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ABSTRACT

ANALYSIS OF THE PROTEOGLYCAN CONTENT IN FRESH AND 

CRYOPRESERVED PORCINE CARDIOVASCULAR TISSUES

YUN HEE SHON 

Old Dominion University 

and

Eastern Virginia Medical School 

Director: Dr. Lloyd Wolfinbarger, Jr.

The purpose of this research was to study the effects of cryopreservation 

on the proteoglycan (PG) and mineral content of aorta conduit tissue. 

Proteoglycans from fresh and cryopreserved porcine aorta conduit tissues were 

isolated by extraction with 4 M guanidine (Gdn) - hydrochloride (HC1) for 48 

hours. This concentration of Gdn-HCl and 48 hours extraction time was 

demonstrated to be optimal for proteoglycan extraction. The crude 

proteoglycan extracts were purified by CsCl isopycnic centrifugation. 

Quantitative analysis of extracted proteoglycans revealed that the content of 

proteoglycan material from crycpreserved tissue, measured as uronate and
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protein per unit weight of wet tissue, was similar to that from fresh tissue (440 

+  30 versus 430 ± 1  fig uronate/g wet tissue and 3139 ±  39 versus 2639 ±

15 ng protein/g wet tissue). Gel permeation column chromatography studies 

suggested that proteoglycans present in three CsCl fractions from cryopreserved 

tissues had molecular weights similar to proteoglycans present in similar 

fractions from fresh tissue; =  0.13 and 0.47 (I), 0.20 (II), and 0.43 (III) 

from cryopreserved tissue and K„v =  0.13 and 0.50 (I), 0.23 (II), and 0.40 (III) 

from fresh tissue.

Cryopreserved and fresh tissues were extracted using Gdn-HCl followed 

by sequential digestion of the tissues with collagenase, elastase, and papain. 

Glycosaminoglycans (GAGs) of the PGs were isolated and quantitated. Gdn- 

HCl extracted about 61 % and 62 % of the total GAG (proteoglycan) material 

from cryopreserved and fresh tissues, respectively. Collagenase solubilized 

proteoglycans from Gdn-HCl-extracted tissue represented 20 % and 13 %, 

respectively, of the total GAGs present in cryopreserved and fresh tissue. 

Subsequent elastase hydrolysis of collagenase digested tissue released about 11 

% of total GAGs from cryopreserved tissue and 16 % from fresh tissue. The 

remainding 8 %, from cryopreserved tissues, and 9 %, from fresh tissue, of 

total GAGs were obtained through use of a final papain hydrolysis. There was 

essentially no difference between fresh and cryopreserved tissues in the relative 

distribution of proteoglycans in the extracts and digestions except in the initial
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digestion step where more proteoglycan was obtained from collagenase 

solubilization of cryopreserved tissue than fresh tissue (P <  0.05).

The histologic status of the fresh and cryopreserved porcine aortic 

conduit did not differ markedly. The normal tissue architecture was not 

affected markedly by the cryopreservation procedure as neither alteration of 

elastic structure, fibrous proteins nor alteration of nuclear distribution or 

smooth muscle cell morphology was detected. Electron microscopic 

comparisons demonstrated a retention of proteoglycans in the porcine aortic 

conduit after cryopreservation, and the relative morphological distribution of 

proteoglycan content in cryopreserved tissue was similar to that in fresh tissue.

Quantitative tissue mineral studies revealed that the mean calcium content 

of the cryopreserved aorta conduit tissue (165 ±  3 fxg /g  wet tissue) was higher 

than that of the fresh tissue (105 +  4 jxg lg  wet tissue) (P <  0.05). The mean 

phosphorus content was 703 +  35 jxg lg  wet tissue from cryopreserved tissue 

and 720 +  26 fig/g wet tissue from fresh tissue.

The studies indicate that there is no significant alteration in the content, 

molecular size, or distribution of PGs in properly cryopreserved tissue. 

However, the total calcium level appears to be increased in tissue cryopreserved 

by the cryopreservation process used in this study.
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CHAPTER I 

INTRODUCTION

A. Cardiovascular System.

The cardiovascular system consists of the heart, which is a muscular 

pumping device and keeps the blood in motion; a closed system of blood 

vessels, which circulate blood to and from all parts of the body; and the 

lymphatic vessels, an ancillary set of vessels, which circulate lymph. The heart 

is a four-chambered (two atria and two ventricles) muscular organ through 

which the blood contained in the circulatory system is pumped. The direction 

of flow of the blood is largely determined by the presence of valves which 

allows blood to flow from the atria into the ventricles but prevents it from 

flowing back up into the atria from the ventricles The valves of the heart are 

fibrous flaps of tissue covered with endothelium. Four sets of valves are of 

importance to the normal functioning of the heart. Two of these, the 

atrioventricular valves are located in the heart, guarding the openings between 

the atria and ventricles. The other two, the semilunar valves are locked inside

1
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the pulmonary artery and the great aorta just as they arise from the right and 

left ventricles, respectively.

The valve guarding the right atrioventricular orifice consists of three 

flaps of endocardium and is called the tricuspid valve. The valve that guards 

the left atrioventricular orifice is similar in structure to the tricuspid except that 

it has only two flaps and is, therefore, named the bicuspid or, more commonly, 

the mitral valve. The semilunar valves consist of half-moon-shaped flaps 

growing out from the lining of the pulmonary artery (pulmonary valve) and 

great aorta (aortic valve). Whereas the atrioventricular valves prevent blood 

from flowing back up into the atria from the ventricles; the semilunar valves 

prevent it from flowing back down into the ventricles from the aorta and 

pulmonary artery.

The aorta is an elastic artery leaving the heart to supply the systemic 

circulation. The elastic arteries functionally serve as conduction tubes, but they 

also facilitate the movement of blood along the tube. During the contraction 

(systolic) period of the cardiac cycle, the ventricles of the heart pump blood 

into the elastic arteries. The pressure generated in the elastic arteries by the 

ventricles moves the blood along the arterial tree, and the pressure also causes 

the wall of the arteries to distend. The distension is limited by the network of

2
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collagenous fibers in the tunica media and tunica adventitia. During the 

relaxation (diastolic) period of the cardiac cycle, arterial pressure and the 

resultant flow of blood within the vessel are maintained by the elastic recoil of 

the distended arterial wall.

Aorta have three coats, an inner smooth layer (tunica intima), a middle 

layer (tunica media), and an outer layer of connective tissue (tunica adventitia). 

The tunica intima of aorta is relatively thick and consists of an endothelial 

lining with its basal lamina (a subendothelial layer of connective tissue) and a 

layer of elastic material (the internal elastic membrane). The endothelium is a 

simple squamous epithelium. The cells are typically flat, but they are elongated 

and oriented with their log axis parallel to the direction of the artery. The 

endothelium and the basal lamina serve as a barrier to the passage of 

substances. The subendothelial layer consists of connective tissue with both 

collagenous and elastic fibers. The main cell type of this layer is the smooth 

muscle cell. It is not only contractile, but it also produces the extracellular 

ground substance and fibers. The tunica media is the thickest of the three 

layers. It consists of sheets of elastic material with intervening layers 

comprised of smooth muscle cells, collagenous fibers, and ground substance. 

The smooth muscle cells in tunica media produce the collagenous, elastic 

components, and ground substance of this layer. The tunica adventitia is

3
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relatively thin, and a connective tissue layer. The main extracellular 

component of this layer are collagenous fibers which is relatively inextensible 

and prevent the expansion of the arterial wall beyond physiological limits 

during the systolic period of the cardiac cycle. There is also a loose network of 

elastic fibers in this layer. Cells of the tunica adventitia are fibroblasts.

B. Historical Perspective of Heart Valve Replacements.

Diseased and malfunctioning heart valves have been replaced as a routine 

procedure for almost three decades. There have been many improvements in 

heart valve substitutes and surgical techniques during this time.

In the normal heart, there is a virtually nonobstructed flow of blood from 

the left ventricle to the ascending aorta through the fully open aortic valve 

during systole. There is a similar nonobstructed flow from the atrium through 

the mitral valve to the ventricle by retraction of the mitral valve during 

diastole. The goal of cardiac valve transplantation research has been the search 

for perfect valve substitutes, namely, mechanical, tissue (bioprosthetic), or 

allograft valves. There are several major criteria to be considered in a 

particular valve design. An ideal valve substitute should function efficiently 

with perfect hemodynamic performance and present a minimum load to the

4
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heart. The substitute should also have superior durability and maintain its 

efficiency for the life span of the patient. It should not cause damage to 

molecular or cellular blood components or stimulate thrombus formation so that 

anticoagulation therapy will be required. The valve substitute should be 

available in a wide variety of sizes permitting a match for recipients and should 

require a relatively simple surgical implant.

In the mid 1940’s, Hufnagel used an acrylic prosthesis for the 

replacement of the thoracic aorta of animals, and this work provided the 

impetus for him to develop and implant prosthetic heart valves in humans 

(Hufnagel, 1947; Hufnagel and Harvey, 1953). In the early 1950’s, Hufnagel 

et al. (1954) and Campbell (1950) independently designed mechanical valves. 

This totally mechanical valvular prosthesis, consisting of a lucite tube and a 

mobile spherical poppet, was successfully implanted into the descending aorta 

of a patient with severe aortic regurgitation (Hufnagel et al., 1954). One of 

Hufnagel’s patients, who received a prosthetic heart valve, survived over two 

decades without evidence of wear, thrombosis, or embolism (Hufnagel and 

Gomes, 1976).

In 1958, the caged-ball valve was implanted in the mitral position in 

dogs by Ellis and Bulbulian (1958) and in the aortic position by Edwards and

5
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Smith (1958). These accomplishments, together with the development of the 

technique of extracorporeal circulation, prompted Harken in March 1960 to 

correct for defective valves with a caged-ball prosthesis in the subcoronary 

position in patients with aortic regurgitation (Harken et al., 1960). Five months 

later, Starr implanted the first Starr-Edwards prosthesis in the mitral position 

(Starr and Edwards, 1961), and the first clinical Starr-Edwards aortic valve 

implantation was performed one year later (Lefrak and Starr, 1979).

After early design improvement, silastic ball noncloth-covered Starr- 

Edwards mechanical valves became the standard for mechanical valves. 

Although a number of similar designs of the caged-ball valves appeared in 

clinical use (Lefrak and Starr, 1979), all but Starr-Edwards, Smeloff-Sutter, 

and Magovern-Cromie valves are no longer available for clinical use due to 

high complication rates and problems with durability and structural design.

