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ABSTRACT

ON WEIGHTED SEQUENCE SPACES

Gilbert D. Acheampong
Old Dominion University, 2024
Director: Dr. Raymond Cheng

The space ℓp,α of complex sequences a = (a0,a1,a2, . . .) for which

∥a∥p,α =
( ∞

∑
k=0

|ak|p(k+1)α

)1/p
< ∞

is studied. Each such sequence can be identified with the analytic function with power series

f (z) =
∞

∑
k=0

akzk.

In this setting, the point evaluation and the difference quotient mappings are shown to be bounded;

the cases are identified in which ℓp,α is boundedly contained in ℓr,β . Conditions on the parame-

ters are derived for the analytic functions of ℓp,α to have radial limits almost everywhere on the

boundary of the domain, and for ℓp,α to be an algebra. Smoothness properties of the boundary

function are investigated. Basic properties of multipliers on ℓp,α are established, and conditions

on the multiplier norm and coefficient growth are derived. Multipliers having a certain extremal

property are described. A discrete version of the Schur Test is obtained, and used to produce a

family of examples of multipliers.
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NOMENCLATURE

N0 Set of non-negative integers

a Collection of complex sequences a0,a1,a2, . . .

ℓp,α a :
(

∑
∞
k=0 |ak|p(k+1)α

)1/p
< ∞

∥ · ∥p,α The norm or quasi-norm on ℓp,α

:= Equality by definition

S Forward shift operator

B Backward shift operator

C Set of complex numbers

D The open unit disk in C defined as {z ∈ C : |z|< 1}

T The unit circle in C defined as {z ∈ C : |z|= 1}

Λw The point evaluation fuctional

Qw The difference quotient mapping

q Hölder’s conjugate of p for which 1/p+1/q = 1

H p Hardy space on D

D Differentiation operator

∆t Difference operator with increment t

Mp,α Set of multipliers on ℓp,α
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CHAPTER 1

INTRODUCTION

Functional analysis is a branch of mathematics concerned with the study of spaces of functions

with certain properties. These spaces are typically vector spaces, endowed with a metric, norm, or

inner product. Of course the functions belonging to such a space are studied: What smoothness

properties do they enjoy? Do they have interesting representations? Can their zero sets be char-

acterized? In addition, it is worthwhile to study the space itself: What are its natural subspaces?

Can we speak of its dual space? Are there any interesting dense subsets? Finally, as a rule we

are interested in investigating operators or mappings on the space, especially those that arise in an

organic way.

Function spaces can be rewarding to study as abstract mathematical objects. Moreover, the

more we know about a particular class of functions, the more useful it can potentially be, as a tool

for mathematical modeling in science, engineering, finance, medicine and so on. For example, the

theoretical foundations of the Hardy space H2 were laid down over a century ago; today, it is still

used to model stationary Gaussian stochastic processes, with applications in signal processing and

digital filter design [26].

This research focuses on a particular class of weighted sequence spaces, which arise in the

following way. Let 0 < p < ∞ and α ∈ R. The space ℓp,α is defined to be the collection of

complex sequences a = (a0,a1,a2, . . .) for which

∥a∥p,α =
( ∞

∑
k=0

|ak|p(k+1)α

)1/p
< ∞.

Each ℓp,α is a vector space, endowed with a norm (if 1 ≤ p < ∞), or quasinorm (if 0 < p < 1). It
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can be viewed as a special case of the Lebesgue space Lp, where the measure space is the index set

N0 = {0,1,2, . . .}, and for each k ∈ N0 the atom {k} has mass (k+1)α .

But ℓp,α is more than a sequence space: each a ∈ ℓp,α can be identified with the analytic

function with power series

f (z) =
∞

∑
k=0

akzk,

where the complex variable z lies in the open unit disk D. We shall see that there is interplay be-

tween the behavior of the sequence (as such) with the properties of the associated analytic function.

Furthermore, there will arise some natural operators on the space, including point evaluation, the

forward and backward shifts, difference quotients, and multipliers. There will also emerge a broad

pattern to the way the behavior of the space ℓp,α varies with the parameters p and α .

Some special cases of ℓp,α have been well studied. The Hardy space H2 can be identified with

ℓ2,0 = ℓ2. There is quite a substantial literature on H2 and its generalizations and applications,

with numerous deep results; it stands as one of the great triumphs of a century of mathematical

analysis. Our reference on this subject is the classic tome [8]. Significant advances have also been

made to understand the Dirichlet space D = ℓ2,1 [1], [11], [29], and the Bergman space A2 = ℓ2,−1

[9], [17], [20]. More recently, a body of work concerning the spaces ℓp = ℓp,0 has been brought

within a single volume [6], though many fundamental issues remain to be solved.

Elsewhere, there is work identifying upper and lower bounds for certain matrix operators on

weighted sequence spaces [15], [16]. In [27], boundedness of point evaluation and cyclicity of

polynomials in general weighted sequence spaces are covered; and in [28], the analyticity of formal

power series. Further matters relating to cyclicity in weighted sequence spaces are addressed in

[2], [14], [22]. A version of the Hardy inequality on weighted sequence spaces is obtained in [18].
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Multiplication and composition operators on ℓp,α are the subject of [10]. Notably, the dynamics

of composition operators on ℓp,α spaces (1 ≤ p < ∞) are explored in [24], [25], proving that no

composition operator is hypercyclic on these spaces, and defining conditions for supercyclicity and

cyclicity. The paper [13] studies the boundary behavior of ℓp,p−1, and convergence of Taylor sums,

treating the space as an extension of the classical Dirichlet space D .

In the present work, we endeavor to contribute to the theory of ℓp,α spaces in a systematic

manner, culminating in a treatment of the (function) multipliers on these spaces. We first bring to-

gether some basic results about ℓp,α , including coverage of the shift and backward shift operators,

the point evaluation functional, and difference quotient operators. This occupies the next two chap-

ters. In Chapter 4, conditions on the parameters are obtained for the inclusion relation ℓp,α ⊆ ℓr,β to

hold. Similarly, how ℓp,α relates to the Hardy spaces is covered in Chapter 5. Chapter 6 identifies

those cases in which each function in ℓp,α has radial limits almost everywhere on the unit circle.

We characterize in Chapter 7 all those ℓp,α which constitute an algebra (under functional multipli-

cation); this identifies cases in which the multiplier space of ℓp,α coincides with the entirety of ℓp,α

itself. Next, the spaces ℓp,α are partially characterized by a family of smoothness conditions. This

is covered in Chapter 8. A family of algebras is identified by use of these smoothness conditions,

which will later shed light on the multiplier space. The concluding section is devoted to multipliers

on ℓp,α , a natural class of operators to study. We present some basic properties of multipliers, offer

some norm and coefficient growth estimates, identify multipliers with a certain extremal property,

and produce a family of examples using a discrete version of the Schur Test. Our hope is that

these results raise further interest in weighted sequence spaces, and add value to their potential

applications.
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CHAPTER 2

BASIC PROPERTIES

Let us begin by setting forth some of the basic properties of the ℓp,α spaces. We shall see that

they are vector spaces, endowed with a norm or quasinorm. In the former case, the dual space

is identified, along with the norming functions and a natural basis. The shift and backward shift

operators are defined and shown to be bounded. We acknowledge that some of these results overlap

with the papers [14], [27], as well as some other works concerned with weighted shift operators

(see, for instance, [23]).

Let 0 < p < ∞, and α ∈ R. By ℓp,α we mean the collection of complex sequences a =

(a0,a1,a2, . . .) such that

∥a∥p,α :=
( ∞

∑
k=0

|ak|p(k+1)α

)1/p
< ∞.

(This notation for the space ℓp,α is not standard, but we shall see that it makes sense to treat the

parameter pair (p,α) as a point in the right half-plane). Irrespective of α , we take ℓ∞,α to be the

collection of bounded sequences, and define

∥a∥∞,α := sup
k≥0

|ak|.

Thus ℓ∞,α coincides with the familiar unweighted space ℓ∞; for that reason, our focus will be on

the finite cases of p.

Remark 2.1. Notice that as p decreases toward zero, or as α increases, the convergence of the

expression
∞

∑
k=0

|ak|p(k+1)α
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would require the sequence a = (ak)
∞
k=0 to converge toward zero more rapidly. Thus, informally

speaking, the members of ℓp,α tend to be better behaved when the parameter pair (p,α) lies in

the upper left extreme of the half plane (0,∞)× (−∞,∞). This is a phenomenon that will play out

repeatedly within this investigation.

From the general theory of Lp spaces, we know that ℓp,α is a vector space over the complex

scalars. Furthermore, we know that ∥ · ∥p,α is a norm when 1 ≤ p < ∞, under which ℓp,α is a

Banach space. If 0 < p < 1, then ∥ · ∥p,α is a quasinorm; in this situation,

d(a,b) := ∥a−b∥p
p,α

determines a metric under which ℓp,α is complete. (See, for instance, [6, Chapter 1].) In what

follows, convergence and continuity will be in the sense of this metric, when 0 < p < 1.

If 1 ≤ p < ∞, p ̸= 2, and 1/p+1/q = 1, then the dual of ℓp,α can be identified with ℓq,α under

the pairing

⟨a,b⟩ :=
∞

∑
k=0

akbk(k+1)α , (1)

where a = (a0,a1,a2, . . .) ∈ ℓp,α and b = (b0,b1,b2, . . .) ∈ ℓq,α . If p = 2, the Hilbert space case,

then bk is replaced by its complex conjugate in the formula (1).

For any k ≥ 0, let

ek := (δ0,k,δ1,k,δ2,k, . . .),

where δ j,k is the Kronecker delta. Then {ek}∞
k=0 is a basis for ℓp,α .

Let 1 < p < ∞, p ̸= 2. Every nonzero vector a ∈ ℓp,α has a unique norming functional given
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by Ta : x 7→ ⟨x,b⟩, where

bk =


āk|ak|p−2/∥a∥p−1

p,α , ak ̸= 0

0, ak = 0

, k ≥ 0.

Indeed, it is straightforward to check that ∥Ta∥= 1, and Ta(a) = ∥a∥p,α .

In the study of any function space it is of interest to explore the operators that arise in a natural

way. Perhaps none is more natural than the shift S and the backward shift B operators. They are

defined on any sequence a = (a0,a1,a2, . . .) by

S(a0,a1,a2, . . .) := (0,a0,a1,a2, . . .)

B(a0,a1,a2, . . .) := (a1,a2,a3, . . .).

Let us retain the symbols S and B for their restrictions to ℓp,α .

Proposition 2.1. If 0 < p < ∞, and α ∈ R, then S and B are bounded linear mappings on ℓp,α ,

with

sup
a̸=0

∥Sna∥p,α

∥a∥p,α
=


(n+1)α/p, α ≥ 0;

1, α < 0

(2)

sup
a̸=0

∥Bna∥p,α

∥a∥p,α
=


1, α ≥ 0;

(n+1)|α|/p, α < 0,

(3)

for n ≥ 1.

