




SSM while IFM function was preserved. In SSM at 18 weeks, mitochondria dysfunction was con-
fined to a minimally reduced oxidative phosphorylation rate with glutamate, but was normal
with a saturated concentration of ADP or in the presence of other substrates of the ETC. In SSM
at 28 weeks, the oxidative phosphorylation rate was slightly reduced in the presence of complex
II, III, and IV substrates, but is considered unimportant because of the absence of defects
upstream as we found with polarographic and spectrophometric assays. Thus, these small devia-
tions do not affect overall SSM bioenergetic function of the diabetic rats. Fatty acid oxidation is
unaltered in SSM and IFM at both ages, and palmitoyl-coA oxidation was even enhanced in
IFM GK at 28 weeks. These data provide compelling evidence that mitochondrial function is not
affected in insulin-resistant skeletal muscle from T2DM non-obese rats.

Our study follows a previous study on the metabolic function of skeletal muscle mitochon-
dria of GK rats evaluated using31P MRS and BOLD MRI [35]. The selfsame GK and control
rats used to study mitochondria function�� ���	 [35] were used in this work to study mito-
chondria�� ��
�	. The mitochondrial function in skeletal muscle of GK rats was normal at 12
and 20 weeks and is consistent with our study supporting the absence of impairment in the
bioenergetic function of the subpopulations of mitochondria.

The GK rat is a well-characterized non-obese model of T2DM that exhibits spontaneous
moderate hyperglycemia and peripheral and hepatic insulin-resistant hyperinsulinemia
[36,37] without abnormal elevated content of lipids in blood. In our work, the hyperglycemia
and hyperinsulimeia observed in the GK rats at 18 and 28 weeks confirmed the metabolic
characteristics of this T2DM model observed in previous work [37,38,39].

Mitochondrial content
A reduced mitochondria content in GK rats was observed only at 18 weeks, while there was no
difference between the two groups of rats at 28 weeks. A lower content of SDH in GK com-
pared to controls was previously reported [40]. The animals in the control group continue to
grow between 18 to 28 weeks of age while GK rats do not. Consistent with this result, a GK

Fig 5. The cytochrome content in isolated skeletal SSM and IFM at 18 and 28 weeks. Notation as in Fig 1. ¥(P��0.05) W-18wk vs. W-28; ¶(P��0.05)
GK-18wk vs. GK-28; #(P��0.05) W-28wk vs. GK-28; (n = 6), Mean �“ SD.

https://doi.org/10.1371/journal.pone.0183978.g005
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study [41] reported reduced skeletal muscle mass and alteration of muscle fiber distribution,

e.g., type I and II, in GK rats. Thus, a skeletal muscle fiber shift from one fiber type to another

could be related to the effects observed in the rats at 28 weeks.

Subsarcolemmal mitochondria

In the presence of glutamate, SSM from GK rat had a lower state 3 respiration rate than that of

the control group (Table 3). Oxidative phosphorylation in the presence of glutamate provided

information not only on the phosphorylation process, but also on glutamate transport and

glutamate dehydrogenase; that in the presence of pyruvate and malate reflects the monocar-

boxylate and dicarboxylate transporters as well as pyruvate and malate dehydrogenase. The

difference between GK and W observed in state 3 respiration in the presence of glutamate

Fig 6. Polarographic cytochrome c oxidase assay of skeletal muscle SSM at 28 weeks. Notation as in Fig 1. #(P<0.05) W-28wk

vs. GK-28; (n = 5), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g006
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should not be ascribed to a defect in complex I because it vanished when a saturated concen-

tration of ADP is used to stimulate oxidative phosphorylation.

The SSM defect observed could be related to the ATP synthase, the adenine nucleotide

translocase (ANT) and/or inorganic phosphate transporter. ANT is responsible for ADP/ATP

exchange across the mitochondrial inner membrane, while the phosphate transporter provides

for the movement of inorganic phosphate into mitochondria. Thus, a reduced respiration rate

could be related to a low affinity of ANT for the substrate, but this does not appear to be the

case because in our study, the respiration rate with an unsaturated concentration of ADP was

not reduced for P+M, G+M, or P-CN. Alternatively, the difference between the two groups

could be related to glutamate transporter or glutamate dehydrogenase activity, but this possi-

bility is eliminated because oxidative phosphorylation at saturated concentration of ADP and

uncouple respiration rate are unaffected. The difference between GK and W in state 3 respira-

tion rate was eliminated in the presence of glutamate and malate; glutamate is metabolized by

aspartate aminotransferase and malate by malate dehydrogenase.