The concept of the tilting disk valve arose because most of the caged-ball 

valves were unnecessarily bulky, and their hemodynamic characteristics were 

less than ideal. A flat disk instead of a ball was used as an occluder in caged- 

disk valves to reduce the profile of such valves, but they still suffered from the 

hemodynamic problem of having an occluder that remained relatively 

obstructive in the open position. A disk that tilted within the valve ring was

6
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specially attractive since it caused minimal obstruction to blood flow in the 

open position. Flap valves were the earliest examples of the tilting disk 

(Kernan et al., 1957; Pierce et al., 1968). Bjork and Shiiey in 1969 

collaborated to produce a hingeless tilting disk valve, the Bjork-Shiley valve, in 

which the free-floating disk was restrained by two low-profile M-shaped struts 

(Bjork, 1969; Bjork, 1970). This valve is now the most commonly used 

mechanical prosthesis worldwide.

In the mid 1960’s, the design of a rigid bileaflet prosthesis was 

introduced and tested in vitro, in animals, and in clinical usage. Certain 

elements in this design, the bileaflet principle and a low profile, were used 

earlier in the Gott-Daggett, Kalke-Lillehei, and Wada prostheses. Clinical 

experiences with the hinge bileaflet prosthesis were first reported with the 

introduction of the Gott-Daggett valve (Gott et al., 1964). This valve had two 

semicircular leaflets retained within the ring by four hinges. Follow-up 

experiences revealed that an incidence of high thrombogenicity was probably 

the consequent lack of proper washout on the outflow surface (Young et al., 

1969). The Gott-Daggett prosthesis was withdrawn from clinical use because 

the thrombogenicity of this valve could not be reduced even with treatment of a 

colloid graphite coating on the synthetic surfaces (Gott et al., 1961). The 

Kalke-Lillehei and Wada designs have not been introduced into clinical usage.

7
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Although these earlier prostheses failed due to mechanical malfunctions and 

marked thrombogenicity, the most striking finding from these earlier studies 

was that their hemodynamics were superior to all other prostheses available at 

that time.

In 1976, this design was modified and refined for heart valves 

manufactured entirely from pyrolitic carbon (Emery et al., 1978). Pyrolitic 

carbon, with its thrombo-resistant properties and great durability, replaced the 

titanium of the valve ring and the different materials used earlier for the cusps. 

Experimental and later clinical results demonstrated that the bileaflet design 

using pyrolitic carbon provided distinct and dramatic improvements in 

prosthesis performance (Lillehei, 1986). The oldest and most broadly used 

member of the bileaflet family of valves is the St. Jude Medical valve, a 

cleverly designed valve made entirely of pyrolitic carbon with two semi-circular 

discs that open with a new pivot mechanism that eliminates the need for any 

supporting struts. Postoperative catheterization studies in multicenters revealed 

good results in terms of survival, low incidence of thromboembolic 

complications, and negligible transvalvular gradients in the large sizes (Lillehei, 

1986; Pass et al., 1984; Wortham et al., 1981).

Although many modern mechanical heart valve substitutes are accepted

8
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as having long-term durability (Silver and Butany, 1988), the question of 

fatigue or wearing out remains a pertinent issue. The most important 

disadvantage of a mechanical valve is thrombogenicity, which has been reduced 

recently by improved microhemodynamics within the hinge mechanism, but is 

still significantly higher than that of xenograft valves (Magilligan, 1987; Schoen 

and Hobson, 1987). Therefore, anticoagulant therapy is required for most 

mechanical prostheses. The valve murmur is an additional disadvantage of 

some mechanical valves. Hemodynamic dysfunction also can occur when a 

small mechanical prosthesis is inserted into a small aortic or mitral annulus.

The resulting high gradients worsen during exercise and provide for elevated 

perioperative mortality rates (Bjork et al., 1974; Dale et al., 1980).

Dissatisfaction with the incidence of valve related morbidity and 

mortality after cardiac valve replacement with a mechanical prostheses led to 

introduction of xenograft tissue valves. Work on the xenograft valve started in 

1965 (Duran and Gunning, 1965). The valves of the pig and calf seemed to be 

the best choices because of relative vascularity and similarity of physical 

properties to those of human valves, and it was found that both were technically 

satisfactory for clinical usage (O’Brien, 1967). Originally, mercurial salts were 

used for the treatment of xenograft valves and later formalin for the sterilization 

and reduction of antigenicity. However, both reagents were found to be

9
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unsuitable for treatment of biological valves because they weakened the 

chemical cross-linkage bonds in collagen and resulted in collagen degeneration 

(Binet et al., 1965; O’Brien and Clarebrough, 1960).

Glutaraldehyde, used for tanning leather in the shoe industry, produces 

stable collagen covalent cross-linkage bonds and actually increases tissue 

strength. The tissue also loses viability, and its antigenicity is markedly 

reduced. Carpentier et al. (1969), in Paris, first used glutaraldehyde for tissue 

valve preservation in 1968 (Gerbode, 1970) and facilitated the use of 

bioprostheses, both porcine and bovine pericardium, as a satisfactory alternative 

to mechanical valves.

In 1970, commercially available glutaraldehyde-treated porcine xenograft 

valves, that were readily available in all sizes, were introduced by Hancock 

laboratories. Carpentier-Edwards xenograft valves were subsequently offered 

by Edwards laboratories. The Hancock standard and the Carpentier-Edwards 

standard are high-pressure glutaraldehyde-fixed bioprostheses. These 

bioprostheses are presently used only in the United States. The Hancock 

standard valve is mounted into a Dacron-covered polypropylene stent. There 

are various sewing ring configurations to facilitate interrupted or continuous 

suturing techniques. The Carpentier-Edwards bioprosthetic porcine valve uses a
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flexible Elgiloy (an alloy of spring steel) stent, which is radiopaque. Tubular 

knitted porous Teflon, which surrounds a silicone rubber insert, is used as the 

sewing ring material. A specially buffered and stabilized glutaraldehyde 

solution is used to fix the valves.

Hancock laboratories introduced a Hancock modified orifice porcine 

valve since hemodynamic performance of the original Hancock prosthesis was 

not ideal (Lurie et al., 1976; Stinson et al., 1977). In this modified prosthesis, 

the right coronary cusp with its muscular shelf has been replaced by a matching 

noncoronary cusp that does not contain the muscle shelf from another porcine 

valve. In vitro studies showed that this modified prostheses had better 

hydraulic function, and intraoperative studies revealed much lower transvalvular 

gradients (Levine et al., 1977). However, late postoperative catheterization 

studies have revealed only slightly better hydraulic performance than the 

standard valve (Rossiter et al., 1980). Edwards laboratories introduced a 

modified xenograft prosthesis, Carpentier-Edwards supraannular bioprosthesis, 

with improved hydraulic function by the further thinning of both the cloth and 

metal components of the frame.

Porcine bioprostheses have a low rate of serious thromboembolism, 

essential lack of thrombosis, and freedom from anticoagulant-related
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hemorrhage (Carpentier et al., 1969; Hannah and Reis, 1976; Lakier et al., 

1980; Pipkin et al., 1976), but hydraulic performance is still limited in the 

smaller sizes (Yoganathan et al., 1986). The main disadvantage of the porcine 

xenograft is limited durability due to calcification (Gallo et al., 1984). 

Calcification of biological heart valves results in degeneration and dysfunction.

The Ionescu-Shiley pericardial valve was the first and most widely used 

model of the bovine pericardial heart valve. In 1966, M. Ionescu and G. 

Wooler of England introduced a formalin-fixed heterograft supported by a 

titanium stent. Two years later, Ionescu tried a series of autologous fascia lata 

mounted on that three-legged stent covered inside and out with Dacron velour, 

but the results with fascia were unsatisfactory. In 1970, he mounted 

glutaraldehyde-fixed bovine pericardium on a cloth-covered titanium frame with 

its posts slightly splayed outward to provide a dull orifice. The first valves 

were made in small numbers in Ionescu’s hospital laboratory, but since 1976 

they have been made at Shiley laboratories and commercialized under the trade 

name Ionescu-Shiley pericardial valve (Ionescu et al., 1977; Ionescu et al., 

1982; Ionescu et al., 1985). New pericardial-based bioprostheses, the 

Mitroflow and Carpentier-Edwards pericardial valve, are being developed and 

used clinically today (Anderson et al., 1986; Pelletier et al., 1990; Relland et 

al., 1985).
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The pericardium valve’s fabrication concept offers important design and 

manufacturing advantages, since the end product is free of the natural variation 

which is always a problem in an intact valve removed from an animal. 

Pericardium has made possible the development of trileaflet stent-mounted 

bioprostheses with very low transannular gradient (Revuelta et al., 1984). This 

valve is better than the porcine valve in terms of hydraulic performance due to 

the absence of a muscle shelf at the base of the valve (Cosgrove et al., 1985). 

Wheatley’s group in Glasgow (Fisher et al., 1986) tested six different types of 

tissue valves and six mechanical valves in vitro and reported that the porcine 

valves had higher forward flow pressure gradients than pericardial, tilting disk, 

or bileaflet mechanical valves. Thromboembolism is not a major problem with 

the bovine pericardium bioprosthesis (Cooley et al., 1986; Ionescu et al.,

1986), and this valve may have lower thromboembolic problems than porcine 

valves. However, the glutaraldehyde-treated pericardium has a clear tendency 

toward calcification (Gallo et al., 1985). Experimental clinical studies of the 

incidence of primary tissue failure between porcine and bovine pericardium 

valves show that the bovine pericardial valve deteriorates sooner and more 

frequently than the porcine valve (Gallo et al., 1987; Odell et al., 1986). 

Generally, tissue failures of pericardial valves occur sooner in the mitral than in 

the aortic position, and different models of valves fail differently at different 

times (Gabbay et al., 1984; Gabbay et al., 1988; Walley and Keon, 1987;
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Wheatley et al., 1987).

In spite of substantial progress made in the preparation of prostheses 

(mechanical and bioprosthetic valves), an adequate valve substitute meeting the 

requirements of an ideal cardiac valve has yet to be identified. The various 

types of prosthetic valves introduced are only partially of the quality of natural, 

healthy, human heart valves. In a search for the perfect valve replacement, 

researchers turned to the human heart valve as the best valve substitute. 

Numerous clinical problems with both mechanical and xenograft valves are 

solved by use of a allograft (homograft) valve: low incidence of 

thromboembolic complications, freedom from long-term anticoagulation 

therapy, reduced hemodynamic obstruction especially in the small aortic root 

size of children, and resistance to endocarditis.

