturbances.

TABLE 8. Pairwise change in site diversity measures from year-to-year. Diversity measures
include haplotype gains and losses, and changes in haplotype richness, rank, and evenness.
Site codes are intended to de-identify sensitive locations. Codes are generally derived from
geographic boundaries or features, e.g. barrier islands sites are “BI”.

Year 1 Year 2 Site ∆ Richness ∆ Evenness ∆ Rank Gains Losses

11 12 CH0 -0.167 -0.018 0.215 0.167 0.333
18 19 BI1 0.111 -0.322 0.247 0.333 0.222
19 20 CH3 -0.636 0.114 0.190 0.000 0.636

17 18 DN1 0.455 0.144 0.198 0.545 0.091
18 19 DN1 -0.308 0.014 0.243 0.231 0.538

17 18 NC1 -0.375 0.000 0.234 0.063 0.438
18 19 NC1 0.083 -0.042 0.278 0.250 0.167

18 19 TP1 -0.167 0.519 0.167 0.167 0.333
19 20 TP1 0.143 -0.317 0.265 0.429 0.286

Some of the haplotype losses, for example CH3 (2019–2020) and TP1 (2018–2019), likely

resulted from disturbances such as fire and successional change, respectively. Population
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decline followed a prescribed burn in early 2019 at TP1, after which population and haplotype

richness rebounded, and evenness dropped because the haplotype MAC6 recovered nearly

in proportion to its prior dominance. The population at CH3 declined as the tree canopy

developed. No GCTs were found in collections from CH0 and NC1 populations after 2014 and

2019, respectively. The decline at CH0 after 2014, when only 7 ticks were collected, coincided

with successional change (Nadolny, 2016), whereas frequent mowing had suppressed or

extirpated the GCT population at NC1.

Subsampling

Though much more data need to be collected, there appeared to be no apparent pattern

in haplotype distribution, clustering or otherwise, at scales finer than the site level. Sample

sizes for each cluster or transect were low, yet each sample with more than two individuals

had more than one haplotype present (Table 9.). Sample sizes were generally too small to

calculate useful diversity statistics.
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TABLE 9. Subsampling collection summary. n = number of individuals and H = number
of haplotypes. Site codes are intended to de-identify sensitive locations. Codes are generally
derived from geographic boundaries or features, e.g. barrier islands sites are “BI”.

Site Transect n H

BI1 1 5 4
BI1 2 24 6
BI1 3 10 3
BI1 4 8 3

BI3 1 1 1
BI3 2 2 1
BI3 3 5 5
BI3 4 7 6
BI3 5 7 3

TP1 2 3 3
TP1 3 4 2
TP1 4 1 1

3.3.2 STRUCTURE AND CONNECTIVITY

The AMOVA showed significant (p > 0.001) regional population structure in terms

of variance at all levels of a hierarchical analysis, but most of the variance occurred

within populations (77.17%), rather than among populations (8.72%), or among regions

(14.11%). Likewise, a single-linkage hierarchical cluster analysis based on Tamura-Nei

distances demonstrated visual clustering by region. These clusters were overlaid on the

original NMDS plot for visualization (Figure 4.). Similarly, the PERMANOVA results were
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significant for regions and populations (Region, F = 8.96, p < 0.001; population, F = 8.91,

p < 0.001). Delaware samples were significantly more dispersed (DE = 7.748, IL = 6.309,

VA = 7.125) than either Virginia or Illinois (p = 0.26 and p = 0.23). Dispersion between

Virginia and Illinois was not significantly different (p = 0.77).

Finally, the connectivity analysis based on the Popgraph network model showed a high

degree of interconnectivity among populations, even across regions (Figure 5.). Some general

patterns were observed, but there are many exceptions. The graph was nonsaturated,

meaning that not all populations were connected. However, at least one population in

each region was connected to one in another region in this population graph. When one

looks at cGD (Figure 6.), populations generally have the shortest pairwise distances between

populations within the same region, although the historic population CH0 and the unusual

site TP1 stood out. Greater pairwise distances were generally apparent between Illinois

populations and others. However, DEBH and DN1 both had relatively short cGD with

ILSN compared to other populations in their respective regions. Similar results were evident

in the Tamura-Nei genetic distances, which generally reported significantly non-zero pairwise

distances between Illinois populations and the other regions (Table 10.).
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FIGURE 5. A Population Graph for 15 A. maculatum populations. Site codes are intended to de-identify sensitive
locations. Codes are generally derived from geographic boundaries or features, e.g. barrier islands sites are “BI”. Illinois
and Delaware site codes are prefixed with “IL” and “DE”.
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FIGURE 6. Pairwise conditional graph distances between populations, where larger values indicate greater distances.
Site codes are intended to de-identify sensitive locations. Codes are generally derived from geographic boundaries or
features, e.g. barrier islands sites are “BI”. Illinois and Delaware site codes are prefixed with “IL” and “DE”.
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TABLE 10. Tamura-Nei distance-based pairwise φST matrix for A. maculatum with FDR-adjusted q values. Pairwise
φST values are in the lower triangle, and q values are in the upper triangle. Site codes are intended to de-identify sensitive
locations. Codes are generally derived from geographic boundaries or features, e.g. barrier islands sites are “BI”. Illinois
and Delaware site codes are prefixed with “IL” and “DE”.

ILSN
(n=48)

ILMC
(n=42)

ILPK
(n=33)

ILHD
(n=49)

DECS
(n=12)

DEPH
(n=54)

DEBH
(n=24)

NC1
(n=82)

BI1
(n=70)

BI3
(n=21)

HM2
(n=16)

TP1
(n=73)

DN1
(n=35)

CH3
(n=54)

CH0
(n=84)

ILSN * 0.019 0.237 0.000 0.164 0.000 0.087 0.000 0.000 0.000 0.144 0.000 0.093 0.010 0
ILMC 0.058 * 0.156 0.019 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0
ILPK 0.017 0.022 * 0.161 0.043 0.000 0.010 0.000 0.000 0.000 0.035 0.000 0.019 0.000 0
ILHD 0.156 0.094 0.035 * 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
DECS 0.037 0.165 0.114 0.266 * 0.688 0.685 0.623 0.867 0.227 0.380 0.000 0.662 0.867 0.394
DEPH 0.100 0.229 0.184 0.333 -0.029 * 0.291 0.121 0.249 0.058 0.211 0.000 0.207 0.240 0.164
DEBH 0.042 0.184 0.121 0.273 -0.026 0.008 * 0.720 0.548 0.394 0.379 0.000 0.243 0.196 0.186
NC1 0.097 0.239 0.201 0.365 -0.016 0.019 -0.014 * 0.361 0.359 0.227 0.000 0.072 0.051 0.019
BI1 0.073 0.218 0.185 0.354 -0.040 0.008 -0.011 0.001 * 0.107 0.257 0.000 0.283 0.392 0.027
BI3 0.128 0.285 0.210 0.352 0.043 0.067 -0.002 0.010 0.042 * 0.144 0.000 0.027 0.027
HM2 0.052 0.171 0.133 0.279 -0.002 0.033 0.003 0.020 0.017 0.064 * 0.000 0.249 0.182 0.134
TP1 0.348 0.504 0.437 0.529 0.371 0.332 0.310 0.293 0.333 0.305 0.210 * 0.000 0.000 0
DN1 0.032 0.121 0.104 0.254 -0.027 0.016 0.017 0.039 0.006 0.117 0.021 0.386 * 0.539 0.227
CH3 0.075 0.188 0.167 0.325 -0.045 0.010 0.027 0.031 0.001 0.104 0.037 0.379 -0.007 * 0.065
CH0 0.087 0.185 0.157 0.307 0.001 0.017 0.026 0.035 0.031 0.089 0.041 0.326 0.014 0.026 *
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3.4 DISCUSSION

A single drop-off of an adult female tick might not be a rare event, but subsequent

population establishment from a lone drop-off is apparently uncommon. Propagule pressure,

which can be defined as a combination of propagule size and frequency (Wittmann et al.,

2014) undoubtedly influences the likelihood of population establishment. Although data

are lacking with regard to host movement, population sizes, and tick dispersal behaviors to

adequately describe propagule pressure of GCTs during this range expansion, genetic data

presented here support the inference that the frequency of drop-offs along the northern

margins of the GCT range is high enough to establish genetically diverse populations.

This likely helps to overcome the limitations imposed on new populations that can be

caused by low numbers and genetic diversity among founding adults such as Allee effects,

demographic stochasticity, and genetic stochasticity. These data fit with a broader trend

in invasion biology, that establishment success and range expansion is primarily a numbers

game (Blackburn et al., 2017).

Previous work haplotyping GCT from southeastern Virginia indicated substantial

diversity at most sampling sites with the marked exception of TP1, which was dominated

by a single haplotype MAC6 that was not previously detected within Virginia (Benham

et al., 2021). New populations of GCT have recently established in Illinois and Delaware

(Florin et al., 2014; Phillips et al., 2020). I hypothesized that these new populations

may exhibit low haplotype diversity consistent with a founder event, as was postulated

for TP1. However, this hypothesis was not supported, and instead both Delaware and llinois

populations resembled higher diversity of the Virgnia populations, other than TP1, without

a clearly dominant lineage such as that observed at TP1. These findings suggest that clear

founder effects reflected by dominance of individual haplotypes may be an exception rather

than a rule for newly established GCT populations. Importantly, this also indicates that
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establishment of GCT populations in areas where they were previously undetected results

from transplantation of multiple female ticks of different maternal lineages on short temporal

scales. Given the high reproductive potential of individual GCT females (Nadolny & Gaff,

2018b), a single female could successfully found a population that would then be dominated

by that founding haplotype even if continued introductions bring new haplotypes to the site

in subsequent years. In general, it appears that the initial introduction in many of these new

populations includes multiple haplotypes from different females. These results suggest that

substantial propagule pressure is contributing to the current GCT range expansion. Source

populations are likely as diverse or more diverse than these newly established populations if

new populations experience a bottleneck. However, further investigation within the historical

range is needed to confirm this, as existing evidence is limited in regions such as Arkansas,

Kansas, Mississippi, Oklahoma, and Texas where haplotype characterization has been based

primarily on single-strand conformation polymorphism studies with limited sequencing and,

in some cases, small sample sizes (Ferrari et al., 2013; Ketchum et al., 2009; Nadolny et al.,

2015; Trout et al., 2010).

Following-up on the site TP1 where we first noticed the founder effect (Benham et al.,

2021) showed that even after a population recovery following a prescribed burn in 2019,

the haplotype MAC6 remains dominant. The recovery of MAC6 as a dominant haplotype

suggests that ongoing propagule pressure from outside populations is limited and that this

site might be isolated within the metapopulation. If this population is isolated, this could

provide the opportunity to develop a case study for elimination, which could be measured

in terms of how well the existing lineages persist after experimental control efforts. TP1 is a

unique population across multiple measures. For example, this site has both low evenness,

as explored through rank-abundance models, and low richness relative to the population

size and estimated sample coverage. These unique patterns persist across years. Although

abundance declined in 2019 after fire, a rebound of the same overall diversity pattern
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was observed, along with recording several haplotypes that were either new to the site,

or previously unreported.

Disturbance such as fire appears not to be a major destructive event for a GCT

population, given the recovery of the population at TP1 in 2020 with the same overall

genetic composition and diversity patterns that existed prior to the 2019 burn. Rather,

fire is likely conducive to maintaining conditions that allow GCT populations to persist.

GCT are able to evade deleterious effects of low-intensity managed burns well enough to

rapidly recover, as seen in the TP1 population. In contrast, canopy closure can completely

eliminate populations (Nadolny, 2016). In the broader surveillance project, we have not yet

identified a population re-emerging within a site where an earlier population had previously

disappeared as a result of canopy closure. The progress of ecological succession in the

Mid-Atlantic Coastal Plain ecoregion typically leads to a permanent habitat shift unless a

major, habitat-altering disturbance occurs to reset the system.

