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Abstract: This work proposes a novel connectivity-based localization algorithm, well suitable for
large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast
to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly
scalable with linear computation and communication costs with respect to the size of the network; and
fully distributed where each node only needs the information of its neighbors without cumbersome
partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable.
Moreover, the algorithm can be readily extended to the localization of networks with a one-hop
transmission range distance measurement, and the propagation of the measurement error at one
sensor node is limited within a small area of the network around the node. Extensive simulations
and comparison with other methods under various representative network settings are carried out,
showing the superior performance of the proposed algorithm.

Keywords: localization; large-scale sensor network; scalable; fully distributed

1. Introduction

Geographic location information is imperative to a variety of applications in wireless sensor
networks, ranging from position-aware sensing to distributed data storage and processing, geographic
routing and nodal deployment. While global navigation satellite systems (such as GPS) have been
widely employed for localization, integrating a GPS receiver in every sensor of an entire large-scale
sensor network is unrealistic. Moreover, some application scenarios prohibit the reception of satellite
signals by part or all of the sensors, rendering it impossible to solely rely on global navigation systems.

Even for those ranging information-based localization schemes, extra equipment installed to
measure the distance or the angle between nodes can also lead to a dramatic increase of network cost.
To this end, many interesting approaches have been proposed for localization with mere connectivity
information. Each node only knows which nodes are nearby within its one-hop communication radio
range, but does not know how far away and in what direction its neighbors are.

1.1. Challenges of Previous Approaches

Previous localization methods with mere connectivity have mainly focused on dimension
reduction of multidimensional datasets based on the input distance matrix, which is approximated by
hop counts between each possible pair of nodes. The two major methods, multi-dimensional scaling
(MDS) based [1–3] and neural network based [4,5], achieve the highest localization accuracy and yield
coordinates of sensor nodes that preserve the distance matrix between the data points of the input
space and the output space (i.e., a 2D plane) as much as possible.
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One of the major problems for MDS-based methods is their low scalability. The time complexity
for obtaining the distance matrix is O(nm) where n and m are the number of vertices and edges,
respectively. The time complexity to compute the two largest eigenvalues and the corresponding
eigenvectors is O(n2). With the increase of a network size n, the computational cost is prohibitive.
Another issue is that they are inherently centralized. As a sensor network grows large in size,
centralized computation has a fundamental bottleneck at nodes near the sink as each sensor node has
a limited power and computation capability. Therefore, a distributed algorithm is highly preferred
especially for a large-scale network. Different algorithms have been proposed to overcome these
disadvantages. A basic approach is to partition the network into many subnetworks and compute
the localization of each subnetwork, then merge these subnetworks together. This method requires
delicate strategies and great caution in the merging stage.

For neural network-based methods, stability is their major problem due to the non-convex shape
of their minimized energy. Although several approaches have been proposed to increase the possibility
to escape from local minima of the minimized energy, the selection of initial values is still crucial for
the final localization results [5].

1.2. Our Approach

We propose a novel localization algorithm that overcomes the major difficulties of conventional
MDS and neural network-based methods. We first explain the basic idea using a smooth and planar
surface and then transform it to sensor network localization.

Let us consider a smooth and planar surface. It is flat everywhere, so the Gaussian curvature,
which measures how much a surface is curved and can be computed based on local distance information,
equals zero at every point of the surface. Assume we only have approximated distance information
instead of the exact one of the surface. Such approximated distance generates non-zero Gaussian
curvatures, which induce a curved surface instead of a planar one. We can distort the approximated
distance such that the deformed one generates zero Gaussian curvatures for every point, which
guarantees that a surface can be embedded in plane. The tool we apply to distort the approximated
distance is Ricci flow [6].

Given a large-scale sensor network deployed on a plane, we can extract a triangular mesh
structure from the connectivity graph of the network such that the mesh structure approximates well
the geographic structure of the sensor network. Specifically, we uniformly select a set of landmark
nodes such that any two neighboring landmarks are a fixed Khops away. Landmarks initiate local
flooding to build a landmark-based Voronoi diagram of the network such that any non-landmark
node is within k hops of some landmark. We can build a triangulation based on the dual of the
landmark-based Voronoi diagram. Each vertex of the triangulation is a landmark node. Each edge
connecting two neighboring vertices is the shortest path between the two neighboring landmark nodes.

We can consider the triangular mesh as a discrete approximation of a smooth and planar surface.
The local distance information of the mesh is discrete and represented by the approximated edge
lengths (i.e., a fixed K-hop). The Gaussian curvature of the mesh is also discrete and can be computed
based on the approximated edge lengths. Discrete Ricci flow deforms the length of each edge
such that the deformed edge lengths induce zero Gaussian curvature at each vertex of the mesh.
The deformed edge lengths guarantee that the triangular mesh can be embedded in the plane. We call
such edge lengths a flat metric. However, there exists an infinite number of flat metrics. Each one
of them can isometrically embed the triangular network into the plane. The key is which one of
those flat metrics introduces the minimal deformation to the initially approximated edge length (i.e.,
achieves the minimal localization error). We prove that we can obtain an optimal flat metric with
the least deformation from an initially non-flat one by controlling the condition of boundary vertices.
The theorem is the foundation of our paper. Computing the optimal flat metric is the key step of our
algorithms. Based on the computed optimal flat metric, localization (i.e., isometric embedding of the
network to plane) is straightforward.
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In our algorithm, all of the involved computations for each node only require information from
nodes within its one-hop transmission range; therefore, it is fully distributed without cumbersome
cutting and merging process. The proposed method is numerically stable, free of the choice of initial
values and local minima with a theoretical guarantee. The computational cost and communication cost
are both linear to the size of the network, so the method is scalable, suitable for large ad hoc networks
with thousands of highly resource-constrained sensor nodes (processor, memory and power) that have
a limited communication radio range.

Although accurate distance measurement is too expensive, or even impossible for a network with
thousands or even millions of sensors, it is possible for a node to approximate its distance to nearby
nodes within the one-hop transmission range in practice. If the range distance information is available,
even with unavoidable measurement errors, our algorithm can incorporate the approximated one-hop
distance information to further improve the localization accuracy. The impact of the measurement
error at one node on the localization of other nodes of the network decreases dramatically in terms of
the distance between them. This limited error propagation also contributes to the high scalability and
localization accuracy of our proposed algorithms.

The rest of this paper is organized as follows. Section 2 gives a brief review of related works.
Section 3 introduces the theoretical background of the proposed optimal flat metric-based localization
algorithms. Section 4 describes the localization algorithm with mere connectivity information step by
step. Section 5 discusses the localization algorithm with one-hop distance measurement. Section 6
presents the simulation results under various scenarios and different network topologies. Extensive
comparisons of the proposed localization algorithm with previous methods are also conducted in
Section 6. Section 7 concludes the paper and gives future directions.

