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ABSTRACT

ACCELERATING THE EFFICIENCY OF MULTISCALE HYBRIDIZABLE DISCONTINUOS
GALERKIN METHODS FOR FLOWS IN HETEROGENEOUS MEDIA

Tony Charles Haines
Old Dominion University, 2024

Director: Dr. Ke Shi

A plethora of scientific and engineering problems encountered are multiscale in nature. This

multiscale feature often influences simulation efforts wherever large disparities in spatial scales are

experienced. Notable examples include composite materials, fluid flow through porous media and

turbulent transport in high Reynolds number flow. Although there are promising results from the

advancement of modern supercomputer, obtaining direct numerical solution of multiscale prob-

lems is very laborious. This difficulty stems from the tremendous amount of computer memory

and CPU time required. Parallel computing may be one obvious choice in remedying this issue.

However, the complexity and size of the discrete problem is not reduced. The goal of this disser-

tation is to design a multiscale model reduction framework within the hybridizable discontinuous

Galerkin (HDG) finite element method. We utilize local snapshots that incorporate some local fea-

tures of the solution space in constructing a lower dimensional trace space. This approach affords

us the opportunity to avoid high dimensional representation of the trace spaces. Furthermore, we

leverage the advantages of localized multiscale basis functions to capture the multiscale structure

of the solution rather than the standard polynomial basis. These basis functions contain essential

multiscale information embedded in the solution. They allow us to obtain better approximations

through the coarse space enrichment. Moreover, orthogonality and its sparse representation are

preserved. With these tools, we can construct coarse scale solutions accurately and efficiently



without solving a global fine scale system. We employ the use of neural network to further im-

prove the efficiency of our method by training the network to learn the solution map of our model.

Such training is done on a single coarse block instead of the entire domain. A significant advantage

of this approach is that, once trained, this network can be used for any geometry and parameter

distribution without retraining. We can avoid the time-consuming global assembly due to the local

solvers.



iv

Copyright, 2024, by Tony Charles Haines, All Rights Reserved.



v

I dedicate my dissertation to my father, Emmanuel M. Haines and my mother, Louise B. Haines.



vi

ACKNOWLEDGMENTS

I would like to express my utmost gratitude to God Almighty for his never failing grace, bless-

ings and unmerited favor upon my life. He has giving me the strength and patience to pursue all my

endeavors. I express sincere gratitude to my advisor, Dr. Ke Shi for his immeasurable guidance,

encouragement and pertinent discussions. I appreciate every opportunity given to me to work with

him on this research project. I am thankful to Dr. Yan Peng, Dr. Ruhai Zhou and Dr. Yongjin Lu

for serving as committee members and giving thoughtful advice.

Last but not the least, I would like to thank my family, parents and friends for their love and

support throughout my graduate studies.



vii

TABLE OF CONTENTS

Page

LIST OF TABLES.................................................................................................. viii

LIST OF FIGURES .................................................................................................. ix

Chapter

1. INTRODUCTION ............................................................................................... 1
1.1 MOTIVATION ......................................................................................... 1
1.2 SCOPE................................................................................................... 2
1.3 THESIS ORGANIZATION......................................................................... 2

2. BACKGROUND ................................................................................................. 4
2.1 LITERATURE REVIEW............................................................................ 4
2.2 STANDARD FINITE ELEMENT METHOD ................................................. 6
2.3 PRINCIPLE OF HYBRIDIZATION ........................................................... 15

3. PROBLEM STATEMENT ................................................................................... 19
3.1 DERIVATION OF THE HDG SCHEME ..................................................... 20

4. MULTISCALE HDG ......................................................................................... 23
4.1 FINE AND COARSE GRIDS.................................................................... 23
4.2 GLOBAL FORMULATION...................................................................... 24

5. MULTISCALE ORTHOGONAL BASES FUNCTIONS ............................................ 28
5.1 MULTISCALE FUNTIONS ON THE UNIT INTERVAL................................ 28
5.2 CONSTRUCTION OF MULTISCALE BASIS.............................................. 30
5.3 EXAMPLES OF MULTISCALE FUNCTIONS ............................................ 32

6. NUMERIAL RESULTS ...................................................................................... 37
6.1 MSHDG RESULTS ................................................................................ 37
6.2 ARTIFICIAL NEURAL NETWORK.......................................................... 42

7. CONCLUSION ................................................................................................. 70

REFERENCES ....................................................................................................... 72



viii

LIST OF TABLES

Table Page

1. Error and processor time for different scale levels on MH . ........................................... 41

2. Elapsed time (seconds) to achieve an approximate solution in both methods at scale level
L0. .................................................................................................................. 47

3. Errors between the MsHDG and Artificial Neural Network (ANN) solutions for different
test domains. ..................................................................................................... 47



ix

LIST OF FIGURES

Figure Page

1. Functions in finite dimensional space........................................................................ 8

2. Triangulation Th with mesh size h. ......................................................................... 12

3. Some common finite elements............................................................................... 15

4. Partition into two nonoverlapping subdomains. ......................................................... 17

5. Fine and coarse grids. ......................................................................................... 24

6. Application of the operator Tε to a function. ............................................................ 29

7. Orthonormal basis on X0. .................................................................................... 32

8. Orthonormal basis for W1. ................................................................................... 33

9. Orthonormal basis for W2. ................................................................................... 34

10. Orthonormal basis for W3. ................................................................................... 35

11. Orthonormal basis for W3. ................................................................................... 36

12. Distribution of kappa. ......................................................................................... 38

13. Comparison of MsHDG solutions for MH . ............................................................... 39

14. Comparison of MsHDG solutions for MH . ............................................................... 40

15. Fine-scale solution. ............................................................................................ 41

16. Coarse block learning.......................................................................................... 43

17. Random samples of kappa κ . ................................................................................ 44

18. Training and testing errors for neural network. ......................................................... 45

19. Neural network architecture.................................................................................. 48

20. Test domain 1. ................................................................................................... 49

21. L0 neural network solution for Test domain 1. .......................................................... 50

22. L0 MsHDG solution for Test domain 1.................................................................... 51



x

Figure Page

23. Test domain 2. ................................................................................................... 52

24. L0 neural network solution for Test domain 2. .......................................................... 53

25. L0 MsHDG solution for Test domain 2.................................................................... 54

26. Test domain 3. ................................................................................................... 55

27. L0 neural network solution for Test domain 3. .......................................................... 56

28. L0 MsHDG solution for Test domain 3.................................................................... 57

29. Test domain 4. ................................................................................................... 58

30. L0 neural network solution for Test domain 4. .......................................................... 59

31. L0 MsHDG solution for Test domain 4.................................................................... 60

32. Test domain 5. ................................................................................................... 61

33. L0 neural network solution for Test domain 5. .......................................................... 62

34. L0 MsHDG solution for Test domain 5.................................................................... 63

35. Test domain 6. ................................................................................................... 64

36. L1 neural network solution for Test domain 6. .......................................................... 65

37. L1 MsHDG solution for Test domain 6.................................................................... 66

38. Test domain 7. ................................................................................................... 67

39. L1 neural network solution for Test domain 7. .......................................................... 68

40. L1 MsHDG solution for Test domain 7.................................................................... 69



1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Flows in porous media appear in many scientific, industrial, engineering and environmental

applications. One of the many characteristics of these diverse areas is that porous media are in-

trinsically multiscale and particularly display heterogeneities over a wide range of length-scales.

