
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

5-2017

Impact of RRAM Read Fluctuations on the
Program-Verify Approach
David M. Nminibapiel

Dmitry Veksler

J.-H. Kim

Pragya R. Shrestha

Jason P. Campbell

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

Part of the Electrical and Electronics Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for
inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

Repository Citation
Nminibapiel, David M.; Veksler, Dmitry; Kim, J.-H.; Shrestha, Pragya R.; Campbell, Jason P.; Ryan, Jason T.; Baumgart, Helmut; and
Cheung, Kin P., "Impact of RRAM Read Fluctuations on the Program-Verify Approach" (2017). Electrical & Computer Engineering
Faculty Publications. 123.
https://digitalcommons.odu.edu/ece_fac_pubs/123

Original Publication Citation
Nminibapiel, D. M., Veksler, D., Kim, J.-H., Shrestha, P. R., Campbell, J. P., Ryan, J. T., … Cheung, K. P. (2017). Impact of RRAM
Read Fluctuations on the Program-Verify Approach. IEEE Electron Device Letters : A Publication of the IEEE Electron Devices Society,
38(6), 736–739. http://doi.org/10.1109/LED.2017.2696002

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs/123?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Authors
David M. Nminibapiel, Dmitry Veksler, J.-H. Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan,
Helmut Baumgart, and Kin P. Cheung

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/ece_fac_pubs/123

https://digitalcommons.odu.edu/ece_fac_pubs/123?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages


Impact of RRAM Read Fluctuations on the Program-Verify 
Approach

David M. Nminibapiel,
Engineering Physics Division at National Institute Standards and Technology (NIST), 
Gaithersburg, MD 20899 USA

Department of Electrical and Computer Engineering at Old Dominion University, Norfolk, VA 
23529 USA

Dmitry Veksler,
Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

J.-H. Kim,
Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

Pragya R. Shrestha,
Theiss Research, La Jolla, CA USA

Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

Jason P. Campbell,
Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

Jason T. Ryan,
Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

Helmut Baumgart, and
Department of Electrical and Computer Engineering at Old Dominion University, Norfolk, VA 
23529 USA

Kin. P. Cheung [Senior Member, IEEE]
Engineering Physics Division at NIST, Gaithersburg, MD 20899 USA

Abstract

The stochastic nature of the conductive filaments in oxide-based resistive memory (RRAM) 

represents a sizeable impediment to commercialization. As such, program-verify methodologies 

are highly alluring. However, it was recently shown that program-verify methods are unworkable 

due to strong resistance state relaxation after SET/RESET programming. In this paper, we 

demonstrate that resistance state relaxation is not the main culprit. Instead, it is fluctuation-

induced false-reading (triggering) that defeats the program-verify method, producing a large 

distribution tail immediately after programming. The fluctuation impact on the verify mechanism 

has serious implications on the overall write/erase speed of RRAM.
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I. Introduction

The well-publicized stochastic nature of Resistive Random Access Memory (RRAM) 

filamentary resistance states presents a formidable obstacle [1]–[3]. The stochasticity results 

in long resistance distribution tails which greatly limit the memory window. Subsequent 

efforts to control these distribution tails have relied heavily on “program-verification” 

methods [4]–[6]. It was recently shown that even careful implementation of “program-

verify” can result in widely distributed HRS values whose distributions can broaden with 

time [4]. The broadening of the resistance distribution acts to close the memory window and 

effectively nullifies the efficiency of program-verify.

In this work, we revisit this troubling observation by studying the filament dynamics with 

enhanced measurement time resolution. Similar to [4], we observe large tails in the lower 

percentile of the High Resistance State (HRS) distribution that extend with time. However, 

we attribute these large initial tails to stochastic resistance state fluctuations which falsely 

trigger the verification mechanism and not rapid relaxation [4], [7] or other slowly changing 

mechanisms [8]–[10]. Recently it was shown that the occurrence of resistance fluctuations, 

or fluctuation probability, decays to a constant (non-zero) level within the first hundred 

microseconds after programming [11]. More importantly, this fluctuation probability decays 

without a concomitant decay in the average fluctuation amplitude. Without a change in 

fluctuation amplitude, the fluctuation-induced resistance distribution will not change with 

time. Thus, the increase in resistance dispersion with time suggests an underlying relaxation 

which in our case plays a minor role in the failure of the program-verify algorithm.

