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ABSTRACT

J/ψ PHOTOPRODUCTION NEAR THRESHOLD WITH CLAS12

Joseph Newton
Old Dominion University, 2021
Director: Dr. Stepan Stepanyan

The structure of the proton is comprised of quarks and a sea of gluons. A mechanism that 
can extract the characteristics of the hidden-color correlations of the nuclear wavefunction 
is the production of charm near threshold. Due to the fact that momentum transfer is large 
near threshold in the production of J/ψ, all three valence quarks must act coherently to ex-

change energy for the reaction to occur. Models have been developed to predict the nature 
of J/ψ photoproduction at these specific energies. These include production mechanisms 
with the two-gluon and three-gluon exchanges. The transferred momentum dependence of 
the differential cross sections are sensitive to the gluonic form factors, which describe the 
distribution of color charge in the proton. The CLAS12 detector is capable of measuring 
J/ψ photoproduction at the energy range close to the threshold. Work showcased in this 
dissertation encompasses the preparation of the CLAS12 experiments, including the opti-

mization of tracking reconstruction through the study of the Torus magnetic field. In terms 
of software, contributions were made to the CLAS12 Event Builder, a key stage of recon-

struction where event-by-event information is summarized for efficient data analysis. After 
the run periods were successfully completed, analysis of the RG-A data commenced and an 
analysis framework was developed to measure the differential and total cross sections of J/ψ

photoproduction in Hall B.
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CHAPTER 1

INTRODUCTION

The observation of the J/ψ meson was an important step in advancing the understanding 
of the quark model. Before the observation of J/ψ, there were three confirmed quarks: up, 
down, and strange. The existence of heavy quarks, such as charm, confirmed the predictions 
made by the Glashow–Iliopoulos–Maiani (GIM) mechanism, which explained the processes 
behind flavor-changing neutral currents.1 The November Revolution of 1974 culminated in 
the observation of J/ψ, a meson with a charm-anti-charm (cc̄) pair. It was discovered at two 
laboratories: Brookhaven National Laboratory (BNL) and Stanford Linear Accelerator Fa-

cility (SLAC). The experiment at BNL consisted of a proton beam colliding with a Beryllium 
target.2 The initial intent of the experiment was to study heavy photons, so the observation 
of a sharp resonance was unexpected. At SLAC, another experiment was initally designed 
to study scattering and annihilations related to elementary particles.3 This experiment con-

sisted of an e+e− collider.4 Teams lead by Samuel Ting (BNL) and Burton Richter (SLAC) 
confirmed the existence of a sharp and narrow peak at 3.097 GeV with a decay width of 93 
keV. The name J/ψ originated as the combination of two names (J and ψ) associated with 
the two groups that observed the resonance. These combined efforts resulted in a Nobel 
Prize.

Over time, the production of the J/ψ meson has generated intense theoretical interest 
due to its sensitivity to gluonic form factors, which describe the distribution of color charge 
in the proton. From an experimental point of view, measurements of the J/ψ production 
cross section were accomplished at electron accelerator facilities at SLAC and Cornell at 
higher energies above 11 GeV. The results from the SLAC experiment5 corroborated the 
two-gluon exchange model; however, a data point from Cornell suggested a re-examination 
of the production mechanism.6 It appeared that the cross section is much larger closer to 
threshold than was predicted by the two-gluon exchange model. A three-gluon exchange 
model was proposed, which explained the unique behavior of J/ψ photoproduction closer to 
the threshold energy, which is the minimum Eγ needed to produce a J/ψ vector meson on a 
nucleon.

The mechanism of J/ψ production can be illustrated by relating J/ψ-N scattering with 
J/ψ photoproduction through the Vector Meson Dominance (VMD) model. In this case, the
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incoming photon fluctuates into a cc̄ pair and becomes a vector meson after the momentum

transfer with the target. Close to the threshold energy at 8.21 GeV, the momentum transfer

becomes large, causing a dominance of multi-gluon interactions. This t-channel production

near threshold becomes more of an elastic collision since the three valence quarks contribute

momenta to the production of J/ψ.7

The CEBAF facility’s upgrade from 6 GeV and 12 GeV provides an ideal experimental

set-up to measure the differential and total cross sections of J/ψ photoproduction. The

t-dependence of the differential cross section could give more information about the proton

gluonic form factor. The total cross section as a function of Eγ would help explain the

production mechanism near threshold. The CLAS12 detector in Hall B is capable of detecting

and identifying J/ψ mesons using their decay to e+e− pairs. Another channel resulting in

µ+µ− decays also occur with the same branching ratio; however, the analysis highlighted in

this dissertation emphasize e+e− detection since more is currently understood with regards

to e+e− identification. Two scenarios are possible with CLAS12: tagged and un-tagged

photoproduction. With tagged photoproduction, the scattered electron is measured directly

by the Forward Tagger of CLAS12 to analyze the properties of the exchanged quasi-real

photon. The un-tagged photoproduction, the analysis of choice for this dissertation, does

not involve the direct measurement of the scattered electron through the Forward Tagger

but rather the missing momentum and missing mass analysis by analyzing the reaction,

ep→ e+e−p(X), where X is the un-detected scattered electron.

The scope of the dissertation ranges from pre-experiment software development and event

reconstruction optimization to the analysis of J/ψ events from RG-A datasets. Since kine-

matic variables (mass, photon energy, and momentum transfer) rely on well-understood

charged particle reconstruction in the CLAS12 forward detector, a thorough mapping of

the Torus magnetic field was done to determine the true positions and orientations of the

six coils, leading to a better representation of the momentum of the final-state particles. In

addition, the development of the CLAS12 Event Builder, a key component of the CLAS12 re-

construction software, aided in the analysis of not only J/ψ photoproduction, but all CLAS12

analyses. Finally, a well-advanced analysis framework, with particle identification, event se-

lection, momentum corrections, fiducial cuts, acceptance studies, background studies, and

cross section extraction procedures, was created. As a result, the preliminary differential

and total cross section measurements for J/ψ photoproduction are shown and explained in

this dissertation.
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CHAPTER 2

PHYSICS BACKGROUND

2.1 QUANTUM CHROMODYNAMICS

Quantum chromodynamics (QCD) is the theory that describes the strong interaction, 
which is the force associated with holding nuclei together. As described earlier, the nucleon 
contains three valence quarks in a sea of gluons. The fundamentals of QCD draw parallels to 
the highly successful theory of Quantum Electrodynamics (QED), which accurately describes 
electromagnetic interactions. Unlike QED, which follows a U(1) local gauge symmetry, 
QCD’s symmetry is associated with the SU(3) local phase transformation, as shown below,

ψ(x)→ ′
(x) = exp(igsα(x) · T̂ )ψ(x). (1)

In the above transformation, T̂ corresponds to a group of generator matrices that are

related to the SU(3) symmetry group and α(x) are functions of the space-time coordinate,

x. The fact that there are three valence quarks combined with the structure of the SU(3)

matrices gives rise to the necessity to incorporate ”color” charge, which are the additional

degrees of freedom required to complete the picture. By modifying the Dirac equation with

the additional interaction terms for QCD, this allows for the derivation of the interaction

vertex of two quarks and a gluon (qqg), as shown in the equation below,

gsT
aγµGa

µψ = gs
1

2
λaγµGa

µψ. (2)

One of the distinct differences from QED is the presence of eight gluons that are tied to

eight generators of the SU(3) local gauge symmetry. For QCD, there are three ”color” states

named red (r), blue (b), and green (g). For example, the red (r) wave function is written as,

r =


1

0

0

 . (3)

The interactions between quarks and gluons can be described by the connection between

non-diagonal Gell-Mann matrices to quarks that contain a different color charge. Both
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quarks and gluons can have color charge and anti-color charge. This results in an octet of

color charge combinations. The possible combinations of gluon color charge are: rḡ, gr̄, rb̄,

br̄, gb̄, bḡ, 1√
(2)

(rr̄ − gḡ), and 1√
(6)

(rr̄ + gḡ − 2bb̄).8

An important implication of QCD is the concept of color confinement, which postulates

that quarks are never observed as free particles. Rather, they are only part of colorless bound

states such as mesons and baryons. The wavefunction associated with color for mesonic states

is written as,

ψc(qq̄) =
1√
3

(rr̄ + gḡ + bb̄). (4)

For the baryonic case with three quarks in a bound state, the colored wavefunction is

constructed as,

ψc(qqq) =
1√
6

(rgb− rbg + gbr − grb+ brg − bgr). (5)

The dynamics of QCD can be encapsulated by its Lagrangian formula, which describes

the interactions of quarks and gluons. This allows for the determination kinematic behavior

such as the strength of the strong interaction. The Lagrangian for QCD is

L = −1

4
F a
µvF

aµv +
∑

ψ̄k(iD −mk)ψk. (6)

Embedded in the Lagrangian is the gluon field strength tensor, which is formulated as

F a
µv = ∂µA

a
v − ∂vAaµ + gfabcAbµA

c
v. (7)

Also, the gauge covariant derivative is utilized in the Lagrangian and it is

Dµ = ∂µ − igAaµT a. (8)

The QCD has a dependence on the strong-interaction coupling constant, g.9 Using g, the

strong fine-structure constant is written as

αs =
g2

4π
. (9)

As discussed earlier, color confinement limits quarks by never allowing the observation

of free quarks that are not bound to other multi-quark-gluon states. However, when energy

becomes very large, the coupling of the g2 term will be reduced by a large amount, resulting

in asymptotic freedom.10
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2.2 PARTON MODEL AND SLAC FINDINGS

The parton model, which was first proposed by Richard Feynman, sought to explain the

behavior of high-energy collisions involving hadrons like protons. According to this model,

nucleons are not point-like particles, but are comprised of constituent point-like particles

denoted as partons, which would later be referred to as quarks. The behavior of these

partons would be described by parton distribution functions (PDFs).

The kinematic variables of the parton such as energy, momentum, and mass are re-written

in terms of the scaling rather than the entire macroscopic proton. For example, the energy,

E, is written as xE. In the case where an incoming photon strikes one of the partons in the

proton, a momentum distribution can be constructed, which can describe the probability

that the struck parton, i, contains a fraction x of the total momentum of the proton p. The

sums of the probability parton distributions add up to 1,

∑
i

∫
dxxfi(x) = 1. (10)

This probability distribution function, f(x),is used to derive the inelastic structure func-

tions, which are

F2(x) =
∑
i

e2
ixfi(x) (11)

and

F1(x) =
1

2x
F2(x). (12)

These functions are only dependent on the Bjorken variable, x,.11

The significance of this relation, also known as the Callan-Gross relation, is that it

describes the elastic scattering from particles with a spin of 1
2
. The structure function that

purely describes the electromagnetic interaction, F2, can be described in the following way,

F ep
2 (x) = x

∑
i

Q2
i q
p
i (x). (13)

As shown in the above equation, the structure function, F2, is constructed as the super-

position of parton distribution functions (PDFs). Parton distribution functions describe the

structural properties of the proton. In the parton model (or quark model to be precise), the

proton consists of three valence quarks with two up quarks and one down quark. In reality,
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it is more complex since there are interactions that occur within the proton that can produce

fluctuating qq̄ pairs from quarks that interact through gluon exchanges. However, the main

contributions are shown in the structure function formalism below,

F ep
2 (x) = x

∑
i

Q2
i q
p
i (x) = x

(
4

9
up(x) +

1

9
dp(x) +

4

9
ūp(x) +

1

9
dd̄p(x)

)
. (14)

F ep
2 (x) represents the structure functions for electron-proton scattering.8 For electron-

neutron scattering, the structure functions consist of,

F en
2 (x) = x

∑
i

Q2
i q
n
i (x) = x

(
4

9
un(x) +

1

9
dn(x) +

4

9
ūn(x) +

1

9
dd̄n(x)

)
. (15)

Due to isospin symmetry, which equates the proton up-quark and neutron down-quark

PDFs, the structure functions are

F ep
2 = 2xF ep

1 (x) = x

[
4

9
u(x) +

1

9
d(x) +

4

9
ū(x) +

1

9
d̄(x)

]
(16)

and

F en
2 = 2xF en

1 (x) = x

[
4

9
d(x) +

1

9
u(x) +

4

9
d̄(x) +

1

9
ū(x)

]
. (17)

The parton model was corroborated by experiments at SLAC. A series of inelastic

electron-neutron scattering experiments sought to reveal the sub-structure of the proton.

The MIT-SLAC collaboration observed a point-like substructure of the proton. Three spec-

trometers were used to detect the final-state reaction after impinging high-energy electrons

up to 20 GeV into liquid Hydrogen and Deuterium targets.12
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FIG. 1. Deep inelastic scattering at SLAC revealed the sub-structure (partons) of the pro-
ton.11

2.3 LEPTON-HADRON SCATTERING FORMALISM

As the electron approaches the relativistic limit, where β → 1, the mechanism of the

electron elastic scattering is illustrated by the Feynmann diagram in FIG. 2. In FIG. 2,

there is a proton (4-momentum p1) and an electron (4-momentum p2) that exchanges a

virtual four-momentum, q, before the same particles end up in the final-state with four-

momenta, p3 and p4. The term, k
′
e
′

2M
, represents the effective anomalous magnetic moment

and rest of the interaction term contains Dirac matrices.13 The following parameter can be

constructed:

q2 =
−4E2 sin2 θ

2

1 + 2( E
M

) sin2 θ
2

. (18)

The Mott-Rutherford formula for elastic scattering can be computed by the approxi-

mation where the electron energy is very small compared to the rest mass of the proton

(E << M), as shown below, (
dσ

dΩ

)
Mott

=
α2

4E2 sin4 θ
2

cos2 θ

2
. (19)

In the elastic case for lepton-hadron scattering where the transferred momentum is large
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FIG. 2. The Feynmann diagram for the elastic scattering of a proton and electron.13

enough and the probe is sensitive to the charge and magnetization distributions inside the

nucleon, the cross section will depend on the electric and magnetic form factors. The electric

(GE) and magnetic (GM) form factors of the proton describe the distribution of charge and

magnetization inside the proton. The construction of the elastic scattering formula is as

follows,

dσ

dQ2
=

4πα2

Q4

[
G2
E + τG2

M

1 + τ

(
1− y − M2y2

Q2

)
+
y2

2
G2
M

]
. (20)

The study of the structure of the nucleon is driven by scattering experiments of small

probes, such as leptons, impinging on larger targets. In this framework, a high-energy lepton

scatters off of a target, which is the nucleon. The scattering, which can be elastic or inelastic,

includes the exchange of photons through the electromagnetic interaction. A virtual photon

from the incoming electron with a momentum k transfers energy to the hadron. This results

in the change of momentum, k
′
, of the lepton in the final-state. The virtuality of the

exchanged photon, is formulated as

Q2 = −q2 = −(k
′ − k)2. (21)

In the deep inelastic scattering case when the transferred momentum (or virtuality of

the exchanged photon) is large, the interaction takes place with partons inside the nucleon.
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FIG. 3. Lepton-hadron scattering on a nuclear target.14

Such interactions are characterized by the momentum fraction of the proton carried by the

struck parton. The Bjroken variable, x, is

x =
Q2

2P · q
. (22)

The center-of-mass energy of the interaction is
√
s and W defines the energy of the virtual

photon and proton combined. W 2 is as follows,

W 2 = (P
′
)2 = (P + q)2 = M2

X . (23)

These kinematic variables can be used to describe both the elastic and inelastic cases.14

In the inelastic case, the target is not the entire proton but rather one part (or parton) of

the proton. Therefore, the Bjorken variable, x, is needed to describe the scattering process

in the inelastic case. For the differential cross section, both the electric (GE) and magnetic

(GM) form factors are replaced by the structure functions, F1(x,Q2) and F2(x,Q2). This

results in the double differential cross section,

dσ

dQ2dx
=

4πα2

Q4

[(
1 + (1− y)2

)
F2 +

1− y
x

(F2 − 2xF1)

]
. (24)

2.4 J/ψ PRODUCTION CLOSE TO THRESHOLD
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At photon energies approaching the threshold production energy of the J/ψ meson, ob-

servables that are sensitive to the distribution of gluons in the proton can be measured.

These observables also include hidden-color correlations of QCD wavefunctions. The pro-

duction of charm near threshold can be observed with the following reaction, γp → J/ψp,

above the threshold energy, Elab = 8.21 GeV.

2.4.1 PHOTOPRODUCTION MODELS

As opposed to J/ψ photoproduction at higher energies well above threshold, J/ψ pho-

toproduction closer to threshold cannot occur unless each of the three valence quarks con-

tributes energy to the creation of cc̄. Specifically, the valence quarks are required to interact

within a confined volume. The scenario in which this is possible is referred to as a proton

Fock state, in which the radius of such a state is on the order of the Compton wavelength

of the charm quark.

The Vector Meson Dominance (VMD) model plays an important role in relating the pro-

duction of the vector to elastic V −N scattering, and the cross section of the photoproduction

can be written as:

dσγN→V N
dt

= κ
3Γ(V → e+e−)

αmV

dσV N→V N
dt

. (25)

where κ is a kinematic factor, α is the fine structure constant, Γ is the partial decay, and

mv is the meson mass.

The basis of VMD is the assumption that the incoming photon fluctuates to a qq̄ pair,

which scatters off the target and forms the outgoing meson. Due to this assumption, J/ψ

photoproduction can be related to elastic ψ-N scattering through the following relation,

σ(γN → ψN) =

(
4πα

γ2
ψ

)
σψNel . (26)

FIG. 4 provides an illustration of the characteristic scales of the VMD-related J/ψ pho-

toproduction. The incoming photon fluctuates along a certain length, which is described as

the longitudinal coherence length of the cc̄ pair,

lc =
2Elab

γ

4mc2
= 0.36fm. (27)

As the photon fluctuations occur, the quark anti-quark pair must be located within a certain

transverse radius that is determined by the mass of the heavy charm quark,
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FIG. 4. The Vector Meson Dominance (VMD) model, which gives the characteristic scales
of the reaction.7

r⊥ =
1

mc

= 0.13fm. (28)

In addition, as the photon fluctuates into the cc̄, it must be within the impact parameter, b,

for its approach with the proton’s valence quarks,

b =
1√
−t

= 0.13fm. (29)

The cc̄ pair becomes a vector meson after moving through the distance characterized by the

longitudinal formation length, lf .