2. Related Works

With mere connectivity information available, three major techniques are employed in current
state-of-the-art localization schemes: multi-dimensional scaling (MDS), neural networks and
graph embedding.

MDS is a non-linear dimension reduction and data projection technique that transforms the
distance matrix into a geometric embedding (e.g., a planar embedding for 2D sensor network
localization). MDS-based localization was originally proposed in [1]. It constructs a proximity matrix
based on the shortest path distance (approximated by hop counts) between all pairs of nodes in the
network. The singular value decomposition (SVD) is employed to produce the coordinates matrix that
minimizes the least square distance error. Finally, it retains the first two (or three) largest eigenvalues
and eigenvectors as 2D (or 3D) coordinates. Subsequent improvements on MDS are made by dividing
the graph into patches to enable distributed calculation [2,3]. In addition, [7] proposes to apply SVD
to the matrix based on a set of beacon nodes only and, thus, reduces complexity. A similar idea is
adopted in [8], with the simplex method (instead of SVD) for error minimization.

The second method is based on neural networks [4,5], where non-linear mapping techniques and
neural network models such as self-organizing map (SOM) are employed for dimension reduction
of multidimensional datasets, yielding coordinates of sensor nodes that preserve the distances (also
approximated by hop counts) between the data points of the input space and the output space (i.e., a 2D
plane) as much as possible.

The localization algorithms based on rigid graph embedding theory [9–11] aim to create a
well-spread and fold-free graph that resembles the given network. They focus on finding a globally
rigid graph, which can be embedded without ambiguity in the plane. While with the mere globally
rigid structure, like a topological disk triangulation in [9], there exist an infinite number of flat metrics
that induce different planar embedding as long as the total Gaussian curvatures satisfy the discrete
Gauss–Bonnet theorem as discussed in Section 3. A brute-force way is applied to find one planar
embedding of the extracted global structure, which in general can not be easily guaranteed. Therefore,
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compared with MDS and neural network-based approaches, the graph rigidity-based methods exhibit
lower localization accuracy in general.

A special graph embedding problem is unit disk graph embedding. Assuming the transmission
model of a sensor network is unit disk graph (UDG) model with transmission range one, there exists
an edge between two nodes in the connectivity graph of the network if and only if the Euclidean
distance between the two nodes is no more than one. Embedding such a unit disk graph into the plane
is NP-hard. Kuhn et al. in [12] proved a non-approximability result for the problem of embedding a
given unit disk graph. Later, Moscibroda et al. in [13] introduced a polynomial algorithm to embed
a unit disk graph into plane. The quality of the embedding, measured as the ratio of the maximum
edge length to the minimum distance between two non-neighboring nodes, is O(log2.5 n

√
log log n)

with n the size of the network. Note that the unit disk graph embedding achieves a different goal
compared with the discussed localization algorithms. Given a network modeled by UDG, a unit
disk graph embedding minimizes the violation of the unit disk constraints, but not necessarily the
localization error that is in general measured as the ratio of the average node distance error and the
average one-hop communication radio range.

Localization with noisy distance and angle information is discussed and distributed localization
methods are proposed in [14]. If only distance measurement information is available, both the
multi-dimensional scaling (MDS) and neural network-based methods are flexible to incorporate
distance information to improve localization accuracy. Previous research assumes a given network
has not only a small fraction of sensors with a priori coordinate knowledge, but also distance
measurement between pairs of nodes with long distances. One representative work is the distributed
weighted-multidimensional scaling (dwMDS) algorithm proposed to give more weight to range
measurements that are believed to be more accurate and select neighbors adaptively [15]. Meanwhile,
in this paper, we limit the discussion to localization based on distance measurement within the one-hop
communication radio range to limit the communication cost of a large-scale sensor network.

3. Optimal Flat Metric

Before giving the details of the proposed optimal flat metric-based localization algorithms in
Sections 4 and 5, we introduce briefly the concepts of metric and Gaussian curvature in Section 3.1,
which provide the necessary background knowledge of the algorithms. Specifically, we introduce
discrete surface Ricci flow in Section 3.2, a tool we apply to compute the optimal flat metric that
induces a planar localization of a given sensor network with a minimal localization error. We then
discuss the condition to find the optimal flat metric and give the optimal flat metric theorem, which
serves as the foundation of the proposed algorithms in Section 3.3. Table 1 summaries the symbols we
use in the paper.

Table 1. Table of notation.

Symbol Explanation
B0 the longest boundary of M
Bi the i-th boundary of M
b the number of boundaries of M
E edges of M
eij an edge belonging to E with two ending vertices vi and vj
en the number of edges of M
F triangle faces of M

fijk a triangle face belonging to F with vertices vi, vj, and vk
fn the number of triangle faces of M
Ki the discrete Gaussian curvature of vi ∈ V
K̄i the target Gaussian curvature of vi ∈ V
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Table 1. Cont.

Symbol Explanation

Li a shortest path between the initiator of Bi and B0
lij the length of eij
M a triangulated surface (or mesh in short) embedded in R3

∂M the boundary of M
r fijk a ratio between the longest and shortest edge lengths of fijk

t the time
ui the logarithm of γi of vi
V vertices of M
vn the number of vertices of M
vi a vertex belonging to V with id i
θ

jk
i

the corner angle attached to vertex vi in face fijk
γi the radius of a circle associated with vi
Γ the radius function assigned at M

φij weight of eij (the intersection angle of two circles centered at vi and vj)
Φ the weight function assigned at M

(Γ, Φ) circle packing metric of M
χ(M) the Euler characteristic number of M

δ the step length computing optimal flat metric
ε the threshold of curvature error computing optimal flat metric

3.1. Discrete Metric and Gaussian Curvature

In the discrete setting, we denote M = (V, E, F) a triangulated surface (or mesh in short)
embedded in R3, consisting of vertices (V), edges (E) and triangle faces (F). Specifically, we denote
vi ∈ V a vertex with id i; eij ∈ E an edge with two ending vertices vi and vj; fijk ∈ F a triangle face
with vertices vi, vj and vk.

Definition 1 (Discrete metric). A discrete metric on M is a function l : E→ R+ on the set of edges, assigning
to each edge eij ∈ E a positive number lij, such that all triangles satisfy the triangle inequalities fijk ∈ F:
lij + ljk > lki.

Edge lengths of M define a discrete metric. If M can be embedded in the Euclidean plane R2,
we call its metric a flat metric.

Definition 2 (Discrete Gaussian curvature). Denote θ
jk
i the corner angle attached to vertex vi in face fijk

and ∂M the boundary of M; the discrete Gaussian curvature Ki on vi ∈ V is defined as the angle deficit at vi:

Ki =

 2π −∑ fijk∈F θ
ij
i , vi 6∈ ∂M,

π −∑ fijk∈F θ
jk
i , vi ∈ ∂M.

(1)

We can compute corner angles directly from edge lengths, so the discrete metric solely determines
the discrete Gaussian curvature of M. If M can be embedded in the plane, it is intuitive and also obvious
from Equation (1) that the flat metric induces zero Gaussian curvatures for all non-boundary vertices.

