






Discussion

The results of this study have shown that a single high-intensity 5 ns electric pulse produces

differential E-field-dependent inhibitory effects on voltage-gated cation channels in bovine

chromaffin cells. Fast transient inward Na+ current was the most sensitive ionic current dis-

playing inhibition in response to a NEP at E-fields� 5 MV/m. This effect was not due to a

shift in the voltage-dependence of steady-state activation or inactivation but was associated

with a reduction in maximal Na+ conductance. In contrast, a single NEP inhibited outward K+

current at higher field intensities (� 8 MV/m) but the effect was voltage-dependent, with inhi-

bition detected in a fraction of cells at +10 mV, and no inhibition observed at +80 mV even at

an E-field of 10 MV/m. The potential cellular targets, molecular mechanisms and therapeutic

implications of these findings are discussed.

Experimental strategy and limitations

The experimental approach used in this study exploited conditions designed to simulate near

physiological Na+ and K+ gradients and took advantage of a novel NEP delivery system allow-

ing for the near continuous recording of whole-cell macroscopic currents with a gap of only

28 ms when exposing a chromaffin cell to a 5 ns pulse. This system significantly reduces the

delay time from pulse exposure to resumption of cell membrane recording compared to other

studies (delay times ranging from 10 seconds to 2 minutes) [5,37], which minimizes missing

important whole-cell monitoring information immediately after pulse delivery. Voltage clamp

protocols were devised to examine the effects of a single NEP on several ionic currents in the

same chromaffin cell, which eliminated potential disparities in channel sensitivity related to

differences in experimental conditions and batches of cells. This approach was further sup-

ported by the comprehensive body of literature on the biophysical properties of ion channels

in this well studied cell model.

Fig 9. Effect of a single 5 ns pulse at different E-field amplitudes on late outward current. Time course

of the changes in mean outward current for an unexposed cell (control) compared to a cell exposed to a 5 ns

pulse applied at E-fields of 5, 8 and 10 MV/m. The constant-voltage step protocol consisted of stepping the

voltage from –70 mV to +80 mV for 100 ms (inset). Normalized current represents the same as that described

in Fig 8. Results are expressed as the mean ± SE (Control, n = 4; 5 MV/m, n = 5; 8 MV/m, n = 5; 10 MV/m,

n = 5).

https://doi.org/10.1371/journal.pone.0181002.g009
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We first established that the net inward current elicited by depolarizing steps from a hold-

ing potential was mainly produced by voltage-gated Na+ channels as the current was nearly

abolished by replacing external Na+ with the non-permeant NMDG+. Removing external Ca2+

in the presence of NMDG+ only led to a small further reduction in inward current (discernable

by a small increase in net outward current) that was less than 8% of peak current. The gating

properties of net inward current were also consistent with those of tetrodotoxin-sensitive Na+

channels in chromaffin cells [35], and of NaV1.7, the pore-forming Na+ channel subunit

thought to be the main voltage-gated Na+ channel expressed in these cells [38].

Repetitive steps to +10 mV were used to monitor the time-dependent effects of a NEP on

membrane currents. This voltage was initially selected because it elicited near maximal Na+

conductance, while also activating voltage-dependent Ca2+ and K+ currents. The current mea-

sured at the end of the voltage steps was likely predominantly composed of a Ca2+-activated

K+ current (IK(Ca)) and a voltage-dependent delayed rectifier K+ current (IKV) [27], to which a

small partially inactivated Ca2+ current (ICa) was superimposed. The bell-shaped voltage-

dependence of late outward current is consistent with KCa channels being triggered by Ca2+

influx through “neighboring” Ca2+ channels since: 1) the shape of the I-V relationship mir-

rored that predicted for ICa in these cells and was apparent in cells dialyzed with a high concen-

tration of the Ca2+ chelator EGTA [27]; 2) the bell-shaped voltage-dependence of the outward

current was converted to a sigmoidal relationship following external Ca2+ removal [27,39],

with or without external Na+; and 3) similar to many types of high-threshold, voltage-depen-

dent Ca2+ channels, the late outward current exhibited pronounced rundown in the range of

+10 to +70 mV. This has also been reported by Marty and Neher [27] in the same preparation.