Implantation of allograft cardiac valves was preceded by documented 

success in the preservation and reimplantation of homologous vascular material 

experimentally and clinically by Robert Gross in 1948 (Gross et al., 1948). In 

1952, Lam and his coworkers reported that it was experimentally possible to 

transplant canine aortic valve homografts into another dog’s descending thoracic 

aorta. In 1953, Robicsek in Hungary completed the first true orthotopic 

transplant of a valvular homograft, a canine tricuspid valve. Gross’s clinical
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experiences with preserved arterial grafts and Lamb’s experimental success in 

implantation of a homologous cardiac valve became the basis for Murray and 

other investigators to develop the techniques for clinical operations. In 1956, 

Murray and his coworkers in Toronto implanted fresh and fully living aortic 

valve homografts into the descending thoracic aorta for the relief of aortic 

insufficiency. Although this operation was only partially successful 

hemodynamically, the homograft valves had remarkable durability and 

performance. Kerwin et al. (1962) reported that these valves had satisfactory 

functions extending to up to 6 years.

Implantation of fresh homograft aortic valves into the subcoronary 

position was proposed by Duran and Gunning (1962) and was completed with 

full clinical success in England by Donald Ross in 1962. Sir Brian Barratt- 

Boyes in New Zealand reported in 1964 that he, too, had initiated subcoronary 

insertions of aortic valve homografts in 1962, almost at the same time as 

Donald Ross and independent of each other (Barratt-Boyes, 1964). These initial 

valves had excellent durability both initially and long-term and were virtually 

free of thromboembolic complications without anticoagulant therapy. These 

results gave impetus for early workers to pursue this method of aortic valve 

replacement.
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The first clinical use of aortic valve allografts was reported (Davies et 

al., 1968), but the use of these valves was soon extended for the repair of 

ventricular outflow tract defects (Ross and Somerville, 1966), mitral and 

tricuspid valve diseases (Ross and Somerville, 1972), and finally for the repair 

of the entire aortic root and valve (Lao et al., 1984). Although the use of 

mitral and tricuspid allografts was proposed early, the results of mitral valve 

replacements with allografts were not favorable (Graham et al., 1971;

Robicsek, 1953). Eguchi and Asano in 1968 proposed the use of pulmonary 

allografts for the right side of the heart, and Kay et al. in 1986 presented the 

results with the first clinical series.

Since the inception of the allograft aortic valve for clinical subcoronary 

implantation in 1962, changes in methods of sterilization and storage techniques 

have been implemented. Allograft valves that were sterilized by gamma 

radiation or chemicals such as /3-propiolactone, ethylene oxide, or chlorhexidine 

had a great propensity for cusp rupture and degeneration (Barratt-Boyes et al., 

1977; Heimbecker et al., 1968; Malm et al., 1967; Smith, 1967). Storage 

techniques such as freeze-drying have resulted in poor performance with 

diminished durability of transplanted allograft valves (Beech et al., 1973;

Parker et al., 1977). The use of harsh methods for valve preparation has been 

completely abandoned because of increased failure rates.
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In the late 1960s, the use of gentle antibiotic sterilization and storage at 4 

°C in nutrient media began to be used. Although a fresh wet-stored allograft 

lacks donor cellular viability (O’Brien et al., 1987), valves prepared with these 

gentler techniques have been found clinically to be satisfactory and to function 

for a reasonable period of time due to their excellent hemodynamic 

performance even in small sizes (Ross and Yacoub, 1969; Thompson et al., 

1979; Thompson et al., 1980), reduction of thromboembolism and hemolysis 

rates without anticoagulant therapy (Matsuki et al., 1988), and enhanced 

resistance to endocarditis (Kirklin and Barratt-Boyes, 1986). A number of 

groups demonstrated excellent medium-term (7-10 years) results with the wet- 

storage technique (Anderson and Hancock, 1976; Barratt-Boyes, 1979; Khanna 

et al., 1981; Miller and Shumway, 1987; Penta et al., 1984; Teply et al., 1981; 

Thompson et al., 1980).

Although clinical results with fresh wet-stored antibiotic-sterilized human 

allografts were good, the difficulties involved in obtaining the valve, the 

availability of valve size matching for recipients, and lack of certainty 

concerning preservation and storage techniques prevented the wide-spread use 

of this graft for valve substitution. Based on these problems, cryopreservation 

was introduced as the best method for indefinite and convenient storage and 

frozen valve banks have been developed which allow prolonged storage of
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tissues and thus increase availability.

Luyet et al. (1940) in America established the foundations of modern 

cryobiology. In 1949, Polge et al. from London actualized the immense 

advantage of cryogenic temperatures in organ banking. They reported that 

glycerol enabled rooster sperm to survive freezing at -79 °C. This technique 

subsequently was applied for the preservation of various cell types and even 

entire embryos (Bunge and Sherman, 1953; Lovelock, 1953; Schaeffer et al., 

1972; Smith and Polge, 1950). Smith also performed studies on numerous 

frozen mammalian cellular systems, including ova, blood, corneas, hearts, and 

even whole animals (Smith, 1961). The use of glycerol and other 

cryoprotectants has enabled considerable advances in the long-term preservation 

of mammalian cells in suspensions and organs.

The technology of cryopreservation has been applied to preserve aortic 

allografts. Gross, Bill, and Peirce (1949) demonstrated that simple freezing of 

aortic homografts to -72 °C without a cryoprotectant resulted in a high risk of 

graft rupture. In the early 1970s, Angell and associates (1987) reported on the 

maintenance of viability in DMSO cryopreserved aortic allografts stored for 

prolonged periods in liquid nitrogen and their clinical application. The 

Brisbane group, under the direction of O’Brien, followed this early clinical
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application of the cryopreservation process with a series of valve replacements 

utilizing allograft valves that had undergone gentle antibiotic sterilization, 

controlled freezing with dimethylsulfoxide (DMSO) to low temperature, and 

then storage in liquid nitrogen at -190 °C. His group confirmed the cellular 

viability of tissue by histologic and biochemical data (O’Brien et al., 1987; 

O’Brien, Kirklin et al., 1987). In their study, the cryopreserved aortic valves 

had remarkable results with 100 % freedom from reoperation because of valve 

degeneration for up to 10 years. The high durability of the viable 

cryopreserved valve was considered to be related to continuous cellular 

viability. Explanted valve tissue, up to 10 years after operation, have shown 

continuous viability of leaflets from the time of implantation (O’Brien, Kirklin., 

1987).

Several studies have shown that cryopreserved allograft aortic valves 

have increased functional integrity in comparison to fresh aortic allografts and 

xenografts, which is an extremely attractive feature with regard to the pediatric 

population (Angell et al., 1987; Jonas et al., 1988; O’Brien, Kirklin et al.,

1987). The frozen viable allograft has superior durability in addition to the 

advantages of the nonviable fresh allograft. This superior durability may be 

due to improved matrix preservation by the limitation or reduction of cell death 

prior to and during cryopreservation rather than continued fibroblast cellular
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function following transplantation. In current world experience, most aortic 

and pulmonary homografts are used as valved conduits for insertion in the right 

side of the heart (Bodnar and Ross, 1991).

C. Cryobiology of Heart Valves.

Cryopreservation techniques for heart valves are derived empirically 

from knowledge developed for cryopreservation of single-cell suspensions and 

simple tissues (van der Kamp et al., 1981), and finally applied to cardiovascular 

tissues. Since the initial development of the cryopreservation technology for 

heart valves (Angell et al., 1976), there have been considerable advances in the 

characterization of many cryoprotective agents, the development of computer- 

controlled freezing equipment, and active cryobiology research in universities 

and organ/tissue processing groups has validated specific aspects of the 

techniques involved in cryopreservation.

Properly cryopreserved tissues have yielded excellent clinical results for 

extended periods of time. It now becomes necessary to determine the reason(s) 

for this good performance. Human heart valve cryopreservation can be divided 

into five steps: (1) harvesting and transport of the donor heart to the processing 

facility; (2) tissue preparation and antibiotic disinfection; (3) control-rate
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freezing with cryoprotectants; (4) storage in vapor-phase liquid nitrogen; and 

(5) thawing/diluting for transplantation. It is generally accepted that 

cryopreservation protocols must ensure integrity of the extracellular matrix and 

maintenance of cellular viability of the tissues for prolonged clinical durability 

after implantation. A number of studies (Angell et al., 1976; Hu et al., 1989; 

Khanna et al., 1981; O’Brien, 1986; Ross et al., 1979; Strickett et al., 1983; 

van der Kamp et al., 1981) investigating valve preparation procedures reported 

several general principles which provide for better integrity of tissues and 

cellular viability: short warm ischemia times (the time period from cessation of 

donor heart beat to initial cooling of valve tissue with cold storage solution) 

following death of donor, antibiotic concentrations which are nontoxic to valve 

cells yet effectively disinfect the allograft (Hu et al., 1989; Khanna et al.,

1981), cryopreservation by cooling at 1 °C/min with 10 % dimethyl sulfoxide 

as a cryoprotectant, and storage and transport of processed valves in the vapor 

phase temperature of liquid nitrogen (Adam et al., 1990).

Even though fibroblast cells in heart valve cusps are relatively resistant 

to anoxia, most procurement programs seek to remove the heart within the first 

hour after cessation of heartbeat. The procurement of donor hearts for allograft 

heart valve transplantation should include aseptic technique, retention of proper 

length of aorta and pulmonary conduits, and the avoidance of valve cusp injury.
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Cold ischemic time (the time interval after transfer of the heart to cold transport 

solution until cryopreservation) during transportation and processing of hearts 

should be less than 24 hours after cardiectomy. St. Louis, et al (1991) reported 

that protocols designed to harvest valves between 2 and 24 hours after donor 

death resulted in depleted aerobic metabolic reserves (i.e., lowered high-energy 

phosphate stores). Such valves, however, continued active anaerobic 

metabolism and contained numerous morphologically intact fibroblasts. Organ 

perfusion studies (Belzer et al., 1983; Henry et al., 1988; Southard et al.,

1984; Southard et al., 1985) have suggested that transport media containing 

adenosine and metabolic phosphates preserve cellular viability by stimulating 

ATP synthesis, Na+ reabsorption, maintenance of near normal concentrations of 

tissue K+, and reversal of tissue edema.