Such heterogeneity is often represented by the multiscale fluctuations in the permeability of the

media. For composite or naturally occurring materials, e.g., soil or rock, the permeability is small

in granite formations (say, 10−15 cm2), medium in oil reservoirs, (say, 10−7 cm2 to 10−9 cm2 ),

and large in highly fractured materials (say, 10−15 cm2) [25]. The dispersed phases (particles or

fibers), which may be randomly distributed in the matrix, may also give rise to discontinuity in

electrical conductivity. Furthermore, in turbulent transport problems, the convective velocity field

fluctuates randomly and contains many scales depending on the Reynolds number of flow [30].

Numerical solution of such problems posses a great challenge even with modern supercomput-

ers and has attracted substantial attention in the scientific and engineering society. In groundwater

simulations, it is quite common to have millions of grid blocks involved, with each block having

a dimension of tens of meters, whereas the permeability measured from cores is at a scale of sev-

eral centimeters [30]. This results in more than 105 degrees of freedom per spatial dimension in

computation. Therefore, a tremendous amount of computer memory and CPU time are required,

which may easily exceed the limit of today’s computing resources. The situation is somewhat re-
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lieved by parallel computing; however, the size of the discrete problem is not reduced. It is merely

distributed between processors with more memory. Whenever it is affordable to resolve all the

small scale features of a physical problem, direct solutions provide quantitative information of the

physical processes at all scales. However, from an engineering perspective, it is often sufficient

to predict the macroscopic properties of the multiscale systems, such as the effective conductivity,

elastic moduli, permeability and eddy diffusivity. This necessitates the use of reduced-order meth-

ods or specialized techniques which are capable of capturing the fine scale effects on the larger

scale, without ever fully resolving all the fine scale features.

1.2 SCOPE

The methods presented in this work analyse the case of scale separation, and attempt to cap-

ture the multiscale structure of the solution via basis functions within localized regions (Coarse-

scale grid blocks). These basis functions contain essential multiscale information and are coupled

through a global formulation to provide an approximate solution. Furthermore, the use of these ba-

sis functions allows parallel computing, which distributes the computation and reduces CPU time

as more processors are used. And though the operation count of the multiscale method is compa-

rable with that of conventional finite element method (FEM), this work aims to demonstrate the

application of parallel computing and artificial neural network to computational time reduction.

1.3 THESIS ORGANIZATION

The thesis consists of seven chapters. Chapter 2 gives a background to reduced-order methods

and subsequently, multiscale methods. A brief literature review and discussion of multiscale meth-

ods are proposed. Chapter 3 describes the physical problem under consideration and mathematical
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details within the frame work of HDG finite element method. Chapter 4 provides an introduction

to Multiscale Finite Element Methods (MsFEM) and Hybridizible Discontinuous Galerkin scheme

(HDG). Chapter 5 presents multiscale basis functions. A brief description and detailed construc-

tion are provided. In Chapter 6, we presents the numerical results which includes solutions from

coarse-scale enrichment and the neural network approximation of the multiscale HDG solution.

Chapter 7 provides a summary or conclusion of this study.
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CHAPTER 2

BACKGROUND

Multiscale FEM (MsFEM) is a procedure of numerical upscaling that extends the capabilities

of the mathematical theory of homogenization to more general cases including materials with

nonperiodic properties, nonseparable scales, and/or random coefficents [25]. The main idea of this

method is to obtain the large scale solution accurately and efficiently without resolving the small

scale information. This is made possible by the construction of basis functions which capture the

small scale information within each coarse blocks. The small scale information is then brought to

the large scales through the coupling of the global stiffness matrix. Thus, the effect of the small

scales on the large scales is captured correctly. As a result, methods that can flexibly couple the

local multiscale solutions are much desirable.

2.1 LITERATURE REVIEW

Many multiscale numerial techniques have been developed and studied in literature. One of

the earlier and efficient mixed finite element approximations on multiblock grids was introduced

by Arbogast et al. in [6], Mary Wheeler and co-authors in [7]. The multiblock method proposed

here appeared to be very flexible in constructing finite element approximations independently on

each block. Possible discontinuities along the interblock faces were treated using mortar spaces,

a tool borrowed from domain decomposition. This can be seen in the works of [12]. These tech-

niques were introduced to accommodate methods that could be defined in separate subdomains

and meshed independently. Mortar methods [13] introduces an auxilliary space for the Lagrange
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multiplier associated with the continuity constraint on the global approximation solution. Classical

mortaring techniques that have been extended as multiscale finite element methods can be found

in [4], [8], [10], [28]. In a two scale ( two-grid, fine and coarse) method, the aim is to resolve the

local heterogeneities on the fine grid introduced on each coarse block and then glue these approxi-

mations together via mortar spaces. However, to have a well stable method, the mortar spaces had

to satisfy a proper inf-sup condition. This method was shown to be well suited for problems with

heterogeneous media, and a number of efficient methods and implementations have been proposed.

More recently, new classes of reduced-order methods have been presented. These include

Galerkin multiscale finite element method ( e.g., [3], [17], [22], [26], [27], [29]), mixed multiscale

finite element methods ( e.g., [1], [2], [5], [32]), multiscale finite volume method [33], mortar mul-

tiscale methods ( e.g., [9], [36]), and variational multiscale methods [31]. In [24], the concept of

Generalized Multiscale Finite Element propose by [23] was used to construct a local reduced-order

approximation for the solution space. The local snapshot functions and spectral decomposition of

the snapshot space were constructed to approximate the solution in each coarse patch. This fa-

cilitated the transfer of the local properties of the solution into a global coarse-grid problem in

a systematic way that substantially reduced the number of coupled degrees of freedom in the al-

gebaic system. Since the solutions are discontinuous along the coarse grid interfaces, the local

snapshot solutions were computed separately one each coarse block.

In this thesis, we analyze multiscale model reduction techniques within the framework of the

Hybridizable Discontinuos Galerkin method (HDG). This method, as outlined in [19], allows suf-

ficient prospects of "gluing" various finite element approximations together. This mechanism is

made possible due to the notion of numerical trace and numerical flux. Numerical trace is a sin-

gle valued function on the finite element interfaces and belongs to a certain Lagrange multiplier
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space which is used to solve the global problem. The well-posedness and accuracy are ensured

by a proper choice of the numerical flux, that involves a stabilization parameter τ [19]. Standard

approaches for selection numerical traces involve the use of piecewise polynomials. Our approach

relies on multiscale basis functions that are constructed independently (and in an offline stage)

on each coarse-grid cell. Then, the coupling of these local functions is accomplish by the HDG

method.

2.2 STANDARD FINITE ELEMENT METHOD

Finite element method (FEM) is a general technique for numerical solution of differential and

integral equations in science and engineering. It was introduced by engineers in the late 50’s

and early 60’s for the numerical solution of partial differential equations in structural engineering

(elasticity equations, plate equations, etc). The workflow in FEM is as follows

1. Variational formulation of the given problem

2. Discretization using FEM: Construction of finite dimensional space Vh

3. Solution of the discrete problem

4. Implementation of the method on a computer: programming.

The idea of forming a variational formulation is deeply rooted in mathematical physics or to

be more specific, calculus of variation – seeking the minimization point of a functional. Similar

to calculus of one variable functions where the minimization problem is solved by looking for the

critical point, the point where the derivative of the function is zero, the solution of minimization

of a functional is given by the function in the underlying function space that satisfies exactly
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the variational formulation. We illustrate this and the process of FEM using the following one

dimensional example: 
−u′′(x) = f (x) f or 0 < x < 1

u(0) = u(1) = 0

where v′ = dv
dx and f is a given continuous function. By integrating the equation −u′′(x) = f (x)

twice, it is easy to see that this problem has a unique solution u. And to show that the solution u is

also the solution of a minimization problem (M) and a variational problem (V), we will introduce

the following notation

(v,w) =
∫ 1

0
v(x)w(x)dx

for real-valued piecewise continuous bounded functions. We also introduce the linear space V =

{v: v is a continuous function on [0,1], v′ is piecewise continuous and bounded on [0,1], and v(0)

= v(1)=0 }, and the linear functional F : V → R is given by

F(v) =
1
2
(v′,v′)− ( f ,v).