At TP1, where the question about a founder effect lingers, the next step is to

continue exploring these questions by comparing mtDNA to alternative genetic markers

at the population level. Genetic markers such as microsatellites and single-nucleotide

polymorphisms (SNPs) can clarify relationships between individuals of the same haplotype

to determine relatedness and inbreeding. Work to develop useful microsatellites and test

these in populations is ongoing (Allerdice, 2021), while advances in mitochondrial genome

sequencing (Brenner & Raghavan, 2021) and sequencing of the full GCT genome (Ribeiro

et al., 2022) show promise for developing novel genomic markers that can help resolve some

remaining questions about the nature of GCT geographic expansion.

Future work should incorporate field collections aimed at estimating propagule pressure

as it relates to geographic region and host movement. Such efforts include collecting ticks

from hosts and continuing to seek new populations both within the historic range and in

areas of recent expansion. Ecological modeling will be an important component of any such
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study to compare empirical data to theory and understand constraints in the system. Finally,

the development of new markers will expand the types of questions that can be asked about

these dynamic populations. New genetic tools and models for ecological inference developed

specifically for ticks can help integrate different bodies of knowledge that are essential for

controlling GCT invasions.
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CHAPTER 4

EVALUATION OF REMOTE SENSING TO IDENTIFY GULF COAST

TICK HABITAT

4.1 INTRODUCTION

Expert assessment of habitat is an important predictor of A. maculatum presence or

absence in the field. Typically, experts identify A. maculatum habitat by looking for key

indicators of late primary succession, similar to the shrub and sapling stage of old field

succession (Nadolny & Gaff, 2018b; Teel et al., 2010). This stage of succession is when

woody growth just begins, but woody shrub and tree height remain below approximately

2–4 m and the canopy has not yet closed. Amblyomma maculatum habitats can have

different historical land uses. In the Mid-Atlantic, coastal and dune habitats, as well as

old fields, overgrown park edges, and powerline right-of-ways are often targeted to search

for A. maculatum presence. Evidence of frequent disturbances such as fire, mowing, and

coastal wind and wave activity can also be indicators of conditions that reset habitat to

earlier successional stages. Amblyomma maculatum populations can invade or recover in

these sites, given a period of 1–2 years of vegetation recovery following the disturbance

(Gleim et al., 2016; Nadolny & Gaff, 2018b; Teel et al., 2010).

Changes in vegetation composition can be measured through both categorical variables,

such as land use and land cover classes (LULC), and numeric variables, for example the

normalized difference vegetation index (NDVI) and changes in soil organic composition.

LULC classes provided by the Chesapeake Bay Program incorporate high resolution land

cover data, which primarily shows the type of vegetation present along with hydrology,
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combined with data about human use to distinguish between natural succession and

actively-managed croplands or extractive areas (CBPO, 2022). Whereas LULC models rely

primarily on static spatial imagery, NDVI values can be collected across a time range relevant

to the study to show site vegetation dynamics, particularly vegetation stress, inter-annual

change, and annual phenology patterns. Values can range from -1 to 1, with negative

values indicating water bodies and positive values associated with vegetation. One of the

limitations of NDVI is that the index is sensitive to bare soil, which measures around 0, and

becomes saturated at higher values, which narrows the difference between healthy vegetation

of different types. An example of saturation is the relatively narrow distance between golf

course grass (around 0.7 NDVI on Landsat 8 Surface Reflectance) and forest (around 0.9

NDVI) (Huang et al., 2021). Lower values, between 0–0.7 can indicate more bare soil in the

pixel or stressed/sensecent vegetation, or in some cases, cloud cover or sensor errors.

NDVI is calculated (Equation 4) by extracting red (R) and near-infrared (NIR) spectral

imagery from the 8 or 11 available spectral bands from Landsat 7 ETM+ or Landsat8

OLI satellites, respectively. Each band monitors a different wavelength emitted from the

Earth’s atmosphere or surface. The MODIS Terra instrument monitors 36 bands, from

which processed NDVI bands are available for download from the U.S. Geological Survey

(USGS) LP DAAC (Didan, 2021).

NDV I =
NIR−R

NIR +R
(4)

This chapter includes an analysis of both types of data to evaluate the relationship

between these remotely-sensed variables and the presence of A. maculatum populations

collected from the field across eastern Virginia and northeastern North Carolina.

Among tick species collected in the Mid-Atlantic region of the United States (U.S.),

A. maculatum are relatively rare, with densities an order of magnitude less than the density
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of the American dog tick (Nadolny & Gaff, 2018b), Dermacentor variabilis, which can be

collected alongside A. maculatum or in similar habitat where A. maculatum are not present

Amblyomma maculatum are often not present even where they might be expected based

on habitat conditions, geographic range, and/or the presence of nearby populations. As a

result, A. maculatum are typically located in patchy distributions. The most common host

species of A. maculatum in Virginia and the Mid-Atlantic more broadly are not completely

known, but immature ticks are often collected on rodents and small mammals (Nadolny &

Gaff, 2018b), including several species of mice and rats, as well as meadow voles (Microtus

pennsylvanicus), in Virginia and North Carolina (Cumbie et al., 2020). The relatively short

distances these host animals travel may contribute to both the patchiness and the apparent

lack of connectivity between A. maculatum populations (Benham et al., 2021; Nadolny et al.,

2015) if ticks are spending most of their immature life stages on these smaller animals.

To aid in ongoing surveillance of A. maculatum habitat, the goal was to develop a reliable

way to use remote sensing to aid in the detection of potential A. maculatum habitat in

the Mid-Atlantic region. To understand how landscape affects A. maculatum presence

on a meso-scale (regional) rather than broader (continental) or finer (site-level) scales, a

set of variables had to be chosen that would have enough variation at the desired scale

to discriminate between suitable and unsuitable habitat, without high correlation between

variables. LULC and NDVI were selected as the most likely habitat variables to make this

distinction remotely. The working hypothesis was an expectation that A. maculatum habitat

is sufficiently unique that remote sensing could be used to distinguish areas that are suitable

for A. maculatum.
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4.2 MATERIALS AND METHODS

4.2.1 FINE-SCALE TEMPORAL CHANGE

Fine-scale habitat change was examined at one site in Chesapeake, Virginia (scale:

approximately 1:5,000) where one historical A. maculatum population was documented

(Nadolny, 2016). The time period of interest included the point at which an established

population was identified to the time that population was locally extirpated. This period

coincided with the transition from a working crop to a fallow field, and finally to an early

stage, closed-canopy forest (Nadolny, 2016). Initial empirical data collected from the field

(Nadolny, 2016) was followed up here using remote sensing variables to help determine how

such landscape transitions might be monitored remotely in the future. Initally, National

Land Cover Database (NLCD) (Yang et al., 2018) images accessed through ArcGIS Pro 3.0

(Esri, 2022) were reviewed to identify the time when the transition was detected in land

cover classes. NLCD data are available at a resolution of 30 m. Land cover classes were

expected to be a relatively coarse temporal measure, as it takes years to compile and analyze

imagery for classification. To look at a finer temporal scale, a series of harmonized Landsat

NDVI values were used to visualize 30 m resolution NDVI change over years 2000–2016 for

the month of August, which was typically near the peak NDVI value. Harmonized values

(Roy et al., 2016) were used because the time span began before the operation of Landsat

8 OLI satellite. The time frame considered (years 2000–2016) includes the transition, with

several additional years evaluated both before and after the A. maculatum population was

observed.

An underlying assumption of this analysis was that the habitat change observed on

the ground can adversely affect populations of one or more key hosts, and this led to the

decline of the tick population between 2010 and 2014 (Nadolny, 2016). Mammal trapping
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and observations from the ground occurred as early as 2005 (Nadolny, 2016). The contrast

between the habitat during years when A. maculatum were present and the period of decline

will help to establish indicator variables that can be used to discriminate between suitable

and unsuitable habitat. The completeness of the historical dataset related to this site was

not reproducible at other sites. However, this analysis can provide a foundation for long-term

monitoring of populations occupying habitat subject to disturbance or successional change.

The methods can then be applied more broadly to other sites at the same scale to better

understand the sensitivity of population presence to habitat indicators that can change over

time.

4.2.2 REMOTE-SENSING TO IDENTIFY INDICATORS OF HABITAT AT

THE REGIONAL SCALE

Collection sites were determined using three databases from the ongoing active tick

surveillance program at Old Dominion University. The goal for site selection was to include

the maximum number of A. maculatum sites, based on population presence, which could be

contrasted with sites that were sampled within the same databases, but where A. maculatum

populations could not be considered established. The Centers for Disease Control and

Prevention (CDC) considers tick populations established when six or more ticks of a single

life stage or ticks from more than one life stage are collected from a site in a 12-month period

(Dennis et al., 1998). For A. maculatum, I based the definition of an established population

on adult numbers because immature ticks are rarely collected by flagging. Two types of sites

were considered unoccupied by A. maculatum: spatial points where A. maculatum have been

collected but do not meet the population criteria given above and points where a site has

been sampled at least three times but no A. maculatum have been collected. The presence

of four other tick species was considered and included in a occupancy matrix to evaluate

whether sampling was sufficient to identify a population of any tick species, and also to draw
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inferences about different habitat associations among different species. The five species were:

A. maculatum, A. americanum, Ixodes affinis, I. scapularis, and D. variabilis. Sites without

any tick populations were excluded from the analysis.

To classify sampling locations (spatial points) by population presence, two definitions

of population establishment were used here to compare the effect of different standards for

classifying collections as a population. In processing location data here, a strict definition

of an established population (≥ 6 adults) was compared to a more relaxed definition of two

adults from the same site in the same year. The rationale for this comparison was that

A. maculatum are relatively rare compared to other species, therefore a population standard

that applies to other species may not be entirely appropriate.

The three databases used to identify sites were the regular Field Study data from

2017–2020, State Sweep data, and the Maculatum Hunt database. The Field Study data are

collected via regular sampling year round according to seasonal schedules. Sampling begins

bi-weekly in April of each year through November. After November, sites are sampled

monthly. State Sweep data differs from regular flagging data in that the objective of State

Sweep was to maximize spatial coverage across the state of Virginia by flagging each county

at a single time point during the active season for most tick species. State Sweep data

considered here were drawn from 2017 and 2018. Part of the purpose for this project was to

identify new sites to be included in the regular flagging database, particularly those where

A. maculatum or other species of interest are collected. Starting in 2019, the Maculatum

Hunt database superceded State Sweep to identify A. maculatum populations specifically.

This database includes sites that were typically only sampled once per year, including sites

that are difficult to access, like the barrier islands off the Eastern Shore of Virginia. Since

sampling frequency varied for the sites, species matrices were reduced to presence/absence

based on the population definition of presence.

Landscape variables that were considered include: 1 m Chesapeake Bay Land Use/
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Land Cover datasets from 2018 (CBPO, 2022), 19 biologically relevant climate (bioclim)

variables, including mean annual temperature and mean annual precipitation (Fick &

Hijmans, 2017), and elevation at 1 km resolution, 250 m resolution soils tiles from the

International Soil Reference and Information Center (organic carbon density, soil organic

carbon in fine particles, and soil water pH) (Hengl et al., 2017), 2019 global forest canopy

height (30 m) (Potapov et al., 2020) and MODIS Terrra NDVI. Bioclim variables and soil

grid data were extracted from raster datasets using the geodata package (Hijmans et al.,

2022) in R 4.2.2 (R Core Team, 2023). The MODIS (MOD13A1.061) Terra Vegetation

Indices 16-Day Global 500m (Didan, 2021) were visualised and data tables generated using

Google Earth Engine software. MODIS satellite images were available across the 2017–2020

time period in 16-day intervals, so these were reduced to identify the annual peak NDVI

during the active season for A. maculatum. Correlations between environmental variables

were inspected by using the ggcorr function in the package GGally (Schloerke et al., 2021)

in R 4.2.2.