To describe the mechanism of J/ψ photoproduction near threshold in relation to the

interaction of the quarks and gluons in the proton, perturbative QCD can be implemented

to identify three processes contributing to the cross-section. The first is the leading twist

contribution, where there are two spectator quarks. The second results in one spectator

quark. In the third component, no quarks are spectators as all the quarks are interacting

coherently.

In,7 the cross section of the J/ψ photoproduction with the two-gluon exchange has the

following form:
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dσ

dt
= N2g

(1− x)2

R2M2
F2g(t)

2(s−m2
p)

2. (30)

and the three-gluon exchange has the following form,

dσ

dt
= N3g

(1− x)0

R4M4
F3g(t)

2(s−m2
p)

2. (31)

These models created a need for experimental data by a potential dedicated electron accel-

erator facility.

2.4.2 PAST CROSS SECTION MEASUREMENTS

After the discovery of J/ψ, various experiments were performed to study the production

mechanisms at different energy ranges. For example, the Stanford Linear Accelerator Center

(SLAC) ran an experiment where a bremsstrahlung beam was aimed at liquid Hydrogen

and liquid Deuterium targets. Both electron and muon pairs from the decay of J/ψ were

measured. The measurements were done at six photon energies ranging from 13 GeV to

21 GeV. The two-gluon exchange mechanism was compared to the data and the two were

comparable. However, great interest into J/ψ photoproduction came as a result of the Cornell

experiment, which produced a single data point that deviated from the two-gluon exchange

model close to the threshold energy.

FIG. 5. A superposition of the available historic data from SLAC, Cornell, and JLab.16
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The most recent data collected for the purpose of corroborating the J/ψ production

models was related to the GlueX experiment in Hall D of Jefferson Lab. It was the first

experiment where the photon energy was close to threshold. With a maximum beam en-

ergy of 11.8 GeV, the GlueX J/ψ experiment utilized a linearly polarized photon beam that

originates from an electron beam that was incident upon a diamond radiator. Unlike the

CLAS12 experiment, the scattered electron was analyzed and its photon energy was mea-

sured with large accuracy. However, the CLAS12 and GlueX experiments both use liquid

Hydrogen targets inside Solenoid fields. Based on the data periods in 2016 and 2017, prelim-

inary results were released and published by the GlueX collaboration. By studying the J/ψ

photoproduction cross section as a function of photon energy, they concluded that the data

do not completely follow either the two-gluon and three-gluon exchange models. However,

the data, included in FIG. 5, display the dominance of the three-gluon exchange near the

threshold energy.16

2.4.3 UN-TAGGED PHOTOPRODUCTION FORMALISM

FIG. 6. The photoproduction and electroproduction of vector mesons.

The photoproduction process analyzed in this work is described by the reaction below,
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ep→ V p
′
(e
′
). (32)

Through electron scattering, a vector meson is produced after impinging on the tar-

get proton, leaving the beam electron un-detected. This method of detection is un-tagged

photoproduction.

In terms of the measurement of the J/ψ production near threshold, there are two mech-

anisms that contribute to the process: pure photoproduction and electroproduction, where

the un-detected scattered electron has a Q2 that is small (Q2 ∼ 0). For the electroproduc-

tion of mesons, the cross section can be interpreted as a sum of the cross sections induced

by a transverse (σT ) and longitudinal (σL) components of the virtual photon. The total

electroproduction cross section is

dσ

dt
= ΓT

(
dσT
dt

+ ε
dσL
dt

)
. (33)

The flux of the transverse virtual photons are represented by the following:

ΓT =
α

4π

W 2 −m2

m2E2

W

Q2

1

1− ε
. (34)

The ε is the ratio of the longitudinal virtual flux and the transverse virtual flux and it is

represented as:

ε =

(
1 + 2

Q2 + q2
0

4EE ′ −Q2

)−1

. (35)

Using the vector meson dominance (VMD), one can relate σT and σL to the photopro-

duction cross section:

σT = σγ

(
m2
J/ψ

m2
J/ψ +Q2

)2

. (36)

and,

σL =

(
m2
J/ψ

m2
J/ψ +Q2

)2

· Q2

m2
J/ψ

· (1− x)2 · ξ(Q2, ν) · σγ, (37)

where ξ(Q2, ν) is a normalization parameter and x is the Bjorken variable. Since the virtu-

ality, Q2 is small, the connection between the electroproduction and photproduction cross

sections is written as,17
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dσe
dt

= ΓT
dσγ
dt

. (38)

2.5 LHCB PENTAQUARKS

Pentaquarks have been observed in the LHCb experiment at CERN and there a lot of

interest into the mechanism that is behind the production of these five-quark systems. The

pentaquarks are formed in the following channel,

P+
c = J/ψp. (39)

FIG. 7. The two pentaquarks observed in the LHCb experiment.19

The resonance associated with the pentaquark can be clearly extrapolated in the J/ψp

invariant mass spectrum at 4449.8 MeV. The mass of P(4450) is relatively close to the sum

of the masses of the proton and the J/ψ. The pentaquark resonances are shown in FIG.

7. The existence of these resonances in experimental conditions combined with theoretical

limitations makes it convincing that the pentaquarks exists. Specifically, the Okubo-Zweig-

Iizuka rule likely rules out the possibility of conventional baryons from decaying into a J/ψ

and a proton.19

More recently, data published in 2019 from LHCb points to the splitting of the P(4450)

resonance into two structures. In this case, the Pc(4450) splits into Pc(4440) and Pc(4457).
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It is postulated as the hyperfine splitting between hadrocharmonium constituents. There

are two nearly degenerate hadrocharmonium states: JP = 1
2

and JP = 3
2
.20

The pentaquarks are produced in the s-channel through the combination of a proton and

J/ψ. The incoming photon turns into a J/ψ and then gets absorbed by the proton. The

Breit-Wigner expression yields the pentaquark photoproduction cross section of the following

reaction,

γ + p→ Pc → J/ψ + p. (40)

This results in the photoproduction cross section, which is

σ(W ) =
2J + 1

4

4π

k2

Γ2

4

(W −Mc)2 + Γ2

4

Br(Pc → γ + p)Br(Pc → J/ψ + p). (41)

where J is the spin of the pentaquark and Γ is the total width.17 If the s-channel mechanism

exists, pentaquarks should be observed in the photoproduction of J/ψ mesons.
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CHAPTER 3

EXPERIMENTAL SET-UP

3.1 OVERVIEW

The experiment of interest in this dissertation was a part of the CEBAF Large Ac-

ceptance Spectrometer (CLAS12) physics program at Jefferson Lab. At Jefferson Lab, an 
electron accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), 
accelerates and re-circulates electrons at high energies, reaching up to 12 GeV. This beam 
energy can be adjusted depending on the needs of the experiments. Once the beam is at the 
maximum energy after several passes, the beam is diverted into Hall B, where the CLAS12 
detector is situated. The CLAS12 detector was designed to operate at high luminosity and 
to capture a larger acceptance of particle detection in order to detect a large fraction of 
produced secondary products of electron-target interactions. With a combination of mag-

netic fields, gas tracking chambers, scintillators, Cherenkov counters, calorimeters, a silicon 
tracker, and micro-mega trackers, an effective and wide-ranging physics program can be es-

tablished with CLAS12. For un-tagged J/ψ photoproduction, the CLAS12 forward detector 
is the primary focus for the experiment. Due to the kinematical constraints of the reac-

tion, the three final-state particles all travel at forward scattering angles into the acceptance 
region of the CLAS12 forward detector.

3.2 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF) is an electron accelerator 
located on the campus of Jefferson Lab. CEBAF is a unique and state-of-the-art facility 
that utilizes superconducting radiofrequency (SRF) technology to transfer RF energy to 
electrons, while the electron beam bunches are forced along oscillating electric fields. It 
relies on various aspects of accelerator technology to achieve its physics goals. The entire 
accelerator is shaped in the form of a race track with two arcs containing re-circulating 
magnets, as shown in FIG. 8. The two straight sections of the accelerator provide SRF 
cavity boosts to pump RF energy for the purpose of accelerating the electron beam bunches. 
The injector is the source of the beam and is the starting point of the accelerator.21
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FIG. 8. CEBAF facility including the accelerator and the experimental halls21

3.3 CLAS12 DETECTOR

The CEBAF Large Acceptance Spectrometer (CLAS12) detector includes magnets, track-

ers, scintillator counters, calorimeters, and Cherenkov counters designed to study QCD and

the structure of the nucleon. FIG. 9 gives a visual overview of the entire system, including

the forward and central detectors.22 The CLAS12 detector has the capability of efficiently

detecting both charged and neutral particles over a large proportion of the solid angle. It is

located in Experimental Hall B, to which the beam travels to after achieving the beam energy

required by the experiment. The CLAS12 forward detector consists of a superconducting

toroidal magnet that generates an azimuthal field. Charged particles have curved trajectories

in the field that are analyzed by the drift chambers (DC) to calculate the momentum and

vertex information of the particle. The FD also encompasses several detectors associated

with particle identification including the High-Threshold Cherenkov Counter (HTCC), the

Low-Threshold Cherenkov Counter (LTCC), the Electromagnetic Calorimeter (ECAL), and

the Forward Time-Of-Flight (FTOF) scintillator counters. The polar angle coverage of the

CLAS12 Forward Detector ranges from 5 degrees to 35 degrees. At higher scattering angles,

the CLAS12 Central Detector is capable of detecting charged particles from 35 degrees to

125 degrees. The Solenoid magnet combined with the Central Vertex Tracker (CVT) pro-

vides the ability to calculate the momentum and vertex information from the analysis of
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the curvature of tracks. PID-related detectors in the CD are the Central Time-Of-Flight

(CTOF) counter and the Central Neutron Detector (CND).

FIG. 9. A diagram of CLAS12 showing both the Forward and Central detectors and their
subsystems22

3.3.1 BEAMLINE

The Hall B beamline allows for the safe and effective delivery of the electron beam from

CEBAF to the physics target in the experimental hall. As a whole, the beamline provides

the capability for experimenters to monitor the beam in real-time and allows for operators

to alter the characteristics of the beam as necessary. One of the challenges for the 12 GeV

upgrade was to keep a multitude of detectors and systems safe from the levels of radiation

from the beam, which is in close proximity. To mitigate this issue, shielding was introduced in

the region which is downstream from the Solenoid to avoid radiation damage to the CLAS12

detectors. In terms of the design of the system, the Hall B beamline is generally divided into

two components. First, there is a ”2C” line from the Beam Switch Yard (BSY). This portion

of the beamline ranges from the CEBAF accelerator towards Hall B. Also, there is the second

main region of the beamline, which is the 2H line that stretches from the upstream end of the
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hall to the beam dump in the downstream end. Upstream of the CLAS12 detector, there are

a series of beam augmentation devices (quadrupoles and corrector magnets) which keep the

beam size within tolerances and centered on the target, as observed in FIG. 10. In addition,

there are corrector dipoles, which also improve the characteristics of the beam.23

FIG. 10. A visual representation and schematic of the Hall B beamline23

3.3.2 TARGET

Located within the Solenoid magnet, the cryogenic target for CLAS12 provides a source of

nucleons for the incoming beam of electron for various scattering experiments. For CLAS12,

the two most common targets are liquid Hydrogen and liquid Deuterium. The rationale

behind using liquified gas is to get enough density to satisfy luminosity requirements. As

far as the dimensional characteristics, the target is 5 cm long in the form of a Kapton cone

with a 23.66 mm upstream diameter and a 15.08 mm downstream diameter, which is shown

in FIG. 11. On each end of the target, there are entrance and exit windows in the path

of the electron beam. The target cell possesses a beam halo monitor that can be used for

observing the beam in real-time. Surrounding the target cell is the scattering chamber, which

is comprised of a Rohacell XT110 foam.23
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FIG. 11. CLAS12 target chamber which is impinged by the beam23

3.3.3 TORUS MAGNET

The CLAS12 Torus magnet allows for the presence of a toroidal magnetic field that can be

used in conjunction with the drift chambers to measure the momentum of charged particles

at forward scattering angles. It is a superconducting magnet that operates at ultra-cold

temperatures. Comprising of six coils that form a series electrical connection, there are

described as double-pancakes and have shapes similar to trapezoids, which is displayed in

FIG. 12. The material is made up of copper-stabilized NbTi Rutherford cable. In order to

supply Helium that is lowered to supercritical temperatures, the Torus Service Tower delivers

the liquid to the six coils in order to transfer its operating temperature.

The field itself is Toroidal, which results in curved inward and outward bending charged

particles. The maximum strength of the field can reach 3.6 T near the bore in the inner

portion of the coil. Depending on the run conditions, the operating current can vary but

its maximum current is 3770 A. Other characteristics of the Torus magnet include the coil-

winding in which there are a total of 1404 turns (117 X 2 X 6).24

3.3.4 SOLENOID MAGNET

Just like the Torus magnet, the Solenoid magnet is designed to utilize superconducting
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FIG. 12. The design of the Torus magnet24

wires that take advantage of the absence of electrical resistance. This results in powerful

magnetic fields. The Solenoid, shown in FIG. 13, is described as a series of helically layer-

wound coils that are cooled to ultra-cold temperatures. The Solenoid field offers several

benefits regarding the desired physics goals of the CLAS12 program. It is mainly noted for

providing the particles in the central region with a magnetic field that can induce helical

tracks in the Central Vertex Tracker in order to reconstruct the momentum and vertex in-

formation. In addition to central tracking reconstruction, the Solenoid offers benefits and

satisfies requirements for the CLAS12 program. For example, running at high-luminosity

creates a higher rate of radiation that can be detrimental to the longevity of tracking detec-

tors; therefore, the inclusion of the Solenoid field can act as an effective shield. In addition,

running a highly-polarized target also requires a homogeneous magnetic field that is offered

by the Solenoid magnet.24

In terms of the design and specification of the Solenoid, the five coils comprise of NbTi

and they are connected in series with a current of 2416 Amps. The resulting magnetic field

strength is 5 T. The first two inner coils are situated in a thick-walled stainless steel bobbin.

The next two coils are the intermediate coils that are milled into the outer coil. The fifth coil

is known as the shield coil. In total, there is 5096 turns. In order to operate the Solenoid, a

45 K supply temperature is necessary.24



23

FIG. 13. The design of the Solenoid magnet24

3.3.5 DRIFT CHAMBERS (DC)

A component of the CLAS12 Forward tracking system is the drift chambers (DC), which

are in FIG. 14. The DC allows for the reconstruction of the momentum and vertex informa-

tion of charged particles that originate from the target. The tracing of the curvature of the

charged particle tracks through the magnetic field is directly associated with the momentum

of the track. That curvature can be quantified due to the ability of the DC to measure the

time of the electron avalanche to precisely determine the position of the hit.

The CLAS12 physics program requires tracking detectors that can detect multi-particle

events in a large geometrical acceptance. Due to reactions with small cross sections, the DC

must be able to effectively reconstruct charged particle tracks at higher luminosities. One

of the highest priorities of these CLAS12 DC trackers was the need for optimal momentum

resolution. Many run groups contain experiments where exclusive reactions are analyzed

by missing mass and invariant mass calculations. The resolution optimized to detect the

resonances within their natural widths.

The CLAS12 DC was designed to accommodate these goals. It includes a total of 18

planar chambers. For each region, there are 2 superlayers with 6 layers each. Between

the wires of two adjacent superlayers, there is a 6 degree separation. Many of the design

characteristics were adapted from CLAS, but some modifications were made, including the
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FIG. 14. An overlook of the CLAS12 drift chambers which contain a combination of sense
and field wires to reconstruct the trajectory of charged particles in the magnetic field25

positioning of the DC compared to the position of the target. One of the design features

of the DC was the smaller cells, which allow for more precise and robust track curvature

reconstruction. The hexagonal shape of the cells creates less need for excessive amounts of

wires. The diameters of the sense and field wires allow for greater strength and less of a

chance for breakage. The DC for all six layers are self-supporting. The advantage is that

it is easier to move for maintenance; however, this creates a bowing of the endplates on the

order of 1-2 mm. That fact makes it more important for the DC to be analyzed for the wire

tension, which can affect DC track reconstruction due to the varied length of the field and

sense wires and the timing difference caused by the effect.25

3.3.6 ELECTROMAGNETIC CALORIMETER (ECAL)

For the CLAS12 upgrade, accommodations were required for the detection of high-energy

electrons as well as photons and neutrons. Due to electrons with energies that can reach 12

GeV, electromagnetic showers needed to be absorbed by an extra layer of calorimeter. By

doing this, the total radiation length of the material would be extended. The addition that

was made to the CLAS12 EC was the pre-shower electromagnetic calorimeter (PCAL). The

entirety of the EC can be described by six independent electromagnetic sampling calorimeters
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FIG. 15. A visual overlook of the Electromagnetic Calorimeter which contains three layers
of material for sampling calculations of charged and neutral particles26

comprising of lead and scintillating material. The main purposes of the PCAL/ECAL is to

provide solid trigger and particle identification capabilities. The PCAL/ECAL utilizes a

triangular hodoscope geometry with a stereo readout, as shown in FIG. 15.26

3.3.7 FORWARD TIME-OF-FLIGHT (FTOF)

To properly identify hadrons in the CLAS12 forward detector, a detector is required to

determine the speed of each track as a function of the momentum, which is determined

primarily by the drift chambers. If the pathlength is known, then the speed as a function of

momentum should be calculated by knowing the time-of-flight throughout that corresponding

pathlength. The Forward Time-of-Flight (FTOF), illustrated in FIG. 16, is an effective

detector due to its ability to precisely measure the time at which a charged particle passes

through the scintillator material. Scintillators rely on the fact that charged particles, moving

at speeds approaching the speed of light, excite atomic electrons in the scintillator material

after which atomic electrons emit light going back to the ground state. That light is collected

through the scintillator material and transferred to the photomultiplier tubes, which allow

FTOF reconstruction to properly measure the time. The difference between that time and

the RF-corrected start time is the time associated with the trajectory of the particle. The
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FIG. 16. An overview of the FTOF which allows for hadron identification27

FTOF detector system contains three layers of scintillators: Panel 1A, Panel 1B, and Panel

2. Panel 1A contains 23 scintillators, Panel 1B contains 62 scintillators, and Panel 2 contains

5 scintillators. In total, there are 540 scintillation counters with double-ended readout. They

ranged from 17 cm to 426 cm. Two key features of the FTOF are excellent timing resolution

and trigger capabilities that are flexible. The timing resolution of the FTOF ranges from

50 ps to 200 ps. The timing resolution is dependent ons the length of the scintillators. In

general, shorter scintillators yield sharper resolutions than longer scintillators. The FTOF

detectors play a vital role in the CLAS12 trigger system because several charged particles

rely on a detector hit in FTOF to trigger the acquisition of that event.27

3.3.8 HIGH-THRESHOLD CHERENKOV COUNTER (HTCC)

To accomplish the physics goals of CLAS12, a robust and efficient electron detection sys-

tem had to be developed to not only identify electrons, but to reject other particle identifi-

cation candidates. In the CLAS12 forward detector, the High-Threshold Cherenkov Counter

(HTCC) was built to detect electrons at scattering angles that range from 5-35 degrees

and the entire azimuth range. Cherenkov counters take advantage of the physical principle,

known as Cherenkov radiation, that occurs when a particle is traveling faster than the speed

of light in a specific medium. In this case, high-speed particles, mostly electrons and pions,
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travel through Carbon Dioxide gas at 1 ATM of pressure. The HTCC is located directly in

front of the drift chambers, before the heavy influence of the Torus magnetic field; there-

fore, the electrons and pions make straight tracks through mirrors, that capture light. For

the purposes of particle identification, the HTCC relies on the minimum threshold momen-

tum to help data analysts distinguish particles using the momentum calculated by the drift

chambers. The minimum electron momentum threshold is 15 MeV. In terms of pions, the

minimum pion momentum threshold is at 4.9 GeV. The material that was used to construct

the HTCC consisted of multifocal mirrors that consist of 60 lightweight ellipsoidal mirrors.