Proof. The mappings S and B are obviously linear.
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If a ∈ ℓp,α , then

∥Sna∥p
p,α = ∥Sn(a0,a1,a2, . . .)∥p

p,α

= ∥(0,0, . . . ,0︸ ︷︷ ︸
n

,a0,a1,a2, . . .)∥p
p,α

=
∞

∑
k=0

|ak|p(k+1+n)α

=
∞

∑
k=0

|ak|p(k+1)α ·
(k+1+n

k+1

)α

≤ sup
j≥0

( j+1+n
j+1

)α ∞

∑
k=0

|ak|p(k+1)α

= sup
j≥0

( j+1+n
j+1

)α

∥a∥p
p,α .

This shows that

sup
a̸=0

∥Sna∥p,α

∥a∥p,α
≤ sup

j≥0

( j+1+n
j+1

)α/p
.

In fact, equality holds since

∥Sne j∥p,α =
( j+1+n

j+1

)α/p
∥e j∥p,α

for all j ≥ 0, where e j is a basis vector. Now we obtain (2) by observing that

sup
j≥0

( j+1+n
j+1

)α/p
=


(n+1)α/p, α ≥ 0;

1, α < 0.
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Similarly, to establish (3) we start with

∥Bna∥p
p,α =

∞

∑
k=0

|ak+n|p(k+1)α

=
∞

∑
k=0

|ak+n|p(k+n+1)α ·
( k+1

k+n+1

)α

≤ sup
j≥0

( j+1
j+n+1

)α ∞

∑
k=0

|ak+n|p(k+n+1)α

≤ sup
j≥0

( j+1
j+n+1

)α ∞

∑
k=0

|ak|p(k+1)α

≤ sup
j≥0

( j+1
j+n+1

)α

∥a∥p
p,α ,

noting that for j ≥ 0 we also have

∥Bne j+n∥p,α = ( j+1)α/p =
( j+1

j+n+1

)α/p
∥e j+n∥p,α .

Therefore

sup
a̸=0

∥Bna∥p,α

∥a∥p,α
= sup

j≥0

( j+1
j+n+1

)α/p
=


1, α ≥ 0;

(n+1)|α|/p, α < 0.

as claimed.

We note that Proposition 2.1 overlaps results contained in [14], [27], as well as some other

works concerned with weighted shift operators (see, for instance, [23]).

When 1 ≤ p < ∞, the case ℓp,α is a Banach space, then (2) and (3) give the usual operator

norms of Sn and Bn, respectively. Let us abuse notation slightly and use the operator norm notation

in the case 0 < p < 1 as well. That is, for all cases 0 < p < ∞ and α ∈ R, if T is a bounded linear

mapping on ℓp,α , we write

∥T∥ := sup
a̸=0

∥T a∥p,α

∥a∥p,α
.
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The following proposition shows that ∥ · ∥ is well behaved when 0 < p < 1, even though it is

not a norm in the strict sense.

Proposition 2.2. Let 0 < p < 1 and α ∈ R. If T1 and T2 are bounded linear mappings on ℓp,α ,

then so are T1 +T2 and T1T2, with

∥T1 +T2∥ ≤
(
∥T1∥p +∥T2∥p)1/p and ∥T1T2∥ ≤ ∥T1∥∥T2∥.

Proof. Linearity of the sum and composite is obvious; the bounds come from

∥(T1 +T2)a∥p
p,α = ∥T1a+T2a∥p

p,α ≤ ∥T1a∥p
p,α +∥T2a∥p

p,α ≤ ∥T1∥p∥a∥p
p,α +∥T2∥p∥a∥p

p,α

∥(T1T2)a∥p,α = ∥T1(T2a)∥p,α ≤ ∥T1∥∥T2a∥p,α ,≤ ∥T1∥∥T2∥∥a∥p,α

for any a ∈ ℓp,α .

Proposition 2.3. Let 0 < p < 1 and α ∈ R. A linear mapping on ℓp,α is continuous if and only if

it is bounded.

The proof follows that for the corresponding result on a Banach space, mutatis mutandis.

In what follows we make repeated use of a basic inequality for the (unweighted) ℓp spaces: if

0 < p < r < ∞, then for any complex sequence (a0,a1,a2, . . .)

(
|a0|r + |a1|r + |a2|r + · · ·

)1/r ≤
(
|a0|p + |a1|p + |a2|p + · · ·

)1/p
. (4)

A recent source is [6, Proposition 1.5.2].
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CHAPTER 3

ANALYTIC FUNCTIONS

In this section we see that each element of ℓp,α can be associated with an analytic function,

endowed with the (quasi-)norm that it inherits from its coefficient sequence. From this point for-

ward, let us view the members of ℓp,α primarily as analytic functions, rather than sequences. We

adhere to the convention that if f is the name of a function, then its coefficient sequence will be

( f0, f1, f2, . . .). We shall see that point evaluation and difference quotients are bounded linear map-

pings. As usual, D stands for the open unit disk in the complex plane, and T is its boundary, the

unit circle.

Proposition 3.1. Let 0 < p < ∞ and α ∈ R. If f = ( f0, f1, f2, . . .) ∈ ℓp,α , then the power series

f (z) := ∑
∞
k=0 fkzk converges in D.

Proof. By hypothesis, the series ∑
∞
k=0 | fk|p(k+ 1)α converges. Consequently there is a constant

C > 0 such that | fk| ≤ C(k+1)−α/p for all k ≥ 0. Thus the radius of convergence ρ of f (z) is at

least unity, as can be seen from

1/ρ = limsup
k

| fk|1/k ≤ lim
k→∞

C1/k(k+1)−α/(pk) = 1.

This result overlaps with [28], which considers more general domains and classes of weights.

As we have seen before with sequences, we will find that as α increases, or p decreases, the

functions associated with ℓp,α are “nicer".
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The next proposition shows that the act of plugging a point into a function in ℓp,α constitutes a

bounded linear operator.

For w ∈ D we define the point evaluation functional Λw on ℓp,α by

Λw( f ) = f (w).

Proposition 3.2. Let 0 < p < ∞ and α ∈ R. For any w ∈ D, the point evaluation functional Λw is

a bounded linear mapping on ℓp,α .

Proof. The linearity of Λw is obvious. Let f ∈ ℓp,α .

If 1 < p < ∞, and 1/p+1/q = 1, then Hölder’s inequality gives

|Λw( f )|= | f (w)|

=
∣∣∣ ∞

∑
k=0

fkwk
∣∣∣

=
∣∣∣ ∞

∑
k=0

fk(k+1)α/p(k+1)−α/pwk
∣∣∣

≤
( ∞

∑
k=0

| fk|p(k+1)α

)1/p( ∞

∑
k=0

(k+1)−αq/pwkq
)1/q

= ∥ f∥p,α

( ∞

∑
k=0

(k+1)−αq/pwkq
)1/q

.

The exponentially decaying factor dominates in the final series expression.
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If 0 < p ≤ 1, then by (4) we have

|Λw( f )|= | f (w)|

=
∣∣∣ ∞

∑
k=0

fkwk
∣∣∣

≤
∞

∑
k=0

| fk||w|k

=
∞

∑
k=0

| fk|(k+1)α/p(k+1)−α/p|w|k

≤
( ∞

∑
k=0

| fk|p(k+1)α(k+1)−α |w|kp
)1/p

≤ ∥ f∥p,α sup
k≥0

(k+1)−α/p|w|k.

The factor |w|k ensures that the supremum is finite.

The case 1 ≤ p < ∞ was previously covered in [27].

For an analytic function f on D and a point w ∈D, the difference quotient mapping Qw is given

by

Qw( f )(z) :=
f (z)− f (w)

z−w
.

The resulting function is again analytic in D, a zero of the numerator having been removed.

More can be said in the context of ℓp,α .

Proposition 3.3. Let 0 < p < ∞ and α ∈ R. If w ∈ D, then Qw is a bounded linear mapping on

ℓp,α .

Proof. Once again, linearity is trivial to check.

We claim that

Qw =
∞

∑
k=0

wkBk+1,
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where B is the backward shift. The right side represents a bounded mapping, since

∥∥∥ ∞

∑
k=0

wkBk+1
∥∥∥≤


∑

∞
k=0 |w|k∥Bk+1∥, 1 ≤ p < ∞;

(
∑

∞
k=0 |w|kp∥Bk+1∥p)1/p

, 0 < p < 1.

The exponentially decaying factors dominate both of the sums.

Moreover, for any n ≥ 1

∞

∑
k=0

wkBk+1en =
n−1

∑
k=0

wkBk+1zn

= zn−1 +wzn−2 + · · ·+wn−2z+wn−1

=
zn −wn

z−w

= Qwen.

Now extend this equation by linearity and continuity to all of ℓp,α .

This extends [6, Proposition 7.2.1].

From the point of view of analytic functions, the shift operator S could be viewed as multipli-

cation by z, and the backward shift can be identified with Q0.

For functions with non-negative coefficients, there is a reverse norm inequality.

Proposition 3.4. Let 1 ≤ p < ∞ and α < 0. If the coefficients of f and g in ℓp,α are non-negative,

then

∥ f g∥p,α ≥ ∥ f∥p,α∥g∥p,α .

Proof. For n ≥ 1, consider the function Ψ(x) = x(n+1−x), 1 ≤ x ≤ n. It attains a minimum value
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at x = n. Thus for 1 ≤ k ≤ n, we have

k(n+1− k)≥ n

(k+1)(n− k+1)≥ n+1

(k+1)α(n− k+1)α ≤ (n+1)α . (5)

Since the coefficients of f and g are non-negative, and p ≥ 1,

∥ f g∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

fkgn−k

∣∣∣p(n+1)α

≥
∞

∑
n=0

( n

∑
k=0

| fk|p|gn−k|p
)
(n+1)α

≥
∞

∑
n=0

( n

∑
k=0

| fk|p|gn−k|p(k+1)α(n− k+1)α

)
(6)

= ∥ f∥p
p,α∥g∥p

p,α .

The inequality (5) was used to obtain (6).
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CHAPTER 4

INCLUSIONS

The main theorem of this chapter gives exact conditions on the parameters for the inclusion

relation ℓp,α ⊆ ℓr,β to hold. Its proof will be built from a set of lemmas, handling the different cases

as r,β varies through the right half-plane. The inclusion mappings will turn out to be bounded.

Previously we have argued that the members of ℓp,α are nicer for small p and larger α. The

following assertion bears this out.

Theorem 4.1. Let 0 < p < ∞ and α ∈ R. If 0 < r < ∞, and β ∈ R, then ℓp,α ⊆ ℓr,β if and only if

the point (r,β ) satisfies the condition

β <−1+(α +1)r/p, if 0 < r < p, or (7)

β ≤ αr/p, if p ≤ r < ∞. (8)

In either case the inclusion mapping is bounded.