4.2.3 DATA SOURCES AND PROCESSING

All spatial points were thinned to include one observation per 0.5 km resolution for each

species (Figure 7.). This resolution preserves nearby transects that have distinctly different

vegetation and different tick species collected. Sites were excluded where coordinates were

unavailable or there was low confidence in the specific area flagged, for example if coordinates

for a site showed a building or impervious structure, or a generic location pin for a site.
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FIGURE 7. Sampling locations from thinned spatial points. Points include sites where A. maculatum were present or
where A. maculatum were absent, but a population of at least one other species (A. americanum, I. affinis, D. variabilis,
or I. scapularis) was present.
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The bioclim, soil, and elevation variables were evaluated for correlation to select

independent variables. LULC classes were extracted from spatial points based on the LULC

class at the origin of the transect and the most frequent cover class within 50 m and 250

m buffers. NDVI values were obtained for each point using MODIS NDVI, which were

available at a minimum resolution of 500 m. To evaluate finer-scale NDVI values, Landsat 8

OLI spectral bands were used to calculate NDVI at 30 m, the minimum resolution available.

The intra-annual median value was calculated for each year (2017–2020) for the active season

(June–August). NDVI median statistics were generated in Google Earth Engine.

Statistical analyses were done in R using base R and the lme4 package (Bates et al.,

2022). A Bernoulli generalized linear mixed-effects model (GLMM) was produced using the

function glmer in lme4 package. The binomial family was used with the complementary

log-log link function because of the proportionately high number of zeroes (80%) in the

year-to-year data. The default logit link function was used only for A. americanum, which

had about equal number of presences and absences. True zeroes were only included for site

and year combinations in which a site was flagged and a population of at least one tick species

was present. This was done to minimize zero-inflation by excluding sites that were flagged

but had no populations of any species. Presence by site and year were used to model the

relationship between A. maculatum populations and NDVI values. For all other variables,

only presence by site was used with a generalized linear model (function glm in base R), not

split temporally for individual years, because the chosen variables did not have a temporal

dimension aside from being the most recent estimate available for the time period of interest.
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4.3 RESULTS

4.3.1 FINE-SCALE TEMPORAL CHANGE

The transition from crop to forest at CH0 was documented as a land cover class change

between the NLCD 2008 and NLCD 2011 datasets (Figure 8.) (Dewitz, 2021), with no

changes between the 2006 and 2008 land cover datasets. Land use change coincided with

the transfer of the property from a private landowner to The Nature Conservancy as part of

the Great Dismal Swamp conservation project.

FIGURE 8. Images showing the land cover class transition of a site in Chesapeake,
Virginia (CH0). The site transitioned from Cultivated Crop to a combination of Deciduous
Forest, Evergreen Forest, and Mixed Forest from the National Land Cover Database (NLCD)
(Dewitz, 2021)

An evaluation of MODIS NDVI values during the same time period showed the lowest

NDVI around years 2000 and 2004, followed by an increase from around 0.6 in 2004 to
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over 0.9 by 2016 (Figure 9.). Between 2006 and 2009, NDVI values remained relatively

steady around 0.75 before rising to consistently > 0.8 thereafter. Amblyomma maculatum

collections in this time period spanned from 2010–2014 after which the population rapidly

disappeared from the site. No A. maculatum have been collected since 2014 (Nadolny, 2016),

despite regular flagging of this location.

The shift in NDVI values between 2005 and 2014 showed that successional change

observed on the ground during sampling translates to a relatively narrow increase in NDVI,

compared to the overall scale of the index (-1 to 1). A trend across the entire time

period (2000–2016) was apparent using both Landsat 5 TM and Landsat 7 ETM+ bands to

calculate NDVI. The time period that coincided with the land cover class change, 2008–2011,

experienced a net NDVI index change of +0.054 for the average during the active season.

With ongoing monitoring, species like I. affinis, A. americanum and D. variabilis continued

to be collected. The same site was included as a contemporary site for those species in the

subsequent analyses.
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FIGURE 9. Intra-annual median NDVI values at CH0 during the peak active season
(June–August) for Gulf Coast ticks (A. maculatum). NDVI values are shown from 2000–2016
using harmonized spectral bands from Landsat 7 ETM+ and Landsat 8 OLI imagery.

4.3.2 NON-SIGNIFICANT RELATIONSHIP BETWEEN A. MACULATUM

AND THE NORMALIZED DIFFERENCE VEGETATION INDEX

Overall, 987 A. maculatum were collected between 2017 and 2020 using both regular

flagging and special sampling to increase A. maculatum collections. Among these collections,
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912 individuals were collected from locations that met the population threshold of six or

more adults. These were collected from 9 transects in 2017, 11 in 2018, 15 in 2019, and 7

in 2020. Numbers collected ranged from 6 to 113 within a year, with a mean of about 28

ticks per transect. Two of these locations were considered off-transect, meaning that they

were not areas typically flagged and coordinates were not available. In 2019, BI1 and BI3

were subsampled using a cluster sampling approach that differed from the linear transects

at regularly flagged sites. Four transects each at BI1 and BI3 were pooled to represent

those barrier island populations. Spatial thinning was then applied as described in Section

4.2.3. After cleaning and thinning the data, twelve spatial points were included in the final

A. maculatum dataset, representing a total of 689 ticks. These counts were transformed to a

presence/absence matrix for each of the twelve retained transects and the years sampled, with

“NA” values reported for sites that were not sampled in a given year. Only one additional

point was included for A. maculatum when the threshold was lowered to ≥ 2 adults. The

same process of spatial point selection was applied to the four other tick species. In contrast

to A. maculatum, changing the population threshold increased the number of I. affinis sites

from 9 (threshold ≥ 6 ) to 17 (threshold ≥ 2). Because A. maculatum were the focus of this

study and other species were included for comparison only, the remaining analyses included

only sites with tick populations based on the established threshold of six or more adults.

After processing datasets, only three I. scapularis sites met the population criteria; after

thinning, all sites for Ixodes species included I. affinis. Therefore, Ixodes spp. here were

represented by I. affinis.

For all species, a total of 60 spatial points were included after thinning, of which 34

were unique. Duplicated points had populations of multiple species present, which were

collapsed to create the multi-species presence/absence matrix. One barrier island site was

subsequently excluded because the site changed from an island to predominantly open water

at the sampled coordinates following a major storm in 2017. After excluding the barrier
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island site, 33 sites were included in the analyses.

Significant correlations were observed between many of the 19 bioclim variables, as well as

between bioclim variables and soils, with the exception of pH in soil water (pHH2O). None

were significantly associated with presence of A. maculatum. These variables were then

excluded from analysis because of overall low variation and independence at the spatial scale

of interest. The average NDVI for sites pooled by species’ population presence indicated

differences between species across all months, with higher values for A. americanum and

Ixodes spp., and lower values for A. maculatum and D. variabilis (Figure 10.).
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FIGURE 10. Average NDVI by month for all sites from 2017–2020 based on MODIS NDVI
bands (500 m resolution) at sites with tick populations. Species codes are: AA = Amlyomma
americanum, AM = A. maculatum, DV = Dermacentor variabilis, and IX = Ixodes spp.

The GLMM model for 30 m Landsat 8 NDVI values showed non-significant positive

relationships between NDVI and all species. The distribution of NDVI values was generally

greater than 0.5 in any given year for most sites, with the exception of three barrier island

sites. In addition, all occurrences of A. maculatum populations were at sites with peak NDVI
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values > 0.53. Since I was most interested in vegetated landscapes, namely distinguishing

between the transition from early successional stages to mid-succession after canopy closure,

a second set of models was generated using a subset of the data. This was done to minimize

the effects of the non-significant positive relationship on the predictions at greater NDVI

measures. The subset models filtered out sites with < 0.53 peak NDVI, a threshold that

was chosen to retain all A. maculatum sites. Zeroes made up 77% of the data after filtering,

justifying use of the log-log link once again. No significant relationship was observed between

A. maculatum presence and NDVI in the model using the NDVI range 0–1, z = 0.967, p

= 0.3337. The subset model also showed a non-significant negative relationship between A.

maculatum populations and peak NDVI using NDVI values above 0.53, z = -0.215, p =

0.830.

Amblyomma americanum, in contrast, populated many more sites across years 2017–2020.

NDVI peak values during these years ranged from -0.363 to 0.918. The model based on

all NDVI values for A. americanum showed a non-significant positive relationship between

A. americanum populations and NDVI, z = 1.518, p = 0.129. When the subset model was

run, filtering out any data from sites < 0.53 peak NDVI, the results were inconclusive, as

both the intercept and the variable (NDVI) were significant and the model failed to converge.

4.4 DISCUSSION

No significant relationships were detected between the environmental variables evaluated

and A. maculatum presence within the regional study. A major limitation in studying

A. maculatum habitat through remote sensing is the difficulty in identifying populations

on the ground, particularly those that remain stable long enough to provide multiple years

of data, along with accurate spatial coordinates. Ideally, a study design would be able to

incorporate ground-truthed data to create models combing field data and remotely-sensed

data. However, given the overall impermanence of many A. maculatum sites, designing and
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completing such an experiment would require concentrated effort beginning in a short time

frame after the population was first identified.

This study used a rigorous definition of populations to identify population

presence/absence and limited locations to transects with coordinates that were known to

be accurate within 30 m of the transect origin. With these data, a negative relationship with

NDVI was observed when NDVI values over 0.53 were considered, but this relationship was

not significant likely because of limitations described above, as well as limitations with the

index. This NDVI range is important to distinguish between a late stage old field succession

to a secondary succession habitat, as was observed with the site CH0 (Section 4.2.1). NDVI

is sensitive to bare soil and becomes saturated at higher NDVI values in dense vegetation,

which makes this index notoriously problematic except as a coarse measure, as it is used

here. Relaxing the population definition could expand the number of spatial points for

presence-only modeling. Alternatively, more locations could be included if all individual

occurrences rather than populations are incorporated, and the number of occurrences is

increased by using those from outside databases such as the Global Biodiversity Information

Facility, the National Ecological Observation Network, TickSpotters (Kopsco et al., 2021),

and iNaturalist. Such an approach would also introduce biases that must be handled carefully

by addressing uncertainty about correct species identification as well as accurate coordinates

for the collection location.

Going further with a temporal investigation of NDVI changes over years in relation to

tick phenology can reveal the relationship between vegetation and tick populations. The

goal here was to be able to identify a variable that would have a strong enough relationship

to discriminate between suitable and unsuitable habitat for the ultimate purpose of mapping

these with confidence. The best way to accomplish this would be to develop a field study

that could more closely link data at a fine scale on the ground to remotely sensed variables

such as NDVI, Leaf Area Index, or another appropriate measure. Canopy closure has been
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identified as a factor in A. maculatum population decline and extirpation (Nadolny, 2016).

Vegetation studies to monitor canopy cover over time, or the flux of this measure in relation

to disturbances, could shed more light on the apparent relationship between GCTs and

succession. Remote sensing would still be useful in this regard if unmanned aerial vehicles

were deployed to capture point clouds of the vegetation using light detection and ranging.

This task is relatively less labor-intensive than traditional vegetation sampling, but adds

significant costs to the project. When refined, future work following some of these approaches

can be applied to identify new populations using spatial imagery.
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CHAPTER 5

SIMULATING THE EFFECTS OF PROPAGULE PRESSURE ON GENETIC

DIVERSITY WITH AGENT-BASED MODELING

5.1 INTRODUCTION

Agent-based modeling (ABM), or individual-based modeling (IBM), is a stochastic

simulation modeling approach that allows individual variation in behaviors to generate

emergent patterns in a system (Sokolowski & Banks, 2009). ABMs are useful for modeling

complex ecological systems, particularly those that would be hard to evaluate in field studies,

where agents model organisms that are driven by different cues and motivations. Questions

about landscape and dispersal effects on the genetic patterns of the Gulf Coast tick (GCT),

Amblyomma maculatum are good candidates for evaluation using ABM. For example, a

pattern indicating a founder effect was identified in Benham et al. (2021). The development

of this model specifically addresses how common the founder effect might be, and how

environment and propagule pressure can affect such patterns. The model described here was

designed with the Mid-Atlantic United States (U.S.) region in mind, and it is specifically

suited to address population genetics questions from this region (Benham et al., 2021;

Nadolny et al., 2015). As such, the regional limitations should be considered before the

model is applied to other locations. The phenology parameters in particular have been

tuned to a regionally-specific set of surveillance data.