Since it is not generally practical to collect donor valves under sterile 

conditions, an efficient method of disinfection is required to provide a sterile 

allograft for transplantation. The method used should have no deleterious effect 

on the integrity of the valve while still maintaining efficient antibacterial and 

antifungal activity. Many antibiotic disinfecting mixtures have been 

investigated, not only to determine the efficiency of disinfection but also to 

assess effects on the physical properties of the grafts, i.e. cellular viability, host 

tissue ingrowth, and valve survival (Barratt-Boyes et al., 1977; Gavin et al.,
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1973; Hu et al., 1989; Lockey et al., 1972; Strickett et al., 1983; van der 

Kamp et al., 1981; Wain et al., 1977; Waterworth et al., 1974; Yacoub and 

Kittle, 1970). Currently, nearly all allograft heart valve programs use low- 

concentration, broad-spectrum antibiotics in a sterile-filtered nutrient tissue 

culture medium to disinfect cardiovascular tissues (Ross et al., 1979; Strickett 

et al., 1983).

Suspended animation (inhibition of cellular activities) through reduced 

temperature is the only way to achieve organ preservation. Living cells can be 

preserved for years by storage at temperature of the order of -150 to -200 °C 

by inhibiting molecular motion. Physical processes in biological systems, such 

as osmotic pressure and thermal expansion, are completely dependent on the 

rate of molecular motion. All physiological and biochemical processes of the 

cell can be arrested with the inhibition of molecular motion, and aging becomes 

nearly impossible. Cryopreservation generally involves tissue freezing. The 

consequences of freezing in biological systems arise from three factors: 

inhibition of chemical and physical processes by the low temperatures, the 

effects of ice in the biological system, and the physicochemical effects of 

increased solute concentrations as the volume of liquid water decreases during 

ice crystal formation.
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As the temperature becomes lower, molecular movement decreases. A 

decrease of molecular motion slows down both physical and chemical processes 

in biological systems in proportion to the fractional change in absolute 

temperature.

Damage to biological systems during freezing and thawing results from 

the conversion of liquid (solvent) water into ice. Rapid cooling (greater than 1 

0 C/minute) during freezing produces a myriad of small crystals because of 

insufficient time for the growth of large crystals. Cells rapidly cooled during 

freezing appear unshrunken and contain intracellular ice. The physical presence 

of ice crystals inside cells is lethal and can result in a failure of the 

cryopreservation protocol. Damage to the cells by the intracellular ice 

primarily occurs as these crystals grow in size during warming or storage at 

relatively high subzero temperatures through a process described as 

recrystallization (Mazur, 1977). Slow cooling (less than 1 °C/minute) during 

freezing results in the formation of a small number of very large crystals. With 

slow cooling, intracellular ice may not form, but the intracellular environment 

is exposed to biochemical and physical adversities caused by high solute 

concentrations, dehydration, pH shifts (van der Berg and Rose, 1959; van der 

Berg and Soliman, 1969), and cell shrinkage (Meryman, 1970). The viability 

of the intact cell, tissue, or organ of which the cell is a part is governed by the
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resulting influences of these changes on the biochemical properties of 

intracellular structures. High salt concentrations are the most provable cause of 

cell damage since they are disruptive to cell membranes and protein structure. 

Optimal survival of various cell types occurs at a cooling rate somewhere 

between fast and slow. This optimal rate varies with different cell types; 

specimen size, volume, and shape; the presence of cryoprotectants, and the 

concentration(s) of the cryoprotectant(s).

Although post-thaw viability of a frozen system can be optimized by 

carefully selecting the best combination of cooling and warming rates, the 

degree of viability is likely to be unsatisfactory when preserving bulky tissues 

and organs for transplantation. Chemical cryoprotectants offer the most 

feasible means of protecting cells from damage due to freezing and thawing. 

Suitable cryoprotectants are characterized by a relatively low toxicity to the 

cellular materials and very high solubility in water. There are marked 

differences in the major functional groups and compositions of compounds that 

have cryoprotective efficacy. The most widely used group of protectants are 

those with low molecular weight that are significantly permeant to the 

membrane of cells, such as dimethyl sulfoxide (perhaps the most widely used 

protectant of all), propane diol and methanol (Grout, 1991). Compounds such 

as glycerol, sucrose, and a number of the sugars have varying degrees of
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permeation depending on cell type and incubation conditions (Shlafer, 1981). 

The primary role of the cryoprotectants is the protection of cells from freeze 

desiccation, but they may also provide an element of protection to specific 

molecular species within the cell by stabilizing macromolecules (Meryman et 

al., 1978). Since cryoinjury is linked to conversion of liquid water to ice, the 

colligative role of protectants depends on an effective reduction in the water 

content of the cell, which in turn reduces the effective ion/solute concentrations 

that can occur as a result o f freeze-dehydration (Grout, 1991).

Generally, cells remain stable for only a few months in the range of -70 

to -100 °C. Cells kept for longer periods at -70 to -100 °C undergo 

appreciable "aging" as a result of enzymatic activity and physical/chemical 

reactions (Luyet, 1960). All biological material can be stored without 

significant change at liquid nitrogen temperature (-196 °C) or at that for the 

vapor phase of a liquid nitrogen (-150 to -190 °C) for at least 10 years since no 

ordinary, thermally driven reactions occur in aqueous systems at these 

temperatures (Heacox et al., 1988).

Small ice crystals are thermodynamically unstable because of their high 

surface energy, and they tend to undergo recrystallization to improve their 

thermodynamic stability. Recrystallization generally occurs during warming
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and may result in cell damage (Wolfinbarger et al., 1989). Rapid thawing is 

recommended for rewarming cryopreserved heart valves since it suppresses 

recrystallization. The process is accomplished by immersion of the frozen 

tissue in a 42 °C water bath directly from the liquid nitrogen storage 

conditions. After thawing cryopreserved tissues, cryoprotectants may removed 

by a stepwise-washing procedure to minimize osmotic stress to the cells (Bank 

and Brockbank, 1987; May and Baust, 1988), although the effectiveness of 

some stepwise-washing procedures in removing the cryoprotectant may 

questioned (Hu, 1992).

D. Calcification of Cardiovascular Implants.

Calcific degeneration of cardiovascular implants and diseased 

cardiovascular tissues is common (Schoen et al., 1988). Calcification of 

cardiovascular implants often results in clinical device failure due to mechanical 

dysfunction, vascular obstruction, or embolization of calcific deposits. Primary 

tissue degeneration due to intrinsic cuspal calcification is the most frequent 

cause of clinical failure of porcine aortic valve bioprostheses (Ferrans et al., 

1980; Gallo et al., 1984; McClung et al., 1983; Schoen et al., 1983; Schoen, 

1987; Schoen et al., 1988; Valente et al., 1983; Valente et al., 1985). Bovine 

pericardial bioprostheses also fail frequently because of calcification (Reul et
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al., 1985; Schoen, 1987; Schoen et al., 1988).

Pathological analyses of failed bioprosthetic valves reveal dystrophic 

calcific deposits within the cusps involving both cellular remnants and collagen 

fibrils (Reul et al., 1985; Schoen, 1987; Schoen et al., 1988). Calcium salt 

incorporations are most extensive at regions of greatest hemodynamic stress, 

such as the commisures (the free edges of the leaflets) and annular attachments. 

Experimental calcification events in rat subdermal implants of porcine 

bioprosthetic heart valve tissue have been shown with cells devitalized by 

glutaraldehyde pretreatment within the cusps followed later by collagen 

mineralization (Levy et al., 1983; Schoen et al., 1985). Although the 

infrastructure of porcine aortic valves and bovine pericardium is different, the 

kinetics and morphologic features of mineralization of these materials are 

similar. Calcific deposits in pericardial tissue also initially involve cell 

remnants followed by mineralization of collagen. Nearly all forms of cell- 

oriented calcification occur by crystal formation on remnants of cell 

membranes, usually in the form of extracellular vesicles. Late mineralization in 

collagen could be due to either extension of cell-oriented mineral deposition, or 

to an independent extracellular matrix mineralization mechanism. Initial 

calcium phosphate deposits increase in size and number with the process of 

calcification. Proliferation of nucleation sites, crystal growth, and progressive
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confluence of diffusely distributed microcrystals result in the formation of gross 

nodules which focally obliterate implant architecture leading to ulceration, and 

eventual deformation of the valve structure (Schoen et al., 19S7). Although 

bioprosthetic tissue calcification causes either stenosis or regurgitation or both, 

regurgitation due to tearing at calcific deposits is most frequent, and calcific 

emboli can also occur. Calcification of bioprosthetic tissue does not appear to 

be completely explained by a single mechanism. Indeed this process most 

probably occurs as an interaction of host, implant, and mechanical factors. The 

physical forces to which the valve tissue is exposed (Thubrikar et al., 1983; 

Wright et al., 1982), recipient mineral metabolism (Carpentier et al., 1984), 

and host environment at the valve locus (Schoen et al., 1988) may all play a 

role in facilitating calcification. Exposure to the extracellular ions associated 

with the host mineral metabolism is a prerequisite for bioprosthetic 

calcification. Glutaraldehyde fixation is identified as the single most important 

implant factor leading to calcification of bioprosthetic valves (Golumb et al., 

1987; Levy et al., 1983). Mechanical stress plays a role in promotion of 

calcification, but mechanical deformation is not necessary for mineralization to 

proceed (Levy et al., 1983; Schoen et al., 1985; Schoen et al., 1988).

Although valved aortic homografts develop calcification much less 

frequently than xenograft and bioprosthetic valves, calcification is one of the
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general causes of homograft failure in the late ultimate results (Maxwell et al., 

1989; Miller and Shumway, 1987). Calcification is significantly greater in the 

conduit wall than in the valve leaflets (Brock, 1968; Gonazalez-Lavin et al., 

1988; Jonas et al., 1988; Maxwell et al., 1989; Miller and Shumway, 1987; 

Saravalli et al., 1980; Webb et al., 1988), and the consequent lack of 

distensibility limits their long-term durability. In addition to cell-and collagen- 

oriented calcification of the aortic homograft, aortic wall calcification occurs in 

close association with elastin as a prominent feature in experimental (subdermal 

and circulatory models) and clinical species (Gonazalez-Lavin et al., 1988; 

Jonas et al., 1988; Khatib and Lupinetti, 1990; Saravalli et al., 1980). Urist 

and Adams (1967) demonstrated that the calcification of transplanted aorta in 

rats was localized mostly to the elastic structure after degradation or splitting of 

elastic fibers where an increased rate of calcium uptake was observed. In fresh 

and cryopreserved aortic homograft conduit, calcification was also present in 

the elastic component of the media with the elastosis (Gonazalez-Lavin et al., 

1988; Jonas et al., 1988).