The well-known Gauss–Bonnet theorem says that the total Gaussian curvature of M is solely
determined by its topology:

Theorem 1 (Discrete Gauss–Bonnet theorem). Denote b the number of boundaries. Denote χ(M) the Euler
characteristic number of M and χ(M) = 2− b. The total Gaussian curvature of M is a topological invariant.
It holds as follows:

∑
vi∈V

Ki = 2πχ(M). (2)
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3.2. Discrete Surface Ricci Flow

Ricci flow was first introduced by Richard Hamilton in his seminal work [6] in 1982. Suppose S is
a smooth surface with a Riemannian metric g. The Ricci flow deforms the metric g(t) according to the
Gaussian curvature K(t) (induced by itself), where t is the time parameter:

dgij(t)
dt

= −2K(t)gij(t). (3)

If we replace the metric in Equation (3) with g(t) = e2u(t)g(0), then the Ricci flow can be
simplified as:

du(t)
dt

= −2K(t), (4)

which states that the metric should change according to the curvature.
The Ricci flow can be easily modified to compute a metric with a user-defined curvature K̄ as

the following,
du(t)

dt
= 2(K̄− K). (5)

With this modification, the solution metric g(∞) can be computed, which induces the curvature K̄.
Conformal metric deformation preserves infinitesimal circles and the intersection angles among

them. Ricci flow defined in Equation (3) is proven in [16,17] to be convergent. The final metric is
conformal to the original one. Moreover, at any time t, the metric g(t) is conformal to the original
one g(0).

Later, Chow and Luo [18] proved a general existence and convergence theorem for discrete Ricci
flow on surfaces.

To briefly introduce the concept of discrete surface Ricci flow, we start from the concept of the
circle packing metric given by Thurston in [19] as shown in Figure 1. We assign each vi a circle and
denote γi its radius. The radius function is Γ : V → R+. The two circles at vi and vj of edge eij intersect
with an acute angle, denoted as φij and called the weight of eij. The edge weight function is then
Φ : E→ [0, π

2 ].
The length lij of eij can be computed from the circle radii of its two ending vertices γi, γj and its

weight φij from the cosine law:
lij

2 = γi
2 + γj

2 + 2γiγj cos φij. (6)

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3
θ1

θ2 θ3

(a) (b)

Figure 1. Circle packing metric. (a) Flat circle packing metric on a triangular mesh; (b) circle packing
metric on a triangle.

Definition 3 (Circle packing metric). A circle packing metric of a mesh M includes the circle radius function
and the edge weight function.
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Given a discrete surface, we use circles with finite radii to approximate the infinitesimal circles;
conformal deformation of a circle packing metric to approximate continuous metric deformation.
Since two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on the same mesh are conformally equivalent
if Φ1 ≡ Φ2, a conformal deformation of a circle packing metric only modifies the vertex radii and
preserves the intersection angles on the edges.

Denote ui = log γi, K̄i and Ki the target and current Gaussian curvatures of vi, respectively, and t
the time. The discrete Ricci flow is defined as follows:

dui(t)
dt

= (K̄i − Ki(t)). (7)

Discrete Ricci flow continuously deforms the circle packing metric according to the difference
between the current and target Gaussian curvatures in a heat-like diffusion process. Convergence
of discrete surface Ricci flow is proven in [18]. The final circle packing metric induces the one that
satisfies the target Gaussian curvatures.

Discrete Ricci flow can be formulated in a variational setting, namely it is a negative gradient
flow of a special energy form. We define a mesh M with edge weight Φ a weighted mesh, denoted as
(M, Φ). We represent a circle packing metric on (M, Φ) by a vector u = (u1, u2, · · · , un)T and Gaussian
curvatures at vertices by the curvature vector K = (K1, K2, · · · , Kn)T , where n is the number of vertices.
For two arbitrary vertices vi and vj, the following symmetric relation holds:

∂Ki
∂uj

=
∂Kj

∂ui
.

Let ω = ∑n
i=1 Kidui be a differential one-form [20]. The symmetric relation guarantees that the

one-form is closed (curl free) in the metric space.

dω = ∑
i,j
(

∂Ki
∂uj
−

∂Kj

∂ui
)dui ∧ duj = 0.

By Stokes theorem, the following integration is path independent and called discrete Ricci energy.

f (u) =
∫ u

u0

n

∑
i=1

(K̄i − Ki)dui, (8)

where u0 is an initial circle packing metric that induces the surface original metric. The discrete
Ricci energy has been proven to be strictly convex in [18]. The global minimum uniquely exists,
corresponding to the desired metric ū that induces user-defined curvature k̄. The discrete Ricci flow is
a negative gradient flow of the discrete Ricci energy, converging to the global minimum.

Furthermore, the speed of convergence can be estimated by the following formula [18]:

|Ki(t)− K̄i| < c1e−c2t, c1, c2 > 0,

where c1 and c2 are constant; namely, the convergence is exponentially fast.

3.3. Optimal Flat Metric

Analytically, the distortion of the metric at each vertex is given by ui. This motivates us to define
the total distortion energy as:

E(K) =
∫ K̄

K0

n

∑
i=1

uidKi,

where K and K0 represent the set of target and initial vertex Gaussian curvatures, respectively.
The integration is along an arbitrary path from K0 to the target curvature K. This energy is the
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Legendre dual to the Ricci energy given in Equation (8). Therefore, it is also convex, and it has a unique
global minimum for a given K.

All of the possible u’s form the admissible metric space, and all of the possible K’s form the
admissible curvature space. According to the Gauss–Bonnet theory (Equation (2)), the total Gaussian
curvatures of M must be 2πχ(M). A curvature vector K is admissible if there exists a metric vector u
on M, which induces K.

Define:

Ω = {K |
n

∑
i=1

Ki = 2πχ(M) and Ki = 0 ∀vi 6∈ ∂M}

the set of K’s such that the sum of Gaussian curvatures of vertices satisfies the Gauss–Bonnet theorem,
and the Gaussian curvature of all interior vertices is zero. Ω induces the set of all possible flat metrics
of M.

We formulate our problem as:
min
K∈Ω

E(K). (9)

Among all possible flat metrics of M induced from the set of K’s, we want to find the one
introducing the least distortion from the initially estimated curved metric of M.

Theorem 2 (Optimal flat metric theorem). The solution to the optimization problem (9) is unique and satisfies:

uj = const, ∀vj ∈ ∂M. (10)

Proof. The distortion energy E(K) is convex. The domain Ω is a linear subspace of the original domain
{K|∑i Ki = 2πχ(M)}. Therefore, the restriction of E(K) on Ω is still convex; it has a unique global
optimum at an interior point. The gradient of the energy is∇E(K) = (u1, u2, · · · , un). At the optimal
point, the gradient is orthogonal to Ω. Assume vi ∈ ∂M, 1 ≤ i ≤ m, then the normal vector to Ω is given
by (1, 1, · · · 1, 0, · · · , 0). Therefore, the gradient is along the normal vector. Therefore, Equation (10) holds.