Several ABM or IBM models have been proposed to evaluate the effects of landscapes

and demographic processes on genetic diversity. Among these, the individual-based

CDPop models have been used in a number of applications, primarily for conservation
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planning (Landguth & Cushman, 2010). CDPop brought together the concept of landscape

resistance/cost-distance with organismal gene flow to create an individual-based landscape

genetics model. Initially, the full map had to be populated and demographics were not

considered (Landguth & Cushman, 2010). A later update, CDMetaPop implemented in

Python coding language, added expansions to allow users to model landscape change and

demographic stochasticity along with updated genetic components (Landguth et al., 2017).

One of the limitations of the CDMetaPop model is that only one species can be simulated.

Demographic and life history features, such as dispersal behavior, are explicitly defined for

a single species, the one for which genetic and other outcomes will be monitored. This

makes it difficult to tie the individual movement of a parasite to movements of host animals

that would be necessary to accomplish dispersal, when both organisms have unique and

possibly conflicting responses to habitat change. Also, CDMetaPop still populates the

system upon initialization with species numbers subject to demographic change throughout

the simulation. One of the more powerful features of this model is demographic response to

a changing environment, which can allow for simulations of species removal (Landguth et al.,

2017). What is missing, however, is a mechanism for ongoing introduction of individuals into

the system to simulate the start of an invasion process.

A similar type of model, SimAdapt, was created in the program Netlogo (Rebaudo et al.,

2013). Netlogo software provides an environment in which to create and visualize ABM

models using the Logo coding language (Wilensky, 2021). SimAdapt allowed users to monitor

the genetic effects of landscape configuration and change over time. However, the original

design was limited to non-overlapping generations of organisms, which was integral in the

genetic assumptions. Like CDMetaPop, SimAdapt allows a species to respond to a changing

environment through mutation, but does not accommodate ongoing introductions. One of

the advantages of this model is that SimAdapt implements novel coding for genetic structure

in Netlogo. Ultimately, though, it does not meet the requirements needed to model organisms
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that have several overlapping life stages and can be subject to ongoing introductions from

outside populations.

Since the movement dynamics of ectoparasites like GCTs are dependent either on explicit

modeling or implicit assumptions about host movement, a more realistic model has to take

into account at least two organisms: tick and host. TICKSIM, another agent-based model

designed in NetLogo, was initially developed for the purpose of modeling these complex

interactions between ticks and host, with a submodel tracking prevalence of the tick-borne

pathogen Ehrlichia chaffeensis through populations of both tick (A. americanum) and

host (Odocoileus virginianus) (Gaff, 2011). TICKSIM has since been modified to explore

questions related to population establishment of generic invading species, specifically trying

to pinpoint the minimum number of ticks needed to establish a new population in a simple

spatial configuration with unconstrained (random) host movement (Nadolny & Gaff, 2013).

The latest iteration of the TICKSIM model introduced mitochondrial DNA haplotypes and

habitat interactions using a generic tick life cycle to explore dynamics of species invasions

under different habitat conditions (Nadolny & Gaff, 2018a). Generally, the TICKSIM model

in all of its iterations provides a general tick phenology and tick-host interactions that can

be adjusted to match species-specific parameters. The TICKSIM model is well-suited to

answering questions specific to tick-host interactions because of the built-in phenology and

basic interactions programmed into the model. However, to follow up with theories presented

in Chapter 3, key changes must be made to the model to reflect GCT phenology, ongoing

introduction of new adult ticks to the system (propagule pressure), and interactions between

ticks, hosts, and landscapes.

Presented here is a modified TICKSIM model updated to match a hypothetical 2-year

GCT life cycle in the Mid-Atlantic region, a change from a generalized 3-year life cycle

modeled in earlier versions (Gaff, 2011; Nadolny & Gaff, 2013, 2018a). Several other

changes have been made to the model to expand the spatial extent, increase the number



80

of haplotypes in the system, introduce adult ticks over time as the model runs, and have

both ticks and hosts interact with the landscape. The change in landscape effects on the host

also incorporates seasonal dynamics in which mortality increases in winter. Host-landscape

interactions are controlled by patch suitability, which affects small host energy and survival.

The energy of the larger host is affected primarily by movement (energy loss) and predation

(energy gain). Two types of hosts are still present in the model, as was the case in earlier

models. Consistent with earlier models, each of these hosts only occur as mature individuals,

even though there is a mechanism to increase small host populations. Further, assumptions

about these hosts have been changed by modifying the large, long-distance dispersing host to

act as a predator of the smaller host, simulating the possible role of coyotes (Canis latrans)

in the GCT system. The reasoning for this change is to examine what effect the host for

adult ticks might be on the system overall if that host preys on the host of immature ticks.

Host behaviors, including predation, are flexible and can be modified with few changes to

the code. The predator role chosen for this model is not meant to imply that this is the only,

nor the most likely, relationship between two types of hosts. Rather, the model is meant to

test the effects predator-host on other hosts, since coyotes are a host of adult GCTs and the

associated pathogen Hepatozoon americanum (Kocan et al., 1999; Teel et al., 2010). Small

mammals make up an estimated 25–35% of the diet of North American coyotes (Jensen

et al., 2022). Although deer and other large mammals are likely also important to GCT

dispersal, direct interactions between host species, such as small mammals and coyotes, have

not been modeled in previous versions of TICKSIM. Introducing a host that also interacts

with the smaller host as a predator allows for the model to simulate the competing effects

of these interactions on GCT populations. Additionally, pathogen dynamics have been

removed from this model, which would have been a mechanism for increasing mortality

of the small mammal host. In the absence of interaction-based effects on mortality, the

inclusion of a predator helps to control the small mammal population throughout the model
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runs. Overall, the modifications to the model allow us to explore more specific hypotheses

that affect quantitative measures of GCT population abundance and intraspecific diversity.

5.2 BACKGROUND INFORMATION

Ticks are vectors of pathogens that can cause disease in humans and a range of other

mammal hosts. GCTs are the primary vector of Rickettsia parkeri, an intracellular bacterium

that causes R. parkeri rickettsiosis, a spotted fever illness in humans (Paddock et al.,

2004). Experimental transmission has been demonstrated for Ehrlichia ruminantium the

causative agent of Heartwater, a disease affecting cattle, and GCTs also harbor the previously

mentioned H. americanum, a disease of both wild and domestic canids. The range expansion

of the GCT poses the risk that the pathogens could be introduced, via transport in the ticks,

to new areas where they can come into contact with naive host species.

Although GCTs can be considered native to the U.S., having been present in the

Americas, including the southeastern U.S., since at least 1844 (Teel et al., 2010), their

dispersal and subsequent establishment in other areas of the U.S. can be evaluated using

biological invasion theories. GCTs have several commonalities with non-native invaders,

especially their association with disturbed habitat and the apparent fecundity in suitable

habitat (Nadolny & Gaff, 2018b). Species invasions occur when individuals are redistributed

into new areas where populations are not yet established. Once there, they subsequently

establish new populations. GCT population establishment is a process that is dependent

on a combination of site factors, including GCT biology and host behaviors that move ticks

from one location to another. Ticks are limited to short-distance movements on their own

and must rely on hosts or other means of transportation to travel long distances to new sites.

Different hosts likely influence different colonization patterns. For example, hosts that can

carry ticks long distances are essential to contributing to range expansion, whereas smaller

hosts with limited ranging distances can be key to survival and establishment in a site with
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new drop-offs (Nadolny & Gaff, 2018a). Coyotes, for example, have an average home range

of 18.7 km2 (Jensen et al., 2022). To simulate the invasion process, several parameters must

be included in a model: introduction, interactions with hosts and the environment, tick

fecundity, and subsequent population establishment (Blackburn et al., 2011).

One of the most important variables that contribute to population establishment in any

invasion is propagule pressure. In quantitative terms, propagule pressure is the product

of the number of individuals (propagule size) and the frequency of introductions (propagule

frequency) (Wittmann et al., 2014). In GCTs, the assumption is that introductions occur via

drop-offs of adult female ticks that have already mated and fed, as mating occurs on-host

in metastriate ticks. In GCTs specifically, females begin taking their blood meal where

conspecific males have already initiated feeding (Teel et al., 2010). Based on this feeding

and mating behavior, the male parent of any offspring is likely from a location near where the

female originated, even with long-distance host migration. Maternal lineages can be tracked

through mitochondrial DNA (mtDNA), because mitochondria are inherited from the female.

Mitochondrial haplotypes can be characterized by single base pair changes in the 16S rRNA

gene of the mitochondria (Benham et al., 2021; Nadolny et al., 2015). The establishment

of multiple mitochondrial lineages indicates success of a larger number of females, whereas

reduced haplotype richness suggest few females have successfully contributed to subsequent

generations.

The model described here is designed to look at haplotype richness as a result of variations

in propagule pressure. The key response I was looking for in the ticks was the relationship

between propagule pressure and the resulting haplotype richness and evenness within a

site. Exploring this system through modeling is necessary to unravel the expected effects of

different components of propagule pressure on genetic outcomes, where definitive empirical

data are largely absent regarding primary hosts and their movement patterns.
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5.3 MODEL DESCRIPTION

1. Purpose and patterns

The purpose of this model is to evaluate the effects on ongoing introductions of

adult GCTs into a system to simulate the effects of propagule pressure on genetic

diversity given a range of starting conditions. Secondarily, the model will use different

landscapes to look for ecological effects on GCT establishment and genetic diversity

based on responses of the mammal hosts and GCT hatching success to environmental

conditions. A major pattern of interest, based on rare observations in natural systems

(Benham et al., 2021), is the likelihood of a single haplotype gaining dominance. Here I

tested some questions about how often this would occur using a system with simplified

landscape and host interactions. The stochastic nature of this model is especially

useful to study this pattern. Mitochondrial genes are well-conserved, meaning that

they tend to be protected from natural selection pressures. Instead of natural selection

acting on mtDNA, genetic drift is the primary neutral process that affects intraspecific

diversity, along with background mutation rate. Genetic drift is one of the key neutral

processes that could cause haplotype diversity to fluctuate. Genetic drift is closely

linked to population demographics, specifically population effective size, which is the

actual number of reproducing females in the population. However, ecological filters can

also act to modulate invasion processes and have significant effects on the colonization

success of introduced species (Wittmann et al., 2014).

To evaluate the interactions between propagule pressure and environment on the

genetic patterns of GCT population establishment, the effects of 6 parameters were

measured: landscape, predator abundance, host density, propagule size (total number

of ticks per drop-off), propagule frequency, and land use. The effects of drop-off rates

on two outcome variables, abundance and haplotype diversity of adult GCTs, were
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also considered. Patterns of interest in the outcome variables include dampening of

GCT abundance, haplotype richness, and the emergence of a dominant haplotype as

evaluated through rank-abundance model fitting.

2. Agents/Individuals, state variables, and scales

Agents

The entities modeled include GCTs at all life stages (egg, larvae, nymph, adult),

and two types of mammal hosts, small and large, with different dispersal abilities.

GCT-specific state variables were life stage, sex, maternal identification and haplotype,

individual identification number, activity, and current host (if applicable). Life

stage determined tick activity, with eggs only having one activity (dormant), then

transitioning to larvae to begin questing. Questing larvae have a probability of

attaching to a host on the same patch, with a higher likelihood of attaching to small

rather than large mammals (Table 11.). If they successfully attach, activity switches

to feeding, after which they drop-off and enter a resting/dormant period. Each life

stage from larvae to adult proceeds through the same activities, although the duration

of feeding and resting varies by life stage. After adults feed, females will reproduce

and males will die at the end of the blood meal. All of the offspring (eggs) will occupy

the same patch and inherit the same haplotype as the mother. Eggs will also have sex

assigned upon creation. The number of eggs each female produces is controlled by a

slider. An important note here is that GCTs typically lay an average of 8,000 eggs

per female (Teel et al., 2010). Some assumed mortality is included here that is not

explicitly modeled.
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Agent parameters

State variables for small mammals included energy level, range area to limit

movement, a maximum number of ticks each host could hold, and the ID of the ticks

currently on the animal. Energy for small mammals is tied to habitat suitability, a

patch variable, so that if the small mammal spent too much time in unsuitable habitat,

energy would eventually run out, killing the host and any ticks present on it. State

variables for large mammals were similar except that they had to consume smaller

mammals for energy, so they also have a variable to keep count of the number of small

mammals eaten. A lack of energy resulting from lack of small mammals to feed on,

can trigger the large mammal to leave the system. Larger mammals also respond to

a parameter called restlessness, which operates like mortality for the ticks and smaller

mammals. Restlessness is a way to approximate a range of stimuli that would trigger

a coyote to range beyond a given area, thus leaving the system. Since this model does

not track individuals outside of the bounds of the system, restlessness is functionally a

mortality procedure. Large mammals also have a maximum number of ticks, a list of

ticks currently feeding, and a total count of all ticks that have ever been on that host.