II. Experimental details

Experiments were done on 200 nm × 200 nm crossbar RRAM with TiN\HfO2(5.8 nm)\Ti

\TiN stacks using programming pulses with fixed width (≈ 100 ps) and amplitude. Spurning 

convention [4]–[6], the fast pulses are applied with a 50 Ω terminated probe with no current-

limiting elements [12] as shown in Fig 1 (a). We rely on the ultra-short pulse timing to 

ensure that the energy delivered per pulse is small [13] and well controlled. Initial forming 

was performed with the same ultra-short pulses ranging in amplitude from +3 V to +4 V. 

Switching pulse amplitudes of ≤ |2| V were used for SET/RESET.

The resistance of the RRAM states is monitored continuously by a low DC voltage, VREAD, 

(−8 mV). Instead of a read pulse, this approach is adopted to provide a continuous recording 

of the resistance evolution during programming. In this study, the read-out duration is fixed 

at 1 s, unless otherwise stated. The speed at which the resistance can be measured is limited 

only by the measurement circuit RC time constant of 30 ns.

A fast comparator with response time less than 5 ns automatically (1) compares the 

instantaneous state of the RRAM versus the target resistance and (2) orchestrates cycling by 

switching the pulse polarity after reaching the target resistance. This Compliance-free Ultra-

Short Smart Pulse Programming (CUSPP) approach allows for cycling as fast as 5 MHz and 

supports the tuning of the pulse amplitude to allow the investigation of switching/forming 

via single pulse or multiple pulses as shown in Fig 1 (b) and Fig 1 (c). The CUSPP 
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functionality has been demonstrated on multiple RRAM cells (not shown here) and the 

experimental results presented in this manuscript should be viewed as representative for an 

array of RRAM elements.

III. Results and Discussion

Fig. 2 shows the distributions of the low resistance state (LRS) and high resistance state 

(HRS) values for a representative cell measured over 13,000 switching cycles at four 

different post-programming time windows (10 µs, 100 µs, 1 ms and 1 s; all resistance 

measurements are performed with 25 µs integration time). Target LRS and HRS resistances 

were set to 10 kΩ and 100 kΩ, respectively; unless otherwise stated. It is apparent that the 

resistance distribution measured 10 µs after programming extends past the target levels 

(dashed lines in Fig. 1b and 1c) for both LRS and HRS, therefore, reducing the target (10×) 

resistance window. In addition, similar to [4], the distributions broaden with time, leading to 

a complete window closure (HRS and LRS distributions overlap) 1 s after the programming 

event. The remainder of this work focuses on the HRS distribution, as it dominates the 

window closure.

Because a constant VREAD operation is utilized during cycling, a continuous recording of 

the filament evolution post programming is acquired and analyzed to directly elucidate the 

resistance state behavior. Fig. 3(a) is a representative temporal trace of the resistance 

evolution during a 3-pulse RESET process followed by a single pulse SET process. 

Immediately following each voltage pulse (pulse location indicated by markers), there is a 

large transient resistance fluctuation. These resistance fluctuations are not measurement 

system artifacts and are completely absent in calibration measurements of thin film reference 

resistors of similar values. There are, of course, many published results of random telegraph 

noise (RTN) like fluctuations which impact the retention of HfOx-based RRAM devices 

over tens of seconds [14] – [16]. While there may be some commonality with our 

observations of large post-programming transient fluctuations, we note that the time scales 

differ by approximately 6 orders of magnitude. Thus, if they are of a common origin, then 

the mechanism must span this rather wide time range.