The minimization (M) and variational (V) problems are as follows

(M) Find u ∈V such that F(u)≤ F(v) ∀ v ∈V,

(V) Find u ∈V such that (u′,v′) = ( f ,v) ∀ v ∈V,

By multiplying −u′′(x) = f (x) by an arbitrary test function v ∈V , and integrating by parts over

the interval (0,1), we have

−(u′′,v) =−
∫ 1

0
u′′vdx =−[u′v|10 −

∫ 1

0
u′v′dx] = u′v|10 +

∫ 1

0
u′v′dx

using the fact that v(0) = v(1) = 0,

=−u′(1)v(1)+u′(0)v(0)+(u′,v′) = (u′,v′)
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Thus, we can conclude that (u′,v′) = ( f ,v) ∀v ∈V,

We shall now construct a finite-dimensional subspace Vh of the space V defined above consisting

of piecewise linear functions To this end let 0 = x0 < x1... < xM < xM+1 = 1, be a partition of the

interval (0,1) into subintervals I j = (x j−1,x j) of length h j = x j − x j−1, j = 1, ...,M+1, where the

quantity h is then a measure of how fine the partition is. Let Vh be defined as the set of functions v

such that v is a linear function on each I j, v is continuous on [0,1] and v(0) = v(1) = 0. We observe

that Vh ⊂V and the basis functions ψi of Vh can be defined as follows

ψi(x j) =


1, i = j

0, i ̸= j, i, j = 1...M

i.e., ψi is the continuous piecewise linear function that takes the value 1 at node point x j and the

value 0 at other node points. See Figure 1

A B

Figure 1. Functions in finite dimensional space. (A) Representation of function v ⊂Vh by unit

basis functions. (B) Piecewise linear function ψi . (Reproduced from [14])

A function v ∈Vh can then be represented as

v(x) = Σ
n−1
i=1 ξi ψi(x), x ∈ [0,1]
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where ξi = v(xi), ie, each v ∈ Vh can be written in a unique way as a linear combination of the

basis functions ψi. In particular, Vh is a linear space of dimension M with basis {ψi}M
i=1. The

finite element method for the boundary value problem can now be formulated as follows. Using

the variational form (V ) and the finite dimensional space Vh, we find uh ∈Vh such that

(u′h,v
′) = ( f ,v) ∀ v ∈Vh

If this is true for all v ∈Vh, then it’s also true for the basis function ψi ∈Vh.

(u′h,ψ
′
j) = ( f ,ψ j) j = 1, ..,n−1

Then by taking a linear combination of the basis functions, and substituting into the above

equation, we have (
(

n−1

∑
i=1

ξ
u

ψi(x))′,ψ ′
j

)
= ( f ,ψ j)

((
n−1

∑
i=1

ξ
u

ψi(x))′,ψ ′
j) =

∫ 1

0
(

n−1

∑
i=1

ξ
u

ψi(x))′ ψ ′
j dx

=
∫ 1

0

n−1

∑
i=1

(ξ u
ψi(x))′ ψ ′

j dx

=
∫ 1

0

n−1

∑
i=1

ξ
u (ψi(x))′ ψ ′

j dx

=
n−1

∑
i=1

ξ
u
∫ 1

0
(ψi(x))′ ψ ′

j dx

=
n−1

∑
i=1

ξ
u (ψ ′

i ,ψ
′
j)

n−1

∑
i=1

ξ
u (ψ ′

i ,ψ
′
j) = ( f ,ψ j)

where

uh(x) =
n−1

∑
i=1

ξ
u

ψi(x)
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This forms a linear system with M equations in M unknowns ξ1, ...,ξM which can be written as

Aξ = B

where A is the M×M matrix with elements (ai j) = (ψ ′
i ,ψ

′
j), ξ = (ξ1, ...,ξM) and b = (b1, ...,bM)

with bi = ( f ,ψi) are M-vectors:

A =



a11 . . a1M

. .

. .

aM1 . . aMM


,ξ =



ξ1

.

.

ξM


,b =



b1

.

.

bM


The matrix A is called the stiffness matrix and b the load vector.

For a two dimensional space, consider the Poisson’s equation

−∇ · (κ∇u) = f in Ω,

u = 0 on ∂Ω.

where Ω = [0,1]× [0,1], f ∈ L2(Ω). κ is a positive definite tensor. The weak formulation is to

seek u ∈V = H1
0 (Ω), such that

a(u,v) = l(v), ∀ v ∈ H1
0 (Ω),

here

a(u,v) =
∫

Ω

κ∇u∇vdx, l(v) =
∫

Ω

f vdx.

Then, by continuous Galerkin FEM method , we seek uh ∈Vh ⊂V such that

a(uh,v) = l(v), ∀ v ∈Vh.
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where the finite dimensional function space Vh is define as

Vh := {v ∈C0(Ω),v|∂Ω = 0,v|K ∈ P1(K), for all K ∈ Th}.

2.2.1 Finite Element Spaces

We shall now present some commonly used finite element spaces Vh. These spaces will consist

of piecewise polynomial functions on subdivisions or "triangulations" Th = {K} of a bounded

domain Ω ⊂ Rd,d = 1,2,3, into elements K. For d = 1, the elements K will be intervals, for

d = 2, triangles or quadrilaterals (see Figure 2) and for d = 3 tetrahedrons for instance. We will

need to satisfy either Vh ⊂ H1(Ω) or Vh ⊂ H2(Ω), corresponding to second order or fourth order

boundary value problems, respectively. Since the space Vh consists of piecewise polynomials, we

have

Vh ⊂ H1(Ω) ⇐⇒ Vh ⊂C0(Ω̄)

Vh ⊂ H2(Ω) ⇐⇒ Vh ⊂C1(Ω̄)

where Ω̄ = Ω∩Γ and

C0(Ω̄) = {v : v is a continuous function defined on Ω̄}

C1(Ω̄) = {v ∈C0(Ω̄) : Dαv ∈C0(Ω̄), |α|= 1}

Thus, Vh ⊂ H1(Ω) if and only if the functions v ∈Vh are continuous, and Vh ⊂ H2(Ω) if and only

if the functions v ∈ Vh and their first derivatives are continuous. The equivalence depends on the

fact that the functions v in Vh are polynomials on each element K so that if v is continuous across
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the common boundary of adjoining elements, then the first derivatives Dαv, |α|= 1, exist and are

piecewise continuous so that v ∈ H1(Ω). On the other hand, if v is not continuous across a certain

inter-element boundary, i.e., v /∈C0(Ω̄), then the derivatives Dαv, |α|= 1, do not exist as functions

in L2(Ω) and thus v /∈ H1(Ω) (if v is discontinuous across an element side S, then Dαv,|α| = 1,

would be a σ -function supported by S which is not a square-integrable function). To define a finite

element space Vh, we will have to specify:

1. the triangulation Th = {K} of the domain Ω,

2. the nature of the functions v ∈Vh on each K (eg linear, quadratic, cubic, etc),

3. the parameters to be used to describe the functions in Vh.