Additional variables that control large mammals are a system parameter for drop-off

frequency, which controls the number of large mammals that emerge into the system

based on a probability per time step. With these immigrations, a variable number

of ticks are also introduced as feeding adults attached to the large mammal. The

haplotype diversity of immigrating ticks varies depending on the maximum founder

diversity parameter.

Spatiotemporal units

The first simulation day of the year is set to June 1, which is the start of peak

season for adult GCTs in the Mid-Atlantic U.S. (Nadolny & Gaff, 2018b). Additional
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TABLE 11. Initial model parameter settings. Bold text indicates new parameters or
changes to parameter values from prior models (Nadolny & Gaff, 2018a). Abbreviations for
adults and immatures: A and I.

Entities Parameters Category or value/unit

Environment Simulation extent (ha) 640
Number of cells 7396
Hectares/patch 0.087
Starting time June 1, Year 1
Simulation duration 1130 time steps (days)

Patches Landscapes See Table 12.
Suitability See Table 13.

Cell size 30 m (900 m2̂)
Occupied Any ticks present
Population > 6 adult ticks

Large host (predator) Initial population 0
Movement within 20 patches
Restlessness 0.09/day
Max ticks per host 500
Group size 5

Small host Initial population 1000
Movement 1 suitable neighboring patch
Mortality per time step 0.002
Density up to 15/ha
Dispersal at max density
Max ticks per host 200

Ticks Mortality per time step 0.05
Immature attachment on sm host 0.9
Immature attachment on lg host 0.01
Adult attachment on sm host 0.9
Adult attachment on lg host 0.01
Initial population 0
Eggs per female 3000
Time from egg to hatching 7
Molt time from larva to nymph 7
Molt time from nymph to adult 258
Maximum questing time A: 35 days; I: 25 days
Length of blood meal A: 10–17 days; I: 4–8 days
n unique haplotypes 0–100
Haplotypes per drop-off 3
Drop-off frequency 0.1
Adults per drop-off 15
Hatch success See Table 13.
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state variables control the spatial and temporal scale of the system are year number,

day of year, and cell size. Cell size is scaled based on the resolution of the imported

raster files. Cell size is used to calculate the range area of small mammals, which

limits their movements in any given time step. This model replicates the landscape at

a scale of 1:17,000, approximately the size of a typical field site and the surrounding

landscape, enclosing just over 640 hectares total. The maps are based on a 1 m

resolution land cover image aggregated by a factor of 30, with the function modal

to take the most frequent land cover value from the cells being aggregated using R

package raster (Hijmans et al., 2023) in R 4.2.2 (R Core Team, 2023). The total extent

includes 7396 Netlogo patches equivalent to 7396 × 30 m squares, which is 6,400,459.75

m2 or 640 hectares. Year number and day of year manage phenology and mortality

for the agents. Each time step in the model is 1 day. The model duration can run

indefinitely, but was set to stop after 1130 time steps, or approximately 3 simulation

years starting from June 1 in Year 1, and ending July 19 in Year 4. The active season

for adults based on field collections in the Mid-Atlantic U.S. typically runs from April

to September, with peak densities in June and July. The end of the model is set to

coincide with the end of peak adult activity for the fourth generation.

Environment

Patch variables include land use, appeal, and suitability. The composition of

landscapes (Table 12.) are based on land use/land cover (LULC) rasters (CBPO

[Chesapeake Bay Program Office], 2022). Appeal and suitability are determined based

on land use types of each patch (Table 13.). Suitability determines small mammal

energy and whether GCTs can reproduce on a patch. Appeal attracts large mammals

to edge habitat. Appeal is based on proximity to suitable habitat and is highest in

patches that are immediately adjacent to suitable patches.
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TABLE 12. Landscape composition by raster layer for six GCT landscapes. Landscape
codes refer to sites mentioned in Chapter 3. Core sites are those where suitability = 1. Edge
patches include any unsuitable patch adjacent to core patches.

GCT Landscapes
TP1 BI1 BI3 DN1 HM2 CH3

n land use classes 8 8 14 15 8 18
n core patches 2232 1791 2313 1360 1857 513
n unsuitable patches 5264 5605 5083 6036 5539 6883
% suitable 0.30 0.24 0.31 0.18 0.25 0.07
n edge patches 1254 138 878 1074 1987 989
% edge 0.17 0.19 0.12 0.15 0.27 0.13

TABLE 13. Suitability and hatch success probability designations for land use classes.

Land Use Classes Suitability Hatch success

water 0 0
forest 0 0.6
succession 1 0.6
other forest 0 0.6
non-forest riverine wetlands 1 0.2
terrene wetlands 1 0.2
crop 0 0
pasture 1 0.6
road 0 0
structure 0 0
impervious 0 0
tree canopy over impervious 0 0
tree canopy over turf 0 0.84
turf 1 0
pervious developed 1 0
harvested 1 0.2
extractive 0 0
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3. Process overview and scheduling

Birth/Immigration

Populations at startup can be set for all species, including all life stages of ticks,

with default settings defined in Table 11.. Large mammals immigrate into the system

as adults based on drop-off-frequency, which controls a procedure called eruption. This

procedure also introduces new GCT adults attached to the large mammal hosts. GCT

haplotypes are randomly set from 0 to 100.

Small mammals are born when existing individuals have reached an energy level of

50. These hosts do not have life stages so all are equivalent after birth. This means

that after the time step in which they are born, small mammals act as mature adults.

A small mammal host can act as a host for ticks, move the same distance as any other

small mammal, and intake energy within one day of its birth in the system. Although

this is not realistic, it helps to simplify the model without any major effects expected

on the overall relationship between ticks and small mammals. More essential to the

model than strict fidelity to small mammal maturity times is the simulation of small

mammal population dynamics overall. These dynamics control when and where a tick

might find its host, and whether the host itself survives in the system long enough

to provide a good blood meal. A carrying capacity based on patch size and monthly

mortality coefficients control the maximum number of small mammals in the system.

Individuals will not be born if the population is at carrying capacity in a given time

step.

Death

Each agent is initially subjected to a cull based on mortality or restlessness and,

for hosts species, low energy levels. GCTs will die if they are active (not resting)

beyond November 1. Only adults and nymphs will overwinter in resting mode. For
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hosts, if energy exceeds 50, then an individual’s energy is adjusted down to the 50,

the maximum for the species. When energy is too low, small mammals die and large

mammals leave the system. Large mammal mortality is coded as restlessness, which

ultimately means death in the system, but is based on theoretically leaving the map

extent and not returning, as described in Section 2. Any ticks feeding on hosts that

die or leave are also killed.

An additional density-dependence control works on small mammals, which requires

them to disperse if density of the patch they are on exceeds the maximum density for

that species. First, they will try to move to one of 8 neighboring patches. However, if

all neighboring patches are full, the individual will die.

4. Design concepts

Basic principles

This model is updated from the TICKSIM model (Nadolny & Gaff, 2013); more

conceptual background is presented in detail there. The updates focus on improving the

dynamics of new tick introductions to the system at a spatial scale comparable to a field

site. Changes were made to patches, tick phenology, host birth and mortality, as well as

timing of introductions. The environment was modified to include a substantially larger

spatial extent with a patch size comparable to the 30 m resolution of typical land cover

data. The number of haplotypes in the system were increased to 100, but these would

be randomly assigned when GCTs were created, rather than divided equally, to mimic

a typical distribution as observed in Benham et al. (2021) and Chapter 3. Haplotypes

are introduced into the system in two ways: either at setup by explicitly creating GCTs

at any life stage, or by immigrating as an adult with a large mammal host, in which

the host acts as transportation for the adult GCTs. The immigrant introduction is

part of the update and was designed specifically to measure the effects of propagule
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pressure on haplotype diversity. Prior model versions only introduced ticks at creation

or through reproduction from ticks already created in the system. Finally, interactions

between hosts exist in the form of predation and density-dependence. Small mammal

density is limited by season, dropping to 1/10 of the summer maximum during winter.

Stochasticity

Ticks brought in by large mammals, the “drop-offs”, are subject to three different

procedures to generate haplotypes depending on starting conditions. Generally,

haplotypes of introduced ticks will be randomized within certain limits. The first

limit is the number of ticks introduced in any drop-off event, which was set to a

random number from 0 to 7 by default. Second, founder richness limits the number of

haplotypes that can be introduced in a single drop-off event, which is also subject to

the number of individual ticks that can be introduced.

Drop-off frequency is a parameter that can be set to determine how often drop-offs

occur. Drop-off frequency is also a measure of propagule pressure. Drop-off frequency

and founder richness are expected to influence the intraspecific diversity at the end

of the model run. In order for drop-offs to occur, a host must arrive from outside

of the system with ticks already feeding on the host to provide an opportunity for

immigrating ticks to drop-off in a suitable location. The timing of these arrivals was

random, although GCT adults could not be introduced into the system outside of the

active season for adult ticks.

Interactions between ticks and hosts, and hosts with each other, all occur in response

to individual variation in terms of host movement, tick life stage, tick activity (questing

or not), and location of the individual agents. Agent location was randomized at

startup, with the constraint that small mammals and GCTs will only populate suitable

habitat patches.
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Timing of the tick life cycle allows for variation within set time frames. This

includes the length of time each life stage of tick will feed on a host, rest (or for adults:

lay eggs and/or die), molt, and begin questing again. Egg survival depends on the

location that an adult female drops off of the host she was feeding on.

Emergence

This model was designed to evaluate intraspecific diversity as an outcome of two

components of propagule pressure (model variables in parenthesis): propagule size

(number of ticks per drop-off) and propagule frequency (drop-off frequency) (Wittmann

et al., 2014). These outcomes are subject to the simplified stochastic effects of tick,

host, and habitat interactions.

Sensing

Ticks sense large and small mammals as potential hosts, only if they are occupying

the same patch. The overall chance of sensing a host on the same patch was 5%, a

change from previous TICKSIM models. This change was based on the broader scale

of the landscape in the update compared to the previous model, in which ticks could

detect any host on the same patch and attach based on attachment success (Nadolny &

Gaff, 2018a). Patch sizes in the update represent a larger area, therefore the updated

sensing probability corresponds to a tick being able to sense a host within about 45

m2, or up to 6 m away. Attachment success follows sensing, and was based on the host

type and the tick life stage (Table 11.).

Small mammals sense conspecifics and suitable patches. They will preferentially

choose the nearest neighbor patch with the highest suitability value. When the number

of small hosts on a single patch exceeds small host density, they are forced to disperse

to nearby patches.
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Large hosts sense small mammals, suitable patches, and appealing patches. These

hosts emerge into the system in an edge patch, which are those patches with highest

appeal. Large hosts act as predators to the small hosts and will enter suitable areas

during each time step to hunt, during which they can consume up to two small hosts.

At the end of each time step they return to one of 20 patches within their location

based on patch appeal.

Interaction

Agents perform a series of action procedures to move around the environment and

interact with other agents. Any ticks that are questing (based on tick activity) can

attach to a host that shares the same patch as the tick during a time step. Ticks that

attach can change their activity to ”feeding” and both the host and the tick track the

identity of one another (i.e. agent ID in the system) in this exchange.