These large transient fluctuations unsurprisingly force the verification to occur on unstable 

resistance states. In our measurements, the transient fluctuations trigger the fast comparator 

somewhat pre-maturely on unstable resistance states. This results in broadening of the 

resistance distributions, with the distribution tails penetrating deeply below/above (for HRS/

LRS) the target resistance threshold (see Fig. 2). These distribution tails may lead to the 

incorrect perception that the CUSSP program-verification procedure has failed since there is 

no verification-mandated state bounding. However, this is not the case as the high fidelity 

continuous read operation of the measurement setup provides clear evidence of fluctuations 

that exceed the trigger point and initiate the start of HRS (Fig. 3 (a)). At the start of HRS, 

defined here as t = 0, both LRS and HRS distributions are bounded, however stochastic 

fluctuations almost immediately after programming degrade the boundaries as shown in Fig. 

2.

Nminibapiel et al. Page 3

IEEE Electron Device Lett. Author manuscript; available in PMC 2017 September 08.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



We note that a slower comparator (verification operation) will not avoid the fluctuations 

completely. Recent analysis [11] of the fluctuation behavior post programming show that 

fluctuations continue to persist for an entire millisecond and while the occurrence of 

fluctuations decreases, their amplitudes remain unchanged. Therefore, a post-programming 

wait/delay still encounters fluctuations large enough to false trigger program verification. 

This calls into question whether this instability is related to resistance state relaxation or is a 

natural feature of the stochastic switching mechanism.

Fig. 3 (b) shows a time lag representation of the resistance states taken 10 µs and 1 s post 

programming to examine any possible tendency of the state instability. Assuming a 

resistance state maintains the same value for an entire second, the data should follow the 

dashed line (black). Therefore, the dashed line represents perfect stability of the post 

programmed state. In this representation, a deviation above or below the line is an indication 

that the initial (10 µs) resistance has increased or decreased, respectively after 1s. It is 

evident that for both LRS and HRS there is instability in the post-programmed state that 

causes the resistance to randomly increase and decrease. However, 72.3% of HRS tend to 

decrease while 65.4% of the LRS tend to increase after 1 s, leading to severe window 

closure. HRS dominates window closure due to larger magnitude of the deviations. The 

trend towards lower values for high resistance states is consistent with the observation that 

majority of large fluctuations tend to decrease the initial HRS value [11].

Still, it is incorrect to assign the instability shown in Fig. 3(b) to fluctuations only. As one 

would expect, the filament configuration (resistance state) changes in each cycle (large 

resistance distribution). It is conceivable that the resistance may increase or decrease based 

on the specific thermodynamics of the conductive filament. This cycle dependent relaxation 

would produce the same time lag plot. To differentiate between stochastic fluctuations and 

relaxation, we examine the resistance trends at intermediate times between the initial (10 µs) 

and final (1 s) read.

Since, the broad HRS distributions arise from unstable resistance state verification, we can 

artificially null out this effect by normalizing the distribution to a more stable value (10 µs 

post-programming). Fig. 4 (a) presents the probability distributions in such an exercise 

where we take the ratio of the resistance measured at some time, t, post-programming, R(t) 
to the resistance measured 10 µs post programming, R(10µs). The choice of R(10µs) as the 

reference is arbitrary, since choosing other time delays (not shown here) did not change the 

results of Fig. 4. As such, at t = 10 µs, the ratio R(t)/R(10µs) results in the vertical line 

(black) located at value 1 and serves as a reference. The distributions corresponding to ratios 

taken 100 µs, 1 ms and 1 s post-programming extend above and below this reference line, 

indicating a shift of the initial resistance value towards higher and lower resistance values, 

respectively. We note that both cycle to cycle fluctuations and relaxations would result in 

deviations from the reference line (1) shown in Fig. 4 (a).

We sorted the distribution to select all the final (t = 1s) resistance states (red curve Fig. 4(a)) 

that ended either below ((R(1s)/R(10µs) < 1) or above ((R(1s)/R(10µs) > 1) the reference 

line. We then examined these distributions at intermediate read times to test if the states 

consistently trended towards these final read values. In other words, did the resistance state 
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relax over the course of the read? If so, any intermediate read value should trend towards its 

final read value. This is our criteria for a relaxation process. These two subsets (below and 

above the reference line) are illustrated in Fig. 4(b) and Fig. 4(c), respectively. Note that, all 

the final distributions for Fig. 4(b) are below the reference line, while all the final 

distributions for Fig. 4(c) are above the reference line. Thus, Fig. 4b illustrates a distribution 

of all HRS cycles which decreased in resistance after 1 s and Fig. 4 (c) illustrates the 

distribution of all HRS cycles which increased in resistance after 1 s. If these distributions 

were indeed due to a relaxation effect, then we should observe the same distribution trends 

for any randomly chosen read-time window post-programming. As shown in Figs. 4b and 