The pathophysiology of cardiovascular implant calcification is complex 

and poorly understood, and there are no satisfactory preventive measures or 

therapies to reverse degenerative calcification. However, calcification 

occurring normally in skeletal and dental tissues, and pathologically in
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cardiovascular implants share important features (Anderson, 1983; Anderson, 

1989; Schoen et al., 1988). Some mechanistic factors are shared by the various 

types of cardiovascular implant calcification.

Chief among the common elements in the various types of cardiovascular 

implant calcification is the various cell-derived components, such as cellular 

debris and subcellular vesicle-like organelles, which serve as the initial locus of 

calcification in direct analogy to the matrix vesicles of endochondral skeletal 

and dental mineralization (Anderson, 1984). Membranous structure of matrix 

vesicles in bone mineralization are derived from the surface membrane of 

chondrocytes, bone cells, and nonskeletal cells (Anderson, 1983) and initiate 

calcification by concentrating calcium within their already phosphate-rich 

structure (Anderson, 1984; Valente et al., 1985). Vesicles present a confined 

microenvironment for mineral initiation in which calcium is attracted by acidic 

phospholipids concentrated in matrix vesicles (Peress et al., 1974; Wuthier, 

1975) and inorganic phosphate is concentrated in the vesicles by phosphatases 

(e.g., alkaline phosphatase, adenosine triphosphatase, and pyrophosphatase) 

residing in the matrix vesicle membrane (Cyboron et al., 1981; Matsuzawa and 

Anderson, 1971). These phosphatases facilitate the initiation of mineralization 

both by raising the local phosphate concentration and by diminishing the 

mineral inhibiting effects of pyrophosphate and adenosine triphosphate. Matrix
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vesicles serve only for mineral initiation, the mineral proliferation is dependent 

on the concentration of calcium and phosphate in the extracellular fluid and the 

presence of mineral inhibitors, pyrophosphate, adenosine triphosphate, and 

anionic proteins. Matrix vesicle structures may be comparable to the early cell- 

oriented calcification noted in clinical and experimental cardiovascular implants.

Calcification of cells and cell fragments is also due to a disruption of 

normal physiology for cellular calcium regulation. Normal living animal cells 

have low intracellular free calcium concentrations (approximately 10'7 M) and 

high extracellular free calcium concentrations (approximately 10'3 M)(Schoen, 

1987; Schoen et al., 1988). In healthy cells, despite the entrance of calcium 

into cells through several types of calcium channels, the 10,000-fold gradient 

across the plasma membrane is maintained by energy-requiring metabolic 

process such as plasma membrane-bound Ca2+-ATPase. Ca2+-ATPase uses the 

energy of ATP hydrolysis to pump Ca2+ out of the cell (Schoen, 1987; Schoen 

et al., 1988). In damaged cells of cardiovascular implants, mechanisms for 

calcium exclusion are no longer functional (decreased efflux) (Schoen et al., 

1986), and the injured membrane is more permeable to calcium (increased 

calcium influx). A net calcium influx reacts with phosphorus in the membrane 

of cell and may contribute to the initiating mechanism of calcium phosphate 

crystallization in cardiovascular implants.
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The first mineral that forms in matrix vesicles is amorphous calcium 

phosphate, which exhibits little or no crystallinity to roentgen ray or electron 

diffraction. However, it is usually converted to crystalline, insoluble calcium 

phosphate mineral in the form of mature hydroxyapatite. Hydroxyapatite is a 

complicated compound with ten calcium atoms, six phosphate groups, and two 

hydroxyls and must be built from calcium and phosphate ions available in 

serum or extracellular fluid. The concentration of calcium and phosphate in 

serum or extracellular fluid is not sufficient to initiate mineral deposition 

spontaneously, but is sufficient to support crystal proliferation once a few 

preformed crystals of hydroxyapatite are present. Preformed crystals serve as 

templates for new crystal formation (Anderson, 1983).

E. Proteoglycans in Aorta.

There are two main classes of extracellular molecules in aorta: (1) 

heterogeneous proteoglycans (PGs) as ground substance, (2) elastin and 

collagen fibers which provide structural function. The proteoglycans in the 

arterial wall are synthesized by smooth muscle cells and endothelial cells in 

cardiovascular structures (Morita et al., 1990). Extracellular matrix 

proteoglycans are functionally important components of the arterial wall. The 

aorta undergoes repetitive, transient pressure changes, and it is likely that the
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proteoglycans, in concert with the elastin component of the tissue, buffer these 

cyclical changes. In addition, these macromolecules contribute to maintain 

structural integrity of the tissue, influence calcification, and regulate the 

permeability of the tissue (Berenson et al., 1973; Castellot et al., 1982; 

Ruoslathi, 1988; Ruoslathi, 1989). Proteoglycans are high molecular weight 

polyanionic substances consisting of a central core protein to which many 

different glycosaminoglycan (GAG) chains are covalently bound. 

Glycosaminoglycans are long heteropolysaccharide molecules, consisting of 

repeating disaccharides units in which one sugar is a hexosamine (N- 

acetylglucosamine or N-acetylgalactosamine) and the other is uronic acid. In 

most cases the amino sugar is sulfated. The nature of glycosaminoglycans is 

highly charged polyanions because of the carboxyl and sulfate groups in the 

disaccharide units. There are six classes of glycosaminoglycans distinguished 

by their sugar residues, the type of linkage between these residues, and the 

number and location of sulfate groups: (1) hyaluronic acid (2) chondroitin 

sulfate (3) dermatan sulfate (4) heparan sulfate (5) heparin (6) keratan sulfate. 

Hyaluronic acid is the largest glycosaminoglycan. Hyaluronate differs from the 

other glycosaminoglycans in that it does not contain sulfate groups and is not 

covalently bound to protein. It is nevertheless classified as a 

glycosaminoglycan because of its structural similarity to these other polymers.

It consists of repeating disaccharide units of N-acetylglucosamine and
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glucuronic acid. Chondroitin sulfate is found widely distributed throughout 

various tissues. It is an unbranched hetropolymer consisting of repeating 

disaccharides of N-acetylgalactosamine and D-glucuronic acid. The 

disaccharides may be sulfated in either the 4 or 6 position of N- 

acetylgalactosamine. Dermatan sulfate differs from chondroitin sulfates in that 

its predominant uronic acid in the repeat disaccharide is found as iduronic acid, 

although glucuronic acid is also present in variable amounts. Glucosamine and 

glucuronic acid or iduronic acid form disaccharide repeated units of heparin, as 

in dermatan sulfate. Heparin is particularly highly sulfated, containing up to 

three sulfate residues per disaccharide unit. Unlike the other 

glycosaminoglycans, which are predominantly extracellular components, 

heparin is an intracellular component of mast cells. Heparan sulfate is very 

closely related to heparin, in that it contains a similar disaccharide repeat unit. 

However, it varies from heparin, in that it is less sulfated and contains higher 

proportions of glucuronic acid than heparin. Heparan sulfate appears to be 

extracellular in distribution. Keratan sulfate is characterized by molecular 

heterogeneity and is composed principally of a repeating disaccharide unit of N- 

acetylglucosamine and galactose. The length and charge distribution within the 

glycosaminoglycan chains mainly determine physico-chemical properties 

(polydispersities in terms of molecular size, and charge density) of 

proteoglycans.
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Proteoglycans exist on three levels of organization: (1) individual 

subunits (2) individual aggregates and (3) the level created by the interaction of 

subunits of one aggregate with subunits of another aggregate (Castellot et al.,

1982). Subunits consist of a protein core filament with multiple covalently 

bound glycosaminoglycan chains. The proteoglycan aggregate is composed of 

many proteoglycan subunits in noncovalent associations with a single hyaluronic 

acid molecule through a terminal hyaluronic acid-binding region on the core 

protein. This association is stabilized further by the link-protein which has 

affinity for both hyaluronate and for the hyaluronate binding region of the 

proteoglycan subunits. A single link-protein is involved in the stabilization of 

each proteoglycan subunit in the aggregate.

Little information is available describing the characteristics of individual 

proteoglycans and their precise localization in the aortic tissue. However, 

arterial proteoglycans have certain physico-chemical properties that are similar 

to those of hyaline cartilage (Gardell et al., 1980; Oegema et al., 1979).

Recent advances in understanding of the cartilage matrix and the process of 

mineralization indicate that matrix proteoglycans have an inhibitory effect on 

cartilage mineralization (Hirschman and Dziewiatkowski, 1966; Joseph, 1983; 

Larsson et al., 1973; Lohmander and Hjerpe, 1975; Mitchell et al., 1982). 

Lohmander and Hjerpe (1975) reported that the cartilage lost approximately half
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its content of proteoglycans with the onset of mineralization. The 

proteoglycans remaining in the mineralized cartilage differed in size from those 

of nonmineralized tissue. There are decreased proportions of very high 

molecular weight proteoglycans in mineralized tissue. Reddi et al. (1978) also 

found that there was a decline in the synthesis of proteoglycans and a large 

proportion of the newly synthesized molecules are of lower molecular weight in 

the cartilage undergoing extensive mineralization. Although the mechanism by 

which proteoglycans inhibit mineralization is not immediately apparent, 

proteoglycans might inhibit mineralization by the following mechanisms. First, 

the polyanionic chains of glycosaminoglycans may help to hold the extended 

network, repel phosphate anions, and bind calcium. Secondly, proteoglycan 

aggregates inhibit matrix calcification more effectively than proteoglycan 

subunits because aggregates physically shield or sequester small mineral clusters 

within their network of subunits, preventing enlargement of small mineral 

clusters beyond a critical size that would spread mineralization through the 

matrix (Cuerro et al., 1973). This inhibition occurs because subunits bound to 

aggregates can not be easily displaced, and they are organized to provide a 

large, uniformly dense network of negatively charged glycosaminoglycans 

chains, and are essentially immobilized in the matrix.

There has been little information describing the effects of
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cry (preservation on proteoglycan changes in allograft heart valves. However, 

cryopreserved allografts have superior durability over cold-stored valves 

possibly due to improved proteoglycan matrix preservation which may provide 

for sustained cell activity and reduced potential for calcification following 

transplantation. Previous studies on cryopreserved allograft heart valves have 

focused on donor cell viability in the valves (Hu et al., 1989; Hu et al., 1990; 

Parker et al., 1978; Reichenbach et al., 1971). The present study focuses on 

the matrix components of the arterial conduit tissue since valved aortic 

homografts develop calcification (late after transplantation) significantly greater 

in the aortic wall than in the valve leaflets.