Simplified energy budgets generate a cost or reward to movement and interactions

for the hosts. Small mammals pay a fixed energy cost to move through unsuitable

patches, and have a small gain in energy for moving through suitable territory. Large

mammals likewise lose energy for their movement regardless of the patch they move

through. Large mammals will move four times during each time step. These hosts,

which are also predators, only gain energy from eating small hosts. In each time step,

they move to an appealing patch, move to a nearby suitable patch, and repeat those

steps once more to increase the odds of encountering a small host.

Small mammals have a dispersal procedure that limits the number on any patch

based on density. GCTs change activity and lifestage according to procedures

developed in previous TICKSIM models (Nadolny & Gaff, 2013, 2018a), and as

described above with regard to questing and feeding. GCTs can only go into resting

mode if they successfully feed, after which they molt to the next life stage or, if adults
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lay eggs (females only) and die.

Observation

The simulation was monitored using plots and a viewer that showed the spatial

extent of the model. Three plots were set up to track: 1) tick populations including

larvae, nymphs, adults, and total questing ticks, 2) total tick population (all life stages),

large mammal hosts, and small mammals hosts (scaled by 1 × 10−2 for plotting), and

3) a count of ticks with a subset of haplotypes (1–16). A viewer window showed the

starting landscape colored by land use classes. Patch colors would change over time,

similar to the TICKSIM model (Nadolny & Gaff, 2018a), to show occupied patches as

light red and populated patches (>= 6 ticks) in dark red, as well as locations for all

patches. During BehaviorSpace runs, variables that were reported included haplotypes

of all adult ticks present during the run, the total count of ticks, small mammals,

large mammals, the cumulative number of adult ticks immigrating into the system,

the cumulative number of drop-off events, and finally, the number of patches occupied

and populated along with land use type for these patches.

5. Initialization

On setup, a specified number of agents of each species are created (GCT by life

stage, small mammals) with their species-specific variables. Small animal host numbers

are controlled by a slider. Large mammals enter the system periodically based on a

drop-off frequency, so are not present at initialization. Each new individual tick in the

system will be assigned a haplotype randomly from 101 possible haplotypes (0–100),

as well as other tick variables such as life stage, sex, and activity. The initial number of

possible haplotypes is based on upper estimates from the datasets presented in Chapter

3 using SpadeR (Chao et al., 2016) (Table 14.).

A landscape raster is loaded into the viewer to specify land use classes, which are
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then assigned a suitability and appeal value (Table 13.). Edge habitat adjacent to

suitable patches has the highest appeal, which attracts large hosts.

TABLE 14. Haplotype richness estimates from empirical data.

Estimate s.e. 95% Lower 95% Upper

Chao1a 59 14.4 45.5 112.3

Chao1-bc 54.2 10.2 44.4 91.5

iChao1 63.5 9.7 51 91.6

ACEb 53.2 7.6 45 78.3

ACE-1b 58.1 12.1 45.9 100.9

a (Chao, 1984)

b (Chao & Lee, 1992)

6. Input data Raster datasets were imported into the model representing land use

classes for six field sites in eastern Virginia using ArcGIS Pro (Esri, 2022) to prepare

Chesapeake Bay Program land use land cover classes (CBPO, 2022). Rasters were

generated by defining a map extent of about 640 hectares around the transect origins

and exporting these rasters in GEOTIFF format. Rasters were loaded into R 4.2.2 (R

Core Team, 2023), aggregated to 30 m resolution, and exported as .ASC files. The

final .ASC files were loaded into Netlogo using the ‘gis’ extension (Russell & Hovet,

2021).

The model was finalized in Netlogo 6.3 (Wilensky, 2021). Model runs were completed

using BehaviorSpace for Netlogo. R (R Core Team, 2023) was employed for all statistical
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analyses of simulation runs.

5.4 MODEL EVALUATION

5.4.1 PARAMETER SETUP

After the model was finalized, parameters were initially checked using two experiments

to evaluate the effects of number of eggs laid per female, drop-off frequency, and landscape

on the total number of ticks and occupied patches in the model. These runs were completed

as a final calibration check before running the full sensitivity analysis. The first set of

simulations ran for 3 replicates each, for a total of 324 simulation runs. Three parameters

were changed: eggs, drop-off frequency, and landscape. Each run started with 20 adults

present upon initialization. The number of eggs was changed in increments of 1000, from

1000 to 3000. Six sites (landscapes) were compared in this experiment: BI3, BI1, TP1,

HM2, CH3, and DN1. These correspond to field sites described in Chapter 3. Drop-off

frequencies were 0, 0.05, 0.1, 0.125, 0.15, and 0.2. Total ticks and occupied patches were

plotted for each simulation run with all 324 simulations pooled. The number of eggs had a

clear effect on tick abundance during each simulation, but all variations from 1000 to 3000

had populations survive from year-to-year (Figure 11.). Results by landscape were mixed

depending on the sites. Two sites, HM2 and CH3, failed to maintain populations throughout

most of the runs, as the number of occupied patches remained low from year to year (Figure

12.), as did the total number of ticks (Figure 13.). Neither of these sites had ticks by the

end of the simulations, so there were also no occupied patches. Four other sites, BI3, BI1,

TP1, and DN1 all remained relatively stable for the duration of each simulation, with four

annual peaks in abundance (Figures 12. and 13.).
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FIGURE 11. Number of ticks of all life stages by the number of eggs per female (1000, 2000, 3000). Plots show results
from all 324 simulation runs.



98FIGURE 12. Number of occupied patches per time step for each site. Plots show results from all 324 simulation runs.



99FIGURE 13. Number of ticks per time step for each site. Plots show results from all 324 simulation runs.
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A second BehaviorSpace experiment was completed for 135 runs, with 3 replicates for

each set of parameters, for three of the original six sites: BI1, BI3 and TP1. For this set of

experiments, drop-off frequency was tested in combination with number of eggs. No adults

were populated into the system at the start of the model runs. Instead, all ticks that entered

the system were adult drop-offs. The drop-off frequencies were 0.05, 0.1, 0.125, 0.15, and

0.2. Number of eggs per female were again set to 1000, 2000, and 3000. These runs were

intended to confirm that an increasing number of ticks immigrated into the system over

time as a result of varied drop-off frequencies (Figure 14.). In addition, this experiment also

confirmed that each of the three landscapes selected were all experiencing roughly similar

immigration rates as drop-off frequencies changed (Figure 15.).
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FIGURE 14. Number of ticks immigrating into the system over time by drop-off
frequencies. Simulated drop-off frequencies are: 0.05, 0.1, 0.125, 0.15, and 0.2. Each
combination of parameters was run for 3 replicates.
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FIGURE 15. Number of ticks immigrating into the system over time for each site. Sites
included BI3, BI1, TP1. Each combination of parameters was run for 3 replicates.

After confirming that the basic parameters of the model were responding as expected,

a more comprehensive sensitivity analysis was conducted to see which parameters had the

greatest effects on several outcome variables.

5.4.2 SENSITIVITY ANALYSES

Sensitivity analyses were conducted to test the sensitivity of the model to incremental
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parameter changes. The model included new variables of drop-off frequency, host density

dependence, and landscape suitability. The major outcome variables were the tick counts,

resulting phenology of all life stages of ticks, the genetic diversity among adult ticks from

the start to the end of the simulation run, and occupancy patterns during the final active

season in the simulation.

Initially, Spearman rank correlations were computed using the ‘corr.test’ function in base

R 4.2.2 for each of the input variables and its effect on each response variable. The default

settings for the input variables were set to those in Table 11.. The parameters in Table 15.

were changed one at a time. The model was run 25 times for each parameter set.

TABLE 15. Parameter changes for Spearman rank correlation test.

Min Max Increments or values

Drop-off frequency 0.05 0.2 0.5
Ticks per drop-off 5 20 5
Small host density limit 5 15 5
Predator group size 1 25 5
Core patches 1360 2313 2232, 1791, 2313, 1360
Edge patches 878 1382 1254, 1382, 878, 1074
Eggs 1000 3000 2000

Not surprisingly, drop-off frequency had the greatest effect on drop-off events and also

on richness (Table 16.). The next strongest effect on richness was the number of ticks per

drop-off, even with the overall number of haplotypes per drop-off limited to 3 or fewer.

These were the two parameters controlling influx of ticks into the system, and replaced

earlier models that populated the system with an initial number of ticks at startup. Drop-off
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frequency was significantly associated with all of the outcome variables measured, including

a negative association between drop-off frequency and the number of small hosts, because

each drop-off occurs with a predator entering the system.

A significant negative relationship occurred between the number of edge patches and

richness. In fact, edge negatively affected all outcomes except drop-off events and the number

of immigrants. The reason for this relationship could be because more edges in the landscape

tend to be associated with smaller core areas and more fragmentation. Edges also resulted

in fewer ticks overall, and fewer patches throughout the landscape that were occupied by

ticks. This occurred despite edges being the point of origin for the large host into a system,

similar to a corridor for movement, and those hosts were essential to the tick drop-offs in

the model. The size of predator groups had significant but not particularly strong effects

on the tick outcome variables, but interestingly did not affect small hosts, in contrast with

what was observed with visit frequency. Finally, small host density limits were the most

important variable in determining the number of populated patches at the end of the run,

consistent with previous results (Nadolny & Gaff, 2018a).

One of the primary goals of the model was to evaluate the effect of propagule pressure

on GCT genetic diversity under a range of environmental conditions. To further explore the

model, 100 replicates each were run on four different landscape scenarios while changing two

key measures of propagule pressure: drop-off frequency and the number of ticks per drop-off.

Partial rank correlation coefficients were generated using the epi.prcc function in the ‘epiR’

package (Stevenson et al., 2023) in R 4.2.2 (Table 17.).
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TABLE 16. Rho values for Spearman rank correlations. Asterisks indicate significant correlations. The strongest
correlations for each outcome variable are in bold.

Drop-off
frequency

Ticks
per

drop-off

Eggs Small
host

density
limit

Predator
group
size

Land
use

classes

N core
patches

N edge
patches

Richness 0.874* 0.650* 0.242* 0.264* 0.310* -0.177 0.326* -0.236*
Drop-off events 0.943* 0.148 -0.057 0.007 0.349* -0.218* -0.108 -0.06722
Immigrants 0.941* 0.949* -0.082 -0.037 0.321* -0.123 -0.055 0.011621
Ticks 0.696* 0.715* 0.764* 0.197 0.301* -0.175 0.062 -0.336*
Occupied 0.809* 0.733* 0.782* 0.873* 0.167* 0.179 0.026 -0.659*
Populated 0.558* 0.584* 0.648* 0.635* 0.286* -0.196 0.293* -0.238*
Small hosts -0.666* 0.069 0.026 0.943* 0.009 -0.328* 0.849* -0.282*
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TABLE 17. Partial rank correlation coefficient test statistics. Two parameters controlling
propagule pressure (drop-off frequency and max ticks per drop-off), and three habitat
parameters based on four landscape scenarios were tested. Asterisks indicate significant
correlations. The strongest relationships for each outcome variable are bold.