Figure 2. Triangulation Th with mesh size h comprising of finite elements.
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2.2.2 Examples of Finite Elements

Let us consider some examples of finite elements. First, we examine the case when Ω is a

domain in the plane R2 with polygonal boundary Γ. Let Th = {K} be a given triangulation of Ω

into triangles K. We shall use the following notation for r = 0,1,2, ...,

Pr(K) = {v : v is a polynomial of degree ≤ r on K}

Thus, P1(K) is the space of linear functions defined on K, i.e., functions of the form

v(x) = a00 +a10x1 +a01x2, x ∈ K

where ai j ∈ R. We see that {ψ1,ψ2,ψ3}, where

ψ1(x)≡ 1,ψ2(x)≡ x1,ψ3(x)≡ x2,

is a basis for P1(K), and that dim P1(K) = 3, where dim W denotes the dimension of the linear

space W . Further, P2(K) is the space of quadratic functions on K, i.e., functions of the form

v(x) = a00 +a10x1 +a01x2 +a20x2
1 +a11x1x2 +a02x2

2, x ∈ K

where ai j ∈ R. We see that {1,x1,x2,x2
1,x1x2,x2

2} is a basis for P2(K) and that dim P2(K) = 6. In

general, we have

Pr(K) = {v : v(x) = ∑
0≤i+ j≤r

ai jxi
1x j

2 for x ∈ K, where ai j ∈ R},

and

dim Pr(K) =
(r+1)(r+2)

2

Example 1. Let
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Vh = {v ∈C0(Ω̄) : v|K ∈ P1(K), ∀K ∈ Th}

i.e., Vh is the space of continuous piecewise linear functions. As parameters, or global degrees

of freedom, to describe the functions in Vh, we choose the values at the node points of Th (including

the node points on Γ). Notice that if K ∈ Th is a triangle with vertices ai, i = 1,2,3, then the degrees

of freedom for K corresponds to the values at the vertices ai, i = 1,2,3.

Example 2. Our next example is the following space

Vh = {v ∈C0(Ω̄) : v|K ∈ P2(K), ∀K ∈ Th}

i.e., Vh is the space of continuous piecewise quadratic functions where the global degrees of

freedom of the functions v ∈Vh can be chosen as follows:

1. the values of v at the nodes of Th

2. the values of v at the mid points of all the sides of the triangles in Th

Example 3.

Vh = {v ∈C0(Ω̄) : v|K ∈ P3(K), ∀K ∈ Th}

i.e., Vh is the space of continuous piecewise cubic functions with global degrees of freedom

1. the values of v at the nodes of Th

2. the values of v at the mid points aii j on the sides of Th

3. the values of v at the center of gravity for all K ∈ Th.

We define a finite element to mean a triple (K,PK,∑), where

K is a geometric object, for example a triangle,
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PK is a finite-dimensional linear space of functions defined on K

∑ is a set of degrees of freedom

such that a function v ∈ PK is uniquely determined by the degrees of freedom ∑. Below are some

of the most common finite elements with various degrees of freedom.

Figure 3. Examples of some common finite elements.(Reproduced from [14])

2.3 PRINCIPLE OF HYBRIDIZATION

Discontinuous Galerkin (DG) methods have been investigated and applied to a wide variety

of problems. Initially introduced in Reed and Hill [35], these techniques have become popular

beyond their original applications in fluid dynamics or electromagnetic problems. They provide a
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natural stabilization to the solution due to inter-element fluxes. However, in recent years, hybridiz-

able discontinuous Galerkin (HDG) methods have become more popular. As noted by Arnold and

Brezzi [11], hybridization of DG methods derives from the mixed methods of Raviart and Thomas

[34], where the continuity constrain is eliminated from the finite element space and imposed by

means of Lagrange multipliers on the inter-element boundaries. This idea was further exploited

by Cockburn and Gopalakrishnan [18] and Cockburn et al. [20] to formally develop the HDG

method for second-order elliptic problems. In the HDG method, a numerical trace ûh is introduced

to approximate the trace of a solution besides uh, which is the new unknown and may be called

the hybrid unknown. Eliminating the unknown uh by the hybrid unknown ûh, we obtain a dis-

cretized equation in terms of ûh only. As a result, the number of DOF of the HDG method can

be considerably reduced, an advantage of HDG method over the DG method. Furthermore, HDG

method has amazing features such as superconvergence properties and various connections with

other numerical methods (mixed and nonconforming finite element methods, etc). The basic ideas

of domain decomposition can be carried out in the following fashion.

Consider the Poisson equation on a region Ω, in two or three dimensions, with zero Dirichlet

data given on the boundary ∂Ω of the region Ω. Also, suppose that Ω is partitioned into two

nonoverlapping subdomains Ωi (see Figure 4) such that

Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = /0, Γ = ∂Ω1 ∩∂Ω2

We further assume that the boundaries of the subdomains are Lipschitz continuous.

−∇ · (κ∇u) = f in Ω,

u = 0 on ∂Ω.

(1)
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Figure 4. Partition of Ω into two nonoverlapping subdomains Ω1 and Ω2. (Reproduced from

[15])

Under suitable regularity assumptions on f (square-summable) and the boundaries of the sub-

domains, equation 1 is equivalent to the following coupled problem:

−∇ · (κ∇u1) = f in Ω1,

u1 = 0 on ∂Ω1 \Γ.

−∇ · (κ∇u2) = f in Ω2,

u2 = 0 on ∂Ω2 \Γ.

u1 = u2 on Γ,

∂u1

∂nnn1
+

∂u2

∂nnn2
= 0 on Γ.

(2)

where ui is the restriction of u to Ωi and nnni the unit outward normal to Ωi.We refer to the normal

derivatives as the flux. The conditions imposed on the interface Γ are called transmission condi-
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tions. Equivalently, the above problem can reformulated as finding ûh on Γ such that

−∇ · (κ∇u) = f in Ωi,

u = û on ∂Ωi,

[
∂u
∂nnn

] = 0 on Γ.

(3)

where

[
∂u
∂nnn

] :=
∂u
∂nnn

+

+
∂u
∂nnn

−
= 0 on Γ.
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CHAPTER 3

PROBLEM STATEMENT

In this thesis, we consider the following second-order elliptic differential equation defined on

a bounded polyhedral domain Ω in Rn, n = 2,3.

−∇ · (κ(x)∇u) = f (x), x ∈ Ω (4)

where κ(x)≥ κ0 > 0 represents the permeability coefficient of a highly heterogeneous porous

media with multiple scales. Application of equation 4 can be seen in different areas such as flows

in porous media, diffusion and transport of passive chemicals or heat transfer in heterogeneous

media. We shall now present the HDG method for equation 4 on a fine-grid Th. Equation 4 can

be rewritten as a first order PDE with homogeneous Dirichlet boundary condition by introducing

a new variable qqq.

αqqq+∇u = 0 in Ω, (5a)

∇ ·qqq = f in Ω, (5b)

u = 0 on ∂Ω. (5c)

where α(x) = κ(x)−1, Ω ⊂ Rn (n = 2,3) is a bounded polyhedral domain and f ∈ L2(Ω).

Consider a partitioning of the domain Ω into elements K forming a mesh Th that satisfy the standard

finite element conditions. Denote also, the faces of K by F . Then, the method yields a scalar

approximation uh to u, a vector approximation qqqh to qqq and a scalar approximation ûh to the trace

of u on the boundaries of each element. We also have the following finite dimension spaces of the
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form

Wh := {w ∈ L2(Th) : w|K ∈W (K), K ∈ Th},

VVV h := {rrr ∈ LLL2(Th) : rrr|K ∈VVV (K), K ∈ Th},

Mh := {µ ∈ L2(Th) : µ|F ∈ Mh(F)},

where the transmission condition or the numerical trace is defined as

q̂qqh ·nnn = qqqh ·nnn+ τ(uh − ûh) on ∂Th. (6)

3.1 DERIVATION OF THE HDG SCHEME

We multiplying 5a by rrr ∈ VVV h and equation 5b by w ∈ Wh and perform integration-by-parts.

Then, the HDG method reads as follows: find (uh,qqqh, ûh) in the space Wh ×VVV h ×Mh such that the

following weak problem is satisfied.