The research to be described was designed to assess the effects of 

cryopreservation on matrix proteoglycans with the ultimate objective of 

permiting prediction of the tendency of aorta conduit tissue to calcify following 

transplantation. The basic premise, or hypothesis, for this study is that 

proteoglycan changes in the conduit tissues of allograft valves contribute to 

valve calcifications by mechanisms similar to those mechanisms associated with 

bone mineralization.

Specifically, the aims of this study are divided into the following: I. 

Development of method for optimal extraction of proteoglycans from porcine
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aorta tissue. II. Quantitative analysis of proteoglycans present in fresh and 

cryopreserved aorta conduit tissue. III. Study of the size distribution of 

proteoglycans in fresh and cryopreserved tissue. IV. Assessment of the 

distribution of proteoglycans in aorta conduit tissue which are present in soluble 

matrix and covalently linked to collagenous and elastic fibers. V. Evaluation of 

the morphology of fresh and cryopreserved porcine aorta tissue. VI. Study of 

the distribution of proteoglycans within the arterial wall using transmission 

electron microscopy. VII. Analysis of calcium in fresh and cryopreserved 

porcine aorta conduit tissue. VIII. Determination of phosphorus content of 

fresh and cryopreserved aorta conduit tissue.
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CHAPTER II 

EXPERIMENTAL DESIGN AND METHODS

A. Procurement of Tissue.

Porcine aorta conduit tissue was used in this study. The porcine tissues 

were obtained from a local abattoir, Gwaltney meat-packing company in 

Smithfield, Virginia. The general age and weight of the pigs were nearly 

equivalent. The pig hearts were removed within 20 minutes of slaughter with 

the assistance of Gwaltney’s staff. Each heart was immediately washed with 

200 ml of cold lactated Ringer’s solution to remove residual blood and 

transferred to cold tissue culture media (RPMI 1640, GIBCO) and packed in ice 

for transport to the laboratory. The aortic conduits (about 6 cm in length) were 

quickly dissected from the hearts on arrival at the laboratory.
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B. Preparation of Fresh and Cryopreserved Tissues.

Fresh and cryopreserved tissues were used for this study. Fresh aorta 

conduit tissues are defined as tissues dissected from the hearts immediately on 

arrival at the laboratory. Cryopreserved tissues are defined as tissues taken 

through a standard preimplantation processing for cryopreservation as described 

by Lange and Hopkins (1989). The detailed methods in each step (allowable 

warm ischemic time, antibiotic treatment regimen, concentration of 

cryoprotectants, and technique for storage) of cryopreservation protocols differ 

between allograft heart valve programs in different tissue banks and valve 

processing companies. This study employed the methods of LifeNet Transplant 

Services in Virginia Beach, VA (Lange and Hopkins, 1989; Wolfinbarger and 

Hopkins, 1989) for valve cryopreservation.

For the preparation of cryopreserved tissue which was used in this study, 

excess adipose tissue of porcine aortic conduit was trimmed after dissection of 

aorta conduit tissue from hearts. Tissues were rinsed in cold 0.9 % NaCl and 

disinfected with antibiotic mixtures. The following antibiotics were premixed 

with tissue culture medium (RPMI 1640) and approximately 125 ml of the 

antibiotic solution was added to each tissue: cefoxitin (240 figlml medium), 

lincomycin (120 /xg/ml medium), polymyxin B sulfate(l fig/ml medium) and
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vancomycin (50 jug/ml medium). The tissue, immersed in the antibiotic 

medium, was then stored at 4 °C for 24 hours. The conduit tissue was 

removed from the antibiotic medium container and rinsed three times with 150 

ml of fresh medium (RPMI 1640) at 4 °C.

The freezing medium was prepared as follows: RPMI 1640 tissue culture 

medium supplemented to a final concentration of 10 % (v:v) with fetal calf 

serum (FCS, GIBCO) were premixed. Dimethylsulfoxide (DMSO), to a final 

concentration of 10 % (v:v) was added to the cooled (4 °C) premixed medium 

at 4 °C. The conduit tissue was placed in volumetric container, and the freshly 

prepared freezing solution was added to produce a total volume of 100 ml. The 

conduit tissue in freezing solution was placed into a clear 4 by 6 inches of 

polyester-polyolefin modified bag (Kapak Corporation). All air was removed 

from the pouch by gently squeezing it and the bag was heat-sealed using a 

commercially available sealer (Scotchpak brand, Kapak Corporation). This bag 

was then inserted into a slightly larger 5 by 8 inches bag of trilaminate 

aluminum polypropylene (Kapak Corporation) and this outer bag was also heat- 

sealed. Packaging of tissue in freezing media was performed in the cold room 

(4 °C). The doubly packaged tissue was placed in a specially designed 

styrofoam box, placed in a freezer (-70 °C) for 5 hours, and then stored at -150 

°C (ultralow freezer, Harris Corporation) until used.
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Prior to extraction of cryopreserved tissues for proteoglycans, the 

cryopreserved aortic conduit was removed from the ultralow freezer, the outer 

pouch was opened and discarded, and the frozen conduit tissue was thawed by 

immersion of the inner bag in a 40 °C water bath (for approximately 5 minutes) 

(Wolfinbarger, 1992). When the ice in the bag turned to slush during the 

thawing step (freezing medium was not allowed to completely thaw), the inner 

pouch was opened and the aortic conduit in freezing medium was transferred 

into a large flask (500 ml). Dilution medium consisting of RPMI 1640 medium 

supplement with FCS, 10 % final concentration, (33 ml) was added to the 

tissue-containing flask, and it was gently agitated for 1 minute. An additional 

66 ml of the dilution medium was added and again gently agitated for 1 minute. 

More dilution solution (200 ml) was added to the aortic conduit and agitated for 

an additional one minute. The conduit tissue was then transferred to 100 ml of 

fresh dilution solution. This "cryopreserved tissues" was then treated in a 

manner similar to fresh tissues.

C. Proteoglycan Extraction from Conduit Tissue.

Conduit tissues were rinsed in isotonic saline and minced as finely as 

possible with dissecting scissors. Weighed samples of 1 g of finely minced 

aorta conduit tissues were placed in Oak Ridge Centrifuge Tubes (Nalgene) and

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aliquots of 5 ml of appropriate cold extraction solutions (Gdn-HCl) with 

protease inhibitors were added. A number of protease inhibitors were included 

in the extraction solutions: 0.1 M aminocaproic acid (for plasmin and plasmin 

activators), 0.005 M benzamidine-HCl (for trypsin-like activity), 0.01 M EDTA 

(for metalloproteases), 0.005 M N-ethylmaleimide (for sulfhydry 1-dependent 

proteases and to prevent nonspecific disulfide exchange, which can occur in 

denaturing solvents), 0.001 M iodoacetamide (for thiol-dependent proteases), 

and 0.001 M phenylmethylsulfonyl fluoride (for serine-dependent proteases). 

Phenylmethylsulfonyl fluoride was dissolved in small volumes of methanol 

(0.17 g/ml for 1 M) and added as small volumes of concentrated solutions (for 

final 0.001 M of phenylmethylsulfonyl fluoride depending on total volumes of 

extraction medium) at several times during extraction. Extraction of tissue was 

performed using a rocker platform (Bellco Glass, Inc.) at 4 °C. Extracts were 

centrifuged at 10,000 x g using a JA-20 rotor in a refrigerated centrifuge 

(Beckman Model J2-21) for 30 minutes, and the supernatants (approximately 4 

ml) were transferred into dialysis membrane tubing (Spectra/por, molecular 

weight cut off 3,500) and dialyzed repeatedly (five times) against 200 ml of 

ultra-pure water at 0 °C with stirring.
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D. CsCI Centrifugation of Proteoglycans.

Once the crude proteoglycans were extracted, CsCI density gradient 

centrifugation was used for further purification from other macromolecules and 

for separating proteoglycans from each other. Proteoglycans in the extracts of 

aorta were adjusted to a density of 1.33 g/ml by the addition of solid CsCI 

(approximately 0.4g/ml extract), transferred to an ultrabottle with an aluminum 

closure (Nalgene), and centrifuged at 100,000 x g for 40 hours at 8 °C in an 

ultracentrifuge (Beckman, Model L8-70) using a Type Ti 60 rotor. Following 

centrifugation, five equal fractions were collected using a syringe with a long 

needle starting from the bottom of the tube. The densities of the fractions were 

determined by weighing 1 ml of each fraction. The bottom three-fifths of the 

gradient were pooled, and the pooled solution was adjusted to a density of 1.46 

g/ml by the addition of solid CsCI (approximately 0.12g/ml extract). These 

sample were centrifuged again at 100,000 g for 40 hours at 8 °C. Six equal 

fractions were then collected from each tube using a 10 ml syringe with a long 

needle, again starting from the bottom of the tube. The densities of each 

fraction were determined by weighing 1 ml of each fraction. The fractions (20 

ml) were transferred to dialysis membrane tubing (Spectra/por, molecular 

weight cut off 3,500) and exhaustively dialyzed (five times) against 1 liter of 

ultra-pure water for one day at 0 °C, or until the osmolarity of the dialysate
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(measured by Advanced Wide-Range Osmometer 3W2, Advanced Instruments 

Inc.) approximated that of water. Based on uronic acid and protein content 

profiles, samples were pooled into three fractions (I, II, and III) and freeze- 

dried in Freeze Dry/Shell Freeze System (Labconco).

E. Quantitation of Proteoglycan Concentrations.

Glycosaminoglycans were isolated from the extract by alkaline treatment 

as described by Carlson (1968). Briefly, dialyzed proteoglycans were incubated 

in 0.05 M sodium hydroxide (NaOH) in 1.0 M sodium borohydride (NaBH4) 

for 48 hours at 45 °C. Alkali was neutralized by adding 125 yX of 10 M acetic 

acid/ml of solution, and the solutions were clarified by centrifugation at 6,000 x 

g using a JA-20 rotor in a refrigerated Beckman Model J2-21 centrifuge for 20 

minutes. Trichloroacetic acid was added to the supernatants (10 % , w:v, final 

concentration) and incubated at 4 °C for 2 hours. The samples were then 

centrifuged at 3,000 rpm using a Damon/IEC Division centrifuge (IEC Model 

HN-S) for 30 minutes. The supernatants were transferred into dialysis 

membrane tubing (Spectra/por, molecular weight cut off 3,500) and dialyzed 

repeatedly (three times) against ultra-pure water equivalent to 40 times the 

sample volume at 0 °C. The dialysates were collected and used for the 

determination of uronic acid concentrations as described by Bitter and Muir
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(1962).