The shaded region in FIGURE 1 identifies the pairs (r,β ) such that ℓp,α ⊆ ℓr,β . We could

interpret FIGURE 1 has telling us that the elements of ℓp,α are nicer as the pair (p,α) lies higher

and further to the left in the parameter set, in a manner consistent with Remark 2.1.

The horizontal axis represents the parameter r in ℓr,β which is a positive number; the vertical

axis represents β , which can be any real number. Let the pair (p,α) in the half-plane be specified.

Put a solid line from (p,α) to the origin; put a dashed line from (p,α) to the point (0,−1). These

two lines form the boundary of the shaded region. Then for all pairs (r,β ) in the shaded region, we
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have ℓp,α ⊆ ℓr,β . This makes sense because the more we go up and left in the diagram, the nicer

the functions are.

1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

(p,α)

r

β

Figure 1. ℓp,α ⊆ ℓr,β exactly when (r,β ) lies in the shaded region.

This theorem will be established via a set of lemmas.

Lemma 4.1. Let 0 < p < ∞ and α ∈ R. If r > p, then ℓp,α ⊆ ℓr,αr/p.
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Proof. By (4), we find that for any f ∈ ℓp,α we have

∥ f∥p,α =
( ∞

∑
k=0

| fk|p(k+1)α

)1/p

=
( ∞

∑
k=0

| fk(k+1)α/p|p
)1/p

≥
( ∞

∑
k=0

| fk(k+1)α/p|p·r/p
)(1/p)·(p/r)

=
( ∞

∑
k=0

| fk|r(k+1)αr/p
)1/r

= ∥ f∥r,αr/p

Lemma 4.2. Let 0 < p < ∞ and α ∈ R. If β < α , then ℓp,α ⊆ ℓp,β .

Proof. For any f ∈ ℓp,α , the comparison test gives

∥ f∥p,α =
( ∞

∑
k=0

| fk|p(k+1)α

)1/p
≥
( ∞

∑
k=0

| fk|p(k+1)β

)1/p
= ∥ f∥p,β .

Together, Lemmas 4.1 and 4.2 prove the sufficiency of (8). We check by inspection that the

inclusion mappings have unit norm.

The next Lemma verifies the sufficiency of (7).

Lemma 4.3. Let 0 < p < ∞ and α ∈ R. If 0 < r < p, and β ∈ R, and (r,β ) satisfies the condition

β <−1+(α +1)r/p,

then ℓp,α ⊆ ℓr,β , and the inclusion mapping is bounded.
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Proof. Let

γ :=−β +αr/p.

The inequality (4.3) implies that

γ p
p− r

> 1.

Next, from

1
p/r

+
1

p/(p− r)
= 1

we see that p/r and p/(p− r) are conjugate exponents. Thus, with f ∈ ℓp,α , Hölder’s inequality

yields

∞

∑
k=0

| fk|r(k+1)β =
∞

∑
k=0

| fk|r(k+1)β+γ 1
(k+1)γ

≤
( ∞

∑
k=0

| fk|r·p/r(k+1)(β+γ)p/r
)r/p( ∞

∑
k=0

1
(k+1)γ p/(p−r)

)(p−r)/p

=
( ∞

∑
k=0

| fk|p(k+1)α

)r/p( ∞

∑
k=0

1
(k+1)γ p/(p−r)

)(p−r)/p
(9)

< ∞,

showing that f ∈ ℓr,β .

Evidently from (9), the inclusion mapping is bounded by no more than the constant

( ∞

∑
k=0

1
(k+1)γ p/(p−r)

)(p−r)/pr
.

The remaining lemmas furnish counterexamples that establish the necessity of the conditions

in Theorem 4.1.
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Lemma 4.4. Let 0 < p < ∞ and α ∈ R. If p ≤ r < ∞, and

β > αr/p, (10)

then ℓp,α ̸⊆ ℓr,β .

Proof. Our strategy will be to exhibit a function f ∈ ℓp,α for which f /∈ ℓr,β . Let

fk =


(k+1)−β/r, if k+1 = 2 j for some j ≥ 0;

0, otherwise.

Then

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α =
∞

∑
j=0

1
2 jβ p/r

2 jα < ∞,

since β p/r > α .

However,

∥ f∥r
r,β =

∞

∑
k=0

| fk|r(k+1)β =
∞

∑
j=0

1
2 jβ r/r

2 jβ = ∞.

Thus, f belongs to ℓp,α , but not ℓr,β .

Lemma 4.5. Let 0 < p < ∞ and α ∈ R. If 0 < r < p, and

β >−1+(α +1)r/p, (11)

then ℓp,α ̸⊆ ℓr,β .

Proof. Let fk = (k+1)−γ , where γ = (β +1)/r. Then (11) implies

β +1 > (α +1)r/p

γ > (α +1)/p

γ p−α > 1.
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Consequently,

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α =
∞

∑
k=0

1
(k+1)γ p−α

< ∞.

On the other hand,

∥ f∥r
r,β =

∞

∑
k=0

| fk|r(k+1)β =
∞

∑
k=0

1
(k+1)γr−β

=
∞

∑
k=0

1
(k+1)

= ∞.

It remains to handle the critical segment, the dashed oblique boundary line in FIGURE 1.

Lemma 4.6. Let 0 < p < ∞ and α ∈ R. If 0 < r < p, and

β =−1+(α +1)r/p, (12)

then ℓp,α ̸⊆ ℓr,β .

Proof. Let

fk =
1

(k+1)(β+1)/r[log(k+2)]1/r
.

Using (β +1)/r = (α +1)/p, we find that

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α

=
∞

∑
k=0

1
(k+1)p·(α+1)/p[log(k+2)]p/r

(k+1)α

=
∞

∑
k=0

1
(k+1)[log(k+2)]p/r

< ∞.
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By contrast,

∥ f∥r
r,β =

∞

∑
k=0

| fk|r(k+1)β

=
∞

∑
k=0

1
(k+1)r·(β+1)/r[log(k+2)]r/r

(k+1)β

=
∞

∑
k=0

1
(k+1) log(k+2)

= ∞.
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CHAPTER 5

RELATION TO HARDY SPACES

For 0 < p < ∞, the Hardy space H p consists of those analytic functions f on the open unit disk

D for which

∥ f∥H p :=
(

sup
0<r<1

∫ 2π

0
| f (reiθ )|p dθ

2π

)1/p
< ∞.

These spaces are well studied and have numerous applications [8].

Some classical inequalities identify the relationship between the Hardy space H p and the un-

weighted sequence spaces ℓp. Here, we use the results of the previous section to describe which

Hardy spaces are contained inside ℓp,α , and vice-versa.

The Hausdorff-Young inequality [8, p. 94] says that if 1 ≤ p ≤ 2, and 1/p+1/q = 1, then

H p ⊆ ℓq (13)

ℓp ⊆ Hq, (14)

with bounded inclusions.

A theorem of Hardy and Littlewood, and its dual [8, pages 95 and 97], state that

H p ⊆ ℓp,p−2, if 0 < p ≤ 2; (15)

ℓp,p−2 ⊆ H p, if 2 ≤ p < ∞. (16)

We can extend these results as follows.
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Theorem 5.1. Let 1 ≤ p ≤ 2 and 1/p+1/q = 1. If

α < r/q−1, 0 < r < p;

α ≤ r/q−1, p ≤ r ≤ q; or

α ≤ 0, q < r < ∞,

then H p ⊆ ℓr,α .

Proof. The claim follows by applying Theorem 4.1 in conjunction with (13) and (15), except for

the critical segment α = r/q− 1, p < r < q. In that situation, write γ = (2− p)/(q− p), and

consider the mapping

T :
∞

∑
k=0

akzk 7−→
∞

∑
k=0

(k+1)γakzk,

which is densely defined on H p and any ℓp,α . Boundedness of the inclusion H p ⊆ ℓq is equivalent to

the boundedness of T as a mapping from H p to ℓq,−γq. Similarly, the boundedness of the inclusion

H p ⊆ ℓp,p−2 is equivalent to the boundedness of T from H p to ℓp,−γq.

Now apply the Marcinkiewicz Interpolation Theorem [19] to conclude that T is bounded from

H p to ℓr,−γq, whenever p < r < q. Thus if f (z) = ∑
∞
k=0 fkzk ∈ H p, this implies that

∞

∑
k=0

(k+1)−(2−p)q/(q−p)∣∣(k+1)(2−p)/(q−p) fk
∣∣r = ∞

∑
k=0

(k+1)−(2−p)(q−r)/(q−p)| fk|r < ∞;

that is, H p ⊆ ℓr,α for any (r,α) lying on the critical segment.

Theorem 5.2. Let 2 ≤ p < ∞ and 1/p+1/q = 1. If

α > 0, 0 < r < q;

α ≥ (p−2)r/(p−q)−1, q ≤ r ≤ p; or

α > (p−2)r/(p−q)−1, p < r < ∞,
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then ℓr,α ⊆ H p.

Proof. The assertion arises from Theorem 4.1 together with (14) and (16), apart from the case α ≥

(p− 2)r/(p− q)− 1, q < r < p. On this critical segment, apply the Marcinkiewicz Interpolation

Theorem, with

T :
∞

∑
k=0

bkzk 7−→
∞

∑
k=0

bk(k+1)−ζ zk,

where ζ = (p− 2)/(p− q). The result is that T is a bounded mapping from ℓr,−ζ q to H p for all

q < r < p. Thus, ℓr,α ⊆ H p when (r,α) lies on the critical segment.

These inclusions enable us to draw further inferences about the elements of ℓp,α . For example,

under the conditions of Theorem 5.2, the zero sets of functions belonging to ℓr,α must be Blaschke

sequences [8, Theorem 2.4]. Furthermore, such functions have radial limits almost everywhere on

the circle T. We shall pursue the matter of radial limits further in the next chapter.

A similar course could be pursued with the Bergman spaces, Ap. See [9, Pages 81–83].
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CHAPTER 6

RADIAL LIMITS

A function f associated with ℓp,α is analytic in the open unit disk of the complex plane. Thus,

it is defined on the interior of the circular region, but not on the boundary. But if f is nice enough,

it might be possible to take limits as we tend toward the boundary along the radial lines. We will

see which of the spaces ℓp,α are sufficiently nice that all of the members have radial limits.

Let f be analytic on D. We say that f has radial limits a.e. on T if

f (eiθ ) := lim
r→1−

f (reiθ )

exists for almost every θ ∈ [0,2π) in the sense of Lebesgue measure. If this occurs, we may then

speak of the boundary function f (eiθ ) that is associated with the analytic function f (z). It will be

our convention to use the same letter to denote the boundary function. The main theorem of this

section identifies the parameter values (p,α) for which all members of ℓp,α have radial limits a.e.

on T. Again, we see that this occurs when p is small and α is large, in some combination.