Within each sector, there are two half-sector mirrors that concentrate the Cherenkov radi-

ation upon eight phototubes. In the entire HTCC, there are 48 channels that correspond

to photomultiplier tubes (Electron Tube 9823QKB). Several priorities were established with

regards to the usage of the HTCC. These include solid timing, high efficiency, and robust

rejection of charged pions beyond 4.9 GeV.28

3.3.9 CENTRAL DETECTOR

For charged particles with higher scattering angles beyond the CLAS12 FD, the Central

Detector (CD) can measure the momentum and identity of these particles. Under the in-

fluence of the Solenoid field, these particles have trajectories in the Central Vertex Tracker

(CVT) where the momentum is measured by analyzing the helical tracks. The CVT con-

sists of two detectors: the Silicon Vertex Tracker (SVT) and the Barrel Micromegas Tracker

(BMT).29 For neutral particle identification, the Central Neutron Detector (CND) has the

ability to detect neutrons ranging from 200 MeV to 1 GeV.30 Charged particle identification

is made possible by the Central Time-Of-Flight (CTOF), which has a hermetic barrel of 48

scintillation counters with 25 cm radii. The average timing resolution of the CTOF is 80

ps.31

3.3.10 DATA ACQUISITION SYSTEM

With a combination of efficient and functional detectors, targets, and magnets, there is

also a robust data acquisition system which allows for the storage of information on an event-

by-event basis. The hardware components of the detectors record amplified analog signals

that result from the interaction of particles with the materials. These analog signals are

converted into digital signals using Analog-to-Digit Convertors (ADCS) and Time-to-Digit

Convertors (TDCs) and then transferred to the network-based CLAS12 data acquisition

(DAQ) system. The main purposes of the DAQ is to organize the information stemming
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from the CLAS12 detectors and transfer that information to the tape storage. In addition

to the storage requirements, the DAQ system also has the capability to monitor data in real-

time, which is an important priority for the optimal running of beamline experiments. The

current performance of the CLAS12 DAQ, whose schematic is shown in FIG. 17, includes

an event rate of 30 kHz and a data rate of 1 GB/s. In terms of the design of the DAQ, the

data collection originates from front-end components, which are specifically called Readout

Controllers (ROC32).

FIG. 17. Overview of the data acquisition system which has an event rate of 30 kHz32

3.3.11 TRIGGER SYSTEM

For each CLAS12 run period, there are a series of criteria that dictate the collection

of data from the CLAS12 detectors by the CLAS12 DAQ. The system that is responsible

for making a decision to record the data is called the trigger system. This trigger system

is versatile and is efficient at isolating events based on the physics requirements within

each of the run groups. Examples of triggers for Run Group A include electron triggers,

opposite sector triggers for muons, the MesonEx trigger, and others. One requirement for

the successful activation of the trigger system is an adequate trigger latency period, which

had to be at least 8 microseconds. It is also required that the DAQ run at a very high



29

rate with a greater than 95 percent live-time. Overall, the CLAS12 trigger is dependent on

seven detectors: the HTCC, DC, FTOF, ECAL, CTOF, CND, and FT. The design of the

trigger system contains three distinct stages of trigger activation. Firstly, the trigger system

obtains values from the FADC and DCRB information. Using that information, data is

processed based off of the specific detector. Secondly, calculations related to the timing and

the location of hits for different portions of detectors are recorded for the triggers defined

by the physics run group. The final stage is when a decision is made to keep or discard the

event based off of the criteria. The schematic of the CLAS12 trigger system is illustrated in

FIG. 18.33

FIG. 18. A schematic of the trigger system which can accommodate different physics goals33

3.4 CLAS12 RECONSTRUCTION SOFTWARE

Nuclear and particle physics experiments require a software framework that possesses

longevity and adaptability due to the long-term analysis after data collection. For CLAS12,

the software framework and reconstruction of events contain a multitude of common analysis

software tools for users to adopt. Due to the combination of systems, there is also a need

for many services associated with each detector. The objectives of the software framework

include event reconstruction, calibration, monitoring, CLAS12 physics analysis, detector
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geometry, and access to the CCDB database.

CLARA, which is a framework that uses data-stream processing, is the core of the archi-

tecture of the software framework. It is a modular design where the essential basic units are

services put together by pipes. The coding language used was Java, for its portability and

its ability to construct applications on diverse kinds of systems.34

3.4.1 EVENT BUILDER

The development of the CLAS12 Event Builder (EB), from 2016 to 2017, was an im-

portant step towards assembling a software reconstruction package that has the ability to

effectively organize all of the relevant information of a physics event captured by the CLAS12

detector. COATJAVA, which is the JAVA-based reconstruction package that is a part of the

general CLARA analysis framework, is a collection of services. Most of those services are

associated with individual detectors where the values of ADCs and TDCs are converted into

physical quantities such as energy and time. What makes the CLAS12 Event Builder (EB)

service unique is that it receives information, in the form of data banks, and uses that in-

formation to tie everything together. The objective of the EB is to provide data analysts

with important event-specific values such as particle identification quantities, event helicity,

and accumulated charge. This makes it possible for the analysts to filter their events at the

post-processing stage for individual final states.

The order in which the EB is utilized is important. During the reconstruction stage of

data processing, the EB is first called as a service after the other detector services complete

their calculations and output their data banks. This includes hit-based drift chamber track-

ing. Hit-based tracking is solely dependent on the position of DC wires and does not rely

on timing since that information is not yet available for DC reconstruction. The CLAS12

EB uses the hit-based tracks and matches those track trajectories to the positions of hits in

other detectors in the FD. Using a trigger assignment algorithm, a trigger particle (usually

an electron) is used to calculate the event start time. That event start time is utilized by

hit-based tracking and the entire process is re-done using the refined tracks. The specifics

of those calculations will be explained in the next sections.

One of the ways in which event information is organized is geometrically matching track
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FIG. 19. Distance of the particle trajectory’s closest approach to the detector hit.

trajectories with the hits in the individual portions of the CLAS12 detector. For example,

when an electron comes out of the target vertex, it will make a curved path in the presence of

the combined Torus and Solenoid magnetic fields. This curvature is quantified as momentum

in the DC. Beyond the DC, there is a sharp drop-off in the magnitude of the magnetic field.

Therefore, the particle’s trajectory becomes more of a straight line towards the detector

material. The EB calculates the distance of closest approach (DOCA) for all of the hits in all

of the layers of detectors. This geometrical matching process plays a vital role in determining

the characteristics of the particle beyond the momentum and vertex information. FIG. 19

is a representation of the DOCA values of simulated electrons in all layers of the forward

calorimeters. A visual representation of a particle’s trajectory nearing the proximity of the

detector hits is illustrated in FIG. 20. The magnitude and the resolutions of the DOCA

values are dependent on the hit position resolutions of the detectors. In the EB code, the

cut thresholds are applied based on the spatial resolutions for the detectors. The EB output

banks show the results of the hit association between the particle and detector responses.
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FIG. 20. CED display of a charged particle track penetrating the material of the CLAS12
forward detector

In order for accurate reconstruction of time-based tracking and particle identification, the

timing values within events need to be understood. The times reported by the detector re-

sponses are absolute values from a DAQ trigger clock. To use the TDC information reported

by detectors, the time of the interaction that created the event must be found. Therefore,

calculating the event start time is a necessary step to allow for the absolute timing values to

be utilized for tracking reconstruction and particle identification in various CLAS12 detec-

tors. As stated earlier, the EB is called after hit-based tracking and information collected at

that stage is used by the EB. During hit-based tracking, a trigger candidate is identified for

the purpose of calculating the event start time. The rationale behind using the characteris-

tics of the electron is the fact that the speed of the electron in virtually constant and known.

In addition, the electron identification does not require information from detector times.

Instead, they depend on values such as the sampling fraction in the ECAL and the number

of photoelectrons in the HTCC. The EB possesses an algorithm that searches for electron

candidates and ranks them depending on particle characteristics such as the momentum.
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FIG. 21. A visual representation of the software trigger particle selection

Once an electron candidate is selected, the absolute timing value from a layer of FTOF

and the pathlength of the electron to FTOF are used to calculate the event start time, which

is the time corresponding to the electron’s vertex position. As shown in FIG. 21, the EB has

a special routine that uses a hierarchal approach to determining the best electron candidate

based on the detector responses after hit-based tracking. The electron vertex time is defined

as follows,

tr0 = tr − ttof . (42)

where tr is the absolute time value reported by a component of FTOF. ttof is the calcu-

lated time-of-flight based on the reconstructed pathlength from the interaction point to the

detector hit position divided by the speed of light. Although tr0 is a good approximation for

the time of the beam-target interaction, various uncertainties involved with the calculation

of that time creates a necessity to correct that time and reduce that uncertainty to allow

for more precise timing-based particle identification. The method that is used involves the

usage of the RF accelerator signal to further improve the calculation. The RF time, tRF ,

which is measured in the TDC, contains a value called the trigger jitter, t0. This time is

written as,
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tRF = M × δt+ tj. (43)

where M can be a very large integer, δt is the CEBAF beam bunch separation time, and

tj is the time jitter. A new term, ∆t, is defined to quantify the difference between the vertex

time, tr0, and the reported RF time, tRF . By combining the previous formulas, the ∆t term

is expressed as,

∆t = (tr0 − tj)−M × δt+ C. (44)

where C is the RF offset. As a part of the calibration process, the C value is measured to

ensure that the beam bunch arrival at the target and the TDC detection of the RF signal are

synchronized. Once the RF offset is subtracted out, the extension of the production vertex

needs to be taken into account. This is due to the reality that the interaction point for the

start of each event is not a point-like target. The production vertex shift is considered in

the term, ∆tr, as

∆tr = tr0 − tRF −
zt − z0

c
+m× δt. (45)

The terms, zt and z0, refer to the track production vertex and center of the target,

respectively. After ∆tr is quantified, the RF-correction term, ∆tcorrRF , can be calculated,

which is then used to finalize the event start time, t0.35 The RF-correction term is

∆tcorrRF = Mod(∆tr, δt)− δt

2
. (46)

and the event start time is

t0 = tr0 −∆tcorrRF . (47)

This event start time, t0, is used by DC time-based tracking to improve the reconstruc-

tion of charged particles and it is also included in the time-based particle identification for

particles constructed in the event builder.

The identification of charged particles in the CLAS12 EB relies on varying combinations

of measured physical quantities from different subsystems. For electrons and positrons, the

following conditions need to be satisfied.

• Correct charge of the track

• Contains clusters in ECAL and the HTCC



35

h_difference
Entries  772302
Mean    40.77
Std Dev     22.84

0 10 20 30 40 50 60 70 80
Timing Difference (ns)

0

1000

2000

3000

4000

5000

h_difference
Entries  772302
Mean    40.77
Std Dev     22.84

Difference Between Vertex Time & RF Time (ns)

FIG. 22. The difference between the electron vertex time and the reported RF time in the
Fall 2018 RG-A dataset

• Minimum PCAL energy is 60 MeV

• Number of photoelectrons is greater than 2

• The energy-dependent ECAL sampling fraction falls within 5σ of the expected mean

The identification of charged hadrons is performed by comparing the expected and mea-

sured vertex times based on the values when the mass of those particles is assigned in those

calculations. To achieve this, the deviation of the particle’s vertex time from the event start

time is quantified. If it comes within 5σ of the expected value, then it will be identified

accordingly. The following equation describes the calculation:

∆t(i) = t0 −
[
tFTOF −

L

βi(p)

]
. (48)

where tFTOF is the time the particle intersects the time-of-flight detector plane.

Neutral particles, such as photons and neutrons, are also identified in the EB. For photons

in the forward detector, the EB searches for clusters in the three layers of ECAL that are

not associated with any charged track in the DC. This means that the geometrical matching
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tests did not pass the specified thresholds for the DOCA values. These clusters are assumed

to be from either neutrons or photons. To identify the neutral particles, the distance from

the production vertex to the cluster position in the ECAL are used together with the cluster

time to calculate the speed of the neutral particle. The EB assigns the photon ID to the

clusters that have β greater than 0.9. The ones with β less than 0.9 are assumed to be

neutrons.

The CLAS12 EB relies heavily on the CCDB database because there are several run-

dependent variables that affect particle identification. More specifically, EB uses constants

that are unique to the various detectors and subsystems.

• Electron sampling fraction fit parameters for mean and standard deviation

• Photon sampling fraction

• User-determined software trigger

• PID Hypotheses

• Target Position

• Detector Hit Position Resolutions

• Detector Timing Resolutions

• Cherenkov Counter Photoelectrons

In COATJAVA, the reconstruction service in the CLARA framework, the data is stored

in the form of HIPO output banks. Each major subset of banks corresponds to an individual

reconstruction service engine. The EB contains a specially designed series of banks. This

network of banks creates a way in which data analysts can associate particles, whose tracks

can originate in the DC, CVT, or FT, and their associated detector hits. FIG. 23 shows the

contents of REC::Particle and FIG. 24 shows the contents of REC::Cherenkov, which is an

example of one of the detector banks when hit and tracks become associated.
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FIG. 23. The contents of the REC::Particle bank

FIG. 24. The contents of the REC::Cherenkov bank
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CHAPTER 4

TORUS FIELD MAPPING PROJECT

4.1 OVERVIEW

Successful reconstruction of charged particles in the Forward Detector (FD) of CLAS12 
requires a robust track reconstruction software, knowledge of drift chamber (DC) alignment, 
and precise knowledge of the magnetic field of the Torus. Due to subtle deviations of super-

conducting coil positions from either installation or manufacturing, there is the possibility 
that imprecise knowledge of those positions could compromise the resolution of the recon-

structed charged tracks. Thus, a project was enacted to measure the Torus field at specific 
locations particularly sensitive to the field in order to study those field differences from the 
pre-determined coil movements from field models based off of the ideal coil shapes. Using 
minimization algorithms, data sets from the measured Torus data and the model Torus data 
were placed in a chi-squared function. The coil positions were calculated and those results 
were relayed to the engineers who produced a new full grid for reconstruction.

In order to achieve the benchmarks regarding tracking, the ideal drift chamber position 
resolution should be approximately 300 micrometers, with the 12-layer chambers located 
at approximately 2, 3, and 4 meters from the target. The best-case fractional momentum 
resolution is approximately 0.3% for high-momentum and low-angle tracks such as scattered 
electrons. The overall goal for the magnetic field measurement is to know the magnitude of 
the field, regardless of the positional and material aspects of the coils, to 0.1%.

4.2 MEASUREMENT PROCEDURE

The CLAS12 acceptance is rather large for charged particles going in the forward direc-

tion; therefore, it is imperative that we understand the field values in all of the acceptance. 
However, practically, it is not feasible to measure the field in all of the CLAS12 forward de-

tector coverage. The measurement positions have to be situated in an area of the acceptance 
where the magnetic field is strong and also in a field’s region that has been deemed sensitive 
to deviations of coil positions and shape imperfections. The region most sensitive to those 
effects is closer to the bore, where the momentum resolution is projected to be the highest 
due to a stronger magnetic field.
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The measurement of the Torus field was accomplished with precise instruments, known

as Hall Probes, that were enveloped in holder fixtures that allowed for accurate movement in

discrete increments parallel to the beamline and in various fixtures in the XY plane. In the

XY plane, there were four positions for each sector (one at a 30 cm radius and three at a 46.5

cm radius). In each of the positions, a Hall probe was inserted and pushed along a fixture

that was parallel to the beamline in 5 cm increments, as shown in FIG. 25. LabView software

was utilized for data collection and the field strength in cartesian coordinates was monitored

in real-time. For each measurement position, a separate Carbon tube provided a path for

the Hall probe to slide through. To ensure the reproducibility of the data, the magnetic field

mapping team interchanged the tubes and compared the results for each sector.