Uronic acid content in the proteoglycan fractions was determined by the 

method of Bitter and Muir (1962) with glucuronolactone (Sigma Chemical Co.) 

as a standard. Sulfuric acid reagent (0.025 M sodium tetraborate in 36 N 

sulfuric acid) was prepared and cooled in a freezer (-20 °C) before the assay. 

The sulfuric acid reagent (3 ml) was added to 0.5 ml of sample or standards 

containing 0 - 2 5  fig of uronic acid. The samples or standards and reagent 

were mixed carefully, heated in a boiling water bath for 10 minutes, and cooled 

to room temperature. Carbazole (Fluka chemie AG) reagent (0.1 ml of 0.125 % 

weight/volume solution in absolute ethanol) was then added to the cooled 

mixture. The samples or standards and carbazole reagent were well mixed, 

covered to prevent evaporation, heated in a boiling water bath for 15 minutes, 

and cooled to room temperature. Absorbance was measured at 530 nm in a 

spectrophotometer (Shimadzu UV 160U).

Protein content in the proteoglycan fractions was measured by the 

procedure of Lowry (Lowry et al., 1951) using bovine serum albumin (BSA) as 

a standard. To samples or standards of 0 - 500 f i g  of protein in 0.1 ml water, 

4ml of fresh Reagent A (2 % sodium carbonate in 0.1 N NaOH, 2 % potassium 

tartarate, 1 % cupric sulfate) was added and allowed to stand for 10 minutes at
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room temperature. Folin phenol reagent (0.5 ml, 1 N, Sigma Chemical Co.) 

was then added and mixed well. After 30 minutes, absorbance of the samples 

and standards were read at 500 nm.

F. Gel Column Chromatography.

Gel chromatography was used for determination of approximate 

hydrodynamic volumes of purified proteoglycans. Separation of proteoglycans 

based on size was performed on a column of Sepharose CL-4B (Pharmacia) 

which is an agarose-based gel permeation matrix having an approximated 

agarose concentration of 4 %. Dissociative buffer, 4 M Gdn-HCl/0.05 M 

sodium acetate (pH 5.8) was prepared and filtered through a Whatman, #3 

filter. Dissolved gases were removed by placing the buffer in a side-arm 

vacuum flask and applying a vacuum (precision vacuum pump, GCA 

corporation, Model S35). The degassing process was stopped when no more 

small air bubbles were released from the buffer (usually 20 to 30 minutes with 

600 ml of buffer).

1. Preparation of Gel Matrix.

The sepharose slurry was washed with dissociative buffer equivalent to
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two volumes of the gel volume to equilibrate the gel and remove the 

Merthiolate present in the gel as a preservative. Briefly, the gel slurry (180 g 

for 200 ml volume) was poured into a graduated cylinder and suspended in 2 

times the gel volume of dissociative buffer (400 ml) and allowed to settle. The 

supernatant was decanted off carefully to remove fines, and the settling process 

was repeated. The gel was finally suspended in an equal volume of dissociative 

buffer.

2. Column Packing.

A long narrow column (1.5 cm in diameter and 100 cm in length) was 

used for the gel permeation chromatography. The column was filled with the 

gel slurry mixed with degassed dissociative buffer using a packing reservoir 

(250 ml) attached to the top of the column. The gel was allowed to briefly 

settle in the column prior to opening of the column outlet. The flow rate (20 

ml/hour) during packing was slightly faster than that to be used during 

chromatographic separations. After the gel had completely packed, the top of 

the column was connected to a reservoir containing dissociative buffer, and the 

column flow rate was reduced to that to be used for separation runs. The 

column was eluted at a rate of 16 ml/hour. This constant flow rate was 

maintained by use of a peristaltic pump (Pharmacia, Model P-3). Before use,
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one column volume (approximately 160 ml) of buffer was allowed to flow 

through the column.

3. Collection and Dialysis of Eluent.

A fraction collector (ISCO) was connected to the column and set to 

collect 3.5 ml (70 drops) of eluent in each fraction. A hollow fiber system 

(Fleaker hollow fiber concentration system, quantity 88 fibers, Spectrum), for 

the dialysis of solute molecules against ultra-pure water, was connected between 

the peristaltic pump and the fraction collector. A reservoir containing ultra- 

pure water was also connected to the hollow fiber system, and a flow of ultra- 

pure water through this continual dialysis system was maintained by gravity 

flow methods (approximately 320 ml/hour).

4. Calibration of the Column.

The void volume (V0) of the column is the volume in which very large 

molecules (which are excluded from the gel) would elute. The void volume 

was calibrated using Escherichia coli by measuring turbidity of the eluent at 

600 nm or with blue dextran by measuring absorption of the eluent at 620 nm. 

An aliquot of Escherichia coli (lyophilized cells of strain B, ATCC 11303,
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Sigma Chemical Co.) was weighed (1.5 mg), dissolved in 1 ml of 4 M Gdn 

HC1/0.05 M sodium acetate, pH 5.8 (dissociative buffer), and chromatographed 

on the Sepharose CL-4B column. The column was eluted at a flow rate of 16 

ml/hour. Fractions of 3.5 ml were collected with fraction collector and 

measured for absorbance at 620 nm. Blue dextran, (molecular weight 

2,000,000, Sigma Chemical Co.) 1.5 mg dissolved in 1 ml of dissociative 

buffer, was also subjected to gel permeation chromatography on the column 

(1.5 x 100 cm) of Sepharose CL-4B. The column was eluted at a flow rate of 

16 ml/hour, and 3.5 ml fractions were collected. The eluent fractions were 

monitored for absorbance at 620 nm.

Inclusion volume (V;) of the column is the volume in which very small 

molecules, which are completely included in the gel, would elute. The 

inclusion volume was determined using 5,5’-dithiobis [2-nitrobenzoic acid] 

(molecular weight 396.3, Sigma Chemical Co.) by measuring for absorbance at 

280 nm. 5,5’-dithiobis [2-nitrobenzoic acid] (1.5 mg) was dissolved in 1 ml of 

dissociative buffer and applied on the Sepharose CL-4B column. Sample was 

eluted with 4 M Gdn-HCl/0.05M sodium acetate (pH 5.8) at a constant rate of 

16 ml/hour. The eluent was measured for absorbance at 280 nm.

Chondroitin sulfate (Sigma Chemical Co., Catolog No. C8529), 0.15 mg
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in 1 ml of gel filtration buffer, was chromatographed on the Sepharose CL-4B 

column. Fractions of 3.5 ml were collected and monitored for absorbance at 

530 nm using the carbazole assay method described earlier (Bitter and Muir, 

1962).

5. Gel Permeation Chromatography of Proteoglycans.

Lyophilized proteoglycans extracted from tissues (0.5 mg of uronic acid) 

were dissolved in degassed 4 M Gdn-HCl/0.05 M sodium acetate buffer, pH 

5.8, and chromatographed on the Sepharose CL-4B column (1.5x100 cm) 

previously equilibrated with the same buffer. The column was eluted at a flow 

rate of 16 ml/hour and 3.5 ml was collected in each fraction with the fraction 

collector. Aliquots of the fractions were analyzed for uronic acid by carbazole 

reaction (Bitter and Muir, 1962) and for protein by measuring for absorbance at 

280 nm. Each sample for gel filtration was chromatographed more than three 

times to insure statistical accuracy. K ,̂ values for proteoglycans eluting from 

the column were used to refer to the relative sizes (hydrodynamic volumes) of 

proteoglycans. The values were calculated from the mean elution volume 

(Ve) of the proteoglycans using the formula: = Ve - V0/Vi - V0, where V0

=  void volume and Vj = inclusion volume of the column, and Ve =  elution 

volume of the proteoglycans.
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G. Enzymatic Extraction/Digestion of Conduit Tissue.

1. Collagenase-Digestion of Conduit Tissue.

Gdn-HCl extracted conduit tissue (5 g) described earlier was washed 

three times with ultra-pure water and hydrolysed with collagenase from 

Clostridium histolvtium (clostridiopeptidase A; EC 3.4.24.3, Sigma Chemical 

Co., 1 mg of enzyme/g of wet tissue) in 10 ml of 10 mM CaCl2/50 mM Tris- 

HC1 buffer, pH 7.6. for 48 hours at 37 °C. All protease inhibitors, as 

previously described, were added to the sample to inhibit non-specific 

proteolysis. The hydrolysate was centrifuged at 6,000 x g using a JA-20 rotor 

in a Beckman J2-21 centrifuge for 30 minutes, and supernatant (collagenase 

digest) was removed.

2. Elastase-Digestion of Conduit Tissue.

The residue tissue, not digestible by collagenase, was washed three times 

with ultra-pure water and hydrolysed with elastase (Type I: from porcine 

pancreas, EC 3.4.21.36. Sigma Chemical Co., 250 units/g of wet tissue) for 48 

hours at 37 °C in 0.2 M Tri-HCl buffer, pH 8.8, containing protease 

inhibitors. The supernatant (elastase digest) was removed after centrifugation
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of the digestion mixture at 6,000 x g in a Beckman J2-21 centrifuge for 30 

minutes.

3. Isolation of Glycosaminoglycan from Residual Tissue.

The pellet remaining after the digestion with elastase was washed with 

ultra-pure water and treated with 2.0 % NaOH overnight at room temperature 

and further digested with papain (from papaya latex, EC 3.4.22.2, Sigma 

Chemical Co.,1 mg papain/g of wet tissue), after adjusting the pH to 6.4 with 

phosphoric acid. Digestion was performed at 65 °C for 24 hours in the 

presence of 0.01 M  EDTA and 0.01 M cysteine hydrochloride.

H. Light Microscopy and Transmission Electron Microscopy.

In order to localize proteoglycans in histology sections of porcine aorta, 

the cationic phthalocyanine-like dye Cuprolinic Blue (CB, Poly sciences, Inc) 

was used as a specific stain (Van Kuppevelt et al., 1985; Volker et al., 1986).