Later, in Chapter 8, we examine the radial limit functions for their smoothness properties.

Theorem 6.1. Let 0 < p < ∞ and α ∈ R. Every element of ℓp,α has radial limits a.e. on T if and

only if

0 < p < 2 and α ≥ 0; or (17)

2 ≤ p < ∞ and α > (p−2)/2. (18)

Proof. Sufficiency follows from Theorem 4.1, as either condition (17) or (18) implies that ℓp,α ⊆

ℓ2,0 = H2.
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Necessity will be obtained through a set of lemmas below.

Every element of ℓp,α has radial limits a.e. on T if and only if the point (p,α) lies in the shaded

region of FIGURE 2. Yet again, the observation from Remark 2.1 is born out: The functions of ℓpα

have radial limits precisely when(p,α) lies sufficiently high and to the left in the parameter space.

1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

p

α

Figure 2. All members of ℓp,α have radial limits a.e. exactly when (p,α) lies in the shaded

region.

In the diagram, if the pair (p,α) belongs to the shaded region, then all of the members have radial

limits almost everywhere on the boundary. Notice that this happens for pairs that are sufficiently

far up and to the left, as previously expected.

The forthcoming counterexamples rely on a theorem of Littlewood. Here is a version of it that

suits our purpose (see, for instance, [6, Proposition 6.5.2]).
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Theorem 6.2. Let (a0,a1,a2, . . .) be a sequence of complex numbers such that

limsup
k→∞

|ak|1/k = 1 and
∞

∑
k=0

|ak|2 = ∞.

Then there are infinitely many choices of sign εk =±1, k ≥ 0, such that the function

f (z) =
∞

∑
k=0

εkakzk

fails to have radial limits almost everywhere on T.

Lemma 6.1. Let 2 ≤ p < ∞, and α < (p−2)/2. There exist functions f ∈ ℓp,α such that f fails to

have radial limits a.e. on T.

Proof. Let fk = (k+1)−1/2. Then the hypotheses of Theorem 6.2 are met, and so f fails to have

radial limits a.e. In addition,

∥ f∥p
p,α =

∞

∑
k=0

∣∣∣ 1
(k+1)1/2

∣∣∣p(k+1)α =
∞

∑
k=0

1
(k+1)(p/2)−α

.

The series converges, since the hypothesis α < (p−2)/2 implies that 1 < (p/2)−α , which places

f in ℓp,α .

Lemma 6.2. Let 2 < p < ∞, and α = (p−2)/2. There exist functions f ∈ ℓp,α such that f fails to

have radial limits a.e. on T.

Proof. Let fk = (k+ 1)−1/2[log(k+ 2)]−1/2. Again, the hypotheses of Theorem 6.2 are met, and
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so f fails to have radial limits a.e. Furthermore,

∥ f∥p
p,α =

∞

∑
k=0

∣∣∣ 1
(k+1)1/2[log(k+2)]1/2

∣∣∣p(k+1)α

=
∞

∑
k=0

1
(k+1)(p/2)−α [log(k+2)]p/2

=
∞

∑
k=0

1
(k+1)[log(k+2)]p/2

< ∞.

Lemma 6.3. Let 0 < p < 2 and α < 0. There exist functions f ∈ ℓp,α such that f fails to have

radial limits a.e. on T.

Proof. Let N be a positive integer such that Nα <−1. Define

ak =


1, if k+1 = jN for some j ≥ 1;

(k+1)−1/pa, otherwise.

Then once again Theorem 6.2 applies. It remains to check that

∞

∑
k=0

|ak|p(k+1)α ≤
∞

∑
j=0

|1|p jαN +
∞

∑
k=0

1
(k+1)

(k+1)α

=
∞

∑
j=0

1
j|α|N +

∞

∑
k=0

1
(k+1)1+|α|

< ∞.
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CHAPTER 7

ALGEBRAS

We say that ℓp,α , viewed as a space of analytic functions, is an algebra if it is closed under

multiplication (in addition to being a vector space). It has long been established that ℓp = ℓp,0

is an algebra when 0 < p ≤ 1 (for an exposition, see [6, Section 6.6]). Here our main theorem

characterizes those pairs (p,α) for which ℓp,α is an algebra. In such cases, multiplication satisfies

a norm inequality

∥ f g∥p,α ≤ c∥ f∥p,α∥g∥p,α

for some constant c depending only on p and α . Its proof relies on a set of lemmas that complete

the chapter.

Knowing which of the spaces ℓp,α are algebras will inform our work in Section 9 on multipliers.

Theorem 7.1. Let 0 < p < ∞ and α ∈ R. The space ℓp,α is an algebra if and only if

0 < p ≤ 1, and α ≥ 0; or (19)

1 < p < ∞, and α > p−1. (20)

If α ≥ 0, then ℓ1,α is a Banach algebra; if (20) holds, then ℓp,α is a Banach algebra.

The pairs (p,α) for which ℓp,α is an algebra lie in the shaded region of FIGURE 3. Yet again,

we see that the property of being an algebra favors the parameter pairs (p,α) that are higher and

toward the left of the half plane.
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1 2 3 4 5

−1

0

1

2

3

4

5

p

α

Figure 3. ℓp,α is an algebra exactly when (p,α) lies in the shaded region.

Lemma 7.1. Let 0 < p ≤ 1. If α ≥ 0, then ℓp,α is an algebra. Moreover, ℓ1,α is a Banach algebra.

Proof. Let f and g be members of ℓp,α . Then by (4), we have

∥ f g∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

fkgn−k

∣∣∣p(n+1)α

=
∞

∑
n=0

n

∑
k=0

| fk|p|gn−k|p(n+1)α

=
∞

∑
n=0

n

∑
k=0

| fk|p(k+1)α |gn−k|p(n− k+1)α (n+1)α

(k+1)α(n− k+1)α

≤ ∥ f∥p
p,α∥g∥p

p,α · sup
0≤k≤n

(n+1)α

(k+1)α(n− k+1)α
. (21)

By elementary calculus, the function Φ(x) := (x+1)(n− x+1) on the interval [0,n] is critical

at x = 0, x = n/2 and x = n, with its minimum occurring at the endpoints 0 and n. Thus, with

α ≥ 0, the supremum in (21) is uniformly bounded by 1 for all k and n. In particular, we see that

ℓ1,α is a Banach algebra.
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This proves sufficiency of condition (19). Note that when 0 < p < 1 and α ≥ 0, ℓp,α is not a

Banach algebra in the strict sense (it is not a Banach space), but multiplication is bounded in norm

by a constant: ∥ f g∥p,α ≤ c∥ f∥p,α∥g∥p,α .

The next lemma handles sufficiency of the condition (20). The method used here was pre-

viously described in [27]. Here and elsewhere we adopt a typical convention: within a chain of

estimates, the letter C will denote an evolving constant, the precise value of which is not important

for the conclusion.

Lemma 7.2. Let 1 < p < ∞. If α > p−1, then ℓp,α is a Banach algebra.

Proof. Let f and g belong to ℓp,α . Then with 1/p+1/q = 1, Hölder’s inequality says

∥ f g∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

fkgn−k

∣∣∣p(n+1)α

=
∞

∑
n=0

∣∣∣ n

∑
k=0

fk(k+1)α/pgn−k(n− k+1)α/p
[ (n+1)
(k+1)(n− k+1)

]α/p∣∣∣p
≤

∞

∑
n=0

{ n

∑
k=0

| fk|p(k+1)α |gn−k|p(n− k+1)α

}p/p{ n

∑
j=0

[ (n+1)
(k+1)(n− k+1)

]αq/p}p/q

≤
∞

∑
n=0

{ ∞

∑
k=0

| fk|p(k+1)α |gn|p(n+1)α

}
· sup

N≥0

{ N

∑
j=0

[ (N +1)
(k+1)(N − k+1)

]αq/p}p/q

= ∥ f∥p
p,α∥g∥p

p,α · sup
N≥0

{ N

∑
j=0

[ (N +1)
(k+1)(N − k+1)

]αq/p}p/q
. (22)

Thus we are done if the supremum in (22) is finite.

Write s := αq/p. The sum in (22) is comparable to the integral

∫ x=N

x=1

[ N +1
x(N +1− x)

]s
dx =

∫ x=N

x=1

[1
x
+

1
N +1− x

]s
dx

≤C
∫ x=N

x=1

[ 1
xs +

1
(N +1− x)s

]
dx

≤ 2C
s−1

[
1− 1

Ns−1

]
.
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This is bounded if s > 1. This shows that ℓp,α is a Banach algebra if αq/p > 1, or equivalently,

α > p−1.

In fact, under the conditions of Lemma 7.2, the elements of ℓp,α have absolutely summable

coefficients.

Proposition 7.1. If 1 < p < ∞, and α > p−1, then ℓp,α is boundedly contained in ℓ1.

Proof. Let f ∈ ℓp,α and 1/p+1/q = 1. Then

∞

∑
k=0

| fk|=
∞

∑
k=0

| fk|(k+1)α/p(k+1)−α/p

≤
( ∞

∑
k=0

| fk|p(k+1)α

)1/p( ∞

∑
k=0

1
(k+1)αq/p

)1/q

= ∥ f∥p
p,α

( ∞

∑
k=0

1
(k+1)α/(p−1)

)1/q
.

The second factor converges since α/(p−1)> 1. It serves as a bound for the inclusion mapping

of ℓp,α into ℓ1.

It remains to prove the necessity implication of Theorem 7.1. This will be accomplished by

different methods, depending on the region of the parameter space.

Lemma 7.3. Let 1 < p < ∞. If 0 ≤ α < p−1, then ℓp,α is not an algebra.

Proof. Since α < p−1, we have

α +1
p

=
2α +2

2p
<

p−1+α +2
2p

=
p+α +1

2p
.

Choose

β :=
p+α +1

2p
,
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and define f via the coefficients

fk =
1

(k+1)β
, k ≥ 0.

Then

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α =
∞

∑
k=0

1
(k+1)β p−α

< ∞,

since β p−α > 1. We may conclude that f ∈ ℓp,α .

On the other hand, crude estimates yield

∥ f 2∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

fk fn−k

∣∣∣p(n+1)α

=
∞

∑
n=0

∣∣∣ n

∑
k=0

1
(k+1)β (n− k+1)β

∣∣∣p(n+1)α

≥
∞

∑
n=0

[
(n+1) · 1

(n/2)2β

]p
(n+1)α

≥C
∞

∑
n=0

1
(n+1)2β p−p−α

=C
∞

∑
n=0

1
(n+1)

= ∞.

That is, f 2 fails to belong to ℓp,α , which therefore fails to be an algebra.

To extend the necessity result to the case α < 0, we need the following general fact about

Banach algebras.

Proposition 7.2. If X is a Banach algebra of analytic functions on D such that point evaluation

at any point of D is bounded, then X consists of bounded functions.