FIG. 25. Visual representation of the field mapping apparatus

4.3 BASIC ANALYSIS OF MEASURED DATA

After the field mapping measurements were finalized in November 2016, basic analysis

was done on the raw data to evaluate the data quality, reproducibility, and systematics. In a

local coordinate system, the field measurements were analyzed for each sector and cartesian

coordinate.
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FIG. 26 is an illustration of the coordinate system convention. The weaker, local x-

component is perpendicular to the large, local y-component. As shown in FIG. 27-30, the

precision varied based on the location of the measurement in the XY plane. Hole A yielded

a 0.3% precision among the six sectors and Holes B, C, and D yielded 0.9%, 0.4%, and 0.9%

precisions, respectively.

FIG. 26. Explanation of the local coordinate system for field measurements. The x-axis
bi-sects each sector (through Holes A and C) and the y-axis is perpendicular.

In addition to the y-component, the x-component of the field is also valuable to look at,

as shown in FIG. 31 and FIG. 32. Holes A and C bi-sect each sector, meaning that the x-

component of the field should be zero. This constraint is helpful in determining a systematic

error, caused by potential, unwanted rotation of the Hall Probes as they slide parallel to

the beamline. The analysis displays non-zero values of the x-component at those locations,

adding validity to the hypothesis regarding potential rotation of the Hall Probe.

Although this physical motion is small (∼1 degree), it is enough to skew the data. There-

fore, a correction to the raw data was implemented by quantifying the angle depending on

the x and y components at those positions. FIG. 33 show the dependence of the z-position

on the rotation of the Hall Probe in a specific tube.
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FIG. 27. Hole A Y-component of the field.

FIG. 28. Hole B Y-component of the field.
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FIG. 29. Hole C Y-component of the field.

FIG. 30. Hole D Y-component of the field.
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FIG. 31. Hole A X-component of the field.

FIG. 32. Hole C X-component of the field.
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FIG. 33. The rotation of Hall probes in various carbon tubes.
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4.4 CALCULATING THE COIL POSITIONS

The fitting procedure is done by minimizing a χ2 function with 18 αj parameters for each

coil movement (6 coils and 3 degrees of freedom). The degrees of freedom include: motion

along the beamline, radial motion away from the hub, and azimuthal motion transverse to

the plane of the magnet coil. The αj coefficients linearly scale with the size of the unit

distortion field values. The formalism is displayed by the following sequence of equations,

which contain different field model values in each of the measurement positions. The chi2

function is written as,

χ2 =
24∑
p=1

3∑
i=1

∆Bmeas(xi, p)−∆Bcalc(xi, p)

δB(xi)
, (49)

while ∆Bmeas(xi, p) and ∆Bcalc(xi, p) are written as,

∆Bmeas(xi, p) = Bmeas(xi, p)−Bideal(xi, p) (50)

and

∆Bcalc(xi, p) =
6∑
c=1

3∑
j=1

Cαj[Bideal(xi, p)−Bdist(xi, p)]. (51)

• Bmeas(xi, p) is the measured field value reported at the measurement position, p, for

one of the cartesian coordinates (x , y, z) denoted as x1, x2, and x3, respectively.

• Bcalc(xi, p) is the calculated model-generated field value reported as the measurement

position.

• Bdist(xi, p) is the calculated model-generated field that is intentionally distorted by

moving one of the six coils (denoted c = 1 to c = 6) in one of the degrees of freedom

(denoted α1 to α3).

• Bideal(xi, p) is the calculated model-generated field at the measurement position in the

designed locations where no coils are moved in any direction.

• δB(xi) is the weight applied to each cartesian component, xi, of the magnetic field

value

4.5 FIELD MAP ITERATIONS AND MODEL ADJUSTMENTS
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TABLE 1. The first iteration of the fit results (measured in centimeters) using the block
model of the Torus coils.

Coil Radial Downstream Azimuthal

A 12.5295 9.9118 0.0748273
B 10.5152 15.6313 0.624114
C 9.38943 13.9002 1.03096
D 8.81748 13.1716 0.079318
E 10.5103 10.673 2.43371
F 12.4902 16.0749 1.76178

Throughout the course of the field mapping analysis, there have been several iterations

of the field maps. The details are listed below.

• Extracted coil positions by fitting measured data with the original, block model used

until January 2018

• Extracted coil positions by fitting measured data with upgraded model with corrected

coil geometry by partitioning the coils into 17 segments with varying current densities

in April 201836

• Extracted coil positions by fitting measured data with previous model with an ad hoc

correction to the upstream corner in February 2020.

• Extracted coils positions by fitting measured data with coil-dependent geometry with-

out the ad hoc correction to the upstream corner in January 2021.

The results are summarized in Tables 1-4.
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TABLE 2. The second iteration of the fit results (measured in centimeters) using the opti-
mized double-pancake model of the Torus coils.

Coil Radial Downstream Azimuthal

A 0.36185 0.217562 0.250904
B 0.311987 1.67751 0.40883
C 0.458769 3.04286 0.728354
D 0.519575 4.36706 0.606732
E 2.21523 2.51131 0.0660279
F 1.68347 0.23668 0.0198553

TABLE 3. The third iteration of the fit results (measured in centimeters) using the optimized
double-pancake model as well as an ad hoc correction to the upstream corner.

Coil Radial Downstream Azimuthal

A 0.431708 1.01172 0.609696
B 0.286486 1.76846 1.59645
C 1.3984 0.837393 2.04734
D 3.80696 0.518406 0.876729
E 2.41042 0.775945 1.72266
F 0.758226 0.827278 1.10946

TABLE 4. The fourth iteration of the fit results (measured in centimeters) using the coil-
dependent geometry rather than average coil shapes.

Coil Radial Downstream Azimuthal

A 0.715183 2.13879 0.707513
B 0.403613 0.139149 1.51374
C 2.94549 0.737226 1.90719
D 3.25602 1.04489 0.813265
E 3.38049 2.15203 1.62828
F 0.0887242 0.478248 0.909076
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4.6 EFFECT OF COIL MOVEMENTS ON FIELD AGREEMENT
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FIG. 34. Sector 1 Field Map/Model Comparison Evolution (2017-2020)

FIG. 34-45 show the difference between the magnitude of the measured field and the

model field, as described by the equation below,

∆B(zHall) = Bmodel(zHall)−Bmeas(zHall). (52)

In each of these plots, there are various iterations of fitting results that are summarized in

the previous section. Overall, the trend over time was the production of field models that

more closely aligned with what was observed in the measured data from the field mapping

procedure.

By combining the detailed analysis of the field, drift chamber alignment, and careful

calibration of the DC, tracking resolution can be improved to a satisfactory level for Run

Group A. FIG. 46 shows the elastic peak, which should ideally center around the mass of the

proton. The mean and width of the elastic peak was quantified as a function of scattering

angle and the sector. The improvement between field maps shows the effect of the fitting

routine for one of the fitting iterations. The mean value of the elastic peak is closer to its

ideal position of 938 MeV, however, there is still a dependence of the peak position on the
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FIG. 35. Sector 1 Field Map/Model Comparison Evolution (2021 Iteration)

scattering angle of the electron. More work is needed to understand this dependence. In

terms of the agreement between the latest model and the measured data, the majority of

z-position field values fall within 100 Gauss in Hole A (30 cm) and within 50 Gauss in Holes

B, C, and D (46.5 cm). Additional studies are for the regions near the coil corners would be

ideal to understand the model’s depiction coil geometry and how that affects the knowledge

of the magnetic field at low scattering angles.
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FIG. 36. Sector 2 Field Map/Model Comparison Evolution (2017-2020)
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FIG. 37. Sector 2 Field Map/Model Comparison Evolution (2021 Iteration)
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FIG. 38. Sector 3 Field Map/Model Comparison Evolution (2017-2020)
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FIG. 39. Sector 3 Field Map/Model Comparison Evolution (2021 Iteration)
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FIG. 40. Sector 4 Field Map/Model Comparison Evolution (2017-2020)
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FIG. 41. Sector 4 Field Map/Model Comparison Evolution (2021 Iteration)



53

-1000

-500

0

500

1000

1500

2700 3200 3700 4200 4700 5200

Sector 5 Hole A

-1500

-1000

-500

0

500

1000

2700 3200 3700 4200 4700 5200

Sector 5 Hole B

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

2700 3200 3700 4200 4700 5200

Sector 5 Hole C

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

2700 3200 3700 4200 4700 5200

Sector 5 Hole D

Orange:  Old Symmetric (2017)
Blue:  Old Asymmetric (2018)
Grey:  Modified Symmetric (April 2018)
Black: Modified Asymmetric (May 2018)
Red: Corner Adjustment (2020)

dB
(G
au
ss
)

dB
(G
au
ss
)

dB
(G
au
ss
)

dB
(G
au
ss
)

FIG. 42. Sector 5 Field Map/Model Comparison Evolution (2017-2020)
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FIG. 43. Sector 5 Field Map/Model Comparison Evolution (2021 Iteration)
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FIG. 44. Sector 6 Field Map/Model Comparison Evolution (2017-2020)
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FIG. 45. Sector 6 Field Map/Model Comparison Evolution (2021 Iteration)
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FIG. 46. Effect of 2020 map on elastic peak position and width37
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CHAPTER 5

J/ψ ANALYSIS FRAMEWORK

5.1 OVERVIEW

This analysis framework’s objective is to analyze J/ψ photoproduction events through 
the reaction, ep → e+e−p

′
X, where X is the electron that scattered from the liquid Hydrogen 

target from the incoming electron beam. For the detection of the J/ψ resonance, the invariant 
mass of the e+e− pair is calculated by the following:

me+e− =
√
E2
e+e− − p2

e+e− . (53)

The energy conservation for the total reaction is given by,

Eγ +mp = Ee+ + Ee− + Ep. (54)

This describes the energies of the incoming beam and the target in the initial state with

the final state particles and the target, which is the proton, in the final-state. The energy

conservation also gives the formula for one of the kinematic observables for the J/ψ cross

sections, which is the photon beam energy,

Eγ = Ee+ + Ee− + Ep −mp. (55)

Another observable that is calculated in the analysis is the transferred momentum, −t, which

is defined as:

− t = 2mp(Ep −mp). (56)

The selection of quasi-real events was done by constraining the kinematics so that photo-

production events with a scattered electron with very forward angles (θ ∼ 0) are preserved.

In this scenario, Q2 ∼ 0. Q2 is defined in the following way,

Q2 = 2Ebpmiss(1− cos(θmiss)). (57)
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For this event selection, the transverse missing momentum components, Px
P

and Py
P

, and

the square of the missing mass, M2
x , were calculated to ensure they are very small. The

calculations of the missing momentum, missing energy, and missing mass are described by

the following formalism where each i-iteration is one of the three final-state particles and Eb

is the beam energy. The kinematic variables for the quasi-real event selection are,

px,miss = 0−
∑

px,i, (58)

py,miss = 0−
∑

py,i, (59)

pz,miss = Eb −
∑

pz,i, (60)

pmiss =
√
p2
x,miss + p2

y,miss + p2
z,miss, (61)

Emiss = Eb +mp −
∑

Ei, (62)

and

m2
miss = E2

miss − p2
miss. (63)

5.2 RG-A CONFIGURATION AND DESCRIPTION

Starting in 2018 after the Hall B engineering run, the first major group of experiments

began with the resumption of beam operations. This group of CLAS12 experiments was

known as Run Group A (RG-A). In Hall B, run groups are joint experiments that share

a common experimental set-up, including the magnetic field setting, the target, and beam

currents. The J/ψ photoproduction experiment was a part of RG-A and different experiments

had to communicate and negotiate the terms of the experiment settings. The overall objective

of RG-A was to perform simultaneous measurements for a wide variety of physics topics. In

total, RG-A includes 13 experiments that were developed by the CLAS collaboration and

approved by Jefferson Lab’s Program Advisory Committee (PAC). These experiments are

classified into five different sub-categories.

• Deep Exclusive Processes: The objective of these studies is to access Generalized Par-

ton Distributions (GPD’s), which are describe correlations between longitudinal and
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transverse positions of partons. Examples of deep exclusive processes include π0 pro-

duction, Deeply Virtual Compton Scattering (DVCS), and deep φ production.38

• Deep Inclusive and SIDIS: Semi-inclusive deep inelastic scattering is analyzed to es-

tablish the kinematic region over which SIDIS pion production can be connected to

next-leading-order QCD in terms of parton distributions and parton fragmentation

functions.

• Quasi-Real Photoproduction: Using photoproduction, experiments include the study

of Timelike Compton Scattering (TCS) and J/ψ photoproduction near threshold. TCS

can help enhance the understanding of Generalized Parton Distributions (GPD’s) and

J/ψ photoproduction can help study the gluonic form factors of the proton.

• Nucleon Structure: These studies analyze the spectrum of N∗ states in electroproduc-

tion channels, which allows for the study of N∗ structure.39

• MesonEx Program: The CLAS12 Forward Tagger can be utilized to study the meson

spectrum at low Q2 values. Exotic hybrid mesons, which are quark-antiquark-gluon

bound states, are important for the understanding of hadron structure.40

To satisfy the physics requirements of these five categories, a series of experimental run

conditions were developed. These conditions are related to the configurations of the beam

energy, beam current, the DAQ, and the trigger systems. A summary of the run conditions

are listed below.

• Torus Magnet: At full field, run with both polarities, with in-bending electrons (75

percent of the time) and out-bending electrons (25 percent of the time)

• Solenoid: At full field

• Beam Current Ranges From 5 nA to 75 nA

• Liquid Hydrogen with occasional data taking on the empty target cell

• Beam Energy: 10.6 GeV (Fall 2018) and 10.2 GeV (Spring 2019)

5.3 DESCRIPTION OF RG-A DATASET

The data analyzed for J/ψ photoproduction consists of different run periods that con-

tain varying experimental configurations, such as the beam energy and the Torus polarity.
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Fall 2018 In-Bending Runs

Spring 2019 In-Bending Runs

FIG. 47. Gated and ungated accumulated charge for the run periods being analyzed.

Each run consists of a period of time where conditions remain constant. For the purpose

of calibration, certain runs were either accepted or discarded depending on the quality of

the data and the consistency of the experimental conditions. There are four large groups of

datasets that were analyzed for extracting differential and total cross sections for J/ψ pho-

toproduction. The largest dataset was the Fall 2018 in-bending dataset, which ranges from

Run 5032-5419. It’s total accumulated charge is 45 mC and the set beam energy was 10.6

GeV. The out-bending counterpart for the Fall 2018 dataset was not included due to issues

with efficiency. Lastly, a series of runs from the Spring 2019 RG-A period were calibrated

and processed. Unlike the Fall 2018 datasets, the Spring 2019 dataset had a set beam energy

of 10.2 GeV and consists purely of runs with an in-bending Torus polarity. Since the beam

energy was 400 MeV lower, the expected number of detected J/ψ resonances was expected to

be lower since the cross section of its production is highest when the beam energy is higher.

The accumulated charge associated with the Spring 2019 was 54 mC. FIG. 47 displays the

gated and ungated charge plots.

5.4 POST-PROCESSING DATA SKIM

When the run data is processed through the CLARA framework, the data is organized in

the form of output banks. The primary banks that are utilized for data analysis are from the
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CLAS12 Event Builder (EB). The EB banks consist of four-vector and vertex information

as well as the associated detector hits for each of the charged tracks and neutral tracks.

However, directly reading the un-altered HIPO files is not a pragmatic task due to the

large size of these files. Therefore, an additional post-processing step is necessary after the

reconstruction phase of the CLARA framework. A series of data skims filter these HIPO

files so that only the relevant physics events are preserved, depending on the experiment of

the data analyst’s choice. In the case of J/ψ and Timelike Compton Scattering, skim1 is

the selected data filter. There are several conditions that the algorithms accept in the skim.

They are listed below.

• an electron, positron, and 2 positive particles

• a positive muon, a negative muon, and 1 forward detector proton

• an electron-positron pair with momentum greater than 2 GeV

• an di-muon pair with momentum greater than 2 GeV

• minimum ionizing particle PCAL, ECIN, and ECOUT energy cuts at 0.110, 0.100, and

0.200 GeV, respectively

5.5 ELECTRON AND POSITRON IDENTIFICATION (P < 5 GEV)

The default PID algorithm from the CLAS12 Event Builder, the last stage of event

reconstruction, encompasses cut values for various detectors, which have their own calibration

constants that affect particle ID. Below the 4.9 GeV/c momentum, the EB identification of

electrons and positrons is effective and less susceptible to pion contamination because the

HTCC can be used as a veto for any non-electron track whose momentum is less than

4.9 GeV/c. The identification of these particles comes from a combination of information

stemming from the CLAS12 DC, ECAL, HTCC, and FTOF.

Firstly, electrons and positrons leave a unique sampling fraction in the ECAL:

SF =
Etotal
p

. (64)

The total energy is the sum of the cluster energies of the three layers of the calorimeter. The

momentum of the track is calculated by the DC reconstruction. The values of the mean and

width of the total sampling fraction are parametrized as a function of the total energy lost by
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FIG. 48. The electrons and positrons are selected by the CLAS12 event builder and are
evaluated by their ”chi2pid”, which is a measure of how well the sampling fraction compares
to the energy-dependent parametrization

the particle in ECAL. Particles whose sampling fractions come within 5 sigma of the expected

mean pass the sampling fraction requirement. The electron ”chi2pid” value, as shown in FIG.

48, is an event builder quality factor that quantifies how closely the expected and calculated

sampling fractions are, as shown by the formula below where σp is the resolution of the

sampling fraction,

χ2 =
SFmeas(E)− SFcalc(E)

σp
. (65)

The minimum PCAL energy cut provides an additional constraint as electrons and

positrons are observed to deposit more than 60 MeV in that layer. This cut provides miti-

gation of pion misidentification. FIG. 49 displays the PCAL cluster energy of reconstructed

electrons from an RG-A data sample in which there are almost no electrons with deposited

energy below 100 MeV.