(αqqqh , rrr)Th − (uh , ∇ · rrr)Th + ⟨ûh , rrr ·nnn⟩∂Th
= 0 ∀rrr ∈VVV h, (7a)

−(qqqh , ∇w)Th + ⟨q̂qqh ·nnn , w⟩∂Th
= ( f , w)Th ∀w ∈Wh, (7b)

⟨q̂qqh ·nnn,µ⟩∂Th
= 0 ∀µ ∈ Mh, (7c)

ûh = 0 on ∂Ω. (7d)

By substitute 6 into 7b

(αqqqh , rrr)Th − (uh , ∇ · rrr)Th + ⟨ûh , rrr ·nnn⟩∂Th
= 0 ∀rrr ∈VVV h, (8a)

−(qqqh , ∇w)Th + ⟨qqqh ·nnn+ τ(uh − ûh) , w⟩∂Th
= ( f , w)Th ∀w ∈Wh, (8b)

⟨q̂qqh ·nnn,µ⟩∂Th
= 0 ∀µ ∈ Mh, (8c)

ûh = 0 on ∂Ω. (8d)
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From 8b we observe that

−(qqqh , ∇w)Th + ⟨qqqh ·nnn , w⟩∂Th
= (∇∇∇ ···qqqh , w)Th.

Then, 8 can be reformulated as follows

(αqqqh , rrr)Th − (uh , ∇ · rrr)Th =−⟨ûh , rrr ·nnn⟩∂Th
∀rrr ∈VVV h, (9a)

(∇∇∇ ···qqqh , w)Th + ⟨τuh , w⟩∂Th
=−⟨τ ûh , w⟩∂Th

+( f , w)Th ∀w ∈Wh, (9b)

⟨q̂qqh ·nnn,µ⟩∂Th
= 0 ∀µ ∈ Mh, (9c)

ûh = 0 on ∂Ω. (9d)

Since the spaces Wh×VVV h×Mh are finite dimensional, we can express every function (uh,qqqh, ûh)

in Wh ×VVV h ×Mh as a linear combination of polynomial shape functions of order p.

qqqh = ∑
i=1

qqqiφi ∈VVV h, (10a)

uh = ∑
i=1

uiφi ∈Wh, (10b)

ûh = ∑
i=1

ûiφi ∈ Mh. (10c)

where qqqi, ui and ûi are nodal values on each element, φi are polynomial shape functions of order p

in each element. Given the element-by-element formulation, the vector ûi is defined globally over

the entire mesh skeleton (face/edges). This allows the trace to be defined in such a way that both

qqqi, ui can be eliminated from equation 9 to give rise to a single equation for ûi. By substituting

equation 10 into equation 9, we can obtain the following matrices.

A1

qqqi
h

ui
h

= A f −A2ûi
h. (11)
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where A1 is the mass matrix within each element, A f the vector containing the forcing term and A2

the edge integrals. Using the transmission condition equation 6 and equation 10, we can eliminate

qqqi
h, ui

h in equation 11 to obtain a global system. From 11,

⟨q̂qqh ·nnn , w⟩∂Th
= ⟨qqqh ·nnn+ τ(uh − ûh) , w⟩∂Th

= 0,

= A3

qqqi
h

ui
h

− D̂ ûi
h = 0.

A3

qqqi
h

ui
h

= D̂ ûi
h. (12)

Substitute equation 11 into equation 12 for

qqqi
h

ui
h

,

A3(A−1
1 A f −A−1

1 A2ûi
h) = D̂ ûi

h,

A3A−1
1 A f −A3A−1

1 A2ûi
h = D̂ ûi

h,

A3A−1
1 A f = (A3A−1

1 A2 + D̂) ûi
h,

C f = M ûi
h.

ûi
h =M−1 C f . (13)

This gives us a global system for determining ûi
h on the edges of the elements. Once this is ob-

tained, we perform a back substitution into equation 11 to determine

qqqi
h

ui
h

 on the interior of each

element. We may view the values of ûi
h as the Dirichlet boundary data. Together, they form local

solvers within the triangulation Th.



23

CHAPTER 4

MULTISCALE HDG

In this thesis, we consider a multiscale model reduction technique within the framework of

hyridizable discontinuous Galerkin finite element method. This approach uses local snapshot

spaces derived from two-grid approximation to avoid high dimensional representation of trace

spaces. For this purpose, we shall consider as before, equation 5.

αqqq+∇u = 0 in Ω,

∇ ·qqq = f in Ω,

u = 0 on ∂Ω.

where α(x) = κ(x)−1, Ω ⊂ Rn (n = 2,3) is a bounded polyhedral domain and f ∈ L2(Ω).

4.1 FINE AND COARSE GRIDS

We partition the domain Ω, as proposed by [24], into disjoint polygonal subdomains {Ω}N
i=1

with maximum diameter Hi, see e.g Figure 5. Denote by FH , the face or edge of the subdomain

Ωi, if FH is either shared by Ωi or its neighboring subdomain Ω j, i.e. FH = Ωi ∩Ω j or FH =

Ωi ∩ ∂Ω. Then we shall denote the set of all coarse edges of a subdomain Ωi as ξH , where ξH =

∪N
i=1ξH(Ωi). Furthermore, let Th(Ωi) be a shape regular triangulations with triangular elements

of maximum mesh-size hi. Edges (faces) of this triangulation will be denoted by Fh. Let Th =

∪N
i=1Th(Ωi),ξh(Ωi), be the set of all faces of the triangulation Th(Ωi) and ξ 0

h (Ωi) be the set of all

interior edges of the triangulation Th(Ωi), and set ξh = ∪N
i=1ξh(Ωi).
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Figure 5. Fine (interior of red squares) and coarse grids.

Associated with this method are the following finite element spaces consisting of piece-wise

polynomial functions.

Wh := {w ∈ L2(Th) : w|K ∈W (K), K ∈ Th},

VVV h := {rrr ∈ LLL2(Th) : rrr|K ∈VVV (K), K ∈ Th},

Mh,H :=M0
h ⊕MH ,

where the spaces M0
h ,MH are defined as

M0
h := {µ ∈ L2(Eh,H) : for F ∈ E0

h µ|F ∈ Mh(F), and µ|EH = 0},

MH := {µ ∈ L2(Eh,H) : for F ∈ EH µ|F ∈ MH(F), and µ|E0
h∪∂Ω

= 0}.
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4.2 GLOBAL FORMULATION

The multiscale HDG (MsHDG) method reads as follows: find (uh,qqqh, ûh,H) in the space Wh ×

VVV h ×Mh,H such that the following weak problem is satisfied.

