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6.4. Comparison with Other Methods on Networks with Mere Connectivity

Figure 8 lists a set of representative networks with various shapes and different topologies.
These networks have only connectivity information available. For these networks, we only show the
original coordinates of landmark nodes marked with red color. Grey points represent the computed
coordinates of sensor nodes of the networks, including landmark and non-landmark nodes, after
a least square alignment with the original networks. We associate each landmark node with a red
line segment, starting from its original coordinates marked with red and ending at the computed
coordinates marked with grey. Clearly, the length of the line segment indicates the localization error of
that node. Overall, the more and the longer the red lines are, the worse the localization performance is.

a(1) b(1) c(1) d(1) e(1)

a(2) b(2) c(2) d(2) e(2)

a(3) b(3) c(3) d(3) e(3)

a(4) b(4) c(4) d(4) e(4)

a(5) b(5) c(5) d(5) e(5)

Figure 8. Comparison with other methods on networks with mere connectivity. (a(1)–a(5))
C-CCAscheme; (b(1)–b(5)): D-CCA scheme; (c(1)–c(5)) multi-dimensional scaling (MDS)-MAPscheme;
(d(1)–d(5)) MDS-MAP(P) scheme; (e(1)–e(5)) Ricci scheme. A red line segment is drawn for each node,
starting from the real coordinates marked with red and ending at the computed coordinates marked
with grey.

As can be observed in Figure 8a(1),c(1), C-CCA and MDS-MAP both yield large distortions for
nodes on the two branches. This is because the approximated distances based on hop counts among
those nodes are much longer than their actual Euclidean distances due to the reversed C shape. On the
contrary, MDS-MAP(P) and D-CCA compute local maps first and then merge them into a global map.
Since local maps are “smooth” and do not have large “tentacles” in general, the shortest paths are
free of significant distortions. Therefore, both methods achieve better performance (i.e., less distortion
and lower errors) than the centralized approaches for networks with irregular boundary conditions.
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This can be clearly seen in Figure 8b(1),d(1). However, if a network has a smooth boundary (e.g.,
Figure 8a(2)–e(2)), the shortest paths are not seriously distorted, and thus, the centralized schemes
perform better since they utilize more constraints to localize the network nodes.

For networks with holes, similarly as the reversed C-shaped network, MDS-MAP(P) and D-CCA
perform better (shown in Figure 8b(4),b(5),d(4),d(5)) compared with their centralized counterparts
MDS-MAP and C-CCA (shown in Figure 8a(4),a(5),c(4),c(5)). However, they have to pay the cost to
merge different subnetworks together.

The proposed optimal flat metric-based approach, on the contrary, achieves the least overall
localization errors in all simulated scenarios as demonstrated in Figure 8e(1)–e(5). Figure 9a summarizes
the average localization errors with different approaches on the models shown in Figure 8.

Figure 9b illustrates the distribution of localization errors on the reversed C-shaped network
with different localization approaches. Since the results under other networks show similar statistics,
we omitted them here. As can be seen, the localization errors of the optimal flat metric-based approach
are nicely distributed at the lower range.
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Figure 9. (a) Comparison of the average localization errors of different methods on the networks shown
in Figure 8 with mere connectivity information: Network 1 shown in Figure 8a(1)–e(1), Network 2
shown in Figure 8a(2)–e(2), Network 3 shown in Figure 8a(3)–e(3), Network 4 shown in Figure 8a(4)–e(4)
and Network 5 shown in Figure 8a(5)–e(5). (b) The distribution of connectivity-based localization
errors on the reversed C-shaped network with different approaches: C-CCA, D-CCA, MDS-MAP,
MDS-MAP(P) and Ricci.

6.5. Comparison with Other Methods on Networks with Range Distance Measurements

Figure 10 summarizes the average localization errors of the proposed optimal flat metric-based
approach and other methods on the networks shown in Figures 4 and 8 with one-hop communication
radio range distance information. Specifically, the one-hop communication radio range distance
measurement error increases from 0–100% of the actual distance.

Figure 10 shows that when the measurement error is less than 10%, a localized network based
on the proposed algorithm is very close to the original one. When the measurement error is less
than 40% shown in Figure 10b,d, 30% shown in Figure 10a,c and 25% shown in Figure 10e,f, the
proposed algorithm achieves the highest localization accuracy compared with other methods. However,
from the other side, the proposed algorithm is more sensitive to measurement error than other
localization methods. Its performance decreases with the increase of the measurement error. When
the measurement error is more than 50%, many triangles formed by three sensor nodes within their
mutual communication radio range degenerate, and the measured one-hop communication radio
range distances even do not satisfy the triangle inequality. We cannot take the measured distances
as a legal and initial metric of the constructed mesh any more, so we have to take an average of the
measured one-hop communication radio range distance as an initial metric of the mesh, which means
each edge is assigned a uniform length. Such averaged distance is robust to random errors, which
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explaining that the performance of the proposed algorithms keeps stable when the measurement error
is more than 50%.