Proof. Let f ∈ X . For any positive integer n, and any w ∈ D,

| f (w)|n = |Λw( f n)| ≤ ∥Λw∥∥ f n∥X ≤ ∥Λw∥∥ f∥n
X .
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Hence | f (w)| ≤ ∥Λw∥1/n∥ f∥X . Take n → ∞ to complete the verification.

Proposition 7.3. If 0 < p < ∞, and α < 0, then ℓp,α contains unbounded functions.

Proof. For all indices k, define

fk =


2 j|α|/p, if k = 3 j for some j ≥ 1;

0, otherwise.

Then

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α =
∞

∑
j=1

(2 j|α|/p)p(3 j +1)α ≤
∞

∑
j=1

(2
3

) j|α|
< ∞.

Next, for 0 < r < 1,

f (r) =
∞

∑
k=0

fkrk =
∞

∑
j=1

2 j|α|/pr3 j
.

This is unbounded as r increases to 1.

Here is an immediate consequence.

Lemma 7.4. If 1 ≤ p < ∞, and α < 0, then ℓp,α fails to be an algebra.

Next, we handle the critical line on which α = p−1.

Lemma 7.5. If 1 < p < ∞, then ℓp,p−1 fails to be an algebra.

Proof. Let γ = (p+1)/p and consider f determined by the coefficients

fk =
1

(k+1)[log(k+2)]γ
.
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Then

∥ f∥p
p,p−1 =

∞

∑
k=0

| fk|p(k+1)p−1

=
∞

∑
k=0

(k+1)p−1

[log(k+2)]γ p(k+1)p

=
∞

∑
k=0

1
[log(k+2)]γ p(k+1)

.

Since γ p = (p+1)/2 > 1, the series converges, and we have f ∈ ℓp,p−1.

On the other hand, routine estimates yield

∥ f 2∥p
p,p−1 =

∞

∑
n=0

∣∣∣ n

∑
k=0

fk fn−k

∣∣∣p(n+1)p−1

≥ ∑
n∈2N

∣∣∣2 n/2

∑
k=0

fk fn−k

∣∣∣p(n+1)p−1

= ∑
n∈2N

∣∣∣2 n/2

∑
k=0

1
(k+1)[log(k+2)]γ(n− k+1)[log(n− k+2)]γ

∣∣∣p(n+1)p−1

≥ ∑
n∈2N

[
2

1
(1+n/2)p[log(2+n/2)]γ p

( n/2

∑
k=0

1
(k+1)[log(k+2)]γ

)p
]
(n+1)p−1

≥C ∑
n∈2N

1
np[log(n+2)]γ p

(∫ n/2

x=1

dx
x[log(x+1)]γ

)p
(n+1)p−1

=C ∑
n∈2N

1
np[log(n+2)]γ p

( 1
1− γ

[logn]1−γ

)p
(n+1)p−1 (23)

=C ∑
n∈2N

1
n logn

= ∞,

where in the step (23) we use γ p− (p− γ p) = 2γ p− p = 1.

It remains to treat the case that (p,α) lies in the strip 0 < p < 1, α < 0.

Lemma 7.6. Let 0 < p < 1. If α < 0, then ℓp,α fails to be an algebra.
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Proof. As before we exhibit a function that lies in ℓp,α whose square does not. Let N ≥ 2 be an

integer such that N|α|> 1. Suppose that 0 ≤ t < 1, and define

β = t
N|α|−1

p
.

With that, take f to have the coefficients

fk =


jβ , if k = jN for some j ≥ 1;

0, otherwise.

Then

∥ f∥p
p,α =

∞

∑
k=0

| fk|p(k+1)α =
∞

∑
j=1

jβ p( jN +1)α < ∞,

since αN +β p <−1. This confirms that f ∈ ℓp,α .

Next, since 0 < p < 1, N ≥ 2 and α < 0, we have

∥ f 2∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
m=0

fm fn−m

∣∣∣p(n+1)α

=
∞

∑
n=0

∣∣∣ n

∑
m=0

fm fn−m(n+1)α/p
∣∣∣p

≥
( ∞

∑
n=0

[ n

∑
m=0

fm fn−m(n+1)α/p
])p

≥
( ∞

∑
j=1

∞

∑
k=0

jβ kβ ( jN + kN)α/p
)p

≥
( ∞

∑
j=1

∞

∑
k=0

jβ kβ ( j2 + k2)Nα/2p
)p

≥C
(∫ ∞

1

∫
∞

1

xβ yβ

(x2 + y2)N|α/2p
dxdy

)p

≥C
(∫ ∞

1

∫
π/2

0

r2β [cosθ ]β [sinθ ]β

rN|α|/p
r dr dθ

)p

≥C
(∫ ∞

1

dr
r(N|α|/p)−2β−1

)p
. (24)
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There are now two cases. First, if p = 1/2, then we choose t = 1/2, so that

β =
N|α|−1

2p
.

We then have

N|α|
p

−2β −1 =
N|α|

p
−2

N|α|−1
2p

−1

= 1.

Hence the integral diverges in (24), and it follows f 2 /∈ ℓp,α .

In the second case, p ̸= 1/2. Consider the family of lines

y =
2

N(2t −1)
x− 2t

N(2t −1)
(25)

in the x,y-plane, with t varying from 0 to 1/2, and from 1/2 to 1. Their slopes range from −∞ to

−2/N, and then from 2/N to ∞. Each of these lines passes through the point (1/2,−1/N). Thus,

if 0 < p < 1, p ̸= 1/2, and α < 0, we can find an integer N ≥ 2 with N|α| > 1 (as previously

required), and a value of t so that the point (p,α) lies on the line (25).

Consequently, for this particular t,

α =
2

N(2t −1)
p− 2t

N(2t −1)

N|α|(2t −1) =−2p+2t

N|α|
p

= 2+2
(

t
N|α|−1

p

)
N|α|

p
= 2+2β

N|α|
p

−2β −1 = 1.

Once again, the integral diverges in (24).
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CHAPTER 8

SMOOTHNESS

In the special case that f has radial limits a.e., it may happen that the boundary limit function

f (eiθ ) enjoys certain smoothness properties. Here we show that for some parameter values, the

members of ℓp,α are nearly characterized by a sort of mean-square Lipschitz condition on their

boundary limit function. This is used to identify another family of Banach algebras at the end of

the section.

To prove the main smoothness results, we borrow some methods and ideas from [4], which

trace further back to [3]. Accordingly, the smoothness classes of functions that arise here have

some independent interest.

If f (z) = ∑
∞
k=0 akzk is a power series, define

∥ f∥′p,α :=
(
|a0|p +

∞

∑
n=0

2nα
2n+1−1

∑
k=2n

|ak|p
)1/p

.

This breaks the infinite series into blocks of length 2n, and adds a weight 2nα to each block. It

turns out that the resulting norm is (topologically) equivalent to the norm on ℓp,α .

Proposition 8.1. If 0 < p < ∞ and α ∈ R, then ∥ · ∥′p,α is equivalent to ∥ · ∥p,α .

Proof. Let (a0,a1,a2, . . .) be a complex sequence. Then for 0 < p < ∞ and α ≥ 0,

∞

∑
k=0

|ak|p(k+1)α = |a0|p +
∞

∑
n=0

2n+1−1

∑
k=2n

|ak|p(k+1)α

≥ |a0|p +
∞

∑
n=0

2nα
2n+1−1

∑
k=2n

|ak|p.
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Similarly,

∞

∑
k=0

|ak|p(k+1)α ≤ |a0|p +
∞

∑
n=0

2[n+1]α
2n+1−1

∑
k=2n

|ak|p

≤ 2α

(
|a0|p +

∞

∑
n=0

2nα
2n+1−1

∑
k=2n

|ak|p
)
.

The inequalities reverse when α < 0, and again we obtain the claimed equivalence.

We use the alternate norm to derive smoothness conditions associated with ℓp,α . Let us express

the differentiation operator D and the difference operator ∆t on the analytic polynomials by

Deikθ = ikeikθ

∆teikθ = eik(θ+t)− eikθ

and extending linearly. Thus D is the differentiation operator on square-integrable functions on the

unit circle; ∆t is the first-order difference operator with increment t.

The following theorem asserts that if an analytic function in the disk is sufficiently smooth on

the boundary circle, then it belongs to ℓp,α .

Theorem 8.1. Let 1 < p ≤ 2 and α > 0. Choose b ∈ (0,1], and integers M and N such that

0 ≤ M < M+b < M+N, and

α < (M+b+ 1
2)p−1.

If for some c > 0, the function f (eiθ ) = ∑
∞
k=0 akeikθ ∈ H2 satisfies the smoothness condition

∫ 2π

0

∣∣∆N
t (D

M f )(eiθ )
∣∣2 dθ

2π
< c|t|2b, −π ≤ t ≤ π, (26)

then f ∈ ℓp,α .
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To make sense of the condition (26), consider the special case M = 0 and N = 1. Then the

condition is ∫ 2π

0

∣∣∣ f (ei(θ+t))− f (eiθ )
∣∣∣2 dθ

2π
< c|t|2b;

This says that f satisfies a mean-square Lipschitz condition with parameter b. The general case

merely says that f is even nicer.

Proof. Parseval’s identity says that condition (26) can be expressed as

∞

∑
k=0

|eikt −1|2Nk2M|ak|2 ≤ c|t|2b. (27)

We will also need the elementary inequality

2
π
≤
∣∣∣eix −1

x

∣∣∣, 0 < x ≤ π. (28)

Fix a non-negative integer n, and put t = 2−(n+1). For k satisfying 2n < k ≤ 2n+1, we have 0 < kt <

1, and hence (28) holds with x = kt. Utilizing this with (27), we find that for any u > 0 we have

2n+1−1

∑
k=2n+1

ku|ak|2 ≤
2n+1−1

∑
k=2n+1

ku−2Mk2M
(

π

2

)2N∣∣∣eikt −1
kt

∣∣∣2N
|ak|2

≤
(

π

2

)2N 2|u−2M|2n(u−2M)

(2n +1)2N |t|2N

2n+1−1

∑
k=2n+1

k2M|eikt −1|2N |ak|2

≤ c
(

π

2

)2N 2|u−2M|2n(u−2M)|t|2b

(2n +1)2N |t|2N

= c
(

π

2

)2N 2|u−2M|2n(u−2M)22(n+1)(N−b)

(2n +1)2N .

(Note: the factor 2|u−2M| appears in order to manage the possibility that u−2M is negative.) This

expression is summable over n, provided that

u−2M+2(N −b)−2N < 0, or u < 2(M+b).
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That is, we have shown that the condition 0 < u < 2(M+b) implies that

∞

∑
k=2

ku|ak|2 =
∞

∑
n=0

( 2n+1−1

∑
k=2n+1

ku|ak|2
)
< ∞. (29)

Next, we observe that if 1 < p < 2, the parameters 2/p and 2/(2− p) constitute a pair of

conjugate exponents. Hölder’s inequality then enables us to estimate as follows for any v > 0.