We set the constant in Equation (10) as one. We also set the following two conditions for the target
metric of discrete Ricci flow: set the target Gaussian curvatures of all interior vertices to zero so that the
final metric is a flat one; deform only the metrics of interior vertices during the process of deforming
the estimated metric so that the final flat metric is an optimal flat one. We apply discrete Ricci flow
to find the target metric. Since discrete Ricci flow is proven in [18] as a negative gradient flow of a
convex shape energy, it is guaranteed to find the optimal flat metric regardless of the step length or
initial values.

4. Localization with Mere Connectivity

We explain the proposed localization algorithm with mere network connectivity in this section.
Specifically, the input of the algorithm is a connectivity graph of a network. Vertices represent the
sensor nodes. Edges represent the communication links. Each sensor node knows a set of neighboring
nodes within its one-hop communication range without the knowledge of distance or angle. The
output of the algorithm is a set of planar coordinates of the whole of the network nodes that may
differ in the set of GPS positions of the network a scaling, translation and rotation. We first extract a
triangular mesh from the connectivity graph and then apply discrete surface Ricci flow to compute an
optimal flat metric as introduced in Section 4.1. We then isometrically embed the network into 2D plane
based on the computed flat metric in Section 4.2. We analyze the time complexity and communication
cost of the algorithm in Section 4.3 and provide discussions in Section 4.4.
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4.1. Computing Optimal Flat Metric with Mere Connectivity

Given a large-scale sensor network with mere connectivity, we apply a simple distributed scheme
as discussed in [21–23] to uniformly select a set of landmark nodes. Any two neighboring landmarks
are a fixed k hops away (k = 4 in our tests) in the connectivity graph of the network. Landmarks initiate
local flooding to build a landmark-based Voronoi diagram of the network such that any non-landmark
node is within k hops of some landmark. The adjacency of these Voronoi cells gives rise to a dual
combinatorial Delaunay complex (CDC). CDC is not necessarily planar because there may exist some
crossing edges. We then apply the method introduced in [23] to remove crossing edges from the CDC.
Vertices of the resulting planar graph are the set of landmarks. An edge connecting two neighboring
vertices is the shortest path between the two landmarks in the network. A face of the planar graph is an
n-polygon with n ≤ 3. We can simply consider all n-polygons with n > 3 as inner holes of the network.
In practice, we add one virtual edge (i.e., a shortest path) connecting a pair of non-neighboring vertices
of a four-polygon. A four-polygon is then split into two triangles.

A landmark node-based graph may have dangling vertices or edges as shown in Figure 2.
A dangling vertex is a vertex belonging to more than one boundary. We remove dangling vertices
by vertex split operation. As shown in Figure 2a, v1 is connected with boundary vertices v2, v4, v5

and v7 that belong to two disconnected boundaries with boundary edges marked with red color. We
find a sensor node closest to v1 and mark it as a landmark node, as well. Denote the newly-added
landmark as v′1. v1 is connected with v5 and v7, and v′1 is connected with v2 and v4. The previously
disconnected boundaries are merged into one. Similarly, a dangling edge is an edge belonging to
more than one boundary. We remove dangling edges by the edge removal operation. As shown in
Figure 2b, e01 belongs to two disconnected boundaries. We remove this edge such that the previously
disconnected boundaries are merged into one. The graph now is a triangular mesh with each face a
triangle, a boundary vertex or edge belonging to exactly one boundary.

Figure 2. (a) Dangling vertex: Vertex v1 belongs to two disconnected boundaries with boundary edges
marked with red color. After vertex split, the two boundaries are merged into one. Now, a boundary
vertex belongs to one boundary only. (b) Dangling edge: Edge e01 belongs to two disconnected
boundaries with boundary edges marked with red color. After edge removal, the two boundaries are
merged into one. Now, a boundary edge belongs to one boundary and is adjacent with one triangle.
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Denote the constructed triangular mesh M; we assume each edge of M with unit edge length.
We then construct an initial circle packing metric (Γ0, Φ) of M. We assign each vertex vi a circle with
initial circle radius γi = 1, so initially, ui = log γi = 0. The intersection angle of the two unit circles at vi
and vj is the edge weight of eij. Since a boundary edge of M is adjacent with only one triangle face, we
can easily detect them and then mark their vertices. For those non-marked vertices (i.e., non-boundary
vertices), we set their target Gaussian curvatures K̄ to zero.

In each iteration of discrete Ricci flow, only non-marked vertices are involved. Specifically, each
non-marked vi collects the u values from its direct neighbors and updates its adjacent edge length with
lij = e(ui+uj). For each triangle fijk adjacent with vi, vi can easily compute the corner angle θ

jk
i based

on the inverse cos law:

θ
jk
i = cos−1

l2
ki + l2

ij − l2
jk

2l2
kil

2
ij

.

Then, vi computes its current discrete Gaussian curvature Ki as the excess of the total angle
sum at vi as Equation (1). If for every non-marked vi, the difference between its target Gaussian
curvature K̄i that is set to zero and current Gaussian curvature Ki is less than a threshold (we set it to
1× 10−5 in our tests), the discrete Ricci flow converges. Otherwise, each non-marked vi updates its ui:
ui = ui + δ(K̄i − Ki), where δ is the step length (we set it to 0.1 in our tests).

When the algorithm stops, all of the interior vertices have zero Gaussian curvature, which induces
a flat metric of M. Since in each step of the algorithm, there is always no deformation of circle radii
for boundary vertices (e.g., ui − u0

i = 0, vi ∈ ∂M), according to Theorem 1, the computed flat metric
introduces the least distortion to the initially estimated metric.

4.2. Isometric Embedding

Isometric embedding is a propagation process, starting from one vertex, embedding the
whole triangular mesh into plane with the computed optimal flat metric (i.e., edge length)
preserved. For simplicity, we let the vertex with the smallest ID (denoted as v1) initiate the embedding
process. Its planar coordinates are set to (0, 0), denoted as uv(v1). Then, it arbitrarily selects one
of its direct neighbors, e.g., vj, and sets the coordinates of vj to (0, lij). For vertex vk, adjacent to
both vi and vj, it calculates the intersection points of the two circles with centers at vi and vj and
the radii of lik and ljk, respectively. Then, vj chooses one of the intersection points that satisfies
(uv(vj)− uv(vi))× (uv(vk)− uv(vi)) > 0 as the coordinates of vk. The procedure continues until all
vertices of M have their planar coordinates.