Lastly, the HTCC is involved with the identification of electrons and positrons. These

particles leave behind a trail of Cherenkov radiation due to their high speed through material



62

h_ele_pcal
Entries  8465
Mean   0.8081
Std Dev    0.2539

0 0.5 1 1.5 2 2.5 3
PCAL Energy (GeV)

0

20

40

60

80

100

120

140

160

180

200

h_ele_pcal
Entries  8465
Mean   0.8081
Std Dev    0.2539

Electron PCAL Energy

FIG. 49. The electron’s energy as measured by the PCAL layer, which shows the 60 MeV
minimum energy cut.

at a rate faster than the speed of light in that medium. It takes a minimum of 4.9 GeV to

leave a detectable Cherenkov response for the possibility of pion identification. The number

of photoelectrons is reconstructed from the analysis of ADC values of HTCC PMTs. A

minimum of 2 photoelectrons is needed for e+e− ID, as shown in FIG. 50.
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FIG. 50. The number of photoelectrons measured in the HTCC is a requirement for electron
and positron identification.

5.6 POSITRON IDENTIFICATION ABOVE 5 GEV

While the standardized CLAS12 Event Builder PID is sufficient for clean identification of

electrons and positrons, the rate of pion contamination is higher when momenta go beyond

5 GeV. There are events where a pion can pass the required cuts for electrons/positrons

since the values for the PCAL energy, ECAL sampling fraction, and HTCC number of

photoelectrons can overlap with a certain percentage of pion events.

Therefore, additional cuts had to be developed to mitigate the probability that a high-

energy pion passes through positron ID cuts. This is especially important for J/ψ photopro-

duction since electrons and positrons can have momenta up to 9 GeV.

Evidence of pion contamination exists in both MC and RG-A data by way of exclusive

events and non-exclusive events. In terms of MC data, these effects were studied by simu-

lating single pion events generated beyond 5 GeV. As shown in FIG. 51, the total number

of events were compared between the initial MC sample and the number of events with

a detected positron. According to this reconstruction, 6% of pions get mis-identified as

positrons. This subset of the original reconstructed events was then analyzed to determine
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key characteristics that could be used to mitigate the contamination observed in RG-A data.
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FIG. 51. Using MC data, a comparison between the original generated quantity of high-
energy pions and the ones mis-identified as positrons was analyzed.

For the RG-A dataset, there is clear qualitative evidence of pion contamination. For

example, the kinematics of the e+e−p events were analyzed by observing the scattering angle

as a function of momentum, as shown in FIG. 52. The positron’s kinematics show that

there is a statistically significant cluster of events above 5 GeV. That cluster is due to pions

passing the event builder standardized cuts.

Another exclusive reaction that can be studied for the purpose of pion contamination

involves the final-state with a pion (identified as a positron) and an electron accompanied

by a missing neutron, as shown here:

ep = e
′
π+(n)→ e

′
e+(n). (66)

FIG. 53 contains events, which all contain a reconstructed low-energy (below 4.5 GeV)

electron and a reconstructed high-energy positron. The requirement imposed on the electron
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FIG. 52. In the RG-A dataset, the positron scattering angle as a function of the momentum
was analyzed and a visible cluster of events above 5 GeV indicate pion contamination at
that energy range.

was motivated by the need to ensure that the electron’s identity is certain. By having the

momentum below 4.5 GeV, the ambiguity over pion contamination is lessened. The missing

mass was calculated by assigning the pion mass to the positron. The visible peak above the

background is a clear indication of pion contamination in the identified positron sample of

the RG-A dataset.

Studies were done for the responses from ECAL regarding both the longitudinal and

lateral shower profiles for individual layers for the purpose of developing additional criteria

for positron identification and increasing the probability of a true positive ID. For instance,

the PCAL sampling fraction contains observable distinctions between the response due to a

pion and one due to a positron. The rejection power can be further enhanced by measuring

the 2D profile of the ECIN sampling fraction vs. the PCAL sampling fraction, as shown in

FIG. 54. Such a cut, SFECIN = 0.2−SFPCAL, can reject a significant fraction of pions while

preserving positrons.

Lateral shower profile quantities such as the number of strips in the cluster(for U, V,

W views) were studied for the purpose of distinguishing positrons and pions. Even though
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FIG. 53. Missing neutron peak, which is used to estimate mis-identified positrons

a fraction of high-energy pions may share the same sampling fraction as a positron, the

number of strips hit have different distributions for each view and layer, as shown in FIG.

55. High-energy pions tend to leave wider distributions for the number of strips hit (labeled

DU, DV, and DW in the EB) than that of positrons. Therefore, these offer pion rejection

power.

Second moments, Eq. (55), were also analyzed among samples of positrons and pions

that were mis-identified as positrons. As observed in the deposited number of strips, 2nd

moments showed differences between the two datasets, corroborating the usage for pion

rejection cuts. As displayed in FIG. 56, each layer of the calorimeter shows a wider 2nd

moment distribution for pion showers than for showers left behind by positrons:

M2 =

∑
(x−D)2ln(E)∑

ln(E)
. (67)

Using the exclusive reaction with the missing neutron, the pion rejection power of these

combination of cuts can be studied. Starting with no additional cuts and only the standard

event builder cuts, it is observed that these additional cuts for positrons reduces the number

of missing neutrons by several factors, as shown by FIG. 57.
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FIG. 54. The correlation between the ECIN sampling fraction and the ECOUT sampling
fraction was determined

Machine learning, in the form of multi-variate analysis, is an effective tool for distinguish-

ing signal vs. background events when the algorithm is trained with reliable data where there

is a clear distinction between the two.

In addition to the CLAS12 Event Builder, the ROOT TMVA package can allow various

observables such as the ECAL sampling fractions and the 2nd moments to determine the op-

timal cut value by calculating the probability that a candidate particle is a signal (positron)

or background (pion). The ROOT TMVA package contains a robust framework for machine

learning. Machine learning, which is a large component of artificial intelligence, provides

the ability to train algorithms to make autonomous decisions based on aspects of pattern

recognition. Therefore, the intelligence of a machine learning method is dependent on the

quality of the training data. MC datasets for positron events and pion events (mis-identified

as positrons) provided the machine learning algorithms with training input data. Using

the training sample, the ROOT TMVA package allowed for the calculation of classifier cut

efficiencies, ROC curves, and statistical correlation plots. The normalized signal and back-

ground distributions are displayed in FIG. 58. The distributions are the input parameters
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FIG. 55. The number of strips hit in layer of the calorimeter were analyzed for both real
positrons (blue) and mis-identified pions (red).

that the MVA relies on to calculate an aggregate MVA cut value that is studied for efficiency.

The input parameters chosen were the PCAL sampling fraction, the ECIN sampling frac-

tion, the ECOUT sampling fraction, the 2nd moment sum for PCAL, ECIN, and ECOUT.

The number of strips were not included in the MVA training because there is a linear cor-

relation between the number of strips and the 2nd moment for each view of each layer of

the ECAL. Generally, it is good practice to eradicate unnecessary, correlated variables in

machine learning.

The ROOT TMVA package contains tools for statistical analysis regarding classifier meth-

ods, such as the likelihood, Boosted Decision Tree, or multi-layer perceptron algorithms. Re-

ceiver operating characteristic (ROC) curves were created to assess each MVA algorithm’s

ability to reject background and enhance efficiency. Curves towards the upper right portion

of the canvas represent the most robust methods. One of those methods was the Boosted

Decision Tree (BDT).

The BDT method was analyzed using a training sample of signal (real positrons from MC)

and background events (mis-identified pions from MC). The signal efficiency, the background

rejection, and the significance curves are superimposed in FIG. 59. The green curve, which

represents the significance, was analyzed to find the maximum value. The BDT cut value

that corresponded with the maximum value was -0.01. This indicates that applying that cut
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FIG. 56. The second moments in each layer of the calorimeter were analyzed for both real
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value would reject large amount of pions while preserving the vast majority of positrons.

The MVA BDT cut that was optimized through training samples can be further investi-

gated by utilizing exclusive reactions, such as the missing neutron peak and analysis of the

invariant mass near the J/ψ peak. The neutron peak yield is proportional to the amount of

mis-identified positrons (or the background) and the J/ψ yield is proportional to the signal

strength. From an experimental point-of-view, quantifying the J/ψ peak above the back-

ground is a secure strategy for measuring the amount of positron events. By varying the BDT

cut value, these quantities can be studied for systematic effects. As shown in FIG. 60, the

BDT cut value of -0.01 is a valid place to apply the positron ID due to the high background

rejection with simultaneous signal efficiency. In FIG. 61 a normalized ROC curve, showing

the background rejection (missing neutron peak strength) and signal efficiency (the number

of J/ψ events) observed in the RG-A dataset, indicates a robust classification method.

For the analysis of J/ψ photoproduction, only advanced MVA cuts were applied on

positrons with momenta above 5 GeV in the final-state reaction. For electrons, only cuts that

are based on the CLAS12 Event Builder are utilized. This is because π− contamination is not

prevalent in the phase space that is analyzed for this study. In addition, the lepton number

conservation places constraints on the final reaction. When there are well-identified lower

energy positrons, the higher energy corresponding negative particles have to be electrons.
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Therefore, the likelihood of π− contamination is very low.
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FIG. 58. As displayed by the ROOT TMVA GUI, the input training variables were nor-
malized and used to allow MVA algorithms to determine efficiency cuts for the purpose of
classifying signals and backgrounds
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FIG. 62. Using FTOF and DC to quantify the beta vs. momentum for PID.

In addition to electron and positron identification, accurate proton identification is nec-

essary for the measurement of the J/ψ cross section, as well as other observables. Due to

the kinematical constraints of J/ψ photoproduction, the scattering angle of the proton is

low enough that nearly all prospective recoil proton end up in the CLAS12 forward detector.

The advantage to this is that the CLAS12 forward detector has better tracking angular and

momentum resolutions as well as good timing resolution from FTOF. Detecting hadrons,

such as protons, requires the calculation of the speed as a function of momentum. The

momentum is calculated by the DC tracking from the curvature of the track in the presence

of the magnetic field. The speed, or beta of the track, can be known due to the fact that the

pathlength is calculated by the DC tracking and the time-of-flight of the proton is calculated

by FTOF’s reconstruction, as shown in FIG. 62. Depending on the location of the hit, the

resolution in FTOF will varies, which affects the quality of the proton PID.

For the purpose of J/ψ photoproduction analysis, protons are identified using the stan-

dardized CLAS12 Event Builder cuts. In the CLAS12 event builder, the measured vertex

time (based off of the FTOF information) is compared to the expected vertex time (for var-

ious hadrons). If the closest match for those vertex times is the proton, then the final PID
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FIG. 63. The CLAS12 event builder preserves hadrons’ ”chi2pid” value for hadron ID quality.

value will indicate that it is 2212, the numeric identity for a positive proton identification.

In addition to the PID hypothesis, the CLAS12 Event Builder also assigns a value called

chi2pid, which is a quality factory based off of the difference of the vertex times and the

expected timing resolution, which is dependent on the FTOF layer and component. This is

shown in FIG. 63

5.8 RADIATED PHOTONS FROM ELECTRONS AND POSITRONS

Calculations that involve the momenta of the electron-positron pair, such as the invariant

mass, can be sensitive to the effects of radiative energy loss by the electrons and positrons.

As the electrons move from the vertex to the CLAS12 FD, energy can be lost from radiation

at the vertex in the target, in the scattering chamber, on the materials of the SVT closure,

HTCC windows, and mirrors - essentially any material that precedes the drift chambers.

The fraction of radiated photons will be detected in the ECAL and the ones that have

been radiated before the electron reaches the drift chambers can be easily identified. The

measured energy of the radiated photons can be used to reconstruct the momentum of

electrons and positrons at the production vertex. It is important to take this effect into



75

FIG. 64. A visual representation of the loss of energy by the radiation of photons from the
original particle.

account, so that events could be preserved for correct exclusivity cuts and correct invariant

mass measurements.

Photons are detected by identifying hits in ECAL that are unassociated with track in the

DC. For the selection of radiated photons in J/ψ analysis, a 0.7 degree cut is applied to the

difference between the polar angle of the electron (or positron) and a photon reconstructed

by ECAL. As shown in FIG. 65, these events were observed in the RG-A dataset by analyzing

the difference in polar and azimuthal angles, as well as the momenta. In addition, insight into

the sources of radiation from the interaction of the electrons, which are in proximity to the

target and Solenoid field, can be analyzed by studying the effect of the electron momentum

on the difference in phi angle between the electron and the photon. This is illustrated in

FIG. 66, which clearly indicates the presence of three bands of radiation.

Another consideration that has to be made is that not all radiative photons are identified

as photons in the CLAS12 event builder. Neutral particle identification in the event builder

involves analysis of un-matched hits in the PCAL/ECAL. In order to discriminate between

photons and neutrons, the event builder’s PID algorithm relies on the timing information

in the calorimeter to calculate the speed of the particle. Due to imperfections in ECAL

timing association, some photons are mis-identified as neutrons. Therefore, for the purpose

of correcting e+e− momenta from radiative photons, it is important to accept any neutral
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FIG. 65. The difference in the θ and φ angles between the original lepton and the photon.
The dφ distribution is after the cut on dθ.

particle, regardless of the event builder PID, that passes the scattering angle difference cut

between the presumed photon and the electron/positron. FIG. 67 shows the β vs. momentum

distribution for any neutral particle that passes the 0.7 degree cut that is applied between

the e+ or e− and the associated radiated photon. There are clearly events that pass that

scattering angle difference cut, but do not pass the CLAS12 event builder’s β cut at 0.9.

When a photon is mis-identified as a neutron, the momentum must be re-calculated by

using the energy-dependent sampling fraction parametrization for photons. This function is

described below:

SF = 0.250

(
1.029− 0.015

E
+

0.00012

E

)
. (68)

In addition to considering the EB-determined PID value of the radiated photon, the

number of photons that are associated with a specific e+ or e− has to be analyzed. Due to

the fact that the overwhelming majority (over 99 percent) of e+ and e−’s that lose energy have

no greater than 2 photons, only a maximum of 2 photons is accepted and the superposition

of the momenta is taken into account.

The effects of the radiative photon corrections on improving the quality of physical quan-

tities can be observed in MC and the RG-A dataset. Using MC data, analysis was done by
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FIG. 66. The difference in phi angle as a function of the original lepton momentum.

comparing the invariant mass and the transverse missing momentum fraction before and

after the corrections. As shown in FIG. 68, there was a substantial improvement in the

J/ψ peak in MC events, where there was at least one electron or positron associated with a

radiated photon. In addition, the shape of the transverse missing momentum fraction was

enhanced for the same subset of events, which can be observed in FIG. 69. Overall, the

radiative photon correction has benefits for recovering events from resonances that contain

radiative tails. With regards to J/ψ cross section measurements, reducing events lost due to

radiative energy losses will boost statistics and improve event selection.

In the RG-A dataset, the same effect was studied for quasi-real photoproduction events.

Specifically, the φ peak was studied before and after those corrections. The signal strength

at the φ resonance was enhanced, as displayed in FIG. 70. From the analysis of the data,

approximately 25 % of e+e− events have at least one radiated photon from either particle.
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FIG. 67. The β vs. momentum distribution for any neutral particle that passes the scattering
angle difference cut.
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FIG. 70. The phi resonance yield before and after momentum corrections in the RG-A
dataset.
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5.9 MISSING NEUTRON MOMENTUM CORRECTIONS

As described in the previous section, some of the electrons and positrons that originate

from the decay of J/ψ can have their momentum corrected by taking into account radiative

effects. However, while this may improve the signal strength of the J/ψ peak, it will not

necessarily adjust the J/ψ peak position to its natural position of 3.097 GeV. This is because

electron and positron momentum reconstruction relies on a series of independent variables.

These can include the following.

• The precision of the knowledge of the Torus field

• The precision of the knowledge of the DC alignment

• The DC reconstruction algorithms

• DC calibration

From the invariant mass distributions for quasi-real photoproduction, there is clear evi-

dence that the momenta associated with J/ψ di-leptons have varying degrees of drift from

the correctly reconstructed values. This was concluded after observing the variation of the

J/ψ peak position for different photon energy ranges and more specifically, the momenta of

the electron and positron in the final state. Due to the opposite charge of the electron and

positron, the trajectories of those two particles are bent in opposite directions in the Torus

field. It is logical to anticipate differing effects of the electron and positron momentum on

the reconstructed invariant mass peak. For example, at higher electron scattering angles, the

momentum reconstruction deviates the furthest from the real momentum of those electrons.

Therefore, the superposition of these potential effects can result in the deviation of the

peak positions of not only the J/psi resonance, but also other resonances in exclusive reac-

tions. Therefore, it is necessary to develop scaling factors for the momenta of the electrons

and positrons that depend on the kinematics of those particles. One effective strategy is to

analyze exclusive reactions that generate enough statistics to do fit analysis and also have

the same kinematic coverage of the e+e− particles.

One such reaction is the missing neutron analysis where an e− and π+ are both detected

in the CLAS12 FD with the neutron going un-detected. The first important check that was

made was to verify that the final-state electron occupies the same kinematic coverage as the

MC J/ψ predicts. For the electrons involved in the J/ψ decay, a lower momentum correlates

with higher scattering angles and a higher momentum correlates with lower scattering angles.
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FIG. 71. The position of the J/ψ peak without any momentum corrections besides radiative
photon momentum addition.

This is an important observation because the scattering angles are tied to the strength and

precision knowledge of the Torus field. The missing neutron final-state is advantageous over

other exclusive processes because the kinematic coverage overlaps well with that of the J/ψ

final-state electrons and positrons, as shown in FIG. 72.

In order to ensure the clear correlation between the electron momentum and the peak

position of the missing neutron, the π+ in the final-state needs to be constrained. Ideally, the

kinematics of the π+ must be fixed at a narrow scattering angle range so that the dominant

factor in the missing neutron peak position is the behavior of the e− and not the π+. The

analysis of the π+’s in the final-state was achieved by selecting events under the missing

neutron peak and observing the θ vs. p distribution. A common angular range for π+

throughout the electron binning was 7.5 to 12.5 degrees, which is illustrated by the RG-A

Fall 2018 events in FIG. 73.