The analysis of the respiration rate in the two populations of mitochondria revealed a spe-

cific alteration of the oxidative phosphorylation using substrates for complex II, III, and IV

(Figs 2 and 3) only in skeletal muscle SSM of the older GK rats. By the addition of an uncou-

pler, this defect was relieved when using substrates for complex II and III but was still present

using complex IV substrate. The lack of effect on oxidation starting at complex II and III sug-

gests that complex IV does not affect upstream substrates and is physiological irrelevant. The

components of the ETC work as units in series with electrons entering in complex I, II and III

sites that share the same common path to reach complex IV to reduce oxygen and produce

water. Thus, complex IV is located upstream of the ETC and it can control the amount of elec-

trons flowing from complex I to IV per unit of time. In our study, complex I was inhibited

with rotenone to evaluate the function of the other complexes. The defect in Complex IV does

not limit the electron flux and thus, the respiration rate in presence of complex II or III sub-

strates because the uncoupled mitochondria respiration rate measured in GK rats with com-

plex II or III substrates was similar to that observed in the control group. Furthermore,

complex V could be responsible for the respiration difference observed for complex II and III

substrates. Under these conditions, the oxidative phosphorylation rates were reduced by 20–

25% in comparison to the control group. Although the effect of these mitochondrial alterations

on the skeletal muscle remains to be determined, they should not have a major effect on energy

metabolism. Indeed, two independent NMR studies reported that mitochondria ATP produc-

tion was not altered in re-perfused [35] or contracting [42] skeletal muscle at 18 and 28 weeks

old GK rats, respectively.

Alternative mechanisms related to a decrease in mitochondrial cytochromes could explain

the age-dependent defects in oxidative phosphorylation observed in GK rats at 28 weeks. At

this age, significant decreases (50%, 40%, and 16%) were observed in cytochrome aa3, b, and c
in SSM of GK rats compared to the control group. To determine whether cytochrome c was

responsible for the defect, a polarographic assay of complex IV with and without exogenous

cytochrome c was performed. The addition of exogenous cytochrome c did not correct the

defect in the polarographic activity of cytochrome c oxidase. This indicates that beside the

reduced amount of cytochrome c, other factors are responsible for the observed defect.

Cytochrome b also was lower than that of the control group (Fig 5). The total cytochrome b
content is distributed between complexes II and III within the mitochondria [43]. Neverthe-

less, the reduced cytochrome b content in SSM does not affect complex II or III function

because the state 3 respiration rate observed for complex II or III substrate was relieved by the

addition of the uncoupler (Fig 2a and 2c). Moreover, the activity of complex II and III was

unaffected in GK rats (Fig 4). The decrease of the transmembrane protein, cytochrome aa3,
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which is a subunit of complex IV, is not responsible for the defect observed in SSM of GK rats

(Fig 5), because the complex IV assay does not reveal any enzyme activity difference between

GK and W rats (Fig 4). It should be noted that the differences between GK and W rats in oxi-

dative phosphorylation rate in the presence of complex IV (Fig 2a and 2c) and endogenous

cytochrome c substrates disappear when the mitochondrial membrane is disrupted (Fig 6).

This indicates a potential aging effect (from 18 to 28 weeks) leading to a structural defect of the

inner mitochondria membrane. A selective aging effect on heart mitochondrial dysfunction

was previously reported and attributed to an altered membrane environment, rather than to a

reduced protein subunit content [32].

In conclusion, the complex IV defect is not considered relevant because it does not affect

the respiration rate obtained with C-II and III substrates and the complex IV enzyme activity

assay does not reveal any difference between GK and W rats.

Interfibrillar mitochondria

The IFM function was normal in GK rats at both age groups. The bioenergetic assays per-

formed to probe the function of the ETC components showed no difference between GK and

controls (Figs 1 and 2). In addition, the biochemical assays to quantify the activity of com-

plexes of the ETC showed no difference between GK and controls (Fig 4). This evidence was

consistent with the absence of difference in state 3 respiration rate measured in presence of

an unsaturated or saturated concentration of ADP and in uncoupled mitochondria (Figs 1

and 2).