C-CCA and MDS-MAP, the centralized neural network-based and MDS-based approaches,
on the contrary, are least sensitive to measurement error. Such random error directly affects the
measured distances of pairs of nodes within the one-hop communication radio range, which is only a
small portion of the distance matrix of a network. However, for a pair of nodes not within one-hop
communication radio range, the longer their distance is, the smaller the random error accumulated
along their path is. Therefore, we do not observe noticeable performance decline of C-CCA when the
measurement error is small. The performance of C-CCA starts to decrease when the measurement
error is over 40% shown in Figure 10c,d, 50% shown in Figure 10a,e and 70% shown in Figure 10b,f.
Similar to C-CCA, there is no noticeable performance decline of MDS-MAP when the measurement
error is small. The performance of MDS-MAP starts to decrease when the measurement error is over
30% shown in Figure 10a,c,d, 50% shown in Figure 10b,f and 60% shown in Figure 10e.
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(a) Network (shown in Figure 4) (b) Network 1 (shown in Figure 8a(1)–e(1))
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(c) Network 2 (shown in Figure 8a(2)-e(2)) (d) Network 3 (shown in Figure 8a(3)–e(3))
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(e) Network 4 (shown in Figure 8a(4)–e(4)) (f) Network 5 (shown in Figure 8a(5)–e(5))

Figure 10. Comparison of average localization errors of different methods on networks shown in
Figures 4 and 8 with one-hop communication radio range distance measurement errors increased
from 0–100%.

D-CCA and MDS-MAP(P), the distributed neural network-based and MDS-based approaches,
can achieve a higher localization accuracy than their centralized counterparts when the measurement
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error is small. However, they are also more sensitive to measurement error than their
centralized counterparts.

Combining Figures 8 and 10, it is obvious that when the measurement error is more than 50% of
the actual distance, such measured one-hop communication radio range distance will not help improve
localization accuracy for any of the compared localization methods including the one proposed in
this paper.

6.6. Error Propagation on Networks with One-Hop Communication Radio Range Distance Measurements

We conduct the following experiments to test the propagation rate of the measurement error
resulting from bad estimation or the wrong measurement. Two networks with a constructed triangular
mesh structure are shown in the top right of Figure 11a,b. If the given one-hop communication
radio range distance is free of measurement error, the discrete Ricci flow-based method localizes the
two networks with localization errors 1.4× 10−5 and 1.5× 10−5 , respectively; while if the distance
measurement around one node is wrong, for example, a much slower response of a node to its
neighboring nodes’ signals will result in a much longer distance approximation. The measurement
error around the node will affect not just localization of this node, but also other nodes in the network
(e.g., error will propagate). We introduce such measurement error at one selected node (marked with
red in the two triangular networks shown in Figure 11a,b) by multiplying some constant K (K = 2.0 for
Case 1, K = 1.5 for Case 2) with the lengths of its neighboring edges, such that the node is no longer
planar based on the wrong measurement. We measure the effect of the “one node measurement error”
by comparing the change of the computed flat metric (edge length) with the original one. Figure 11a,b
shows the distribution of the average errors of edge lengths of the two testing networks with respect
to the distance to the selected node, respectively. The closer the two ending nodes of one edge are
to the selected node, the bigger the distortion of the computed edge length is. It is obvious that the
error propagation decreases dramatically with the increase of the distance to the distorted node. The
localization errors of the two networks with distorted vertices are 0.0018 and 0.0020, respectively.
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Figure 11. The error of the computed edge length decreases dramatically with its distance to the
distorted node marked with red.

6.7. Computing Time

In our experiments, we set the step length of running discrete Ricci flow to 0.1 and the error
threshold to 1× 10−5. Figure 12 gives the convergence rate and time using discrete Ricci flow to
compute optimal flat metric for part of our simulation networks. Specifically, for the reversed C-shaped
network with 3k sensor nodes and 424 landmarks chosen, the convergence time of discrete Ricci slow
is 2 s. The curvature error is less than 0.1 and 0.0004 after five and 82 iterations, respectively. For the
network with one hole and 2k sensor nodes and 283 landmarks chosen, the convergence time is
1 s. The curvature error is less than 0.1 and 0.0004 after four and 55 iterations, respectively. For the
network with two holes and 2k sensor nodes and 297 landmarks chosen, the convergence time is 1 s.
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The curvature error is less than 0.1 and 0.0004 after four and 48 iterations, respectively. The time of the
isometric embedding of each network is no more than a few seconds. Therefore, the total computing
time of a network including choosing the landmark nodes, building a triangular structure, computing
the optimal flat metric and isometric embedding the network is no more than 10 s on a Dell Latitude
e6420 laptop. Note that the computation is fully distributed such that each vertex node computes and
exchanges information with only its neighboring vertex nodes.

We can also apply a centralized method to compute the optimal flat metric using discrete Ricci
flow. Each vertex node sends its connectivity information and distance measurement within the
one-hop transmission range if available to a central server. The central server can apply Newton’s
method as discussed in our previous paper [29] to compute the optimal flat metric with discrete
Ricci flow. Compared with the distributed method introduced in this paper, the centralized method
converges in less than five iterations with the total computing time of less than 1 s for all of the
testing networks.
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Figure 12. Convergence rate of discrete surface Ricci flow applied to compute the optimal flat metric of
networks, with step length 0.1 and error threshold 1× 10−5. (a) A reversed C-shaped network with 424
landmarks: the convergence time is 2 s. (b) A network with one hole and 283 landmarks: the convergence
time is 1 s. (c) A network with two holes and 297 landmarks: the convergence time is 1 s.

7. Conclusions

This work proposes a novel optimal flat metric-based localization method suitable for large-scale
sensor networks. The method can be proven to generate an optimal flat metric that introduces the
least distortion from the initially estimated edge length. The computation is fully distributed and
highly scalable with its computation time and communication cost linear to the size of the network.
Extensive simulations and comparisons with other methods under various representative network
settings are carried out, showing the superior performance of the proposed algorithms.
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