As shown in FIG. 74, the lower momentum bins for the electron show a higher shift in

the neutron peak than the shifts observed for the higher momentum bins where the electron

scattering angle is lower. After the calculation of the peak positions, the scaling factors for
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Electrons were selected under the 
neutron peak.

Pi+’s were selected under the 
neutron peak.

From Run 5038

FIG. 72. The display of the J/ψ electron kinematics and the kinematics of electrons and
pions under the missing neutron peak.

the electron momenta were calculated by determining the percent change needed to shift the

missing neutron peak to the correct position of 0.9396 GeV. The same exact procedure was

applied to the study of positron momentum corrections. The only difference was that an out-

bending dataset was used instead of the in-bending dataset from Fall 2018. The identified

out-bending electron in the same final-state can essentially behave as a positron. The neutron

peak position was then analyzed as a function of the ”positron momentum”. Once those

means were quantified, a scaling coefficient that would force the neutron peak position into

the correct one was calculated. The scaling was performed manually by adjusting the e+

or e− by small percent increments until the peak position was positioned at 0.9396 GeV.

The parametrization of the percent change as a function of the in-bending and out-bending

electron momentum is displayed in FIG. 75. The resulting corrections, εe− and εe+ , are

written as,

εe− = 2.718 ∗ e−0.8404(x−2.0). (69)

and

εe+ = 0.08(x− 2.0) + 0.11. (70)
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FIG. 73. The behavior of pions in events selected under the missing neutron peak.

As a result of the parametrization of the electron momenta scaling factors, the J/ψ peak

positions were compared to assess the effectiveness of the momentum corrections. This is

illustrated in FIG. 76.
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FIG. 74. The effect of the electron momentum/theta on the reconstructed peak position of
the missing neutrons.
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electrons corrected, and both leptons corrected.
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5.10 PCAL FIDUCIAL VOLUME

Reliable electron and positron identification from the decay of J/ψ depends heavily on

the reconstruction of energy clusters in all layers of the ECAL. Each of these leptons de-

posits energy longitudinally, leaving a distinct sampling fraction profile that depends on the

momentum of the particle. In order to accurately measure these quantities, different regions

of PCAL needed to be analyzed to validate their ability to capture the full extent of the

electromagnetic shower. Towards the edges of the PCAL, the reconstruction of the energy

clusters will be ineffective due to shower leakage, causing the sampling fraction value to be

unreliable. Because the PCAL has a greater surface area than ECIN and ECOUT, it is only

necessary to define geometric boundaries for PCAL. Several steps were taken to understand

the electron sampling fraction as a function of different independent variables. The analysis

was done with Run 5038 of the Fall 2018 RG-A run.

As observed in FIG. 77-78, 9 cm cuts, applied to LV and LW, would be suitable for

electron and positron identification since the corrected sampling fraction saturates beyond

those values. By applying the 9 cm cuts, it ensures that the showers are properly measured

by the ECAL.

FIG. 77. The energy-corrected sampling fraction was studied as a function of the PCAL V
position.
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FIG. 78. The energy-corrected sampling fraction was studied as a function of the PCAL W
position.

5.11 PROTON ENERGY-LOSS CORRECTIONS

After protons have been detected from FTOF and DC by comparing the measured vertex

time and the expected vertex time based on the particle’s hypothesized mass, additional

corrections were made to the momentum of these protons due to expected energy losses of

the protons as they pass through the target, the scattering chambers, SVT enclosure, and the

HTCC components. From MC studies, it was observed that the proton momentum difference

between the generated and reconstructed values contained a dependence on momentum. For

protons with lower energies, the magnitude of the discrepancy was higher due to the energy

lost through the CLAS12 forward detector. These differences were highlighted in FIG. 79.

The momentum reconstruction difference, dP, was parametrized as a function of momentum

by fitting slices of momentum with a Gaussian distribution. The parametrization was done

at angles below 27 degrees since protons in the JPsiGen simulations are in that kinematic

range. The change in proton total momentum is the following:

pf = pi + 0.0398946− 0.0748125 ∗ pi + 0.0395764 ∗ p2
i . (71)

where pi is the initial momentum and pf is the final momentum.
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FIG. 79. The difference between the reconstructed and MC momenta of protons.

5.12 EVENT SELECTION FOR J/ψ PHOTOPRODUCTION

After the three final-state particles were identified based on their momenta and detector

responses, additional constraints were applied to preserve events with properties of quasi-

real photoproduction, which is the case when an un-tagged electron scatters at 0 degrees.

Kinematic constraints for quasi-real photons include Q2 and M2
X values that approach zero.

These values ensure the virtuality of the photon and that the identity of the scattered electron

is valid. The photon’s energy is also a cut that is used in this analysis. Since the minimum

energy threshold for J/ψ photoproduction is at 8.21 GeV, that is the region where the cut

should be applied. However, due to detector resolution effects, the cut was placed at 8.1

GeV.

5.12.1 KINEMATIC VARIABLES OF UN-DETECTED SCATTERED ELEC-

TRON

The analysis of exclusivity variables for this reaction relies on the behavior of quasi-real

photoproduction in both simulation (GEANT-4 Monte-Carlo) and results from the selected

Fall RG-A dataset. To limit the quasi-real photon’s virtuality, the transverse missing mo-

mentum components of the un-detected scattered electron were studied in detail in MC and
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comparisons were made to the RG-A dataset. Also, the missing mass of the reaction was

calculated and studied for events in both the MC and RG-A datasets. As displayed in FIG.

80, Px
P

and Py
P

possess symmetric shapes with peaks around zero, as expected for quasi-real

photons. The magnitude of the widths rely on the performance of the CLAS12 track recon-

struction. The square of the missing mass also possesses a symmetric distribution with its

centroid close to zero, which indicates its identity as an electron scattering at very forward

angles, an indication of quasi-real photoproduction.
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FIG. 80. One-dimensional MC distributions for the missing momentum and missing mass of
the un-detected scattered electron for quasi-real photoproduction

In addition to constraining the characteristics of the un-detected scattered electron, cuts

were developed in relation to the trajectory of the final state particles. Due to the high

invariant mass, the kinematics of the reaction forces the scattered proton to travel into the

CLAS12 FD. As predicted by MC studies, the protons for the in-bending Torus polarity

mostly fall below a 27 degree scattering angle. The electron and positron, which originate

from the decay of J/ψ, end up in opposite sectors of the CLAS12 FD. According to the MC

data, the difference in the φ angle falls above 150 degrees or below -150 degrees. This is

shown in FIG. 81.
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FIG. 81. The phi angle difference in the electron and positron for MC-simulated J/ψ pho-
toproduction.

5.12.2 EFFECT OF PHOTON ENERGY ON EXCLUSIVITY VARIABLES

In addition to understanding the 1D distributions for the exclusivity variables, the de-

pendence on photon energy was quantified. The missing momentum and the missing mass

have differing behaviors in different parts of the photon energy range, as shown in FIG. 82.

There is a broadening of the missing momentum components due to resolution effects and

there exists a tightening of the missing mass as the photon energy increases. Optimizing the

event selection in that way allows for more effective rejection of non-photoproduction events

whether they originate from pion contamination or other non-photoproduction events. Using

the J/ψ photoproduction MC data, which included 50 nA background merging, the resolu-

tions of the variables were plotted as a function of photon energy. These resolutions were

the results of the fitting parameters of Gaussian distributions in 100 MeV photon energy

bins. To ensure the most realistic resolution, background merging was implemented in the

MC data processing. These studies show that the σ values for the missing momentum and

missing mass depend strongly on the photon energy and that should be taken into account

when applying exclusivity cuts, which can benefit the analysis by enhancing selection and
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FIG. 82. Two-dimensional MC distributions for the missing momentum vs. photon energy
and missing mass vs. photon energy of the un-detected scattered electron for quasi-real
photoproduction

reducing background events. As the photon energy increases, the σ values increase for the

missing momentum, as shown in FIG. 83 and FIG. 84. The other exclusivity variable, M2
X ,

has the opposite trend, as displayed by FIG. 85.

Once the behavior of the exclusivity variables were studied with small photon energy

binning, the projected MC resolutions were compared to the resolutions observed in the

RG-A dataset. In order to measure the resolutions in the RG-A dataset, the events under

the J/ψ resonance were analyzed for the behavior of the Px
P

, Py
P

, and missing mass values.

Table 5. shows the difference in resolution, σRGA
σMC

, for wide Eγ bins for the transverse missing

momentum and the square of the missing mass for events under the J/ψ peak using the Fall

2018 dataset and Spring 2019 dataset.

To select and preserve the maximal number of J/ψ events, the analysis is done using 3σ

cuts for all exclusivity variables.

5.12.3 FULL INVARIANT MASS SPECTRUM

Through the detection of the three final-state particles, analysis on the missing mo-

mentum and missing mass allows for the selection of quasi-real photoproduction events, as
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FIG. 84. The resolution of the Y-
component of the transverse missing
momentum fraction was studied as a
function of photon energy.

discussed earlier. The four-vector information of the electron-positron pair is used to calcu-

lated the invariant mass. First, the entire mass spectrum was analyzed by tightening the

exclusivity cuts, photon energy cuts, applying a different sector cut (as opposed to an oppo-

site sector cut), and relaxing the momentum cuts of the electron-positron pair. The rationale

was to analyze the yield and peak position of vector meson resonances, which includes the

φ and ω mesons. As shown in FIG. 86, the ρ, ω, and φ resonances are clearly visible as well

as the J/ψ resonance.

5.12.4 INVARIANT MASS ABOVE 2.5 GEV

From the event selection cuts that were designed in the previous subsections, the invariant

mass above 2.5 GeV was calculated from the momentum information of the e+e− pair from

the decay of the J/ψ. Using the sum of a Gaussian and polynomial fit, the number of J/ψ’s,

the mean, and the width were calculated. The first fit parameter returns the yield. The fitting

process is achieved by MINUIT, the standardized minimization routine package offered by

the ROOT software. The specific binning shown in the histogram was used for the purpose

of achieving the optimal fit quality, a source of systematic uncertainty that is explored in

Chapter 7. As observed in the invariant mass distributions, there is a strong J/ψ peak above

the background, which consists mostly of pure Bethe-Heitler and electroproduction processes.

The invariant mass distributions from Fall 2018 and Spring 2019 dataset are displayed in

FIG. 87 and FIG. 88. According to the result of MINUIT regarding the first coefficient, X1,
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the total number of J/ψ events in the combined datasets in the Fall 2018 dataset is 134 and

the number for the Spring 2019 dataset is 78. Due to the electron and positron momentum

corrections from the missing neutron peak studies, the positions of the peaks, represented

by the second MINUIT coefficient, are more aligned with the natural position of the J/ψ

resonance as compared to the positions before the momentum corrections, as explained in

Chapter 5.

5.12.5 KINEMATICS OF SELECTED EVENTS

The scattering angle as a function of momentum was studied for the electron, positron,

and proton. In addition, the momenta of the electron-positron pair were shown have a linear

correlation in FIG. 89, which was similar to what was observed in the MC studies. For

the extraction of cross sections and physical observables, the reconstruction of kinematic

variables such as the photon energy and momentum transfer is paramount. The resulting

distributions for these quantities helps determine the appropriate binning for the available

phase space for J/ψ photoproduction. The 1D distributions of the photon energy, which are

shown in FIG. 90 and FIG. 91, shows the increase in the number of events as the photon

energy increases as expected. The momentum transfer and the photon energy were studied

in FIG. 92 and FIG. 93 for the Fall and Spring datasets, respectively. As observed in these

histograms, there is a clear tmin boundary that increases when Eγ approaches the threshold

energy. The events shown in these 1D and 2D distributions pass an invariant mass cut within
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TABLE 5. A table describing the approximated MC vs. data resolution (σRGA
σMC

) difference
for the Fall 2018 and Spring 2019 configurations .

Eγ
Px
P

Py
P

M2
X

8.3-9.6(F18) 1.9 1.9 1.3
9.6-10.1(F18) 1.6 1.6 1.1
10.1-10.6(F18) 1.5 1.5 0.7
8.3-9.6(S19) 2.5 2.5 0.9
9.6-10.1(S19) 1.8 1.8 1.1

3σ to the J/ψ mean peak position.
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FIG. 86. The full invariant mass spectrum including the lower mass vector mesons
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FIG. 91. 1D distribution of the photon energy for the Spring 2019 dataset.
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CHAPTER 6

J/ψ SIMULATIONS

The generation of J/ψphotoproduction events was done through the generator, JPsiGen. 
The purpose of this generator is to simulate J/ψ photoproduction through the e+e− decay 
mode. The generator produces events in the LUND format. It contains information about 
the kinematics of the final-state particles as well as variables that can be used to weight 
the events by the appropriate scaling factors in the relevant phase space. In terms of the 
extraction of the J/ψ total and differential cross sections, the event generator (JPsiGen) and 
the simulation software, GEANT-4 Monte Carlo (GEMC), allows for the calculation of the 
reconstruction efficiency of the un-tagged photoproduction detection of the e+e− pair and 
the recoil proton. Knowledge of the efficiency is needed to extract the J/ψ yield.

6.1 JPSIGEN DESCRIPTION

JPsiGen was developed by Dr. Rafayel Paremuzyan to study J/ψ photoproduction using 
the two-gluon exchange, which gives a more conservative estimate of the J/ψ detection rates. 
The user of the generator has the option to choose the range in phase space that the generated 
events will occupy. Options include: the beam energy, the minimum and maximum Eγ , the 
limit of the transferred momentum, as well as the t-slope for the differential cross section. 
The JPsiGen selects Eγ values within the range from the threshold energy at 8.21 GeV to 
the beam energy, which is 10.6 GeV for the Fall 2018 configuration and 10.2 GeV for the 
Spring 2019 configuration. The momentum transfer, −t, is selected between tmin and tmax. 
If the reaction, a + b → 1 + 2, is known, these kinematic limits can be determined if the Eγ 

is known. Those limits are tmin and tmax, which are

tmin = ma,2+m1,2−
1

2s

[
(s+ma,2 −mb,2)(s+m1,2 −m2,2)−

√
λ(s,ma,2mb,2)λ(s,m1,2,m2,2)

]
(72)

and

tmax = ma,2+m1,2−
1

2s

[
(s+ma,2 −mb,2)(s+m1,2 −m2,2) +

√
λ(s,ma,2,mb,2)λ(s,m1,2,m2,2)

]
(73)
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where λ is,

λ(x, y, z) = (x− y − z)(x− y − z)− 4yz. (74)

In addition to the kinematic limits of the generated phase space, JPsiGen also calculates

the correct scaling factors on an event-by-event basis. These scaling factors are preserved

in the LUND file as well as the final DST files to allow for a more accurate calculation of

acceptances. These scaling factors include the t-dependent cross section, the phase space

factor, and the photon flux. The cross section, which is based on the two-gluon exchange

model, is depicted as,

dσ

dt
=

N2gnue(1− x)2

R2M2
J/ψF2g(s−m2

p)
2
. (75)

where F2g, the gluon form factor of the proton is proportional to,

F2g = exp bt. (76)

The phase space factor is the difference between tmin and tmax. The photon flux is

described in Chapter 7. FIG. 94 illustrates the phase space coverage for the generated J/ψ

events while weighted by the scaling factors mentioned earlier. To show the effect of the

slope parameter, b, the 2D weighted phase space was sliced in two of the Eγ bins and the

exponential slope was extracted from the fits, confirming the consistency between the input

t-slope and the one observed in the MC, as shown in FIG. 95.



101

8 8.5 9 9.5 10 10.5 11
Photon Energy (GeV)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-t
 (

G
eV

^2
) la

Entries  343544
Mean x   9.992
Mean y   1.422
Std Dev x  0.4364
Std Dev y   0.813

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024
la

Entries  343544
Mean x   9.992
Mean y   1.422
Std Dev x  0.4364
Std Dev y   0.813

2D Phase Space

FIG. 94. Phase space for J/ψ photoproduction from MC-generated events for the Fall 2018
configuration.
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FIG. 95. The weighted generated and reconstructed number of events for two different Eγ
bins using MC.
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6.2 MC DATA PROCESSING

For the measurement of J/ψ cross sections, it is important to generate high-statistics for

MC data to allow for the calculation of acceptances in small bins of Eγ and t − tmin. In

addition, having a large supply of MC J/ψ events allows for the study of systematic effects

that require high statistics. To allow for the processing of large J/ψ MC datasets, the Open

Science Grid (OSG) was used due to the large computational ability to produce data in a

relatively short timeframe. The OSG provides several options including the Run period,

the beam energy, the t-slope, and the background merging files associated with the relevant

beam current. For the purpose of this analysis, 50 million JPsiGen events were generated

by the OSG framework. However, since the RG-A Fall 2018 and RG-A Spring 2019 periods

contain mixtures of run configurations, it is necessary to calculate the ratios associated with

the different beam currents used. For example, the Fall 2018 RG-A period utilized 45 nA, 50

nA, and 55 nA runs, which contained 75, 8, and 17 percent, respectively. This is displayed

in FIG. 96.

FIG. 96. The proportion of runs based on the run period and beam current settings

Having a large MC dataset with the correct proportion of events from the relevant run
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periods and run conditions allows for the correct calculation of both the event-by-event

and total average efficiencies for the relevant area of phase space for the extraction of cross

sections. For the extraction of cross sections described in Chapter 7, datasets from different

run periods and beam currents are mixed; therefore, MC data should be approached the

same way with a mixture of events from varying run conditions.

6.3 EFFECT OF BACKGROUND MERGING

The study of reconstruction efficiency for J/ψ photoproduction requires simulations that

incorporate background merging capabilities. Because the beam current operated as high

as 50 nA, background processes induce TDC signals; therefore, tracking reconstruction is

unable to accurately produce the curvature of the final-state particles in some cases. This

causes an inefficiency stemming from the background. The loss in efficiency was studied for

JPsiGen events that were merged with 50 nA background. Two datasets were compared:

JPsiGen events with no background merging and those with 50 nA background merging.