Fatty acid oxidation

Both transport and utilization of fat in myocytes contribute to lipid accumulation. Previous

studies presented conflicting results on mitochondrial dysfunction as a key factor in impairment

of fatty acid utilization in skeletal muscle cells [4, 7, 8, 44]. Some obese and insulin resistant

human and animal studies provided evidence in support of enhanced fatty acid transport [45,

46]. A bioenergetics study on permeabilized skeletal muscle fiber reported on even higher oxida-

tive phosphorylation rate using palmitoylcarnitine in GK rats [38] compared to the control

group but similar ADP/O. In that study palmitoylcarnitine respiration rate decreased 5% from 6

to 16 weeks. Thus, the difference between this and our study possibly is related to the GK age.

In our study, the higher respiration rate with palmitoyl-CoA substrate in IFM of GK rats

than that obtained for the control group was not related to differences in respiratory capacity

of the ETC or mitochondria content since ETC components and CS activities were similar in

the two groups. Also, the difference between GK and W rats should not be attributed to an

effect of palmitoyl-CoA on ANT, since the palmitoyl-CoA oxidation rate difference between

GK and W also was observed with a saturated concentration of ADP (Fig 5). In this condition,

the effect of palmitoyl-CoA inhibition on ANT transferase, which is responsible for export/

import of ATP/ADP from/to the mitochondrial matrix, is negligible. The difference in palmi-

toyl-CoA oxidation between the two groups of rats could be related to a higher CPT1 activity

in IFM of GK rats than that in IFM of Wistar rats. Although these results are in agreement

with enhanced FA transport in obese Zucker rats, the skeletal muscle adaptations appear dif-

ferent between obese and non-obese rats during the development of the disease. While obesity

appears to enhance FA transport and oxidation predominately in SSM by an increase of FAT/

CD36, CS, and β-hydroxyacyl-CoA dehydrogenase activities with unaltered CPT1 [19], the

absence of obesity and presence of T2DM lead to enhancement of FA oxidation only in IFM

by CPT-I. It is possible that the enhanced ability to metabolize fatty acid is related to a com-

pensatory skeletal muscle adaptation to the reduced utilization of carbohydrate fuel due to
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insulin resistance. In T2DM patients and obese insulin-resistant skeletal muscle, CPT-I activity

was reduced [47]. The effects of obesity on skeletal muscle metabolic function were also inves-

tigated in human subjects [12]. Obesity was found to not alter FA transport and oxidation,

while impairment of mitochondrial function was attributed mainly to a reduced content of

these organelles.

Mitochondria efficiency

The ADP/O ratio provides information on oxidative phosphorylation efficiency. The ADP/O

ratio is similar in both groups of rats although there is an age effect with a significant decrease

of the ratio of both SSM and IFM from 18 to 28 weeks only for GK rats. In human skeletal

muscle, the mitochondrial ADP/O ratio of T2DM patients was not different from that of the

control group although there was a trend for less efficient mitochondria in the diabetic group

[10]. Animal studies showed that skeletal muscle adaptations to obesity are accompanied by an

increase of oxidative phosphorylation efficiency [48, 49] that potentially can contribute to the

development of insulin resistance induced by a high fat diet [50]. Thus, our study showed a dif-

ferent mitochondrial adaptation to IR in the absence of obesity in comparison to that occur-

ring in obesity.

In conclusion, in the absence of chronic tissue fat overload, the bioenergetic function of

both mitochondrial populations of insulin-resistant skeletal muscle is not compromised. Mito-

chondrial function is normal in T2DM in the absence of a fat overload during the progression

of the disease. Thus, increased fuel load rather than mitochondrial oxidative capacity is the

trigger event altering insulin action in T2DM [4].

Supporting information

S1 Fig. Respiratory control ratio (RCR) of skeletal muscle SSM (a) and IFM (b) at 18 and

28 weeks. Notation as in Fig 1. Complex I substrate (malate and pyruvate, P); Complex II (suc-

cinate and rotenone, SR); Complex III (duroquinol and rotenone, DHQR). ¥(P<0.05) W-18wk

vs. W-28; ¶(P<0.05) GK-18wk vs. GK-28; �(P<0.05) W-18wk vs. GK-18 (n = 6); #(P<0.05)

control W-28wk vs. diabetic GK-28; (n = 6), Mean ± SD.

(TIF)

S2 Fig. ADP to atomic oxygen phosphorylation ratio ADP/O of skeletal muscle SSM (a)

and IFM (b) at 18 and 28 weeks. Notation as in Fig 1. Complex I substrate (malate and pyru-

vate, P); Complex II (succinate and rotenone, SR); Complex III (duroquinol and rotenone,

DHQR). ¶(P<0.05) GK-18wk vs. GK-28; (n = 6), Mean ± SD.

(TIF)
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