If a triangular network has multiple boundaries (e.g., inner holes), we need to slice holes open
to change the topology of the triangular network to a disk before embedding. For each boundary,
an initiator with the smallest ID is elected. Since a boundary forms a closed loop, a boundary node
always has exactly two boundary neighbors. The initiator will send out a message to a randomly
chosen one of its boundary neighbors. The message contains a counter recording the size of the
boundary that is initialized to one. When the neighbor receives the message, it will increase the counter
by one and then forward the message to its boundary neighbor that is not the sender of the message.
Eventually, the message will come back to the initiator. The initiator will then advertise the size of the
boundary via a simple flooding on the triangular network. As a result, each initiator learns the sizes of
boundaries of the network. Denote Bi a boundary and B0 the longest one. For each Bi (i > 0), through
a local flooding, its initiator finds a shortest path Li to B0. Then, holes are “sliced” open along the set
of shortest paths (L1, L2, ...), where each vertex on Li is split into two virtual vertices with one on each
side. Such spliced vertex will have two sets of coordinates after embedding, and it will use the average
as its planar coordinates.

For planar embedding of non-landmark nodes, each node ni finds its three nearest landmarks,
denoted as v1, v2, v3 with planar coordinates (x1, y1),(x2, y2) and (x3, y3), respectively. Let d1, d2 and
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d3 be the shortest distances (hop counts) of ni to v1, v2, v3, respectively. Then, ni computes its planar
coordinates (xi, yi) simply by minimizing the mean square error among the distances:

3

∑
j=1

(
√
(xi − xj)2 + (yi − yj)2 − dj)

2. (11)

It is worth noting that the step of the isometric embedding of the proposed approach is
fundamentally different from graph rigidity-based localization methods [9]. For an extracted global
planar structure, our algorithm computes first the optimal flat metric with discrete Gaussian curvature
equal to zero for all interior vertices, which guarantees that the embedding process can be determined
at each step for every single edge; while in [9], the extracted structure is embedded into plane
by minimizing a least square energy which cannot guarantee a global planar embedding, and the
embedded network can still curve around and self-intersect.

4.3. Time Complexity and Communication Cost

The algorithm of extracting a triangular structure M from a network is completely local, so both
its time complexity and communication cost are linear to the size of the network, denoted as n (the
number of sensor nodes).

We then apply discrete Ricci flow to compute the optimal flat metric of M. The time complexity
(the number of iterations) of discrete Ricci flow is given by −C logε

δ , where C is a constant, ε is a
threshold of curvature error and δ is the step length of each iteration [18]. Denote m the size of M.
Since each vertex only needs to exchange u values with its direct neighbors, the communication cost is
given by O(−C logε

δ gm), where g is the average vertex degree of M. Note that m << n for a general
network, and g is six for a triangular mesh.

During the isometric embedding step, two rounds of flooding are involved in slice holes of M
open with communication cost O(m). The embedding of M is a propagation process, with both the
time complexity and communication cost O(m).

4.4. Discussions

As indicated in [23], a large k to select landmarks decreases the number of crossing edges of a
CDC. In practice, we prefer a small k such that the extracted planar graph can resemble the geometry
of the underlying domain of a network better. In our simulations, k = 4 introduces only very few
crossing edges on the CDCs of the testing networks. For the resulting non-triangular face of a planar
graph with the removal of the detected crossing edges, we add virtual edges (i.e., shortest paths)
connecting the pair of non-neighboring vertices of a non-triangular face to split it into triangle faces.

We apply the method introduced in [23] to remove crossing edges of a CDC. The method is
proven to produce a planar graph if the transmission model of a given network is either the unit
disk graph (UDG) or the quasi-unit disk graph (Quasi-UDG). In Section 6.2, we apply the same
network to evaluate the performance of the proposed localization method with mere connectivity
under different transmission models including the UDG model, Quasi-UDG model, log-norm model
and the probability model. We assume sensor nodes of the network have identical transmission
ranges. Legal triangular meshes can still be generated for the network with different transmission
models, although the localization accuracy is lower for the network with the log-norm model or
probability model.

5. Localization with Distance Measurement

It is possible for some networks to estimate the Euclidean distance between adjacent sensor nodes
that are within the one-hop transmission range of each other. Two basic approaches are received signal
strength (RSS) and time-differential-of-arrival (TDoA). RSS measures the power of the signal at the
receiver and calculates the distance according to the propagation loss model. TDoA measures the
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differential propagation time of the received signal to determine the distance. Multiple measurements
can be averaged to obtain more accurate results. RSS is easier to implement, while TDoA may achieve
higher accuracy, but in general, measurement error is unavoidable. In our previous experiments [24],
we let each sensor periodically broadcast a beacon message containing its node ID to its neighbors in a
sensor network formed with crossbow motes. Based on received beacon messages, a node builds a
neighbor list with the RSSI (received signal strength indicator) of corresponding links. The node applies
RSSI to estimate the length of links by looking up an RSSI-distance table established by experimental
training data. Our preliminary tests show that, under low transmission power, such estimation has an
error rate around 20%.

When distance information is available, we extend the proposed localization algorithm to
incorporate it to achieve higher localization accuracy than with mere network connectivity. We give
the implementation details of the algorithm in Sections 5.1 and 5.2. We then discuss the time
complexity and communication cost of the algorithm in Section 5.3. In Section 5.4, we show how
distance measurement error at a single node of a network affects the localization performance of the
whole network.

5.1. Constructing Triangulation

Given a sensor network with distance measurement within one-hop transmission range, we apply
our previously-proposed algorithm [25] to generate a refined triangular mesh M such that vertices of
M are the set of sensor nodes. An edge between two neighboring vertices indicates the communication
link between the two sensors, and the edge length is the measured distance. The triangulation algorithm
is distributed with no constraints on the communication model.

However, such a triangular mesh may have unavoidable skinny triangles especially when the
node distribution is non-uniform. Note that a triangular mesh constructed based on mere network
connectivity has all equilateral triangles because we assume a unit edge length for each edge, and the
assumption is independent of the node density and distribution. As discussed in our previous
work [26], solving discrete surface Ricci flow can be considered as solving a linear equation of
the discrete Laplace–Beltrami operator defined on a triangular mesh. Skinny triangles increase the
condition number of the linear equation, so a triangular mesh M with many skinny triangles may
affect the numerical stability and the convergence speed of surface Ricci flow. Therefore, we need the
following post-processing on a constructed triangular mesh with skinny triangles.

For each fijk, we compute a ratio between the longest and shortest edge lengths of fijk and denote
it as r fijk

. Triangles with extremely high r f represent those skinny ones. To remove them, we define
one operation, called short edge collapse, as illustrated in Figure 3. fabc and fabd have very high r f
values. Both share the short edge eab. The short edge collapse operation combines the two vertices va

and vb into one of them and removes faces fabc and fabd. In practice, we choose the vertex that results
in smaller r f values than the other one after short edge collapse. As in the example shown in Figure 3,
va is chosen as the combined vertex. If the operation of one short edge collapse generates a larger r f
than previous ones, we will not collapse the edge.