The efficiency in the merged case is approximately 65 percent of that of the un-merged case

when studied as a function of Eγ, as depicted in FIG. 97. The current status of background

merging was validated using inclusive electron studies and mainly emphasizes the loss of

efficiency in the drift chambers. There are on-going studies on the intrinsic inefficiency of

not only the drift chambers, but other CLAS12 detectors.



104

eventr
Entries  6
Mean    9.389
Std Dev    0.6879

8.5 9 9.5 10 10.5
Photon Energy (GeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy
 (

50
 n

A
) 

/ E
ffi

ci
en

cy
 (

N
on

e)

eventr
Entries  6
Mean    9.389
Std Dev    0.6879

Effect of 50 nA Background Merging

FIG. 97. Ratio of the merged efficiency of J/ψ detection as a function of Eγ over that of the
un-merged case.

6.4 EFFICIENCY

Due to intrinsic inefficiencies of detector and the limits of the geometrical acceptance of

J/ψ events in the CLAS12 forward detector, only a fraction of J/ψ events get reconstructed

and measured in the data. To measure the cross sections, the actual J/ψ yield is needed.

Therefore, the reconstruction efficiency should be calculated in the phase space relevant for

the extraction of the cross sections. The reconstruction efficiency, η, is defined as the number

of reconstructed events over the number of generated events in the specified bin,

η =
Nrec

Ngen

. (77)

The efficiency of J/ψ detection was studied as a function of Eγ for two different Ebeam

settings corresponding to the two RG-A periods. This is displayed in FIG. 98.
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FIG. 98. Reconstruction efficiency for J/ψ detection as a function of Eγ for the Fall 2018
(red) and Spring 2019 (blue) run periods.

In the analysis code, the generated and reconstructed events are filled in separate his-

tograms in (Eγ,−t′). To make the geometrical acceptances more realistic, the events are

weighted by the scaling coefficients specified earlier in the chapter. The two-dimensional

efficiency map was constructed in small bins of Eγ and −t, as shown in FIG. 99. Two of the

Eγ bins were sliced to show the general trend of the efficiency as a function of t′ in FIG.100

and FIG. 101.
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FIG. 99. Reconstruction efficiency for J/ψ events as a function of Eγ and t
′
.
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FIG. 100. Reconstruction efficiency for J/ψ events as a function of t
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for the energy bin 9.72
GeV to 9.80 GeV.
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CHAPTER 7

EXTRACTION OF J/ψ CROSS SECTIONS

7.1 OVERVIEW

After the development of the analysis framework, the total and differential cross sections 
of J/ψ photoproduction were calculated using the RG-A Fall 2018 and Spring 2019 datasets. 
The cross section of a particle physics process describes the probability that such a process 
will occur when an external energy source, such as a beam, interacts with a localized system 
or target. The differential cross section is similar, but the process’s differential is studied as a 
function of a kinematic variable, such as transferred momentum. For J/ψ photoproduction, 
the total cross section is measured by detecting the number of J/ψ events in different ranges 
of Eγ per the integrated luminosity. The formula for the total cross section is,

σ0(Eγ) =
NJ/ψ

Nγ · nT ·Br · ηA
. (78)

Measuring the total cross section can be broken down into the following steps.

• Quantify the number of J/ψ events, NJ/ψ, detected for each photon energy bin.

• Calculate the J/ψ yield, Y (J/ψ), using N(J/ψ) and the average efficiency, ηA, of the

Eγ bin.

• Calculate the sum of the virtual and real fluxes, Nγ.

• Calculate the number of target protons for the analyzed datasets, nT

• Scale with the branching ratio, Br, which is 0.06.

The differential cross section is calculated with several overlapping steps with a couple

of key differences regarding the calculation of the yield, described in the next subsection. It

is studied in terms of t
′
, which is defined as:

t′ = t− tmin. (79)
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In addition, the size of the t
′

must be taken into account, as shown below,

∆t′ = t′b − t′a. (80)

The formalism of the differential cross section is described by the following,

dσ

dt′
=

Y
∆t′ · Nγ · nT ·Br

. (81)

7.2 EXTRACTING THE NUMBER OF DETECTED J/ψ EVENTS

For the total cross sections, the invariant mass distributions were made for each photon

energy bin. The ranges of these bins, the datasets, and the number of detected J/ψ events

are listed on the four histograms, as shown in FIG. 102. The number of J/ψ events, tabulated

in Table 6, is calculated by a direct fit of the invariant mass distributions with a Gaussian

plus polynomial function.
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FIG. 102. The invariant mass distributions corresponding to the energy bins used for ex-
tracting the total cross section of J/ψ photoproduction.

Calculating the differential cross section requires a robust method of J/ψ yield extraction

for bins in photon energy and momentum transfer where statistics is not adequate for direct
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TABLE 6. Eγ averages and number of detected J/ψ events for total cross section bins.

Eγ (Eγ)avg N(J/ψ)

(8.3-9.1) 8.81 21
(9.1-9.6) 9.38 42
(9.6-10.1) 9.88 96
(10.1-10.6) 10.33 45

fitting using the superposition of Gaussian and Polynomial functions. Therefore, special

procedures need to be developed to calculate the number of J/ψ events that can be verified

by systematic comparisons with methods such as direct fitting. In order to extract the J/ψ

yield in individual (Eγ,−t
′
) bins, the behavior of the polynomial background that surrounds

the J/ψ resonance needs to be understood. The first step is to analyze the entire Eγ bin,

which is integrated over all of t
′
. In each of those bins, it is necessary to apply a direct fitting

using the superposition of the Gaussian and Polynomial functions as shown below,

F = P(Me+e−) + G(Me+e−). (82)

The polynomial function is written as the following:

C1(x− µ)2 − C2(x− µ) + C3. (83)

The function, G, contains parameters for the position of the J/ψ peak, the number of J/ψ

events, and the resolution of the peak. The function, P , is the background function, which

describes Bethe-Heitler events along with background from the mis-identification of pions as

positrons. The understanding of P is useful for J/ψ yield extraction because it allows for the

comparison between the number of events (Nh) in the purely Bethe-Heitler region, which is

from 2.5 GeV to 2.9 GeV, and number of events (Nb) in the region that comes within ±3σ

of the J/ψ peak position. These values, displayed below, can be obtained by integrating the

formula, P ,over these regions,

Nh =

∫ 2.9

2.5

P(M)dM. (84)
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Nb =

∫ m0+3σG

m0−3σG

P(M)dM. (85)

Knowing these two integral values for all photon energy bins can allow for the calculation

of the background ratio. The background ratio will be used to estimate the background in

the region of the J/ψ peak in low-statistic (Eγ,−t
′
) bins to extract the number of J/ψ’s. The

background ratio, C, is defined below.

C =
Nb

Nh

(86)

Therefore, with the knowledge of the background ratio related to the background-only

section and the signal section of the invariant mass spectrum, the total number of J/ψ events

can simply be defined as the difference between the total number of events in the histogram

in the range where the signal is present and the estimated number of background events,

which is made possible by the background ratio. The formula for the number of J/ψ events

in a specific (Eγ,−t) bin is displayed below,

NJ/ψ = Ns − C ×N t
h. (87)

This method assumes that the C is independent of the transferred momentum, −t′ . FIG.

103 and FIG. 104 are illustrations of this method by applying a direct fit on the invariant

mass spectrum for two photon energy bins, 9.4 GeV to 10.1 GeV and 10.1 GeV to 10.6 GeV,

respectively.
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FIG. 103. The first energy range for
the differential cross section extrac-
tion.
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Once the background ratio, C, is established for the large photon energy bins used for

the differential cross sections, it is then possible to apply the J/ψ yield extraction formalism

each t
′

bin. For both photon energy ranges, four bins were studied for t
′
. These two photon

energy ranges were selected because tmin does not vary as much in these regions as opposed

to the region very close to the threshold energy at 8.21 GeV. Also, the energy range is broad

enough to allow for adequate statistics for the t-slope study. In FIG. 105, the individual

invariant mass distributions for the first energy bin are displayed. In FIG. 106, the ones for

the second energy bin are displayed.
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FIG. 105. The invariant mass distributions for the first photon energy range.

Table 7. shows the values for the calculated number of J/ψ events in each of the (Eγ,−t
′
)

bins using the procedures outlined in this section.
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FIG. 106. The invariant mass distributions for the second photon energy range.

TABLE 7. The number of J/ψ events as well as the average t
′

and the ratio, C, used to
make the calculation.

(Eγ,−t
′
) (t

′
)avg N(J/ψ) C

(9.4-10.1)(0.0-0.5) 0.25 67 0.1384
(9.4-10.1)(0.5-1.0) 0.68 36 0.1384
(9.4-10.1)(1.0-1.5) 1.26 18 0.1384
(9.4-10.1)(1.5-2.5) 2.06 8 0.1384

(10.1-10.6)(0.0-0.5) 0.24 19 0.264
(10.1-10.6)(0.5-1.0) 0.69 18 0.264
(10.1-10.6)(1.0-1.5) 1.27 5 0.264
(10.1-10.6)(1.5-2.5) 1.79 7 0.264
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7.3 EFFICIENCY TO EXTRACT THE TOTAL J/ψ YIELD

In the Monte-Carlo section, the method behind the calculation of the efficiency was out-

lined. The JPsiGen event generator combined with background merging simulated photo-

production events with J/ψ. Within the context of calculating the differential cross sections,

a 2D map of the efficiency must be developed in small bins in each of the (Eγ,−t
′
) bins.

These bins must be understood using fine binning so that the level of accuracy is high and

to allow for event-by-event efficiency calculation. Since the J/ψ is not identified in the data

on an event-by-event basis, the efficiency is taken into account for all events ±3σ within the

J/ψ mass peak. The idea behind the efficiency calculation for individual (Eγ,−t) bins is to

quantify the MC-calculated efficiency for each detected J/ψ.

Y =
NJ/ψ

Ns

×
Ns∑
1

1

ηi
. (88)

In the region that comes within 3σ of the J/ψ peak, the proportion of signal events versus

background events overwhelmingly favors the signal, which is beneficial for this method.

The background in the high invariant mass regions mostly comprises of the Bethe-Heitler

production of e+e− pairs.

One major difference between the differential and total cross section extractions is the

approach towards the efficiency value. For the dσ
dt

calculation, the efficiency was calculated

on an event-by-event basis. For the extraction of the total cross section, σ, MC data is used

to calculate the average efficiency as shown below,

ηiA =
N i
r

N i
g

. (89)

where i is the Eγ bin of interest. The numerator and denominator represent the number of

reconstructed and generated events, respectively.

7.4 PHOTON FLUX

For the measurement of photoproduction cross sections, such as Bethe-Heitler or J/ψ

production, requires the understanding of the rate at which the incoming electrons from

CEBAF produce virtual and real photons. For the calculation of the photoproduction rate,

that electroproduction cross section has to be scaled by the Estimated Photon Approximation

(EPA). The virtual photon flux was calculated using the EPA. Also, the real photon flux was

calculated using the standard formula for electron bremsstrahlung. The associated equations



115

are described below. For the purposes of extracting both differential and total cross sections

for J/ψ photoproduction, the EPA and the real photon flux need to be integrated within the

desired photon energy range. The sum of those two values yields the total photon flux for

the calculation of those cross sections:

Γ(Eγ) =
1

Eb

α

π ∗ x
∗ ((1− x+

x2

2
) ∗ log(

Q2
max

Q2
min

)− (1− x))dE (90)

n(Eγ) =
dx

X0

1

Eγ
∗ (

4

3
− 4

3

Eγ
Eb

+
E2
γ

E2
b

)dE. (91)

The virtual and real fluxes are visually displayed in FIG. 107. The fluxes that are shown

are associated with beam energies of 10.6 GeV and 10.2 GeV. As shown in the EPA and real

flux equations, there is a dependence on the beam energy, so these values must be calculated

for separate datasets, which could involve different beam energies. The graph also shows the

trends of the two values as the virtual flux drops sharply closer to the beam energy. As for

the real photon flux, the relative yield is lower by about an order of magnitude and does not

have a strong dependence on the photon energy.

FIG. 107. The virtual photon flux in blue and the real photon flux in red for the Fall 2018
and Spring 2019 run configurations.

7.5 NORMALIZATION STRATEGY
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In this dissertation, normalization will not be included in the extraction of the differential

and total cross sections. There is strong evidence from simulation studies that the processes

that are in the phase space for normalization, from 2 GeV to 3 GeV, do not include only

pure Bethe-Heitler photoproduction. There are also Compton diagrams from electroproduc-

tion that contribute to the rates observed in the RG-A datasets. For future analysis with

normalization and increased statistics, a more comprehensive event selection strategy will

be employed to get a reasonable comparison between the BH MC expected rates and the

observed rates in the data. The purpose of normalization is to use a well-known process

to factor out some unknowns in the cross section extraction. These unknowns can be the

detector efficiency or the luminosity. Such a method is necessary because measurements

relevant to the cross sections, such as the MC detector efficiency and the knowledge of the

luminosity, may not correspond exactly to reality. The normalization factor, ωc is described

below,

ωc =
ndBH
Nγ · nT

× nGBH
nRBH

× 1

σBH
. (92)

where σBH is the total theoretical cross section of the Bethe-Heitler produced in the specified

mass range and photon energy range. At the current stage of this analysis, we assumed,

ωc = 1. (93)

7.6 DIFFERENTIAL CROSS SECTION RESULTS

The differential cross section, Eq. (81), as a function of |t− tmin| was calculated for two

different energy ranges from 9.4 GeV to 10.1 GeV and 10.1 GeV to 10.6 GeV. The plots are

displayed in FIG. 108 and FIG. 109. The points are fitted with an exponential function:

y = p0p1e
−p1x. (94)

The fit parameters are also shown in these figures. The first parameter, p0, is considered the

total cross section for that bin and the second parameter, p1, is the slope of the t-dependence.

For the first Eγ bin, the t-slope was determined to be 1.297 ± 0.145. For the second Eγ bin,

the t-slope was determined to be 1.208 ± 0.2639.
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7.7 TOTAL CROSS SECTION RESULTS

The total cross sections, Eq. (78), were calculated in four bins of Eγ using the methods

outlined in the previous subsections. The cross section was also calculated for the two Eγ

bins used for the t-slope study by extracting the p0 parameter from the fit. FIG. 110 shows

the results of this study.
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FIG. 110. For the total cross sections, the blue points were extracted from, Eq. (78), and
the red points were extracted with the p0 parameter in the t-slope study.

7.8 SOURCES OF STATISTICAL AND SYSTEMATIC

UNCERTAINTY

For the calculation of the total and differential cross sections, there are sources of system-

atic uncertainty related to the procedures for the cross section extraction methodology as

well as the general analysis framework for the selection of particles and events. The objective

of these systematic studies is to quantify the amount of contribution certain methods and

parameters have on increasing the uncertainty over the final cross section results.

The systematic uncertainties that can affect both the total and differential cross sections are
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listed below.

• The effect of the event selection cut sizes on Y(J/ψ).

• The effect of the MVA cut value on Y(J/ψ).

• The effect of the JPsiGen t-slope on the calculated efficiencies from MC.

Secondly, the systematics/statistical uncertainties that can affect the differential cross sec-

tions are the following.

• The comparison between two methods of extracting Y(J/ψ):
NJ/ψ
η̄i

and
NJ/ψ
Ns
×
∑Ns

1
1
ηi

.

• The re-producibility of the number of J/ψ events, N(J/ψ), in low-statistic bins

• Systematics due to the assumption that C is independent of t
′

Finally, the systematic uncertainties that only affect the total cross section are listed below.

• The effect of binning on the extraction of N(J/ψ)

• The discrepancy between the number of reconstructed J/ψ events and the extracted

fitting result.

7.8.1 EVENT SELECTION EFFECT ON Y(J/ψ)

The parametrized event selection constraints on Px
P

, Py
P

, and M2
X can introduce a sys-

tematic uncertainty on the J/ψ yield calculations for both the total and differential cross

sections. The standard cuts for event selection are placed at 3σ, where σ is the resolution of

the exclusivity variable. To quantify the systematic effect of altering these cuts, the Px
P

and
Py
P

were set to 2.5σ and then at 3.5σ while keeping M2
X at the default cut value. With this

set-up, the yield was re-calculated. The same test was done in the reverse order while vary-

ing the M2
X cut and keeping the transverse missing momentum components constant. These

findings are summarized in Table 8 for total cross section bins and Table 9 for differential

cross section bins.

7.8.2 PID MVA CUT EFFECT ON YIELD

As discussed in Chapter 5, most particle identification is based off of the CLAS12 Event

Builder algorithms for the e+e−p final state reaction. However, for positrons above the HTCC
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TABLE 8. A table describing the systematic effect of exclusivity cuts on the Y(J/ψ) yield
for total cross sections.

(Eγ,−t
′
) Y(Default) Y(Px,y

P
(L)) Y(Px,y

P
(H)) Y(M2

X(L)) Y(M2
X(H)) Total

(8.3-9.1) 400 401 300 445 425 12.7%
(9.1-9.6) 669 672 641 653 657 1.7%
(9.6-10.1) 1503 1495 1538 1420 1510 2.6%
(10.1-10.6) 746 751 712 675 724 3.8%

TABLE 9. A table describing the systematic effect of exclusivity cuts on the Y(J/ψ) yield
for differential cross sections.

(Eγ) Y(Default) Y(Px,y
P

(L)) Y(Px,y
P

(H)) Y(M2
X(L)) Y(M2

X(H)) Total

(9.4-10.1) 2011 1987 2104 1921 2003 2.9%
(10.1-10.6) 722 746 688 652 709 4.5%

pion threshold (4.9 GeV), multi-variate analysis (MVA) was used to distinguish between

real positrons and mis-identified pions in the momentum range where contamination is most

prevalent. The Boosted Decision Tree (BDT) cut value used in this analysis is placed at -0.01.