∞

∑
k=0

|ak|p(k+1)α =
∞

∑
k=0

|ak|p(k+1)α(k+1)vp/2 · 1
(k+1)vp/2

≤

(
∞

∑
k=0

|ak|2(k+1)v+(2α/p)

)p/2(
∞

∑
k=0

(k+1)−vp/(2−p)

)(2−p)/2

. (30)

The second factor is finite if vp/(2− p)> 1.

According to the calculation leading up to (29), the first factor in (30) is bounded provided that

u =
2α

p
+ v < 2(M+b).

By hypothesis, the condition α < (M+b+ 1
2)p−1 holds, which is equivalent to

2α

p
+

2
p
−1 < 2(M+b).

Thus we can select

v =
2
p
−1+ ε

for some ε > 0 sufficiently small, ensuring that the first factor in (30) is bounded.

With this selection, we also have

vp
2− p

=
2− p+ ε p

2− p
> 1,

and hence the second factor in (30) is also bounded.

If p = 2, then we can take u = α , and the condition α < 2(M+b) = 2(M+b+ 1
2)−1 suffices,

as claimed.
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A reverse containment is possible when 2 ≤ p < ∞.

Theorem 8.2. Let 2 ≤ p < ∞, and let b ∈ (0,1]. Choose integers M and N such that

0 ≤ M < M+b < M+N.

If f ∈ ℓp,α with α > p(M + b+ 1
2)− 1, or if f ∈ ℓ2,α with α ≥ 2(M + b), then f has boundary

values almost everywhere satisfying the smoothness condition

∫ 2π

0

∣∣∆N
t (D

M f )(eiθ )
∣∣2 dθ

2π
≤ c|t|2b

for some c > 0.

Proof. By hypothesis,

α = p(M+b)+
p−2

2
+

ε p
2

for some ε > 0.

In case 2< p<∞, the parameters 2/p and −2/(p−2) constitute a pair of conjugate exponents,

the second being negative. The Reverse Hölder’s Inequality [6, Proposition 1.4.11] then applies as

follows for v = ε +(p−2)/p > 0.

∞

∑
k=0

|ak|p(k+1)α =
∞

∑
k=0

|ak|p(k+1)α(k+1)−vp/2 · 1
(k+1)−vp/2

≥

(
∞

∑
k=0

|ak|2(k+1)(2α/p)−v

)p/2(
∞

∑
k=0

(k+1)−vp/(p−2)

)−(p−2)/2

.

The second factor is nonzero (i.e., the series converges) since vp/(p− 2) > 1. Consequently the

first factor is finite. Since the quantity (2α/p)− v is positive, the coefficients ak must be square-

summable by comparison; this confirms that f has boundary values almost everywhere.
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Suppose that s and n are non-negative integers, u = 2(M + b) > 0, and 2−(s+1) < |t| ≤ 2−s.

Notice that

u = 2(M+b) =
2α

p
− v.

For any n ≤ s we have

2n+1−1

∑
k=2n

ku|ak|2 =
2n+1−1

∑
k=2n

ku(k|t|)−2N(k|t|)2Nk−2Mk2M|ak|2

=
2n+1−1

∑
k=2n

ku−2M−2N |t|−2N(k|t|)2Nk2M|ak|2

≥
2n+1−1

∑
k=2n

ku−2M−2N |t|−2N |eikt −1|2Nk2M|ak|2.

In the last step we used the fact that |eix −1| ≤ |x| for any real x, in particular x = k|t|. Taking into

account that u−2M−2N = 2(b−N)< 0, we may continue the estimates with

≥ 2(n+1)(u−2M−2N)|t|−2N
2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2

≥ 2(s+1)(u−2M−2N)|t|−2N
2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2

≥ 2(u−2M−2N)|t|−2N−(u−2M−2N)
2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2,

which gives
2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2 ≤ 22M+2N−u|t|u−2M
2n+1−1

∑
k=2n

ku|ak|2. (31)

For n > s the estimate is similar, except that we use the crude bound |eikt −1| ≤ 2. The result is

2n+1−1

∑
k=2n

ku|ak|2 =
2n+1−1

∑
k=2n

ku2−2N22Nk−2Mk2M|ak|2

≥
2n+1−1

∑
k=2n

ku−2M2−2N |eikt −1|2Nk2M|ak|2

≥ (2n)u−2M2−2N
2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2.
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Considering that u−2M > 0, this tells us that

2n+1−1

∑
k=2n

|eikt −1|2Nk2M|ak|2 ≤ 22N
( 1

2n

)u−2M 2n+1−1

∑
k=2n

ku|ak|2

≤ 22N2u−2M|t|u−2M
2n+1−1

∑
k=2n

ku|ak|2. (32)

It follows from (31) and (32) that, by summing over n ≥ 0, we can find a constant c > 0 such

that
∞

∑
k=1

|eikt −1|2Nk2M|ak|2 ≤ c|t|u−2M = c|t|2b. (33)

That is, f satisfies the claimed smoothness condition.

If p = 2, then there is no need to introduce v, and the calculations go through using u = α ≥

2(M+b).

Near converses of the above two results also hold.

Theorem 8.3. Let 1 < p ≤ 2, and let b ∈ (0,1]. Choose integers M and N such that

0 ≤ M < M+b < M+N.

If f ∈ ℓp,α , with α ≥ p(M+b), then f satisfies the smoothness condition

∫ 2π

0

∣∣∆N
t (D

M f )(eiθ )
∣∣2 dθ

2π
≤ c|t|2b

for some c > 0.

Proof. We begin with the norm inequality(
∞

∑
k=0

|ak|p(k+1)α

)1/p

≥

(
∞

∑
k=0

|ak|2(k+1)2α/p

)1/2

.



45

Next, apply the calculation leading to (33), except that u = 2α/p. It remains to check that with

this choice of u, the smoothness condition requires that

2b ≤ u−2M =
2α

p
−2M, or

α ≥ (M+b)p,

as claimed.

Theorem 8.4. Let 2 ≤ p < ∞ and α > 0. Choose b ∈ (0,1], and integers M and N such that

0 ≤ M < M+b < M+N, and

α ≤ p(M+b).

If for some c > 0, the function f (eiθ ) = ∑
∞
k=0 akeikθ ∈ H2 satisfies the smoothness condition

∫ 2π

0

∣∣∆N
t (D

M f )(eiθ )
∣∣2 dθ

2π
< c|t|2b, −π ≤ t ≤ π, (34)

then f ∈ ℓp,α .

Proof. Again, by the basic norm inequality (4) we have(
∞

∑
k=0

|ak|p(k+1)α

)1/p

≤

(
∞

∑
k=0

|ak|2(k+1)2α/p

)1/2

.

The calculation preceding (29) remains applicable, with the identification u = 2α/p. Thus the

criterion for the (29) to hold in the present case is

2α

p
≤ 2(M+b), or

α ≤ p(M+b).
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Remark 8.1. We can see from Theorems 8.2 and 8.3 that if the pair (p,α) satisfies

α > 0, 1 < p ≤ 2; or

α >
p−2

2
, 2 ≤ p < ∞,

then every f ∈ ℓp,α satisfies some smoothness condition of the form (26). This collection of pairs

very nearly coincides with the parameter set for which members of ℓp,α have radial limits, the latter

differing by the inclusion of the line segment {(p,α) : α = 0, 0 < p ≤ 2}.

When p = 2 there is an exact smoothness criterion for membership in ℓp,α .

Corollary 8.1. Let b ∈ (0,1], let M and N be integers such that

0 ≤ M < M+b < M+N,

and let α = 2(M+b). There exists c> 0 such that the function f (eiθ )∈H2 satisfies the smoothness

condition ∫ 2π

0

∣∣∆N
t (D

M f )(eiθ )
∣∣2 dθ

2π
< c|t|2b, −π ≤ t ≤ π, (35)

if and only if f ∈ ℓp,α .

In addition, we get a basket of equivalent norms for ℓ2,α . Here ∥ ·∥H2 is the norm on the Hardy

space H2.

Corollary 8.2. Let b ∈ (0,1], let M and N be integers such that

0 ≤ M < M+b < M+N,

and let α = 2(M+b). Then the norm given by

∥ f∥[b,M,N] = ∥ f∥H2 + sup
0<|t|≤π

∥∆N
t DM f∥H2

|t|b
,

is equivalent to ∥ · ∥2,α .
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Having a set of equivalent norms on a space is extremely useful. For example, the equivalent

norm enables us to identify another family of Banach algebras.

Corollary 8.3. If α > 0, then ℓ2,α ∩H∞ is a Banach algebra under the norm

∥ f∥ℓ2,α∩H∞ := ∥ f∥2,α +∥ f∥H∞.

Proof. When α > 1, Theorem 7.1 and Proposition 7.1 tell us that ℓp,α ∩H∞ = ℓp,α is a Banach

algebra. If 0 < α ≤ 1, choose M = 0, N = 1 and b = α/2. Then for any f , g ∈ ℓ2,α ∩H∞, we have

∥∆t( f g)∥2
H2 ≤ 2

(
∥ f ∆tg∥2

H2 +∥g∆t f∥H2
)

≤ 2
(
∥ f∥2

H∞∥∆tg∥H222 +∥g∥2
H∞∥∆t f∥2

H2

)
≤ c|t|2b

for some constant c. In addition, ∥ f g∥H2 ≤ ∥ f∥H2∥g∥H∞ < ∞. We may thus conclude that

∥ f g∥[α/2,0,1] < ∞, and hence f g ∈ ℓ2,α .

This extends [11, Theorem 1.3.2], in which the α = 1 case is handled.
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CHAPTER 9

MULTIPLIERS

The investigation of any function space must include an examination of the operators on that

space, particularly those that emerge in an organic way. Multipliers constitute such a class of

operators, and we conclude this project by studying the multipliers on ℓp,α .

Let 0 < p < ∞ and α ∈ R. An analytic function h on D is a multiplier on ℓp,α if h f ∈ ℓp,α for

all f ∈ ℓp,α . By the Closed Graph Theorem (i.e., a generalized version applicable to functions in a

complete metric space), the mapping

Mh : f 7−→ h f

is bounded and continuous (it is obviously linear). The set Mp,α of multipliers on ℓp,α is a vector

space. To each h ∈ Mp,α we associate the norm

∥h∥Mp,α = ∥Mh∥ := sup
f ̸=0

∥h f∥p,α

∥ f∥p,α
,

recognizing that when 0 < p < 1, ∥ · ∥Mp,α is not an operator norm in the strict sense.

We shall lay out some basic properties of multipliers, then relate the operator norm of a mul-

tiplier to the behavior of its coefficients. Next, we describe the multipliers that exhibit a certain

extremal property. The chapter concludes with a version of the Schur Test, which is used to extract

a family of examples of multipliers. These results extend some of the material in [5], which sur-

veys multipliers on ℓp = ℓp,0.