Drop-off
frequency

Max
ticks per
drop-off

LULC
classes

n core
patches

n edge
patches

Richness 40.180* 34.403* -1.554 3.887* -4.701*
Drop-off events 84.937* 1.047 -1.089 1.265 0.288
Immigrants 108.226* 94.509* -0.322 0.774 -0.325
Ticks 9.565* 1.187* -2.004* 1.919 -0.865*
Occupied 11.847* 18.208* -9.557* 6.766* -3.529*
Populated 51.718* 45.295* 2.046* 0.296 -15.198*
Small hosts -18.082* 0.57 -49.649* 99.965* -0.242

Without considering the changes in the number of eggs laid by each female, both the

number of ticks and the number of populated patches are more strongly influenced by

drop-off frequency than by any other parameter. With all parameters combined in a partial

rank correlation analysis, the number of immigrants into the system was also more strongly

associated with drop-off frequency than the number of ticks per drop-off, although both

parameters were significant and had large effects on the outcome. Small host density was

strongly associated with the number of core, or suitable, habitat patches, and had a negative

relationship with the number of land use classes in the simulation.
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5.5 APPLICATION

5.5.1 EFFECTS OF PROPAGULE PRESSURE ON DIVERSITY

The frequency of drop-offs was the most important factor in haplotype diversity after

3 years. Higher drop-off frequencies resulted in steeper positive trends in the relationship

between haplotype richness and population numbers (Figure 16.), and between haplotype

richness and the total number of ticks at the end of the runs divided by propagule sizes

(Figure 17.). Propagule sizes were influenced by drop-off frequencies and the the maximum

number of ticks per drop-off, subject to stochastic influences on both parameters. Plotting

richness against propagule pressure (I ∗ D) showed the clearest relationship among the

variables (Figure 18.). The practical application for tick control and management would

be to use this model to estimate propagule pressure for different sites based on genetic

diversity. Understanding the introduction effort of this species in different sites regionally,

as well as between regions where new introductions are being detected, would facilitate

interventions designed to control population establishment or expansion. For example,

surveillance projects can identify candidate sites for experimental control efforts where

relatively low propagule pressure is suspected to contribute to low diversity (Benham et al.,

2021). Experimental control could include a range of host or habitat interventions (White

& Gaff, 2018). In areas where prescribed burning is already used as a management tool,

seasonality and frequency of burns may have distinctly different effects, even where it

appears that burning has not eliminated populations. Outcomes could be monitored by

using tick densities and diversity estimators to understand the impact of control efforts

on the populations. Where propagule pressure is expected to be relatively low, ongoing

immigration is less likely to contribute to noise in the data. This model can be used to set

up on-the-ground experiments, which would also be useful in model validation.
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FIGURE 16. Haplotype richness by log10 number of ticks (n) in the final step. Parameters
were varied for 1901 simulations. Log scale was used to minimize overplotting.
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FIGURE 17. Haplotype richness by log10(n/propagule size). Propagule size is the quotient
of the number of immigrants divided by drop-off events (I/D). Log scale was used to
minimize overplotting.
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FIGURE 18. Haplotype richness by log10(propagule pressure). Propagule pressure is
calculated as (I ∗D), where I is the total number of immigrants into the system and D is
the number of drop-off events that occurred during the run. Log scale was used to minimize
overplotting.
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5.5.2 RANK ABUNDANCE MODELS

Rank abundance models were generated by creating matrices of haplotype abundances

by simulation run and running the radfit function in vegan (Oksanen et al., 2022). Four

sets of parameters were run with drop-off frequency set to 0.1 and the maximum number

of ticks per drop-off varied in increments of 5 for values 5–20. Two sets of rank abundance

models were compared, with 5 and 10 ticks per drop-off in Figure 19., and 15 and 20 ticks

per drop-off in Figure 20..

In Chapter 3, haplotype evenness at three sites, measured by rank abundance plots, fit

the Zipf model. These sites included one which was thought to show the pattern of a founder

effect because of dominance of a single haplotype, and the absence of that same haplotype

at other sites in the area (Benham et al., 2021). The Zipf model fits best when evenness

is skewed by the abundance of the dominant haplotype, which could be consistent with an

earlier introduction of that haplotype.

In the simulation runs with fewer ticks per drop-off, the Zipf model fit more often (6/48)

(Figure 19.) than in simulations with more ticks per drop-off (2/49) (Figure 20.). The more

frequent fit of the Zipf model likely results from the constraint of propagule size (ticks per

drop-off), which makes it more likely that females that reproduce successfully will do so in

temporal sequence, i.e. in a series of drop-offs rather than as large cohorts. This fits with

the expectation that the Zipf model corresponds to temporal succession (Whittaker, 1965;

Wilson, 1992). The preemption model was more common overall (21/48 and 30/49) than

any others, in contrast with empirical data for which the null model was generally the best

fit (Chapter 3). This could indicate more ecological constraints in the simulation compared

to the field, perhaps resulting from landscape effects or the predatory behavior of the large

hosts on smaller hosts.
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FIGURE 19. Rank abundance best fit models for a subset of 100 model runs with maximum
ticks per drop-off set to 5 and 10. Subset includes only runs with n > 10. Rank abundance
models show the overall evenness of each run by ranking haplotypes from most to least
abundant and fitting them to a GLM model for comparison.



113

FIGURE 20. Rank abundance best fit models for a subset of 100 model runs with maximum
ticks per drop-off set to 15 and 20. Subset includes only runs with n > 10. Rank abundance
models show the overall evenness of each run by ranking haplotypes from most to least
abundant and fitting them to a GLM model for comparison.
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5.5.3 UPDATED PHENOLOGY

The model presented here makes assumptions regarding GCT natural history and

phenology by using both literature (Nadolny & Gaff, 2018b; Teel et al., 2010) and field

observations of adult and immature GCT activity in the Mid-Atlantic U.S. Data on immature

tick phenology is limited to specimens collected from small mammal live-trapping, whereas

adult ticks can be collected while questing by using the flagging technique. For example,

the time for eggs to hatch, molting from larvae to nymph, questing time, and length of

a blood meal were all drawn from literature (Teel et al., 2010). Generally, the shortest

published time period was chosen for each of these parameters so that the phenology would

best approximate local observations. The questing times specifically were shortened so that

activity would cease during the winter months, as longer questing times generally lengthened

active periods. The molt time from nymph to adult is the most speculative value, as it

assumes a long stasis between seasons, generally starting from August to November before

the individuals emerge as adults during the next active season.

Phenology of GCTs appears to vary by region (Nadolny & Gaff, 2018b; Teel et al., 2010).

The phenology presented here is a proposed hypothesis for the Mid-Atlantic region, and

only one of many possibilities. However, it represents a more specific phenology for GCTs

than prior models, which generalized across multiple species (Nadolny & Gaff, 2018a). Tick

numbers are shown here for all life stages across the duration of the model, with tick numbers

averaged across 100 simulation runs (Figure 21.). The average phenology for all life stages

is shown for year 3, after a third generation of adults emerges (Figure 22.). To highlight

the emergence times for each life stage, simulation year 3 is also plotted with close-up plots

showing time steps 640–700 (Figure 23.) showing larval emergence shortly after some adults

have emerged and laid eggs. The next close-up shifts to time steps 640–750 (Figure 24.) to

show nymph emergence, which only occurs after some larvae have emerged, fed, and molted.
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Parameters values for the phenology runs are set to those in Table 11., with the exception of

a smaller number of eggs (1000) to minimize the numbers of larvae and thus limit the scale

of the y-axis.

FIGURE 21. Simulated phenology of active ticks (questing or feeding) by life stage across
simulation days. Number of active ticks is averaged across 100 simulation runs.
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FIGURE 22. Average activity by life stage for one full year beginning in simulation year
three (Y3). Time steps are shown from 640–999, corresponding to March 10, Y3 to March
9, Y4.



117

FIGURE 23. Close-up of emergence by life stages for adults and larvae. Model time
steps 640–700 are shown here, corresponding to March 10 to May 9. Active nymphs are not
plotted because they emerge after time step 700.
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FIGURE 24. Close-up of emergence by life stages for all active life stages. Only time steps
640–750 are shown, corresponding to March 10 to June 28.

The resulting phenology was not entirely consistent with field collection, although this

was primarily because little knowledge exists about immature phenology in the region. In the

simulations, the active season for adults spans about 225 days on average, from time steps
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corresponding to approximately March 21–November 1 (day-of-year 81–306). These dates

line up with the typical April–September active season, with notable collections outside

of this window in February and October (Gaff, unpublished). Less data are available for

immature ticks in the field, as these are typically only collected on-host, often between July

and August (Gaff & Espada, unpublished). In the model presented here, larvae emerged as

early as April 27 and remained active as late as December 5, whereas nymphs were active

from May 11 to January 7. After November, the model forced active ticks to either die or go

into stasis until the next season, but eggs were not prevented from hatching, nor were those

larvae prevented from molting after November 1. This likely explains the continued activity

beyond November 1, which could be remedied in later updates as needed.

5.6 DISCUSSION

The model presented here provides a starting point for exploring the various effects of

drop-off rates, host interactions, and natural history of Gulf Coast ticks on genetic outcomes.

In addition to the applications described in Section 5.5, using this model to estimate

propagule pressure can also help inform efforts to understand how GCT introductions

contribute to the spread of R. parkeri. The updates here are compatible with infection

dynamics from prior versions of TICKSIM models (Gaff, 2011; Nadolny & Gaff, 2013)

and expand on these other models with the added parameters related to introduction

effort, and the broader landscape extent. Integrating tick and host infection back into the

model would enable an initial assessment of how new parameters affect infection prevalence,

including ongoing drop-offs and different landscape configurations. Additionally, adding

genetic tracking to the pathogen would help to explore a key question whether there is some

congruence in genetic diversity in the ticks and the pathogens in a site in generations following

an introduction, and which parameters might cause divergence between the respective genetic

patterns. These questions are key to understanding the geographic relationship between GCT
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and R. parkeri prevalence.

Compared to other genetics models, this model uses a simple approach to track

mitochondrial haplotypes. However, this approach reflects the current state of population

genetics in GCTs as many recent reports in Amblyomma spp. more broadly still rely on

mitochondrial DNA (Benham et al., 2021; Bitencourth et al., 2017; Fournier et al., 2019;

Nadolny et al., 2015). Viable microsatellite loci have only recently been proposed for

Amblyomma maculatum and population patterns for these loci have not yet been thoroughly

explored (Allerdice, 2021). The results of the simulations from the model presented here can

be examined through classic population genetics software, e.g. Arlequin (Excoffier & Lischer,

2010), as well as through diversity analyses using programs for ecological analyses, including

R packages like vegan (Oksanen et al., 2022) in R. Changes to the types of genetic markers

for this model would require the development of a submodel for reproduction. Such changes

might justify shifting to another modeling platform such as CDMetaPop (Landguth et al.,

2017) if a careful effort is made to account for host interactions using the available parameters

or model improvements.

Some unexpected negative associations between tick abundance and landscape

configuration emerged in this model. These warrant further study, particularly why edge

appears to be associated with a decline in richness, abundance, and occupied/populated

patches. Drop-offs are limited in this model to large host movement, which is roughly based

on coyote group sizes, predatory behavior, home ranges (Jensen et al., 2022), and associations

with edge habitat (Webster et al., 2022). Large hosts in the program spend each turn in

both edge and core (small mammal) habitat. They always populate the edges first when

they emerge into the system, because the assumption is that they are moving from outside

areas and dropping off new ticks. Because of these dynamics, ticks can be dropped off in

edge habitat, but immatures are unlikely to find a small mammal host in the same habitat

as they emerge. In this sense, edges (or edge-preferring hosts) may act as an ecological trap
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for ticks that rely on multiple hosts with differing habitat preferences. Although GCTs are

generalists that will feed on a large variety of hosts (Teel et al., 2010), this model presents

an interesting predicament. If GCTs do have a suite of available or preferred hosts whose

behaviors and habitat preferences conflict, then that could partially explain why populations

are relatively sparse compared to other tick species.

The model is built with flexibility to test any landscape in the given spatial extent,

including randomly generated landscapes that meet preset requirements (e.g. number and

size of habitat patches or connectivity between patches). Further, suitability, hatch success,

and appeal can all be modified to fit different hypotheses. This means that a much larger

number of sites can be readily tested to see if the negative correlations persist, and the same

sites presented in this simulation can also be evaluated using different hypothetical suitability

settings. In addition, any landscape metric that can be extracted from a raster dataset,

including fragmentation and percolation, can be evaluated using the basic model framework.

This model creates the potential to explore a large number of hypotheses regarding the

landscape ecology effects on GCTs.