As a systematic check, a tighter cut was applied to observe how much the total J/ψ yield

changes. The shift from the original value is considered the systematic uncertainty due to

the MVA cut placement. This check was done for the four Eγ bins for the total cross section

measurements and the eight (Eγ,−t) bins for the differential cross section measurements.

Table 10 and Table 11 show the uncertainties for the total and differential cross sections,

respectively.

7.8.3 STATISTICAL N(J/ψ) UNCERTAINTY IN (Eγ, −T ) BINS
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TABLE 10. A table describing the systematic effect of the MVA cut on the Y(J/ψ) yield for
total cross sections.

(Eγ) Y(Default) Y(MVA=0.05) Total

(8.3-9.1) 400 401 0.25%
(9.1-9.6) 669 704 5.2%
(9.6-10.1) 1503 1445 4.0%
(10.1-10.6) 746 748 0.27%

TABLE 11. A table describing the systematic effect of the MVA cut on the Y(J/ψ) yield for
differential cross sections..

(Eγ) Y(Default) Y(MVA=0.05) Total

(9.4-10.1) 2011 1954 2.9%
(10.1-10.6) 722 725 0.4%

The method that is used for calculating the number of detected J/ψ events in low-

statistic bins needs to be checked for the magnitude of the systematic uncertainty. Because

of the availability of high-statistics MC, it is straightforward to quantify the deviations in

the number of J/ψ events as this methodology is repeated in many iterations. This check

is done for each kinematic bin of (Eγ,−t). The systematic check is achieved by using the

MC data to purposely fill histograms with the same number of J/ψ and BH events within

their respective statistical uncertainties. As expected, one would observe subtle deviations

of the shape and widths of the signal and background events within that low-statistic bin.

Using the same formulas and methods outlined in the previous section, the number of J/ψ

events is calculated for many iterations of these histograms. The statistical uncertainty of

the J/ψ yield calculation for a specific bin of (Eγ,−t) would be the standard deviation of

the histogram of the results. One-hundred of these distributions were produced through

simulations. For example, for the first (Eγ,t
′) bin in the energy range between 10.1 GeV
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FIG. 111. Six examples of the high-statistics MC check on J/ψ yield calculation method for
the Eγ, 9.4 GeV to 10.1 GeV and the t

′
range between 0.5 and 1.0 and also a distribution

N(J/ψ) calculations for 100 histograms that contains the standard deviation for that bin.

and 10.6 GeV, the number of J/ψ and background events in that bin were used to produce

MC invariant mass distributions to quantify the systematic uncertainty of the J/ψ yield

extraction for bins with less statistics. The result of one these distributions is shown in FIG.

111. Table 12 shows the values for the standard deviations in each of the eight (Eγ,t
′) bins.

7.8.4 SYSTEMATICS FROM THE ASSUMPTION THAT C IS INDEPEN-

DENT OF MOMENTUM TRANSFER

As described earlier in this section, the determination of N(J/ψ) in (Eγ, −t) bins requires

the study of the background function in the invariant mass spectrum integrated over all t
′
.

In these bins, there are low-statistics, which means direct fitting is not feasible. The ratio of

the integral of the purely background region (2.5 GeV to 2.9 GeV) and the region that comes

within 3σ of the J/ψ peak is calculated in the large Eγ bins that are used for the differential

cross section extraction. This method operates under the assumption that the ratio, C from

Eq. (86), does not change much as a function of t
′
. However, a systematic check is needed

to ensure that the usage of the constant C is valid when extracting N(J/ψ) in various t
′

bins. In this systematic check, the t
′

bins are combined between the two Eγ ranges used

for the differential cross section extraction, as illustrated in FIG. 112. This ensures enough
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TABLE 12. A table showing the standard deviation of the N(J/ψ) MC distributions for each
differential cross section bin.

(Eγ,−t
′
) STDEV Error

(9.4-10.1)(0.0-0.5) 6.773 10.1%
(9.4-10.1)(0.5-1.0) 6.021 16.7%
(9.4-10.1)(1.0-1.5) 3.806 21.1%
(9.4-10.1)(1.5-2.5) 2.304 29.2%

(10.1-10.6)(0.0-0.5) 5.699 30.0%
(10.1-10.6)(0.5-1.0) 3.507 19.4%
(10.1-10.6)(1.0-1.5) 1.767 35.3%
(10.1-10.6)(1.5-2.5) 2.324 33.2%

statistics to get a quality fit in order to compare with the sums of the two N(J/ψ) values.

The percent deviations are displayed in FIG. 113.

A systematic check was done in determining the effect on variations of the background

ratio, C, on the calculated number of J/ψ events, which could contribute to the uncertainty

of the differential cross sections. Two C values were considered for each of the eight bins.

One was the original C value from the fitting of the background function integrated over

all t
′
. The other C value that is used for this systematic study is the individual C value in

each t
′

bin when the two wide Eγ ranges were mixed, as shown in the previous 113. The

tabulated results of this systematic study are summarized in Table 13.

7.8.5 EFFECT OF BIN SIZE N(J/ψ) EXTRACTION FOR Eγ BINS

For the total cross section extraction, the procedure for the N(J/ψ) calculation is to do

a Gaussian plus 2nd order polynomial fit where one of the coefficients returns the number of

events under the peak and above the fitted background. The parameter that returns N(J/ψ)

is dependent on the bin size of the histograms, which range from 2.5 GeV to 3.5 GeV. The

bin size is selected based off of the statistics available and the quality of the fit. Such binning

will have an effect on the overall shape of the resonance and can introduce a systematic shift

of the N(J/ψ) that needs to be understood, so that the effect on the total cross section result

is clear. Therefore, a comparison check was done for cases where the histograms have varying
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FIG. 112. The mixing of invariant mass distributions in various (Eγ, −t
′
) bins from the

combination of two Eγ bins.

bin sizes: 40 MeV, 33 bins, 29 MeV, and 25 MeV. The results of this systematic study are

displayed in Table 14.

7.8.6 N(J/ψ) UNCERTAINTY DUE TO THE FIT

For the extraction of the total cross sections, a fitting is done using ROOT’s MINUIT

utility between the invariant mass spectrum and a functional form consisting of the super-

position of Gaussian and polynomial contributions. Using MC data from generated J/ψ and

Bethe-Heitler events, histograms were constructed with proportions of signal and background

events to closely mirror those observed in the RG-A data for the Eγ bins used for the total

cross section measurements. As a systematic check, it is important to study the discrepancy

between the number of true reconstructed J/ψ events and the number as determined by the

fitting procedure. As shown in the previous subsection, binning has a systematic effect on

N(J/ψ), but the pollution of background under the J/ψ may introduce an additional source

of uncertainty. As shown in FIG. 114, the percent deviations are on the order of 5 percent.

7.8.7 YIELD METHOD UNCERTAINTY

The measured differential cross section for J/ψ photoproduction is proportional to the
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TABLE 13. A table describing the systematic difference between the N(J/ψ) calculation
when taking into account variations in the C values.

Eγ C(Eγ) C(t
′
) Total

(9.4-10.1)(0.0-0.5) 67 55 21.8%
(9.4-10.1)(0.5-1.0) 36 30 20.0%
(9.4-10.1)(1.0-1.5) 18 14 28.6%
(9.4-10.1)(1.5-2.5) 8 7 14.2%

(10.1-10.6)(0.0-0.5) 19 17 11.8%
(10.1-10.6)(0.5-1.0) 18 17 5.9%
(10.1-10.6)(1.0-1.5) 5 5 0%
(10.1-10.6)(1.5-2.5) 7 7 0%

TABLE 14. A table describing the systematic difference between the N(J/ψ) result for
different binning.

Eγ N40(J/ψ) N33(J/ψ) N29(J/ψ) N25(J/ψ) Total

8.3-9.1 23 25 21 20 8.6%
9.1-9.6 43 45 40 46 5.3%
9.6-10.1 99 104 96 98 3.0%
10.1-10.6 49 47 45 47 3.0%
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FIG. 113. A comparison of the fitted extraction of the number of events vs. the methodology
used for the entire Eγ bins used for differential cross sections.

total yield, which is the number of J/ψ’s produced in the experiment after the efficiency

is taken into account. In the previous section, the extraction of the number of detected

J/ψ events was described. After that is established, methods can be designed to get the

most accurate yield by using the efficiency dependence that was computed with fine binning

using MC data. Each event whose mass comes within the J/ψ peak has its own individual

efficiency based on the measured Eγ and −t. There are two methods that are tested for

their reproducibility in terms of calculating the yield using the number of J/ψ events and

the event-by-event efficiencies. The first involves a straightforward correction to the number

of J/ψ events by calculating the average value of the subset of event-by-event efficiencies

that passes the invariant mass cut. This is described in the following equation,

Y1 =
NJ/ψ

η̄i
. (95)

An alternative strategy for determining the yield in each differential cross section bin

would involve a different approach that involves taking the sum of the reciprocal of each

event-by-event efficiency that passes the invariant mass cut. This would involve all events

including the background at the base of the J/ψ peak. Therefore a scaling factor is applied

to the sum integral that estimates the ratio of signal events over background events. This
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FIG. 114. The comparison between the number of true reconstructed J/ψ events and the
fitting result using MC data.

concept is illustrated in the formalism below,

Y2 =
NJ/ψ

Ns

×
Ns∑
1

1

ηi
. (96)

To determine the systematic uncertainty of the yield extraction, it is necessary to compare

the results using the two methods for different bins of (Eγ and −t′). To demonstrate this

systematic check, the J/ψ yields were calculated in the same four bins that are analyzed

for the total cross section measurements. Both yield formulas were used and the systematic

uncertainty was determined to be low enough to show the validity and effectiveness of both

methods. The findings are summarized in Table 15.

7.8.8 GENERATED T-SLOPE EFFECT ON EFFICIENCY CALCULATION

The extraction of cross sections relies on the accurate calculation of the CLAS12 re-

construction efficiency of J/ψ photoproduction events using the generator, JPsiGen. As de-

scribed earlier, JPsiGen depicts the kinematics of the e+e−p final state from the decay of J/ψ.

It uses the two-gluon exchange cross section formalism to provide event-by-event weighting

to make the acceptances more realistic. However, since the t-slope is not definitively known

at a precise level, there is a degree of uncertainty regarding that value. Therefore, the
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TABLE 15. A table describing the systematic difference between two different methods of
determining Y(J/ψ) for the Eγ ranges used for the differential cross section extraction.

(Eγ,−t
′
) Y1(J/ψ) Y2(J/ψ) Total

(9.4-10.1)(0.0-0.5) 1001.9 977.3 2.6%
(9.4-10.1)(0.5-1.0) 523.3 521.8 0.3%
(9.4-10.1)(1.0-1.5) 304.3 303.3 0.3%
(9.4-10.1)(1.5-2.5) 180.18 179.2 0.54%

(10.1-10.6)(0.0-0.5) 299.4 279.3 7.2%
(10.1-10.6)(0.5-1.0) 276.9 260.2 6.4%
(10.1-10.6)(1.0-1.5) 72.4 71.8 0.8%
(10.1-10.6)(1.5-2.5) 134.4 132.5 1.4%

efficiency calculation, which depends on those weighted events, will have a systematic un-

certainty caused by the knowledge of the t-slope. To quantitatively describe this effect, the

efficiency was calculated in four Eγ ranges using different values of the t-slope, b, which is

a user-defined parameter in the generator. The following b values were considered: 1.13

(default), 1.6 and 0.5. As shown in Table 16, the deviations in the average efficiency be-

tween the varying datasets is less than 10 percent. It is worth noting that these tabulated

values were done using datasets done with 45 nA at 5 million events each, so the absolute

values are slightly different from the ones used for the cross section measurements, which

had mixtures of different background merging conditions. However, the systematic shifts are

the same regardless of beam current composition. A similar study was done in Table 17 for

the differential cross sections.

7.8.9 TOTAL COMBINED SYSTEMATIC UNCERTAINTIES

After all of the potential sources of systematic uncertainty are analyzed, a total aggre-

gate uncertainty can be assigned to each measurement. There were four total cross section

measurements corresponding to four Eγ bins. Additionally, there were eight differential

cross section measurements in bins of (Eγ, −t
′
). Therefore, a total of twelve combined sys-

tematic uncertainties are calculated from the quadratic sum of each individual systematic

uncertainty. The combined systematic uncertainties are in Table 18. and Table 19.
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TABLE 16. A table describing the systematic difference between the ηA terms for the total
cross sections being calculated with different JPsiGen t-slope parameters.

Eγ ηA(b = 1.13) ηA(b = 1.6) ηA(b = 0.5) Total

8.3-9.1 0.0514155 0.0533932 0.0459869 7.6%
9.1-9.6 0.0613602 0.0636787 0.0529164 9.5%
9.6-10.1 0.0684269 0.0724445 0.0601382 9.4%
10.1-10.6 0.0649495 0.0679064 0.0566321 9.3%

TABLE 17. The systematic difference between the
∑

1
ηi

terms for the differential cross
sections being calculated with different JPsiGen t-slope parameters.

Eγ
∑

1
ηi

(b = 1.13)
∑

1
ηi

(b = 1.6)
∑

1
ηi

(b = 0.5) Total

(9.4-10.1)(0.0-0.5) 1694 1683 1651 1.3%
(9.4-10.1)(0.5-1.0) 968 951 951 1.0%
(9.4-10.1)(1.0-1.5) 511 509 502 0.9%
(9.4-10.1)(1.5-2.5) 390 387 398 1.5%

(10.1-10.6)(0.0-0.5) 536 532 518 1.8%
(10.1-10.6)(0.5-1.0) 326 334 336 1.6%
(10.1-10.6)(1.0-1.5) 140 136 135 1.9%
(10.1-10.6)(1.5-2.5) 249 258 253 1.8%

TABLE 18. Systematic uncertainty summary for the total cross sections.

(Eγ) MVA Binning Fit t-Slope Exc. Cuts Total

8.3-9.1 0.25% 8.6% 6.0% 7.6% 12.7% 18.1%
9.1-9.6 5.2% 5.3% 5.0% 9.5% 1.7% 13.2%
9.6-10.1 4.0% 3.0% 5.0% 9.4% 2.6% 12.0%
10.1-10.6 0.27% 3.0% 4.0% 9.3% 3.8% 11.2%
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TABLE 19. Systematic uncertainty summary for the differential cross sections.

(Eγ,−t
′
) MVA Yield t-Slope Exc. Cuts C Total

(9.4-10.1)(0.0-0.5) 2.9% 2.6% 1.3% 2.9% 21.8% 22.3%
(9.4-10.1)(0.5-1.0) 2.9% 0.3% 1.0% 2.9 % 20.0% 20.4%
(9.4-10.1)(1.0-1.5) 2.9% 0.3% 0.9% 2.9% 28.6% 28.9%
(9.4-10.1)(1.5-2.5) 2.9% 0.54% 1.5% 2.9% 14.2% 14.9%

(10.1-10.6)(0.0-0.5) 0.4% 7.2% 1.8% 4.5% 11.8% 14.7%
(10.1-10.6)(0.5-1.0) 0.4% 6.4% 1.6% 4.5% 5.9% 9.94%
(10.1-10.6)(1.0-1.5) 0.4% 0.8% 1.9% 4.5% 0.0% 4.97%
(10.1-10.6)(1.5-2.5) 0.4% 1.4% 1.8% 4.5% 0.0% 5.06%
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CHAPTER 8

CONCLUSION

8.1 J/ψ PHOTOPRODUCTION NEAR THRESHOLD

The measurement of the total and differential cross sections for J/ψ photoproduction 
using CLAS12 has the potential to illustrate a more clear model of the reaction mechanism 
in the threshold region. These measurements are sensitive to form factors that describe 
the distribution of color charge in the proton. Using the available RG-A data from the 
CLAS12 experiment, preliminary cross section results have been achieved and this analysis 
will continue to evolve as more data (RG-A Spring 2018) become available after calibration 
and processing. This boost in statistics will be needed for the pentaquark search study. The 
current status of J/ψ analysis in CLAS12 has a strong foundation. Advancements have been 
made regarding particle identification, event selection, momentum corrections, efficiency 
studies, and background studies. As preliminary results await from Hall C, it needs to 
be determined what models best suit the cross section dependence on photon energy for 
CLAS12. There have been proposed models that assume a superposition of the two-gluon 
and three-gluon exchange mechanisms. One piece of the CLAS12 J/ψ analysis that needs to 
be improved and added is the normalization using the Bethe-Heitler cross section, which is a 
well-known reaction. The preliminary results established in this dissertation assume an ideal 
knowledge of the luminosity and the detector efficiency. Normalization has not been done 
yet and will be incorporated in future analysis. Additional studies are needed to study the 
comparison of the expected rates from MC (electro-production and photo-production) and 
what is measured in the RG-A data. Once these are analyzed, a more complete conclusion 
regarding the impact on physics can be drafted.

8.2 TORUS FIELD MAPPING PROJECT

The preparation, implementation, and analysis associated with the Torus field mapping 
project proved to be valuable to the CLAS12 experiment. As mentioned in the particle 
identification section, there are several factors that can cause imperfections regarding the 
reconstruction of charged particles in the forward detector. One of them is the extent to
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which the field map model used in reconstruction mirrors the field in reality. By measuring

the field using precise instrumentation and a well-engineered procedure, there is a baseline

set of measurements that can be used as comparisons to the field model iterations that are

used for DC reconstruction. In addition, a unique mathematical method was developed

to minimize a chi-squared function which contains fitting coefficients associated with the

distortions of one of or many coils. The final results were relayed to the magnet team and

several iterations of field maps were designed based on those calculated coil distortions, which

include translational motions and ad hoc corrections to certain pieces of the coils. Generally,

each field map showed an improvement of the reconstruction of the elastic peak in terms

of the position and the resolution. The latest map, however, has not been used yet for the

RG-A data, which uses a map from 2018. The plan is to implement the latest map produced

in 2021 to improve the reconstruction of charged particles for future run groups.
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