Figure 3. Short edge collapse: the operation of short edge collapse combines va and vb to va and
removes faces fabc and fabd.
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We first set a threshold of r f . The algorithm computes the r f value for each triangle and then
sorts these r f values and puts them into a queue. Each time, the algorithm picks one triangle with
currently the highest r f value and applies the short edge collapse operation. The algorithm stops when
the highest r f value is below the threshold. Figure 4 gives one example. A triangular mesh constructed
from a network with an extremely non-uniform node distribution has a maximal r f value close to 27,
as shown in Figure 4a. After a series of short edge collapse operations, its maximal r f value is below
four, as shown in Figure 4b.

(a) (b)

Figure 4. (a) A triangular mesh with too many skinny triangles is constructed from a network based
on the algorithm proposed in [25]. Its maximal r f value is close to 27. (b) After a series of short edge
collapse operations, the maximal r f value of the triangular mesh is less than four.

5.2. Computing the Optimal Flat Metric with Distance Measurement

We construct an initial circle packing metric (Γ0, Φ) of M from provided distance measurements
with the following procedures:

1. For each corner θ
jk
i attached to vertex vi in face fijk, we compute a corner radius γ

jk
i for vi with

respect to fijk:

γ
jk
i =

lki + lij − ljk

2
,

where lij, ljk, lki represent the distance measurements of edges eij, ejk, eki, respectively.
2. For each vi, we compute its initial circle radius γi by averaging its attached corner radii computed

from the previous step:

γi =
1
m ∑

fijk∈F
γ

jk
i ,

where m is the number of the adjacent faces to vi (i.e., the vertex degree of vi).
3. For each edge eij, we compute its edge weight φij (the intersection angle of the two circles centered

at vi and vj) based on the Euclidean cosine law:

cos φij =
γ2

i + γ2
j − l2

ij

2γiγj
.
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With the constructed initial circle packing metric (Γ0, Φ), we apply the algorithm introduced in
Section 4.1 to compute the optimal flat metric and then the isometric embedding algorithm introduced
in Section 4.2 to embed the given network into a plane.

5.3. Time Complexity and Communication Cost

To incorporate distance information into the localization algorithm introduced in Section 4, we need
to incur some extra costs.

The method to initialize the circle packing metric is local. The time complexity and communication
cost are both linear to the size of the network n, the number of sensor nodes.

The algorithm to extract a triangulation from the network connectivity graph based on distance
measurement is also local and fully distributed. Both the time complexity and communication cost are
linear to n [25].

The time complexity and communication cost of post-processing a triangulation are bounded by
the number of edges of the triangular mesh. Denote vn the number of vertices, en the number of edges
and fn the number of triangle faces of a triangular mesh M; the well-known Euler–Poincaré theorem
relates vn, en and fn [27].

Theorem 3 (Euler-Poincaré Theorem). Denote b the number of boundaries of a triangular mesh M.
The following equation holds assuming M with zero number of handles:

vn − en + fn = 2− b. (12)

Based on the Euler–Poincaré theorem, the following theorem shows that en ≈ 3vn.

Theorem 4. Denote b the number of boundaries of a triangular mesh M, vn the number of vertices and en the
number of edges. The following equation holds:

en = 3vn + (3b− 6). (13)

Proof. Denote fn the number of triangle faces of M, e 6∈∂M the number of non-boundary edges and e∈∂M
the number of boundary edges. Considering the two facts that each non-boundary edge is shared by
two triangle faces and each triangle face has three edges, the following equation holds:

2e 6∈∂M + e∈∂M = 3 fn,

which gives:

fn =
2
3

en, (14)

by ignoring boundary edges if:
e∈∂M << e 6∈∂M.

According to Euler–Poincaré Theorem 12, the following equation also holds:

vn − en + fn = 2− b. (15)

Plug Equation (14) into (15); we have:

vn − en +
2
3

en = 2− b.

Then, we have:
en = 3vn + (3b− 6).
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Therefore, the time complexity and communication cost of post-processing a triangulation
are O(n).

5.4. Error Propagation

If the distance measurement error is introduced only by one single node, we show that the error
propagation of the proposed localization algorithms decreases with the distance to the node.

According to the discrete Ricci curvature theory, the differential discrete curvature dK and discrete
scaling factor du satisfy the discrete Poisson equation:

dK = ∆du,

where ∆ is the discrete Laplace–Beltrami operator.
Specifically, suppose vi is an interior vertex and vj is one of its neighboring vertices. fijk and f jil

are the two faces adjacent to eij. The power circle of fijk is defined as a circle orthogonal to all three
circles centered at vi,vj and vk with radii γi, γj and γk respectively. Similarly, one can define the power
circle of f jil . Denote dij the distance between the two power circles, lij the length of eij. For each eij,
we define a weight:

wij =
dij

lij
.

Then, we have:

dKi =
g

∑
j=1

wij(duj − dui),

where g is the vertex degree of vi.
Suppose a small perturbation of the curvature happens at vi, modeled as δ(v − vi). Such

a perturbation is due to the measurement error of neighboring distances around vi. Then, the
influence of the perturbation to the entire network can be estimated by Green’s function, G(v, vi),
such that ∆G(v, vi) = δ(v − vi). Roughly speaking, Green’s function on the plane is 1

2π log 1
|v−vi|

.
Therefore, the influence of the perturbation at one node is sublinear to others. The influence of the
wrong measurements at one node on others decreases proportionally with their distances.

6. Simulations and Comparison

We carry out extensive simulations under various scenarios to evaluate the performance of our
algorithm on networks with different topologies and how the performance is affected by different factors
such as node density, the communication model (UDG, quasi-UDG, log-norm model and probability
model) and a non-uniform node distribution. We compare our algorithm with those state-of-the-art
localization methods, including the centralized MDS approach (MDS-MAP) [1], the distributed MDS
approach (MDS-MAP(P)) [2], the centralized (C-CCA) neural network, and the distributed (D-CCA)
neural network approaches [5].

We apply the proposed optimal flat metric-based method to localize the landmark nodes (points
marked with red in Figures 5–8). Those non-landmark nodes (points marked with grey in Figures 5–8)
in the network find their three nearest landmarks and compute their own coordinates. We then
compute the difference of each node-pair’s distances in the original and localized networks. We
calculate the localization error as the ratio of the average difference of node-pair distances and the
one-hop communication radio range.

6.1. Networks with Variant Nodal Densities

In general, connectivity-based localization methods favor high nodal density, because hop counts
approximate well the true shortest distance. Figure 5a–d gives a series of reversed C-shaped networks
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with mere connectivity information. All of the networks have the same communication radio range and
are under the same transmission model, but the average nodal degree increases from 9–18. Figure 5e–h
shows the localization results correspondingly. The localization error decreases from 0.514–0.246.
The trend is clear that the localization error decreases with the increase of nodal density.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Networks with variant nodal density: (a–d) The original network with increased nodal
density; (e–h) the localization results of our algorithm. All of the networks share the same
communication radio range and are under the same transmission model. We compute the difference of
each node-pair’s distances in the original and localized networks. Then, we calculate the localization
error as the ratio of the average difference of node-pair’s distances and the one-hop communication
radio range. Specifically, the average nodal degrees for networks shown in (a–d) increase with
d = 9.4, d = 12.6, d = 15.2, d = 18.5, respectively. The localization errors of networks shown in
(a–d) decrease with 0.514, 0.322, 0.28, 0.246, respectively. (e–h) show the corresponding localization
results. The localization error decreases with the increase of nodal density.