This paper treats only function multipliers. There are multipliers of other senses throughout

the literature. See, for example, [6, page 92] and [8, Section 6.4].
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We begin by establishing some basic properties of multipliers.

Proposition 9.1. If 0 < p < ∞, and α ∈ R, then Mp,α ⊆ ℓp,α .

Proof. Since 1 ∈ ℓp,α , we have h = h1 ∈ ℓp,α .

Proposition 9.2. If 0 < p < ∞, and α ∈ R, then the elements of Mp,α are bounded functions.

Proof. Let h ∈ Mp,α and w ∈ D. Then for every n ≥ 1

|h(w)|n = |Λw(Mn
h1)|

≤ ∥Λw∥ · ∥Mh∥n · ∥1∥p,α

|h(w)| ≤ ∥Λw∥1/n · ∥Mh∥ · ∥1∥1/n
p,α .

Take n −→ ∞ to complete the proof.

The difference quotients turn out to be bounded linear mappings on the multiplier space.

Proposition 9.3. Let 0 < p < ∞, and α ∈ R. If w ∈ D, and h ∈ Mp,α , then Qwh ∈ Mp,α , and

∥Qwh∥Mp,α ≤
(
∥Qw∥p∥Mh∥p +∥Λw∥p∥h∥p

p,α∥Qw∥p)1/p
, 0 < p < 1;

∥Qwh∥Mp,α ≤ ∥Qw∥ · ∥Mh∥+∥Λw∥ · ∥h∥p,α∥Qw∥, 1 ≤ p < ∞.

Proof. If f ∈ ℓp,α , then

(Qwh) f =
h(z)−h(w)

z−w
f (z)

=
h(z) f (z)−h(w) f (z)

z−w

=
h(z) f (z)−h(w) f (w)

z−w
+

h(w) f (w)−h(w) f (z)
z−w

= Qw(h f )−h(w)Qw f

∈ ℓp,α .
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The norm bounds can be derived from this by inspection. Linearity is evident.

Proposition 9.4. If 1 ≤ p < ∞, and α ∈ R, then Mp,α is closed in the operator norm.

Proof. Let h(1),h(2),h(3), . . . be a Cauchy sequence in Mp,α . Since the space of operators on ℓp,α

is closed, we know that h(k) converges in operator norm to some operator T . It follows that h(k)1

converges to T 1 in ℓp,α . Let h := T 1. Then h(k) f −→ T f in ℓp,α , while at the same time h(k) f

converges uniformly to h f on compact subsets of D. This forces T f = h f , and we conclude that

the Cauchy sequence converges to an element of Mp,α .

A similar result could be fashioned when 0 < p < 1, with care taken to identify a metric on the

multipliers on ℓp,α .

In some cases it is possible to describe the multiplier space completely. For example, it is well

known that M2,0 = H∞ (see [6, Proposition 12.2.6] for an exposition). For some pairs (p,α), the

multiplier space Mp,α coincides with ℓp,α .

Proposition 9.5. If

0 < p ≤ 1, and α ≥ 0; or

1 < p < ∞, and α > p−1,

then Mp,α = ℓp,α .

Proof. This follows immediately from Theorem 7.1, which states that ℓp,α is an algebra un-

der the identified conditions, with multiplication being norm bounded in the sense ∥ f g∥p,α ≤

c∥ f∥p,α∥g∥p,α .

Here is another case in which the multiplier space for ℓp,α is completely known.
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Proposition 9.6. If 0 < p ≤ 1, and α < 0, then Mp,α = ℓp = ℓp,0, with equal norms.

Proof. Let f ∈ ℓp,α and h ∈ Mp,α . Then

∥h f∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

hn−k fk

∣∣∣p(n+1)α

≤
∞

∑
n=0

n

∑
k=0

|hn−k|p| fk|p(n+1)α

=
∞

∑
n=0

n

∑
k=0

|hn−k|p
(k+1

n+1

)|α|
| fk|p(k+1)α

≤
∞

∑
n=0

n

∑
k=0

|hn−k|p ·1 · | fk|p(k+1)α

= ∥h∥p
p,0∥ f∥p

p,α .

Conversely, for every n ≥ 1 we have

∥hzN∥p
p,α =

∥∥∥ ∞

∑
k=0

hkzk+N
∥∥∥p

p,α
=

∞

∑
k=0

|hk|k(k+N +1)α ≤ ∥Mh∥p · ∥zN∥p
p,α = ∥Mh∥p(N +1)α .

From this we we find that
∞

∑
k=0

|hk|p
( N +1

k+N +1

)|α|
≤ ∥Mh∥p

for all N. Take N → ∞ to conclude that

( ∞

∑
k=0

|hk|p
)1/p

≤ ∥Mh∥.

Thus equality is forced, and we conclude ∥h∥p,0 = ∥Mh∥.

In Corollary 8.3 we saw that ℓ2,α ∩H∞ is a Banach algebra when 0 < α < 1. It is natural to

wonder whether ℓ2,α ∩H∞ coincides with the multiplier space for ℓ2,α . The following example

shows that it does not, however.

Proposition 9.7. Let 0 < α ≤ 1. There exists h ∈ ℓ2,α ∩H∞ such that h /∈ M2,α .
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Proof. For α = 1, this was proved as [11, Theorem 5.1.6].

Assume that 0 < α < 1. Let nk = 22k
, k ≥ 0, and define

hm =
1

k2nα
k
, nα

k−1 ≤ m < nα
k

for all k ≥ 1.

Thus
∞

∑
k=2

hm =
∞

∑
k=1

(
∑

nα
k−1≤m<nα

k

hm

)
≤

∞

∑
k=1

(nα
k −nα

k−1)
1

k2nα
k
<

∞

∑
k=1

1
k2 < ∞.

This shows that h ∈ H∞.

Next,

∞

∑
m=2

h2
mmα =

∞

∑
k=1

(
∑

nα
k−1≤m<nα

k

h2
mmα

)
≤

∞

∑
k=1

(nα
k −nα

k−1)
nα

k

k4n2α
k

≤
∞

∑
k=1

1
k4 < ∞,

showing that h ∈ ℓ2,α as well.

Continuing, suppose that fk = 1/(k[logk]3/4) for all k ≥ 2. Then f ∈ ℓ2,α , since

∞

∑
k=2

f 2
k kα =

∞

∑
k=2

kα

k2(logk)3/2 < ∞.

Finally, for some constant C > 0, and n ≥ 5,

n−2

∑
j=2

f j ≥
∫ n−2

1

1
x(logx)3/4 dx ≥C(logn)1/4.
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Consequently

∥h f∥2
2,α ≥

∞

∑
n=5

∣∣∣n−2

∑
j=2

hn− j f j

∣∣∣2(n+1)α

≥
∞

∑
n=5

h2
n(n+1)α

(n−2

∑
j=2

f j

)2

≥
∞

∑
n=5

h2
n(n+1)αC2(logn)1/2

≥C2
∞

∑
k=2

(
∑

nk/2≤n<nk

(n+1)α(logn)1/2h2
n

)
≥C2

∞

∑
k=2

nα
k (n

α
k /2)

2n2α
k k4

[log(22k−1
)]1/2

= ∞,

from which we see that h fails to be a multiplier on ℓ2,α .

We have pointed out some instances for which the multipliers on ℓp,α are explicitly character-

ized. In other cases, however, we can only offer partial descriptions in terms of their coefficient

growth or decay, and provide bounds for the multiplier norm. The next several results are of this

nature.

Proposition 9.8. Let 0 < p < ∞ and α ∈ R. If h ∈ Mp,α , then

∥Mh∥ ≤


(
|h0|p + |h1|p∥S∥p + |h2|p∥S2∥p + · · ·

)1/p
, 0 < p < 1;

|h0|+ |h1| · ∥S∥+ |h2| · ∥S2∥+ · · · , 1 ≤ p < ∞.

Proof. This follows immediately from

h(z) f (z) = h0 f (z)+h1S f (z)+h2S2 f (z)+ · · ·

for any f ∈ ℓp,α .
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Thus, for example, if 1 ≤ p < ∞ and α ≥ 0, then

∥Mh∥ ≤ 1α/p|h0|+2α/p|h1|+3α/p|h2|+ · · · ,

and we may conclude that ℓ1,α/p ⊆ Mp,α . Similar expressions arise in the other cases.

Proposition 9.9. Let 1 < p < ∞, 1/p+1/q = 1, and α ∈ R. If h ∈ Mp,α , then for every n ≥ 0,

|h0| ·1α + |h1| ·2α + · · ·+ |hn| · (n+1)α ≤ ∥Mh∥
(
1α +2α + · · ·+(n+1)α

)1/q (36)

and

|h0|+ |h1|+ · · ·+ |hn| ≤ ∥Mh∥
( 1

1α(q−1)
+

1
2α(q−1)

+ · · ·+ 1
(n+1)α(q−1)

)1/q
. (37)

Proof. Let

ck =


hk/|hk|, if hk ̸= 0;

0, otherwise.

For any g ∈ ℓq,α , we have

|⟨h,g⟩|= |⟨Mh1,g⟩| ≤ ∥Mh∥ · ∥1∥p,α · ∥g∥q,α .

Then (36) follows by taking

g(z) = c0 + c1z+ · · ·+ cnzn,

and (37) derives from the choice

g(z) =
c0

1α
+

c1

2α
z+ · · ·+ cn

(n+1)α
zn.
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Proposition 9.10. Let 1 < p < ∞, 1/p+1/q = 1, and α ∈ R. If h ∈ Mp,α , then for every n ≥ 0,

we have ∣∣∣∣∣h0 +
2α + · · ·+[n+1]α

1α · · ·+[n+1]α
h1 +

3α + · · ·+[n+1]α

1α + · · ·+[n+1]α
h2

+ · · ·+ [n+1]α

1α + · · ·+[n+1]α
hn

∣∣∣∣∣≤ ∥Mh∥ (38)

and

∣∣(n+1)h0 +nh1 + · · ·+1hn
∣∣≤ ∥Mh∥

(
1α +2α + · · ·+[n+1]α

)1/p

×
( 1

1α(q−1)
+

1
2α(q−1)

· · ·+ 1
[n+1]α(q−1)

)1/q
. (39)

Proof. Take

f (z) = 1+ z+ z2 + · · ·+ zn

g(z) =
1

1α
+

z
2α

+ · · ·+ zn

[n+1]α
.

Then (38) results from |⟨h f , f ⟩| ≤ ∥Mh∥ · ∥ f∥p,α∥ f∥q,α , and (39) derives from |⟨h f ,g⟩| ≤ ∥Mh∥ ·

∥ f∥p,α∥g∥q,α .

Corollary 9.1. Let 1 < p < ∞ and α ≥ 0. If h ∈ Mp,α has non-negative coefficients, then h ∈ ℓ1.