(αqqqh , rrr)Th − (uh , ∇ · rrr)Th + ⟨ûh,H , rrr ·nnn⟩∂Th
= 0 ∀rrr ∈VVV h, (14a)

−(qqqh , ∇w)Th + ⟨q̂qqh,H ·nnn , w⟩∂Th
= ( f , w)Th ∀w ∈Wh, (14b)

⟨q̂qqh,H ·nnn,µ⟩∂Th
= 0 ∀µ ∈ Mh,H , (14c)

ûh,H = 0 on ∂Ω. (14d)

For triangulation Th(Ωi), we write (η , ζ )T := ∑K∈T(η ,ζ )K , where (η ,ζ )D denotes the integral of

ηζ over the domain D ⊂Rn. We also write ⟨η , ζ ⟩∂T := ∑K∈T⟨η , ζ ⟩∂K, where ⟨η , ζ ⟩∂D denotes

the integral of ηζ over the boundary of the domain D ⊂ Rn−1. We now complete the method with

the definition of the transmission condition or the normal component of the numerical trace:

q̂qqh,H ·nnn = qqqh ·nnn+ τ(uh − ûh,H) on ∂Th. (15)

where τ is non-negative and known as the stabilization parameter. To allow us to solve the global

system on just the coarse mesh, we split the third equation of 14 by testing separately with µ ∈ M0
h

and µ ∈ MH such that

⟨q̂qqh,H ·nnn,µ⟩∂Th
= 0 ∀µ ∈ M0

h and ⟨q̂qqh,H ·nnn,µ⟩∂Th
= ⟨q̂qqh,H ·nnn,µ⟩∂Ωi = 0 ∀µ ∈ MH . (16)

On any subdomain Ωi, given the boundary data of ûh,H = ξH for ξH ∈ MH(F),F ∈ EH(Ω), we can
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solve for (qqqh,uh, ûh,H)|Ωi by restricting the equation 14 on this particular Ωi:

(αqqqh , rrr)Th(Ωi)− (uh , ∇ · rrr)Th(Ωi)+ ⟨ûh,H , rrr ·nnn⟩∂Th(Ωi) = 0, (17a)

−(vvvh , ∇w)Th(Ωi) + ⟨q̂qqh,H ·nnn , w⟩∂Th(Ωi) = ( f , w)Th(Ωi), (17b)

⟨q̂qqh,H ·nnn,µ⟩∂Th(Ωi) = 0, (17c)

ûh,H = ξH on ∂Ωi, (17d)

for all (w,rrr,µ) ∈ Wh|Ωi ×VVV h|Ωi ×M0
h |E0

h(Ωi)
. For a single coarse block, the above local system is

the regular HDG methods defined on Ωi. Moreover, from [19] we already know that this system is

stable. Using the principle of superposition, equation 17 can be further split into two parts, namely,

(qqqh,uh, ûh,H) = (qqqh( f ),uh( f ), ûh,H( f ))+(qqqh(ξH),uh(ξH), ûh,H(ξH)).

where (qqqh( f ),uh( f ), ûh,H( f )) satisfies

(αqqqh( f ) , rrr)Th(Ωi)− (uh( f ) , ∇ · rrr)Th(Ωi)+ ⟨ûh,H( f ) , rrr ·nnn⟩∂Th(Ωi) = 0,

−(qqqh( f ) , ∇w)Th(Ωi) + ⟨q̂qqh,H( f ) ·nnn , w⟩∂Th(Ωi) = ( f , w)Th(Ωi),

⟨q̂qqh,H( f ) ·nnn,µ⟩∂Th(Ωi) = 0,

ûh,H = 0 on ∂T ,

for all (w,rrr,µ) ∈Wh|Ωi ×VVV h|Ωi ×M0
h |E0

h(Ωi)
and (qqqh(ξH),uh(ξH), ûh,H(ξH)) satisfies

(αqqqh(ξH) , rrr)Th(Ωi)− (uh(ξH) , ∇ · rrr)Th(Ωi)+ ⟨ûh,H(ξH) , rrr ·nnn⟩∂Th(Ωi) = 0,

−(qqqh(ξH) , ∇w)Th(Ωi) + ⟨q̂qqh,H(ξH) ·nnn , w⟩∂Th(Ωi) = 0,

⟨q̂qqh,H ·nnn,µ⟩∂Th(Ωi) = 0,

ûh,H(ξH) = ξH on ∂T ,
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for all (w,rrr,µ) ∈Wh|Ωi ×VVV h|Ωi ×M0
h |E0

h(Ωi)
.

Given equation 16, we can follow a similar process outlined in equation 12 - 13 to obtain a

global system for ûh,H . This implies that we only need to solve the global system on the coarse

mesh, a process known as upscaling using the following equation:

a(ξH ,µ) = l(µ) for all µ ∈ MH , (18)

where the bilinear form a(ξH ,µ) : MH ×MH → R and the linear form l(µ) : MH → R are defined

as

a(ξH ,µ) := ⟨q̂qqh,H(ξH) ·nnn , µ⟩∂Ωi and l(µ) := a( f ,µ) = ⟨q̂qqh,H( f ) ·nnn , µ⟩∂Ωi. (19)

In the next chapter, we shall construct orthogonal basis functions used in the space MH .
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CHAPTER 5

MULTISCALE ORTHOGONAL BASES FUNCTIONS

Multiscale basis functions are a very important component used to represent the solution at

different scales within the computational domain. These basis functions are usually designed to

capture the behavior of the problem at various scales, allowing for an accurate approximation of the

solution across the entire domain. In MsFEM, they are constructed by combining local fine-scale

solutions with global coarse-scale information. This integration enables the accurate modeling of

features at different scales and facilitates the efficient computation of the overall solution. Further-

more, they are often chosen to be orthogonal to ensure that they capture essential characteristics

of the problem while minimizing computational costs. They provide a flexible framework for rep-

resenting the solutions in a multiscale fashion, making it possible to efficiently analyze complex

systems with varying scales of behavior. Therefore, by using these basis functions, MsFEM can

effectively handle problems with heterogeneuos material properties, discontinuities, or other mul-

tiscale phenomena. . In this chapter, we consider the construction of multiscale basis functions for

the coarse space MH

5.1 MULTISCALE FUNTIONS ON THE UNIT INTERVAL

Consider the simplest invariant set Ω = [0,1]. The advantage of the construction on this set is

the recursive generation of partitions of Ω and multiscale bases based on partitions. The following

procedures have been proposed and discussed extensively in [16]. Let Ω = [0,1], be an invariant
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set with the associated contractive mapping

φε(t) =
ε + t

2
t ∈ Ω, ε ∈ Z2, (20)

where

Ω = φ0(Ω)∪φ1(Ω) and meas(φ0(Ω)∩φ1(Ω)) = 0.

and meas(A) denotes the Lebesgue measure of the set A. Then, for each ε ∈ Z2 we set Ωε :=

[ ε

2 ,
ε+1

2 ] and define the isometry Tε such that for f ∈ L2(Ω) :

Tε f :=
√

2( f ◦φ
−1
ε )χΩε

=


√

2 f (2t − ε) for t ∈ Ωε ,

0 for t /∈ Ωε .

(21)

where χA is the characteristic function of the set A. The application of the operator Tε to a function

can be seen in Figure 6.

Figure 6. Application of the operator Tε to a function producing T0 f and T1 f . (Reproduced from

[16])
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Morover, given the space Xn = Sk
2n, n ∈N0, where S1 ⫅ S2 ⫅ ...⫅ Sk

2n , if X0 is an orthonormal

basis for Sk
1, then

Xn :=
⊥⋃

ε∈Z2

TεXn−1, n ∈ N (22)

is an orthonormal basis for Sk
2n . We refer the reader to [16] for a detailed proof.

5.2 CONSTRUCTION OF MULTISCALE BASIS

Let Xn be a space such that Xn−1 ⊆ Xn. By the theorem orthogonal decomposition, we have

Xn = Xn−1 ⊕⊥Wn,

where Wn is the orthogonal complement of Xn−1 in Xn. This gives the decomposition for the space

Xn.

Xn = X0 ⊕⊥W1 ⊕⊥W2 ⊕⊥ ...⊕⊥Wn,

with dimension Xn = k2n and dimension Wn = k2n−1 for k ⩾ 1.

In order to construct multiscale orthonormal basis, we begin with the establishment of or-

thonormal basis Wj for the space W j for each j ∈ Nn. First, we choose the Legendre polynomials

of degree ⩽ k−1 on Ω as an orthonormal basis for X0 = Sk
1 and denote these basis by X0. Then,

(1) Use equation 22 to construct an orthonormal basis X1 for the space X1.