Among the challenges with developing the model was the lack of information about small

mammal hosts. Small mammals are known to host large numbers of immature ticks (Cumbie

et al., 2020), and have been demonstrated to have a strong effect on GCT population success

in agent-based simulations (Nadolny & Gaff, 2018a). The natural history of two suspected

important hosts, the marsh rice rat (Oryzomys palustris) and the hispid cotton rat (Sigmodon

hispidus) could be more explicitly modeled if their relationships between both ticks and the

landscape are included in ongoing studies of GCTs. Natural history information is available

for both species to support this effort (Bergstrom & Rose, 2004; Rose, 2020). Interactions

between small mammals and larger hosts that can act as predators will continue to be an

interesting area to explore, as predators can have both positive and negative effects on ticks

by serving as hosts while potentially suppressing hosts that are critical to other life stages.
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Finally, interactions with agents and the landscape can be improved as empirical data are

gathered to better quantify how landscape affects movement and demography of different

types of hosts, as well as tick survival.

Models are designed to explore a limited set of parameters that are suspected to be most

influential to the processes of interest. This model simulates the effects of propagule pressure

on GCT diversity in a spatial area that encompasses the habitat within a core sampling area

and the surrounding landscape matrix. The demographic processes of ticks and their hosts

are layered on top of the landscape, with interactions among all levels. This creates the

emergent pattern of tick genetic diversity, which can be analyzed to make inferences about

the frequency and type of interactions that are most likely taking place in the field. The

critical next step is to gather empirical data to verify assumptions and patterns observed in

the model.
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CHAPTER 6

CONCLUSION

Unique patterns in haplotype diversity can indicate variation in the underlying processes

of a species invasion or range expansion. One site in the Mid-Atlantic United States had a

population of Gulf Coast ticks that differentiated that site from others. This differentiation

was based on dominance of a single haplotype, which persisted across years, along with the

rare occurrence of that haplotype at the other sites (Benham et al., 2021). This indicates that

establishment at this site might have occurred by a strong bottleneck effect that either limited

the introduction of many haplotypes to the site initially, or led to a large die-off from which

only few haplotypes recovered. The evidence favors some limitation on propagule pressure,

i.e. a bottleneck in the introduction process, given the relative stability of this unique genetic

pattern over time even as the population has fluctuated following large prescribed burns.

The first GCT was collected from TP1 as an adult in 2014. Since this tick was a unfed

adult flagged from vegetation, it must have been present in the sites as a nymph or earlier

life stage. From this, one can deduce that GCTs were present in the site by 2013 at the latest

and were collected in low numbers until 2018 when the initial large population was identified

and included in the initial population genetics. The site was acquired as a National Wildlife

Refuge in 2001, after which the previously managed cropland was restored with native grasses

and maintained as an open grassland habitat. Prior to 2001, crop management activities

would have likely interfered with GCT establishment had they been introduced to the site,

because practices such as tilling disrupt the soil surface where ticks spend much of their time

off-host. Therefore I assume that GCTs arrived between 2001 and 2013.

The grassland is maintained with burning in two-year intervals since at least 2017. Burns

clear most organic matter from the soil, leaving charred debris and mineral soil within the
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main grassland tract. Along the edges of the fields, strips of mowed grass, with occasional

clumps of taller grasses buffer the burned field area from the gravel roads. GCTs can

occasionally be collected in small numbers in this buffer, even before any vegetation begins

to reemerge within the core grassland. Burns typically occur early in the year before late

April or May. Those burns that occur later, in April or May, are more likely to coincide with

emergence of adult GCTs. The grass buffer areas and rodent burrows can act as refugia,

providing some protection for GCTs that allows some individuals to survive burns. Overall

densities appear to be negatively affected in the season following the burn, however recovery

can be rapid in the following season, with up to a tenfold increase in numbers. Future efforts

should continue to monitor these population dynamics in relation to habitat disturbance,

along with any variation in R. parkeri prevalence in the ticks. Prescribed burning has

been proposed as a method of tick control, and burns are often anecdotally cited by forest

managers as beneficial in terms of reducing tick numbers. Long-term data on population

dynamics and pathogen prevalence in a site that appears to persist and recover rapidly after

burns can help clarify whether generalizations about burning as tick control are accurate. In

addition, a more careful effort should be made to look at how burn frequency and seasonality

affect the same dynamics. Changes in the activity of hosts and ticks during the timeframe in

which burns tend to occur may affect individual survival, thus resulting in a broader effect

on the populations.

Population genetics as a discipline has benefited from a long history of model development

to understand demographic processes, dispersal history, as well as overall diversity and

connectivity (Avise, 2004). Single-locus population genetics analyses are an important

starting point for genetic diversity surveys, however all inferences from a single locus

are limited by the variability, mutation rate, and modes of inheritance of that locus.

Examining many more loci can improve estimated relationships between populations and

even individuals within a population. Given several populations with multiple years of
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data presented in Chapters 2 and 3, a natural next step would be to analyze these same

samples with additional loci. Specifically, 14 polymorphic microsatellite loci (Allerdice,

2021) could be used to compare against the inferences made here with a 16S rRNA gene

fragment by following the same analytical approaches. Further conclusions about relatedness

between individuals and demographic history of these sites could be explored using the

newly-developed microsatellites. Regarding pathogen exposure risk, using population

genetics to uncover population dynamics over time would make it possible to connect tick

demographics to pathogen infection rates in tick populations. From this, the strength of

the link between the vector and the pathogen could be determined, along with any notable

lag between tick population change and changing rates of R. parkeri infections in those

populations. Microsatellites can also resolve the question of a founder effect by investigating

inbreeding and relatedness among TP1 individuals to determine whether MAC6 haplotype

ticks at that site are closely-related progeny, possibly from one founding female. Additional

questions could be resolved regarding the species identities of ticks with Genbank (Clark

et al., 2016) accession numbers: AZ1663, AZ1614, and AZ1640, which were collected from

Arizona. The populations where the original named haplotypes were collected included

A. maculatum sensu lato, a morphologically distinct species or subspecies of A. maculatum

sensu stricto (or A. maculatum, Koch 1844), yet haplotype matches were also collected in

our samples from the Mid-Atlantic states, including Delaware, North Carolina, and Virginia,

which are all presumed to be A. maculatum s.s. consistent with other east coast GCTs.

The most valuable contribution of the agent-based model presented in Chapter 5 is the

ability to evaluate the assumptions underlying our interpretations of population genetics

results. In particular, the model simulates the range of outcomes that could result

from either directly controlling parameters such as those that contribute to propagule

pressure, or from the stochastic effects of host and landscape interactions that limit tick

numbers within the site. SimAdapt (Rebaudo et al., 2013) provides a template for adding
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microsatellite markers to this type of model, including options for controlling mutation

rates through the graphical user interface (GUI). Based on prior experience, modifying

the reproduction submodel to require male and female ticks to occupy the same patch

or host, so that both parents can contribute to offspring genetics, substantially decreases

the likelihood of population establishment and persistence. Key changes would have to be

made to the reproduction submodel while paying special attention to those parameters that

affect population establishment, particularly the number of eggs laid per female and the

spatial scale. Such changes would be welcome in the effort to better simulate real-world

reproduction, but go beyond the scope of this model, especially given the lack of existing

population genetics data for GCTs using microsatellite markers.

As it stands now, the critical focus of the updated TICKSIM model in Chapter 5 was to

use a working approximation of the real-world system to separate dispersal from environment

in terms of parameters contributing to spread, in addition to those that more directly affect

establishment. Each of these elements represent distinct barriers that influence the spread

of an organism in the unified framework for biological invasions (Blackburn et al., 2011).

The value of separating these components of the invasion process is to be able to determine

the strongest limiting factors on the genetic diversity of new populations that result from

introduction events. Linking diversity measures to the predictors of invasion success provides

a way to then monitor populations more effectively with an understanding of site- and

regional-level restrictions on the range expansion. In other words, the question of whether

low immigration or environmental filtering play a stronger role in limiting invasion success

can be answered, along with understanding to what degree can key parameters be modified

and still result in successful population establishment? In the interest of public health, these

questions can help direct efforts to control the spread and establishment of GCTs as a vector

of medically-important pathogens by identifying the most critical parameters to control.

The model presented in Chapter 5 is regionally- specific and designed to answer questions
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related directly to our empirical genetics data, however the parameters are flexible with

regard to host behaviors, landscape effects, and haplotype numbers that can be introduced to

the system. The parameters tested in the sensitivity analysis can be easily changed using the

GUI in Netlogo (Wilensky, 2021). Other parameters listed in Tables 11., 12., and 13. can be

adjusted by making minimal changes to the program code. Additional focus should be placed

on testing model sensitivity to different landscapes, including changes to the suitability,

appeal, and hatch success assumptions outlined in Table 13.. The presence of edge had a

significant negative effect on several outcome variables, but edge was defined coarsely as the

unsuitable habitat adjacent to suitable patches. In this sense, edge included multiple types

of habitat, including some that would likely be unappealing to any of the animals modeled

in this system. Reclassifying edge to better define edge as a habitat class or set of classes

with unique suitabilities, rather than primarily a proximity-based definition, could make the

measure more ecologically relevant. These changes would provide a better understanding of

the relationship that emerged in the model. Ground-truthing to identify edge habitat types

would be beneficial to the effort to reclassify edge as a true, ecologically-meaningful habitat

class.

Field observations suggest a fairly reliable link between certain habitat and the likelihood

of locating a Gulf Coast tick population, though it is clear from both the field and from

analyses presented in Chapter 4 that such populations can be uncommon even in ideal

habitat. An essential next step to improving attempts to use remote-sensing would be to

collect data from the field to ground-truth canopy cover and land use classification schemes.

Discrepancies appear in the LULC classes (CBPO, 2022), for example the site CH3 is

classified as crop in areas where sports fields and adjacent unmowed edge occur. Further,

interpolated soil grids (Hengl et al., 2017) failed in important areas of the coastal and barrier

island sites, resulting in no data. Field measures would help close the gaps in the data, and

provide a way to confirm and more accurately model landscape relationships to satellite
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imagery, rather than relying on remote-sensing primarily. Soil organic matter, depth of

the litter layer, leaf area, and canopy height and cover would all be useful variables to

measure on the ground. Additionally, collecting these data from the sites over time, in

conjunction with host and GCT sampling, would help provide a comprehensive dataset to

improve our empirical understanding of landscape-host-tick connections, as well as to validate

model assumptions. Validating the genetics models with the environmental dataset can

enhance the ability of the model to distinguish between propagule pressure and environmental

effects. Environmental data from on-site surveys could also help to create better species

distribution models, similar to the tick and pathogen models developed for Dermacentor

variabilis and Rickettsia montanensis (Lippi et al., 2021a). Such models have not been

broadly used for Amblyomma species and few of those that attempt to model Amblyomma

tick distributions also consider the pathogens (Lippi et al., 2021b). The opportunity exists

to better bridge these modeling approaches in a way that addresses the public health

implications, particularly pathogen exposure risks in connection with the distribution of

tick vectors.

Landscape or habitat data can be supplemented by finer scale measures of soil and closer

monitoring of tick populations in response to habitat change as disturbances are documented

in established sites. Identifying suitable habitat from remotely sensed environmental data

has proven challenging. The relative rarity of Gulf Coast ticks compared to those more

common in the Mid-Atlantic, like the lone star tick (Amblyomma americanum), complicates

spatial analysis of this species. One of the variables that did initially seem to be useful

to detect an association between GCT and site characteristics was NDVI. NDVI is widely

understood to be sensitive to bare soil, and prone to oversaturated at higher values, which

likely reduced the sensitivity of the GLMM designed to look for a relationship between

population presence and NDVI values. Further, the study was hampered by the overall lack

of spatial points where population presence was detected. This combination of challenges
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and overall limited results ultimately deferred the goal of creating a regional-scale map of

suitable sites to use in conjunction with genetics data.

The ultimate challenge of controlling invading tick species can help to achieve the

long-term goal of reducing the TBD burden on public health. Active surveillance programs

that incorporate tick ecology and genetics are essential to identify, monitor, and manage

populations that have the potential to increase human and animal exposure to pathogens.

Although some processes remain elusive, the genetic surveillance presented in Chapters 2

and 3 combined with ecological simulations to isolate key influences in the invasion process

help lay the groundwork for tick control applications. Ultimately, applying this knowledge

to experimental control efforts will be the next step in bringing the the effort of tick control

closer to realization.
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