Proof. Take n −→ ∞ in (38), and invoke the monotone convergence theorem.

The next result essentially makes use of the adjoint of a multiplier.
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Proposition 9.11. Let 1 < p < ∞, 1/p+1/q = 1, and α ∈ R. If h ∈ Mp,α , then

∥Mh∥ · ∥h∥p−1
p,α

≥

{∣∣∣|h0|p
(0+1

1

)α

+ |h1|p
(1+1

1

)α

+ |h2|p
(2+1

1

)α

+ · · ·
∣∣∣q(0+1)α

+
∣∣∣|h1|p−2h1h0

(1+1
2

)α

+ |h2|p−2h2h1

(2+1
2

)α

+ |h3|p−2h3h2

(3+1
2

)α

+ · · ·
∣∣∣q(1+1)α

+
∣∣∣|h2|p−2h2h0

(2+1
3

)α

+ |h3|p−2h3h1

(3+1
3

)α

+ |h4|p−2h4h2

(4+1
3

)α

+ · · ·
∣∣∣q(2+1)α

+ · · ·

}1/q

,

(40)

where |hk|p−2hk is understood to be zero when hk = 0.

Proof. Let f ∈ ℓp,α . For any n ≥ 0,

⟨h f ,zn⟩=
n

∑
k=0

hn−k fk(n+1)α =
n

∑
k=0

hn−k fk

(n+1
k+1

)α

(k+1)α =
〈

f ,un(z)
〉
,

where

un(z) = hn

(n+1
1

)α

+hn−1

(n+1
2

)α

z+ · · ·+h0

(n+1
n+1

)α

zn.

Then for any g ∈ ℓq,α , we may write

⟨h f ,g⟩=
〈

f ,
∞

∑
k=0

gkuk(z)
〉
.

The Riesz Representation Theorem [7, Theorem 5.5] compels the expression ∑
∞
k=0 gkuk(z) to be-

long to ℓq,α , since the mapping f 7→ ⟨h f ,g⟩ is a bounded linear functional on ℓp,α with norm not

exceeding ∥Mh∥ · ∥g∥q,α .
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Consequently

∞ >
∥∥∥ ∞

∑
k=0

gkuk(z)
∥∥∥q

q,α

=
∥∥∥g0h0

(0+1
1

)α

+g1h1

(1+1
1

)α

+g1h0

(1+1
2

)α

+g2h2

(2+1
1

)α

+g2h1

(2+1
2

)α

+g2h0

(2+1
3

)α

+ · · ·
∥∥∥q

q,α

=
∣∣∣g0h0

(0+1
1

)α

+g1h1

(1+1
1

)α

+g2h2

(2+1
1

)α

+ · · ·
∣∣∣q(0+1)α

+
∣∣∣g1h0

(1+1
2

)α

+g2h1

(2+1
2

)α

+g3h2

(3+1
2

)α

+ · · ·
∣∣∣q(1+1)α

+
∣∣∣g2h0

(2+1
3

)α

+g3h1

(3+1
3

)α

+g4h2

(4+1
3

)α

+ · · ·
∣∣∣q(2+1)α

+ · · · .

Now choose

gk =


|hk|p−2hk, if hk ̸= 0;

0, if hk = 0.

Then ∥g∥q
q,α = ∥h∥p

p,α , and the claim follows.

Again, the above results describe how the coefficients of a multiplier grow or decay, and how

they relate to the multiplier norm.

We know from Proposition 9.1 that in general ∥Mh∥≥ ∥h∥p,α for any h∈Mp,α . It is interesting

to ask for which multipliers h does equality hold between its operator and vector norms, a sort of

extremal property. It is known, for example, that in ℓ2,0 = H2, the extremal multipliers are exactly

the constant multiples of inner functions [12, Section 7]. The following theorem describes the

multipliers on ℓp,α which enjoy the extremal property.
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Theorem 9.1. Let 1 < p < ∞ and α ∈ R. Suppose that h ∈ Mp,α , h is not identically zero, and

define G by

G(z)∥h∥p−1
p,α = |h0|p−2h0 + |h1|p−2h1z+ |h2|p−2h2z2 + · · · ∈ ℓq,α .

If ∥Mh∥= ∥h∥p,α , then for every n ≥ 1 we have ⟨Snh,G⟩= 0.

Proof. If the condition ∥Mh∥= ∥h∥p,α holds, then in the expression (40), each line except the first

must vanish. The claim follows.

In Theorem 9.1, the function G is the norming functional of h. Note that the condition ⟨Snh,G⟩=

0, n ≥ 1, is a way to say that h is “inner” in ℓp,α in a certain sense (cf. [6, Definition 8.3.2]). The

converse of Theorem 9.1 is known to fail, however, even for ℓp = ℓp,0; see [12, Example 7.1 and

Theorem 7.3].

The Schur Test supplies a way to estimate the norm of an integral operator on L2, based on its

kernel [21]. Here is a discrete version of the Schur Test, which can be used to identify operators

on ℓp,α . In particular, we use it to produce a class of multipliers. For this purpose, we temporarily

view elements of ℓp,α as column vectors of coefficients, and matrices B = [b j,k] j,k≥0 as operators

by left multiplication.

Theorem 9.2. Assume that 1< p<∞, 1/p+1/q= 1, and α ∈R. Let B= [b j,k] j,k≥0 be a matrix of

non-negative entries. Suppose that there are constants C1 and C2, and positive sequences (s j) j≥0

and (tk)k≥0 such that

∞

∑
k=0

b j,kt−1/p
k ≤C1

s−1/p
j

( j+1)αq/p
for all j ≥ 0; (41)

∞

∑
j=0

b j,ks−1/q
j ≤C2t−1/q

k (k+1)α for all k ≥ 0. (42)

Then B is a bounded linear operator on ℓp,α , with ∥B∥ ≤C1/q
1 C1/p

2 .
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Proof. B is obviously linear. Suppose that x ∈ ℓp,α , and y = Bx. Then by Hölder’s inequality and

(41),

y j =
∞

∑
k=0

b j,kxk

=
∞

∑
k=0

b j,kt−1/pq
k t1/pq

k xk

=
∞

∑
k=0

b1/q
j,k t−1/pq

k b1/p
j,k t1/pq

k xk

≤
( ∞

∑
k=0

b j,kt−1/p
)1/q( ∞

∑
k=0

b j,kt1/q
k |xk|p

)1/p

≤
(

C1
s−1/p

j

( j+1)αq/p

)1/q( ∞

∑
k=0

b j,kt1/q
k |xk|p

)1/p
.

Therefore (42) allows for

∥y∥p
p,α ≤

∞

∑
j=0

|y j|p( j+1)α

≤
∞

∑
j=0

(
C1

s−1/p
j

( j+1)αq/p

)p/q
( j+1)α

∞

∑
k=0

b j,kt1/q
k |xk|p

=Cp/q
1

∞

∑
k=0

t1/q
k |xk|p ∑

j=0
s−1/q

j b j,k

≤Cp/q
1

∞

∑
k=0

t1/q
k |xk|pC2t−1/q

k (k+1)α

=Cp/q
1 C2

∞

∑
k=0

|xk|p(k+1)α

=Cp/q
1 C2∥x∥p

p,α .

Here is an example of applying Theorem 9.2 to get a class of multipliers on ℓp,α .

Proposition 9.12. Let 1 < p < ∞ and β < −1. If α < |β |− 1 and |hk| ≤ (k+ 1)β for all k ≥ 0,

then h ∈ Mp,α .
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Proof. First, assume that hk ≥ 0 for all k. We apply Theorem 9.2, with tk = 1 for all k, and

s j = ( j+1)−αq for all j. Let the infinite matrix B be defined by

b j,k =


h j−k, if j ≥ k;

0, otherwise.

Then

∞

∑
k=0

b j,kt−1/p =
∞

∑
k=0

h j−k1−1/p ≤C
j

∑
k=0

( j− k+1)β =C[1β +2β + · · ·+ jβ ].

Since β < −1, the last expression is uniformly bounded over j. Hence we can find a constant C1

such that

∞

∑
k=0

b j,kt−1/p ≤C1 =C1( j+1)αq/p 1
( j+1)αq/p

=C1s−1/p
j

1
( j+1)αq/p

.

This checks that condition (41) holds.

Next, suppose 0 < α < |β |−1. Then

∞

∑
j=0

b j,ks−1/q
j ≤

∞

∑
j=k

( j− k+1)β ( j+1)α

= ∑
j=k

( j− k+1)β+α

( j+1
j− k+1

)α

≤
∞

∑
j=1

jβ+α(k+1)α ,

where we used the elementary inequality k+m ≤ (k+ 1)m, for all m ≥ 1. Thus condition (42)

holds, with C2 = ∑
∞
j=1 jβ+α < ∞.

Finally, if α ≤ 0, then

∞

∑
j=k

( j− k+1)β ( j+1)α ≤
∞

∑
j=k

( j− k+1)β (k+1)α =
∞

∑
j=1

jβ (k+1)α ,

and once again (42) holds.
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By Theorem 9.2, B is a bounded operator on ℓp,α . But B is simply the matrix for multiplication

by h.

Finally, for h having complex coefficients, the lemma below shows that if |h0|+ |h1|z+ |h2|z2+

· · · is a multiplier, then so is h(z) = h0 +h1z+h2z2 + · · · .

If f (z) = f0+ f1z+ f2z2+ · · · , let us write f̆ (z) := | f0|+ | f1|z+ | f2|z2+ · · · . Obviously f ∈ ℓp,α

if and only if f̆ ∈ ℓp,α , and their norms coincide.

Lemma 9.1. Let 1 < p < ∞ and α ∈ R. If h̆ ∈ Mp,α , then h ∈ Mp,α .

Proof. For any f ∈ ℓp,α ,

∥h f∥p
p,α =

∞

∑
n=0

∣∣∣ n

∑
k=0

hk fn−k

∣∣∣p(n+1)α

≤
∞

∑
n=0

( n

∑
k=0

|hk|| fn−k|
)p

(n+1)α

= ∥h̆ f̆∥p
p,α

≤ ∥Mh̆∥
p∥ f̆∥p

p,α

= ∥Mh̆∥
p∥ f∥p

p,α .

This shows that ∥Mh∥ ≤ ∥Mh̆∥.

We have laid out some elementary properties of multipliers, presented some examples of mul-

tipliers, and furnished estimates for multiplier coefficients. Multipliers enjoying a certain extremal

property were shown to exhibit a certain orthogonality property.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

This chapter concludes our goal to systematically study the ℓp,α spaces. Numerous issues

remain to be solved. They include the characterization of zero sets; problems of interpolation;

problems about sampling and bases; canonical factorization and invariant subspaces. There are

numerous other classes of operators that merit exploration.

The applications, largely yet to be identified, will drive many other questions. These matters

will be the subject of future projects.
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