X1 :=
⊥⋃

ε∈Z2

TεX0, n ∈ N

(2) Form a linear combination of the basis functions in X1 and require it to be orthogonal to

all elements of X0 through the process of Gram-Schmidt. This gives k linearly independent

elements which are orthogonal to X0.
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(3) Orthonormalize these k functions and have them serve as an orthonormal basis for W1

For the construction of basis Wj , j ≥ 2, we use the following results proposed in [16]. If W1 is

given as an orthonormal basis for W1 , then

Wn+1 :=
⊥⋃

ε∈Z2

TεWn, n ∈ N (23)

is an orthonormal basis for Wn+1.
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5.3 EXAMPLES OF MULTISCALE FUNCTIONS

We consider basis functions of the form Wi := {wi j : j ∈Zw(i)} with double subscripts. The first

subscript represents the level of the scale of the subspace and the second indicating the location

of its support. In this work, we shall construct basis functions up to the third level. Since the

decomposition for the space Xn is given by

Xn = X0 ⊕⊥W1 ⊕⊥W2 ⊕⊥ ...⊕⊥Wn,

for n = 3, we have,

X3 = X0 ⊕⊥W1 ⊕⊥W2 ⊕⊥W3.

For the space X0, we have the following orthonormal basis functions. See Figure 7.

X0 : w00(t) = 1, w01(t) =
√

3(2t −1), t ∈ [0,1]

Figure 7. Orthonormal basis on X0 spanned by w00(t) and w01(t) .
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For the space W1, we obtain following orthonormal basis functions through the process out-

lined in section 5.2. See Figure 8

w10(t) =


1−6t for t ∈ [0, 1

2 ],

5−6t for t ∈ (1
2 ,1].

w11(t) =


√

3(1−4t) for t ∈ [0, 1
2 ],

√
3(4t −3) for t ∈ (1

2 ,1].

A B

Figure 8. Orthonormal basis for W1. (A) basis w10. (B) basis w11. (Reproduced from [16]).
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Since we are furnished with the basis of W1, we apply the operators 21 to W1 to obtain the

basis functions for the space W2. This can be seen in Figure 9.

W2 : T0 {w10,w11} ∪ T1 {w10,w11} := span{w20,w21,w22,w23}.

A B

C D

Figure 9. Orthonormal basis for W2. (A) T0 applied to w10. (B) T1 applied to w10 . (C) T0 applied

to w11. (D) T1 applied to w11 .
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Finally, we apply the operators 21 to W2 to obtain the basis functions for the space W3. This

can be seen in Figure 10 and Figure 11

W3 :T0 {w20,w21,w22,w23}∪T1 {w20,w21,w22,w23} := span{w30,w31,w32,w33,w34,w35,w36,w37}.

A B

C D

Figure 10. Orthonormal basis for W3. (A) T0 applied to w20. (B) T1 applied to w20 . (C) T0

applied to w21. (D) T1 applied to w21 .
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A B

C D

Figure 11. Orthonormal basis for W3. (A) T0 applied to w22. (B) T1 applied to w22 . (C) T0

applied to w23. (D) T1 applied to w23 .
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CHAPTER 6

NUMERIAL RESULTS

In this chapter, we develop numerical experiments by harnessing the results from previous

chapters to establish our goals in two folds. The first, involves comparing our coarse mesh solution

with that of the fine-scale. The efficiency of computation was improved through the implementing

of parallel computing, and the enrichment of the coarse-scale solution through the addition of

multiscale basis on the coarse edges. In this case, going from one level to another.

The second, entails the application of Artificial Neural Network (ANN) in determining a solu-

tion map (Dirichlet-to-Neumann) between the coarse blocks. Training is done on a single coarse

block instead of the entire domain. A similar case of element learning was also established in [21]

6.1 MSHDG RESULTS

We consider the domain Ω = [0,1]× [0,1] and divide Ω into N = M×M coarse blocks where

H = 1/M is the size of each coarse blocks. Then, within each subdomain Ωi, we establish a

structured triangulation (fine-scale) with m subintervals on each axis. This gives us a fine-mesh size

of h = 1/(Mm). We test our method with the following PDE parameters: f = 1, τ = 1 representing

the stabilization parameter on each edge (fine and coarse edge), and a multiscale coefficient κ = 1

in white regions and κ = 104 in the gray regions. See Figure 12. To fully implement the multiscale

HDG method established in Chapter 4, we consider Wh and VVV h to be spaces of piece-wise linear,

discontinuous functions on Th, Mh a space of piece-wise linear, discontinuous functions on ξh and

MH is the multiscale space consisting of multiscale functions constructed in Chapter 5.
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Figure 12. Distribution of kappa. κ = 1 in white regions and κ = 104 in dark or gray regions.

We can view the results of this implementation in Figure 13 and Figure 14. We choose a

10× 10 coarse block with size H = 1/10. Then in each coarse block, we choose 8× 8 smaller

squares of size h = H/8. This give us 128 elements in each coarse block. We find approximations

to the fine-scale solution by adding more multiscale basis functions on the coarse edges. This is

accomplised by going from one level to the other, where the dimension of each level is given by

Li = 2× 2i, for i = 1,2,3. Figure 15 shows the fine-scale solution with the given parameters.

For error analysis, we use the weighted L2-norm for the solution ∥ûh − ûH∥L2(Ω) between the fine-

scale solutions ûh and the coarse-scale ûH on the coarse scale edges. The results can be seen in

Table1.
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B

Figure 13. Comparison of MsHDG solutions for MH . (A) L0, Dim=360. (B) L1, Dim=720
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B

Figure 14. Comparison of MsHDG solutions for MH . (A) L2, Dim=1440. (B) L3, Dim=2880.
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Figure 15. Fine-scale solution with dimension (Dim) = 152960.

Table 1. Error and processor time for different scale levels on MH .

Level Dim. ∥ûh − ûH∥L2(Ω) Elapsed time(seconds)

0 360 0.0041 3.9516

1 720 0.0023 6.3237

2 1440 0.00047 12.0186

3 2880 0.000042 28.5727
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The fourth column (Elapsed time), in Table1 shows the results from parallel computation. Par-

allel processing was done using MATLAB parallel computing toolbox on an Intel(R) Core(TM)

i7-14700F process with twenty cores and twenty-eight Logical processors. MATLAB used a max-

imum of eight workers.

6.2 ARTIFICIAL NEURAL NETWORK

The goal of this section is to improve the efficiency of our multiscale HDG method using

machine learning. Previous numerical results established in section 6.1 were obtain through the

use of local solvers for each coarse block over the entire domain. And although the dimension of

the global system is reduced, the process does not eliminate the disadvantage of performing tedious

operations over every coarse block. As such, a significant advantage of using neural network is

that we can train the network on a single coarse block (reference coarse block) to learn the solution

map, or more specifically, the Dirichelet-to-Neumann map between coarse block. And once the

network is trained, it can be used to determine solution map for other geometries (coarse blocks)

using a simple linear transformation.

We establish the training process of our neural network in the following manner. Consider the

domain Ω = [0,1]× [0,1] and divide Ω into N = M ×M smaller squares, where M = 6. Then on

Ω, we generate a structured triangulation (fine-scale) containing 128 finite elements. This domain

will serve as our reference coarse block. We perform a random sampling of kappa (κ) such that

within each small square, we have κ = 1 in the white regions and κ = 104 in the dark/gray regions.

See Figure 17.

6.2.1 Data Generation
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Figure 16. Coarse block learning. A domain is decompose into several subdomains. For each

subdomain, the neural network takes the PDE parameters as inputs, and returns the

Dirichlet-to-Neuman map. (Reproduced from [21])

We evaluate kappa within each element and store the following two matrices. The first, is the

coordinates of all vertices of all elements in Ω. This will have a dimension Nelts ×3. The second,

is the matrix containing the barycentric coordinates of all the quadrature nodes, with dimension

3×Nnd . Then, the product of these two matrices gives us the x and y-coordinates of all quadrature

nodes in all triangles with dimension Nelts ×Nnd . We reshape this matrix into a 1×Nelts ×Nnd

vector for each sample of kappa generated. The value of the entries of this matrix will depend on

whether the x,y-coordinate is within the white or dark/gray regions. This will serve as the data for

the input layer of our neuron network.