In contrast, the current at +80 mV was much more stable and thus primarily reflected the

activity of IKV since the driving force for Ca2+ would be very small and would thus produce

very weak stimulation of IK(Ca). This argument is also supported by the observation that

removal of external Ca2+ had no effect on this current at +80 mV in the absence of Na+ and

justified our rationale of examining the effects of NEP at this voltage in separate experiments.

Effects of NEP on voltage-gated Na+ channels

Our data provided evidence for an E-field-dependent inhibition of INa following a single 5 ns

pulse. Although smaller in magnitude, the effects were nevertheless similar to those of Pakho-

mov et al. [24,25] who reported that much longer nanosecond pulses (300 and 600 ns) were

able to modulate voltage-gated Na+ and Ca2+ channels in GH3, NG108 and even chromaffin

cells. Our data showed that INa decreased instantaneously by ~4% and then declined exponen-

tially following a single 5 ns, 5 MV/m pulse while higher E-fields produced instantaneous

inhibitory effects that were significantly larger with no further decline (~9% at E-fields of 8

and 10 MV/m) over the course of 10 min. We first considered the possibility that the inhibition

might be due to an alteration in the voltage-dependence of activation and/or inactivation. Our

results clearly showed that NEPs up to 8 MV/m produced no significant effect on either prop-

erty, suggesting that the ultrashort electric pulse did not interfere with Na+ channel gating. We

did find that the NEP reduced maximal Na+ chord conductance and potential mechanisms to

explain this observation are discussed below.

High intensity NEPs of less than 1 μs in duration (from 5 up 600 ns) were shown to evoke a

transient “leak” conductance that is hypothesized to be formed by ion-permeable nanoelectro-

pores [22,24,25]. The sudden appearance of a nanopore or “leak” conductance (Ileak) just prior

to recording INa after delivery of the NEP could have potentially lowered Vm sufficiently to

depolarize the command holding potential set to –70 mV due to a voltage drop across the

uncompensated Rs and thus reduce Na+ channel availability despite a lack of change in the
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voltage-dependence of inactivation. However, the potential impact of this voltage error (VErr)

on peak INa based on the steady-state inactivation curve revealed that the depolarization would

have decreased INa by only 0.5% both at 5 MV/m and at 8 MV/m, which is significantly less

than that observed. These results suggest that VErr associated with activation of Ileak due to a

voltage drop across Rs was too small to explain the much larger inhibition of INa evoked by

NEPs at any E-field magnitude.

Recent experiments from our group confirmed that the plasma membrane of chromaffin

cells becomes permeable to Na+ following activation of Ileak evoked by a single 5 ns pulse [22].

Thus, intracellular accumulation of Na+ could potentially account for the inhibition of INa by

reducing the electrochemical gradient for Na+. However, this seems unlikely in view of the fact

that the reversal potential of the net inward current was also not altered by NEPs. These results

suggest that the reduction of INa was not associated with a change in ion selectivity. This con-

clusion is in agreement with the results of Nesin and Pakhomov [25] who concluded that the

much larger Na+ influx through Ileak evoked by longer NEPs could not explain the reduction

of INa.

The pipette solution used in our experiments contained a high concentration of the Ca2+

chelator EGTA, which would argue against but cannot exclude the possibility that the NEP-

induced decrease of INa was caused by an intracellular Ca2+-dependent process since EGTA is

known to be a slow Ca2+ buffer (e.g., the buffering capacity of this chelator was insufficient to

prevent activation of IK(Ca) triggered by ICa). However, consistent with the idea that intracellu-

lar Ca2+ was not involved was the observation that inhibition of INa by 300 ns NEPs was unaf-

fected by cell dialysis with 20 mM BAPTA, a much faster chelator [25].