6.2. Networks with Different Transmission Models

We still apply the same reversed C-shaped network to evaluate the performance of the proposed
localization algorithm with mere connectivity under different transmission models, with average nodal
degree d = 16.5 (under the UDG model). For a network with an identical communication radio range
of sensor nodes, different transmission models induce different sets of landmarks because each node
has different neighborhoods. We generate different triangular meshes accordingly. In our simulations,
the transmission range of a UDG model is one. Two nodes are definitely connected when their distance
is less than one. Under the Quasi-UDG model, two nodes are definitely connected when their distance
is less than α = 0.75, definitely not connected when their distance is larger than 1, while they have a
probability of ρ = 0.5 to be connected when the distance is between α and one. Under the log-norm
model [28], since the receiving power is log-normally distributed, we simplify it as: when the distance
between two nodes is larger than one, they are not connected; when the distance is less than one, they
have a probability P(d) to be connected, where d is the distance, and P(d) satisfies the log-normal
distribution with α = 2 and σ = 4. Under the probability model, when the distance of two nodes is
less then one, they have a probability equal to a constant set to 0.65 to be connected. Figure 6 shows
the localization results of the reversed C-shaped network with mere connectivity under different
transmission models.

Among all of the transmission models, UDG model achieves the smallest localization error.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Networks with different transmission models: (a–d) the original networks with different
transmission models that result in different nodal degrees and constructed triangular meshes; (e–h)
the embedding results of our algorithm. All of the networks have the same number of nodes and the
same communication range. (a) Unit disk graph (UDG) model with transmission range of one and
localization error 0.25 in (e); (b) Quasi-UDG model with α = 0.75 and ρ = 0.5 and localization error
0.34 in (f); (c) log norm model with µ = 0.5 and ρ = 4 and localization error 0.42 in (g); (d) probability
model with p = 0.65 and localization error 0.43 in (h).

6.3. Networks with Non-Uniform Nodal Distribution

We also test the proposed optimal flat metric-based method with mere connectivity on a network
with a non-uniform node distribution. The nodal density of the reversed C-shaped network shown in
Figure 7a increases from the bottom to the top. Specifically, the nodal degree increases from 11.3–18.7.
Figure 7b shows the localization result with a slightly higher localization error 0.46. The proposed
algorithm can tolerate networks with a moderately non-uniform nodal distribution.

(a) (b)

Figure 7. Network with non-uniform node distribution: (a) The original network with non-uniform
node distribution. The nodal degrees range from 11.3–18.7. (b) The localization result of our algorithm
with the localization error 0.46.
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6.4. Comparison with Other Methods on Networks with Mere Connectivity

Figure 8 lists a set of representative networks with various shapes and different topologies.
These networks have only connectivity information available. For these networks, we only show the
original coordinates of landmark nodes marked with red color. Grey points represent the computed
coordinates of sensor nodes of the networks, including landmark and non-landmark nodes, after
a least square alignment with the original networks. We associate each landmark node with a red
line segment, starting from its original coordinates marked with red and ending at the computed
coordinates marked with grey. Clearly, the length of the line segment indicates the localization error of
that node. Overall, the more and the longer the red lines are, the worse the localization performance is.

a(1) b(1) c(1) d(1) e(1)

a(2) b(2) c(2) d(2) e(2)

a(3) b(3) c(3) d(3) e(3)

a(4) b(4) c(4) d(4) e(4)

a(5) b(5) c(5) d(5) e(5)

Figure 8. Comparison with other methods on networks with mere connectivity. (a(1)–a(5))
C-CCAscheme; (b(1)–b(5)): D-CCA scheme; (c(1)–c(5)) multi-dimensional scaling (MDS)-MAPscheme;
(d(1)–d(5)) MDS-MAP(P) scheme; (e(1)–e(5)) Ricci scheme. A red line segment is drawn for each node,
starting from the real coordinates marked with red and ending at the computed coordinates marked
with grey.

As can be observed in Figure 8a(1),c(1), C-CCA and MDS-MAP both yield large distortions for
nodes on the two branches. This is because the approximated distances based on hop counts among
those nodes are much longer than their actual Euclidean distances due to the reversed C shape. On the
contrary, MDS-MAP(P) and D-CCA compute local maps first and then merge them into a global map.
Since local maps are “smooth” and do not have large “tentacles” in general, the shortest paths are
free of significant distortions. Therefore, both methods achieve better performance (i.e., less distortion
and lower errors) than the centralized approaches for networks with irregular boundary conditions.



Axioms 2017, 6, 15 19 of 24

This can be clearly seen in Figure 8b(1),d(1). However, if a network has a smooth boundary (e.g.,
Figure 8a(2)–e(2)), the shortest paths are not seriously distorted, and thus, the centralized schemes
perform better since they utilize more constraints to localize the network nodes.

For networks with holes, similarly as the reversed C-shaped network, MDS-MAP(P) and D-CCA
perform better (shown in Figure 8b(4),b(5),d(4),d(5)) compared with their centralized counterparts
MDS-MAP and C-CCA (shown in Figure 8a(4),a(5),c(4),c(5)). However, they have to pay the cost to
merge different subnetworks together.

The proposed optimal flat metric-based approach, on the contrary, achieves the least overall
localization errors in all simulated scenarios as demonstrated in Figure 8e(1)–e(5). Figure 9a summarizes
the average localization errors with different approaches on the models shown in Figure 8.

Figure 9b illustrates the distribution of localization errors on the reversed C-shaped network
with different localization approaches. Since the results under other networks show similar statistics,
we omitted them here. As can be seen, the localization errors of the optimal flat metric-based approach
are nicely distributed at the lower range.
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Figure 9. (a) Comparison of the average localization errors of different methods on the networks shown
in Figure 8 with mere connectivity information: Network 1 shown in Figure 8a(1)–e(1), Network 2
shown in Figure 8a(2)–e(2), Network 3 shown in Figure 8a(3)–e(3), Network 4 shown in Figure 8a(4)–e(4)
and Network 5 shown in Figure 8a(5)–e(5). (b) The distribution of connectivity-based localization
errors on the reversed C-shaped network with different approaches: C-CCA, D-CCA, MDS-MAP,
MDS-MAP(P) and Ricci.