Next, we determine the output layer of the neural network.

Output layer := ([a(ξH ,µ)], [l(µ)]).

Our reference domain consists of four coarse edges on which we assign multiscale basis function to
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A B

C D

Figure 17. Random samples of kappa κ . (A) Sample 1 . (B) Sample 2 . (C) Sample 3. (D)

Sample 4. κ = 1 in the white regions and κ = 104 in the dark/gray regions

determine the flux response (Dirichlet-to-Neumann map). This is a symmetric matrix of dimension

4 Nbasis ×4 Nbasis, where

Nbasis = 2 ·2level,

is the number of basis functions per coarse edge and level is the level of the scale. We form an upper

triangle of this matrix and use the values as the output layer with dimension 1× 4Nbasis(4Nbasis+1)
2 .

We also form a 1× 4 Nbasis vector for the right-hand-side of Equation 18. Then, the output layer
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of our neural network is a vector with total dimension 1× 4Nbasis(4Nbasis+1)
2 ×4 Nbasis.

For the rest of the neural network structure, we follow a similar design outlined in [21]. Among

the Nsamp = 1000 random samples generated for the distribution of κ , 800 of them constitute the

training set and the remaining 200 samples, the testing set. We use a fully connected neural net-

work with four hidden layers, where the size of the hidden layer is four times the input layer. The

activation function is chosen to be the Rectified Linear Units (ReLU) along with Adam optimiza-

tion and L1-norm error as the loss function (see Figure 19). We choose a batch size of 100 with

an initial learning rate 10−3 for the first 3000 epochs. For the next 3000 epochs, we reduce the

learning rate to 10−4 and then to 10−5 for the last 3000 epochs. All training was done on the

PyTorch platform using 8.0 GB NVIDIA GEForce RTX 4060 dedicated GPU memory. Figure 18

shows the L1-norm errors of the neural network for both training and testing using two multiscale

basis functions.

Figure 18. Training (blue) and testing(orange) errors for neural network. L1-norm errors (y-axis)

vs. number of epochs(x-axis).
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We tested the performance of our neural network on a two-by-two (2x2) and three-by-three

(3x3) coarse blocks with random distribution of kappa κ for different levels (L0,L1) of multiscales

basis funcitons. Given the reference domain (coarse block) K̂ = [0,1]2, the parameterization of any

geometry K (physical domain) is determined by the following push-forward map:

FK : K̂ −→ K,

(x̂, ŷ)−→

 aK
11 aK

12

aK
21 aK

22


 x̂

ŷ

+

 bK
1

bK
2

 ,

where the geometry of K is parameterized by the parameters aK
i j and bK

i . Since we are using square

coarse blocks, this reduces to

(x̂, ŷ)−→

 hx̂

hŷ

+

 bK
1

bK
2

 ,

where h represents the size of the coarse block K. Then, solving Equation 17 on K is equivalent to

solving the same equation on K̂ with a re-scaled coefficient h.

The L2-norm error between the solution of the multiscale HDG method proposed in Chapter

4, and that of the neural network was also determined within an error tolerance of 10−3. Figure

21 to Figure 34 uses two multiscale basis functions (L0) per coarse edge, whereas Figure 36 and

Figure 40 uses four multiscale basis functions (L1). Table 2 shows the amount of time(seconds) it

takes each method to achieve an approximate solution.

Table 3 shows the errors between the MsHDG and Artificial Neural Network (ANN) solutions

for different test domains.
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Table 2. Elapsed time (seconds) to achieve an approximate solution in both methods at scale level

L0.

Method 2×2 coarse block 3×3 coarse block

ANN 0.5402 0.6547

MsHDG 2.0610 5.1105

Table 3. Errors between the MsHDG and Artificial Neural Network (ANN) solutions for different

test domains.

Test domain ∥ûMSHDG
h − ûANN

h ∥L2(Ω)

1 3.2609×10−4

2 6.3265×10−4

3 2.6397×10−4

4 9.2869×10−4

5 7.1630×10−4

6 9.1246×10−4

7 7.9571×10−4
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Figure 19. Neural network architecture comprising input layer, hidden layer with non-linear

activation functions (ReLU), and an output layer.
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Figure 20. Test domain 1:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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B

Figure 21. L0 neural network solutions for Test domain 1. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).



51

A

B

Figure 22. L0 MsHDG solution for Test domain 1. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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Figure 23. Test domain 2:κ = 1 in the white regions and κ = 104 in the dark/gray regions



53

A

B

Figure 24. L0 neural network solutions for Test domain 2. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).
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B

Figure 25. L0 MsHDG solution for Test domain 2. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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Figure 26. Test domain 3:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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Figure 27. L0 neural network solution for Test domain 3. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).
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Figure 28. L0 MsHDG solution for Test domain 3. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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Figure 29. Test domain 4:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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Figure 30. L0 neural network solution for Test domain 4. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).
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Figure 31. L0 MsHDG solution for Test domain 4. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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Figure 32. Test domain 5:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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Figure 33. L0 neural network solution for Test domain 5. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−4).
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Figure 34. L0 MsHDG solution for Test domain 5. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−4).
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Figure 35. Test domain 6:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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Figure 36. L1 neural network solution for Test domain 6. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).
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Figure 37. L1 MsHDG solution for Test domain 6. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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Figure 38. Test domain 7:κ = 1 in the white regions and κ = 104 in the dark/gray regions
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Figure 39. L1 neural network solution for Test domain 7. (A) 2-D view of neural network

approximation . (B) 3-D view of neural network approximation (×10−3).
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Figure 40. L1 MsHDG solution for Test domain 7. (A) 2-D view of MsHDG approximation . (B)

3-D view of MsHDG approximation (×10−3).
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CHAPTER 7

CONCLUSION

The objective of this thesis was to solve the second-order elliptic differential equation, equation

4, defined on a bounded polyhedral domain with heterogeneous permeability coefficient kappa κ .

Numerical solution of such equation on a fine-scale may require a tremendous amount of memory

and CPU time. Whenever it is affordable to resolve all the small scale features of a physical

problem, direct solutions provide quantitative information of the physical processes at all scales.

However, it is often sufficient to predict the macroscopic properties of the multiscale systems.

This necessitates the use of reduced-order methods or specialized techniques which are capable of

capturing the fine scale effects on the larger scale, without ever fully resolving all the fine scale

features. We utilized local snapshots that incorporated local features of the solution space and

employed multiscale basis functions to obtain better approximations through the process of coarse

scale enrichment. Furthermore, neural network was incorporated to improve the efficiency of our

method by training the network to learn the solution map between each coarse blocks. We state,

that the size of the fine-scale domain (2x2) and (3x3) in the neural network section is chosen solely

for demonstration purposes. It is expected that this method can be applied to a larger domain and

higher scale levels (L2 and L3) of multiscale basis functions. Figure 21 - Figure 40 shows that we

can obtain good approximations to the multiscale HDG solutions once the network parameters are

fine-tuned to minimize the loss function. In Table 1, we can observe that as we enrich the coarse

space, i.e., going from one level to the other, the error between the MsHDG approximations and the

fine-scale solutions on the coarse edges decreases. It also shows the possibility of implementing
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these methods in parallel. Table 2 shows that we can improve on the efficiency of our method by

using neural network even as we increase the coarse scale dimensions.
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