In this study, we confirmed that a single NEP reduced maximal INa conductance, which can

be defined by Gmax = N � gNa
� POmax, where N is the total number of Na+ channels in the mem-

brane, gNa is the unitary conductance of Na+ channels and POmax is the maximum open proba-

bility of Na+ channels. The 5 ns pulse could reduce maximal conductance by altering one or

more of these parameters. Single-channel experiments will be required to determine which

of these factors is influenced by the NEP. There are at least three possible mechanisms for

explaining the inhibitory effects of an NEP on Na+ channels: 1) the NEP affects the Na+ chan-

nel protein directly; 2) the NEP affects the structure of the phospholipid environment (e.g. dis-

ruption of lipid rafts and caveolae, the distribution of cholesterol, etc.), which indirectly alters

their activity; or 3) both. Direct effects of longer duration electric pulses (4 ms) on voltage-

gated channels were previously reported by Chen et al. [40,41]. They showed that a single 4 ms

transmembrane potential shock of –400 mV or –450 mV decreased Na+ and K+ channel con-

ductance and proposed that membrane proteins were somehow damaged by an unknown

denaturation process. The lipid bilayer of the cell plasma membrane is another primary target

that can be affected by externally applied electric fields [1,42,43]. Previous studies have shown

that membrane disturbances caused by NEPs initiate complex intracellular lipid signaling

pathways [44]. Changes in the biochemical and biophysical properties could alter channel

activity and membrane excitability in response to activation of receptors [44]. Phosphoinosi-

tides, especially phosphatidylinositol (4,5)-bisphosphate or PIP2, serve as signature motifs for

different cellular membranes and often are involved in the modulation of multiple types of ion

channels [45,46]. It has been demonstrated that 600 ns electric pulses can initiate hydrolysis or

depletion of PIP2 in the plasma membrane [44], which could be responsible for the NEP-

induced inhibition of voltage-gated channels [25]. Therefore, disruption of the phospholipid

bilayer by an NEP could be a possible step leading to subsequent inhibition of voltage-gated

channels. More experiments will be required to test this hypothesis.
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Effects of NEP on voltage-gated K+ channels

Single NEPs also inhibited outward K+ currents elicited at +10 mV but this effect was only

detectable in a fraction of cells at higher E-fields (8 and 10 MV/m) compared to that observed

on INa (E-field of 5 MV/m). In contrast, the outward K+ current evoked at +80 mV was not

influenced by NEPs up to 10 MV/m. For the reasons stated above, the K+ current elicited at

this voltage is primarily composed of IKV. Nesin et al. [24] reported that a single 600 ns NEP

inhibited ICa in GH3 cells but this effect required a higher E-field than that produced by a sin-

gle 300 ns pulse on INa recorded in NG108 cells, suggesting that voltage-gated Ca2+ channels,

as our study would suggest for Ca2+-activated K+ currents measured at +10 mV, are less sensi-

tive to NEPs. Clearly more experiments will have to be carried out to determine whether 5 ns

NEPs selectively inhibited ICa, IK(Ca) or both.

Potential implications

Potassium, calcium, and sodium channels play critical roles in the development of major dis-

eases, such as hyperkalemia, epilepsy, congenital myotonia and serious neurological, retinal,

cardiac, and muscular disorders [47–50]. On this basis, the inhibition of voltage-gated chan-

nels has potential medical applications. NEPs may lower excitability in nerve cells and block

nerve conduction, mimicking the activity of local anesthetics and nerve blocking agents [51–

53]. Recently, the role of voltage-sensitive ion channels (potassium, calcium, and sodium chan-

nels) has been linked to the progression of cancer and these channels are becoming the targets

of significant drug developmental efforts to modulate voltage-sensitive ion channel activity in

order to prevent or combat malignant disease [47]. The inhibition of INa and ICa has also been

shown to have important roles in cell adhesion, invasiveness, angiogenesis and chronic pain

relief [54–57]. Thus, the inhibition of voltage-gated channels with NEPs, especially in light of

possible differences in sensitivity to E-fields, has potential implications in cancer treatment. In

addition, the development of NEPs to modulate ion channels directly or indirectly in excitable

and non-excitable cells is likely to become a promising therapeutic avenue with great potential

for medical benefits in the near future.
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