4c, this is clearly not the case. Fig. 4 (b) only contains those cycles in which the 1 s 

resistances finish below the 10 µs reference value. Yet at intermediary times (100 µs and 1 

ms), the distributions span both above and below the reference line. Similarly, Fig. 4 (c) only 

contains those cycles in which the 1 s resistances finish above the 10 µs reference line. Yet at 

intermediary times (100 µs and 1 ms), the distributions span both above and below the 

reference line. While inconsistent with a relaxation effect, this data is notably consistent 

with a system dominated by random fluctuations.

From this analysis, fluctuations seem to be the major culprit of window closure. As 

mentioned above, no noticeable decay in fluctuation amplitude was observed up to 1 ms. 

Indeed, one may even infer from data in [11] that fluctuation amplitude remains similar out 

to 1 s, otherwise the fluctuation amplitude decay will compensate the relaxation by 

tightening the resistance distribution. These observations suggest that a simple delayed read 

strategy does not eliminate the appearance of a wide distribution post-programming.

The observed minor impact of relaxation in these measurements is markedly different than 

in earlier works [4]. The reduced relaxation role may be attributed to a variety of entities 

including: (1) differences in RRAM materials, (2) differences in the thermodynamics 

surrounding the conductive filament and the insulating matrix which are afforded by our 

non-compliance ultra-fast programming approach, and (3) the differences associated with 

pulsed versus continuous read operations. Regardless of these differences, it is clear that 

fluctuations dominate our observations.

IV. Conclusions

We identify that the failure of program-verify is largely due to stochastic resistance 

fluctuations. These fluctuations function to trigger the verification mechanism on unstable 

resistance states, resulting in a broad unbounded resistance distribution immediately (10 µs) 

after programming. By examining the instability behavior with time, we determined that the 

relaxation process is dominated by these large stochastic fluctuations.
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Fig. 1. 
(a) High speed measurement setup with 50 Ω termination at the probe tip (inset: 100 ps 

RESET pulse). Notice the absence of a series current limiting element. Varying the CUSPP 

voltage pulse amplitude or resistance target levels allows for resistance switching via (b) 

larger energy single pulses or (c) smaller energy multiple pulses.
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Fig. 2. 
Cumulative distribution (104 cycles) of LRS and HRS measured 10 µs, 100 µs, 1 ms and 1 s 

post-programming. A significant tail extends beyond the target resistances and is observed 

even at 10 µs after programming. The distribution tail does widen further with time, but the 

degree of this widening is a much smaller in comparison with the initial measured 

distribution width (measured at 10 µs) which is driven by fluctuations of state resistances.
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Fig. 3. 
(a) Measured resistance (VREAD = −8 mV) as a function of time (with 100 ns resolution) 

during programming. The first three pulses perform a RESET operation, while the last pulse 

performs a SET operation. Note, SET and RESET targets are 20 kΩ and 200 kΩ, 

respectively. The target is reached after the third VRESET pulse, signifying the start of HRS. 

Notice transient resistance fluctuations immediately after programming pulse. (b) Time lag 

representation of the resistance states taken at 10 µs and 1 s post-programming (25 µs 

averaging window). The black line is drawn to show perfect correlation. For both LRS and 

HRS, the initial (10 µs) resistance value can either randomly decrease (below line) or 

increase (above line) with longer time delay.
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Fig. 4. 
(a) Cumulative distribution of resistance ratio, R(t)/R(10µs), for t = 10 µs, 100 µs, 1 ms and 1 

s. The reference distribution (t = 10 µs) widens with time which may be attributed to 

fluctuations or relaxation. Distributions for all HRS which, after 1 s, end up lower (b) or 

higher (c) than the reference distribution. The appearance of values above and below the 

references at intermediate times (t = 100 µs and t = 1s) suggest that fluctuations dominate 

the dispersion.
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