6.5. Comparison with Other Methods on Networks with Range Distance Measurements

Figure 10 summarizes the average localization errors of the proposed optimal flat metric-based
approach and other methods on the networks shown in Figures 4 and 8 with one-hop communication
radio range distance information. Specifically, the one-hop communication radio range distance
measurement error increases from 0–100% of the actual distance.

Figure 10 shows that when the measurement error is less than 10%, a localized network based
on the proposed algorithm is very close to the original one. When the measurement error is less
than 40% shown in Figure 10b,d, 30% shown in Figure 10a,c and 25% shown in Figure 10e,f, the
proposed algorithm achieves the highest localization accuracy compared with other methods. However,
from the other side, the proposed algorithm is more sensitive to measurement error than other
localization methods. Its performance decreases with the increase of the measurement error. When
the measurement error is more than 50%, many triangles formed by three sensor nodes within their
mutual communication radio range degenerate, and the measured one-hop communication radio
range distances even do not satisfy the triangle inequality. We cannot take the measured distances
as a legal and initial metric of the constructed mesh any more, so we have to take an average of the
measured one-hop communication radio range distance as an initial metric of the mesh, which means
each edge is assigned a uniform length. Such averaged distance is robust to random errors, which
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explaining that the performance of the proposed algorithms keeps stable when the measurement error
is more than 50%.

C-CCA and MDS-MAP, the centralized neural network-based and MDS-based approaches,
on the contrary, are least sensitive to measurement error. Such random error directly affects the
measured distances of pairs of nodes within the one-hop communication radio range, which is only a
small portion of the distance matrix of a network. However, for a pair of nodes not within one-hop
communication radio range, the longer their distance is, the smaller the random error accumulated
along their path is. Therefore, we do not observe noticeable performance decline of C-CCA when the
measurement error is small. The performance of C-CCA starts to decrease when the measurement
error is over 40% shown in Figure 10c,d, 50% shown in Figure 10a,e and 70% shown in Figure 10b,f.
Similar to C-CCA, there is no noticeable performance decline of MDS-MAP when the measurement
error is small. The performance of MDS-MAP starts to decrease when the measurement error is over
30% shown in Figure 10a,c,d, 50% shown in Figure 10b,f and 60% shown in Figure 10e.
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(a) Network (shown in Figure 4) (b) Network 1 (shown in Figure 8a(1)–e(1))
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Figure 10. Comparison of average localization errors of different methods on networks shown in
Figures 4 and 8 with one-hop communication radio range distance measurement errors increased
from 0–100%.

D-CCA and MDS-MAP(P), the distributed neural network-based and MDS-based approaches,
can achieve a higher localization accuracy than their centralized counterparts when the measurement



Axioms 2017, 6, 15 21 of 24

error is small. However, they are also more sensitive to measurement error than their
centralized counterparts.

Combining Figures 8 and 10, it is obvious that when the measurement error is more than 50% of
the actual distance, such measured one-hop communication radio range distance will not help improve
localization accuracy for any of the compared localization methods including the one proposed in
this paper.

6.6. Error Propagation on Networks with One-Hop Communication Radio Range Distance Measurements

We conduct the following experiments to test the propagation rate of the measurement error
resulting from bad estimation or the wrong measurement. Two networks with a constructed triangular
mesh structure are shown in the top right of Figure 11a,b. If the given one-hop communication
radio range distance is free of measurement error, the discrete Ricci flow-based method localizes the
two networks with localization errors 1.4× 10−5 and 1.5× 10−5 , respectively; while if the distance
measurement around one node is wrong, for example, a much slower response of a node to its
neighboring nodes’ signals will result in a much longer distance approximation. The measurement
error around the node will affect not just localization of this node, but also other nodes in the network
(e.g., error will propagate). We introduce such measurement error at one selected node (marked with
red in the two triangular networks shown in Figure 11a,b) by multiplying some constant K (K = 2.0 for
Case 1, K = 1.5 for Case 2) with the lengths of its neighboring edges, such that the node is no longer
planar based on the wrong measurement. We measure the effect of the “one node measurement error”
by comparing the change of the computed flat metric (edge length) with the original one. Figure 11a,b
shows the distribution of the average errors of edge lengths of the two testing networks with respect
to the distance to the selected node, respectively. The closer the two ending nodes of one edge are
to the selected node, the bigger the distortion of the computed edge length is. It is obvious that the
error propagation decreases dramatically with the increase of the distance to the distorted node. The
localization errors of the two networks with distorted vertices are 0.0018 and 0.0020, respectively.
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Figure 11. The error of the computed edge length decreases dramatically with its distance to the
distorted node marked with red.

6.7. Computing Time

In our experiments, we set the step length of running discrete Ricci flow to 0.1 and the error
threshold to 1× 10−5. Figure 12 gives the convergence rate and time using discrete Ricci flow to
compute optimal flat metric for part of our simulation networks. Specifically, for the reversed C-shaped
network with 3k sensor nodes and 424 landmarks chosen, the convergence time of discrete Ricci slow
is 2 s. The curvature error is less than 0.1 and 0.0004 after five and 82 iterations, respectively. For the
network with one hole and 2k sensor nodes and 283 landmarks chosen, the convergence time is
1 s. The curvature error is less than 0.1 and 0.0004 after four and 55 iterations, respectively. For the
network with two holes and 2k sensor nodes and 297 landmarks chosen, the convergence time is 1 s.
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The curvature error is less than 0.1 and 0.0004 after four and 48 iterations, respectively. The time of the
isometric embedding of each network is no more than a few seconds. Therefore, the total computing
time of a network including choosing the landmark nodes, building a triangular structure, computing
the optimal flat metric and isometric embedding the network is no more than 10 s on a Dell Latitude
e6420 laptop. Note that the computation is fully distributed such that each vertex node computes and
exchanges information with only its neighboring vertex nodes.

We can also apply a centralized method to compute the optimal flat metric using discrete Ricci
flow. Each vertex node sends its connectivity information and distance measurement within the
one-hop transmission range if available to a central server. The central server can apply Newton’s
method as discussed in our previous paper [29] to compute the optimal flat metric with discrete
Ricci flow. Compared with the distributed method introduced in this paper, the centralized method
converges in less than five iterations with the total computing time of less than 1 s for all of the
testing networks.
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Figure 12. Convergence rate of discrete surface Ricci flow applied to compute the optimal flat metric of
networks, with step length 0.1 and error threshold 1× 10−5. (a) A reversed C-shaped network with 424
landmarks: the convergence time is 2 s. (b) A network with one hole and 283 landmarks: the convergence
time is 1 s. (c) A network with two holes and 297 landmarks: the convergence time is 1 s.

7. Conclusions

This work proposes a novel optimal flat metric-based localization method suitable for large-scale
sensor networks. The method can be proven to generate an optimal flat metric that introduces the
least distortion from the initially estimated edge length. The computation is fully distributed and
highly scalable with its computation time and communication cost linear to the size of the network.
Extensive simulations and comparisons with other methods under various representative network
settings are carried out, showing the superior performance of the proposed algorithms.
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