Small pieces of aorta, both fresh and cryopreserved, (1 mm x 1 mm x 1 

mm) were fixed with 2.5 % glutaraldehyde in 0.1 M phosphate buffer, pH 7.2, 

overnight at 4 °C. Half of the fixed samples were stained for 12 hours with
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1.0 % Cuprolinic Blue in 0.025 M veronal acetate buffer, pH 5.6, containing 

2.5 % glutaraldehyde. The rest of the fixed tissues were stained with 1.0% 

Cuprolinic Blue in the presence of 0.3 M MgCl2. After staining, the specimens 

were washed three times (10 minutes for each wash) with staining solution 

lacking Cuprolinic Blue and 0.3 M MgCl2. The tissues were dehydrated in a 

graded ethanol series (30 %, 50 %, 70 %, 95 %, twice with 100 %, twice with 

acetone) for 10 minutes each. The 30 % and 50 % ethanol solution contained

0.5 % sodium tungstate (Sigma Chemical Co.). The aorta blocks were 

embedded in low viscosity epoxy resin. Tissue sections were prepared using a 

RMC ultramicrotome (Model MT2C). For histology study and selection for 

electron microscopy examination, semi-thin sections were stained with 

Richardson stain preparation (2 part Azure II, 1 part methylene blue, and 1 part 

sodium borate in deionized water) and studied by light microscopy (Nikon 

Biophot V series). Ultra-thin sections, stained with Cuprolinic Blue only were 

stained with uranyl acetate and lead citrate. Briefly, droplets (one for each 

grid) of 2 % uranyl acetate were formed on the petri dish, and the grids were 

immersed. After 20 minutes, grids were rinsed three times with 100 ml of 

deionized water and dried on the petri dish. Droplets (one for each grid) of 0.4 

% lead citrate were formed. The grids were placed in the stain droplet for 20 

minutes. Grids were rinsed three times with 100 ml of deionized water and 

dried. Staining of thin sections with uranyl acetate and lead citrate was omitted
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in samples stained with Cuprolinic Blue in the presence of 0.3 M MgCl2. 

Sections were examined using transmission electron microscopy (JEOL 100 CX 

II).

I. Calcium and Phosphorus Assays.

Fresh and cryopreserved porcine aorta conduit tissues were processed for 

total calcium and phosphorus determination. Aortic conduit tissue to be used 

for mineral analyses were rinsed three times with 100 ml of 0.9 % NaCl.

Tissue (1 g) was placed in crucible (Fisher), and ashed in muffle furnace 

(Sybron, Thermolyne 2000) at 550 °C overnight. The ashed tissues were 

solubilized in 5 ml of IN HC1 overnight and analyzed for calcium and 

phosphorus.

The arsenazo III method (Bauer, 1981; Janssen and Helbing, 1991; 

Michaylova and Ilkova, 1971; Rowatt and Williams, 1989) was used for 

determination of total calcium content per gram of tissue. CaCl2 solution (0.01 

mM in IN HC1) was prepared as standard stock. Samples or standards (0.1 

ml) containing 0 - 4 fig calcium in IN HC1 were mixed with 4 ml Arsenazo III 

solution, 0.05 % Arsenazo III (Sigma Chemical Co.) in 0.5 M Tris-HCl, pH 

7.4. The absorbance of purple colored complex was read at 650 nm in a
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spectrophotometer.

The ascorbic acid method (Chen et al., 1956) was used for the 

determination of tissue phosphorus in fresh and cryopreserved pig aorta conduit 

tissues. This method was based on the color formed by the reduction of a 

phosphomolybdate complex. Ascorbic acid was used for the reduction of a 

phosphomolybdate. Samples or standards (4 ml) containing up to 8 fig of 

phosphorus were mixed with 4 ml of reagent C (1 volume of 6 N sulfuric acid, 

2 volumes of distilled water, 1 volume of 2.5 % ammonium molybdate, 1 

volume of 10 % ascorbic acid). The mixed samples or standards with reagent 

C were capped with Parafilm, placed in a 37 °C water bath for 1.5 to 2 hours, 

and cooled to room temperature. The absorbance was read at 820 nm in a 

spectrophotometer.

J. Statistical Evaluation of Data.

Experiments for the isolation of proteoglycans and sequential extraction 

o f tissue were repeated more than three separate times. Data for the content of 

uronic acid and protein in proteoglycans were recorded as microgram (jug) per 

gram (g) wet tissue weight and represented mean +  standard error of a 

minimum of 3 replicate assays. Studies for mineral analyses of tissues were

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



performed in triplicate and repeated at least three separate times. Elemental 

concentrations were expressed as microgram per gram wet tissue weight. The 

data were used for calculation of the means and standard error of the means. 

Linear regression analyses (Energraphic 3.0) were used for standard curves of 

the uronic acid assay, the Lowry protein assay, calcium analysis with Arsenazo 

III, and the phosphorus assay. Statistical evaluations of significance were 

compared by Student’s t test and analysis of variance (ANOVA). Means of 

more than two groups were compared by multiple comparison tests (TUKEY, 

REGWF. REGWQ) (University SAS program). Significance level was set at

0.05.
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CHAPTER IH 

RESULTS

A. Basic Morphology of Fresh and Cryopreserved Porcine Aortic Conduit 

Tissue.

Light microscopic studies revealed that the tunica media of porcine aortic 

conduit tissue contains an abundance of smooth muscle cells (represented by the 

nuclei); however, the most distinct feature of the tunica media is its large 

amount of elastin material. The elastin material is not present in the form of 

fibers, but rather as fenestrated membranes (Figure 1A). Careful examination 

of Figure 1A revealed what appears to be interruptions of some of the laminae. 

These interruptions are actually the fenestrations or openings in the elastin 

membrane. The smooth muscle cells of the media are arranged in a closely 

wound spiral between the elastic membranes, however, this arrangement is 

difficult to recognize in sectioned material.

A comparative histologic examination of tunica media from fresh and
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Figure 1. Histologic sections of the tunica media of fresh (A) and 

cryopreserved porcine aortic conduit (B), showing normal elastic architecture 

(waves) and distribution of smooth muscle cell, nuclei, (Richardson stain; 

original magnification x400).
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cryopreserved porcine aorta conduit specimens revealed a normal pattern of 

elastic tissue and distribution of the smooth muscle cells in the medial layer of 

aorta (Figure 1). The pattern of elastin distribution in fresh aortic tissue 

consisted of long, uniform, parallel laminae in regular arrangement. The 

smooth muscle cells had prominent round nuclei, and were distributed between 

the elastic laminae as single cells (Figure 1A). The normal structure of the 

media was not affected during tissue preimplantation processing since neither 

change of the elastic tissue nor evidence of altered distribution of smooth 

muscle cells was detected in cryopreserved aorta conduit specimen (Figure IB).

The outermost layer of the porcine aorta, the tunica adventitia, is shown 

in Figure 2. The tunica adventitia consists mostly of collagenous fibers that 

course in longitudinal spirals. Their course, like the smooth muscle cells, 

however, is unrecognizable in individual tissue histology sections. The cells of 

the adventitia, represented by the nuclei seen in the adventitia in Figure 2, are 

fibroblasts. There are no elastic laminae in the adventitia; but elastic fibers are 

present, though relatively few in number. The presence of elastic fibers in 

histology sections used in this study was unrecognizable since the elastic fibers 

were not stained with Richardson stain preparation. A comparative histologic 

examination of tunica adventitia from fresh (Figure 2A) and cryopreserved 

(Figure 2B) porcine aortic conduit revealed no change in the structure of
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Figure 2. Histologic sections of tunica adventitia of fresh (A) and 

cryopreserved porcine aortic conduit (B), showing the normal collagen structure 

and fibroblast distribution (Richardson stain; original magnification x400).
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collagen and distribution of fibroblasts in tissue that has undergone 

preimplantation processing and cryopreservation (Figure 2B).

B. Isolation of Proteoglycans.

1. Development of Method for Optimal Proteoglycan Extraction.

Procedures for proteoglycan extraction for subsequent studies must 

provide for a maximum recovery and occur under conditions that prevent 

degradation of the macromolecules by chemical or enzymatic processes. It has 

been reported that the types of electrolytes, the concentrations of electrolytes, 

and the extraction times appear to be critical to the efficiency of dissociative 

extraction (Sajdera and Hascall, 1969). Guanidine (Gdn)-hydrochloride (HC1) 

was earlier reported to be the most effective solvent for the extraction of 

proteoglycans in cartilagenous tissue (Sajdera and Hascall, 1969).

In this study, fully hydrated tissue was used because dry-defatted tissue 

(frequently used in earlier proteoglycan studies) would not be suitable for the 

planned proteoglycan studies. Using smaller tissue pieces was also important in 

obtaining efficient extractions. Small pieces of tissue can expose more surface 

area to the solvent, and the diffusion distance for the solutes and solvents is
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shorter than with larger (whole) pieces of tissue. Therefore, high 

concentrations of the dissociative solvents are quickly obtained in the tissue, 

and the protease inhibitors can rapidly reach their sites of action to prevent 

degradation.

Figure 3 shows the amounts of proteoglycans (measured as uronic acid 

content after glycosaminoglycans isolation) extracted from porcine aorta conduit 

as a function of concentration of Gdn-HCl and various extraction times. A 

Gdn-HCl concentration of 4 M proved to be the most optimal concentration for 

extraction (Figures 3 and 4), and 48 hours was an appropriate extraction time 

(Figure 3). The yields of proteoglycans after 48 hours extraction with different 

concentrations (0.5, 2, 4, 6, and 8 M) of Gdn-HCl were significantly different 

from one another statistically (P < 0.05)(Figure 4). Based on these results, 

proteoglycan fractions used in subsequent portions of this study were isolated 

using 48 hours extraction in 4 M Gdn-HCl.

2. Extraction and Purification of Proteoglycans.

The scheme for the isolation of proteoglycans from conduit tissue is 

illustrated in Figure 5. Fresh and cryopreserved porcine aorta tissues were 

extracted once for 48 hours in 4 M Gdn-HCl yielding 460 /xg uronate/g wet
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Figure 3. Extraction of proteoglycans from porcine aorta conduit tissue with 

different molarities of Gdn-HCl (0.5, 2, 4, 6, and 8 M) at various extraction 

times (1, 2, 4, 6, 18, 24, 30, 42, 48, and 54 hours). Data shown are mean 

values with error bars indicating the standard error of the mean where an error 

bar is not shown, it was obscured by the symbol used to indicate the data point 

(n =  3).
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Figure 4. Extraction of proteoglycans from porcine aorta conduit for 48 hours 

in increasing concentrations of Gdn-HCl.
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Figure 5. Experimental scheme of the extraction and isolation of proteoglycans 

from fresh and cryopreserved porcine aorta tissue under dissociative conditions.
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tissue (representing about 47 % of total uronate of the tissue) in fresh tissue and 

470 fxg uronate/g wet tissue (representing about 45 % of total uronate of the 

tissue) in cryopreserved tissue (Table 1). More uronate could be extracted by a 

second 48 hours extraction of the tissue, but the extraction was normally not 

repeated in order to minimize the presence of degraded proteoglycans in the 

extract.

Once the proteoglycans were in solution, CsCl density gradient 

centrifugation was used to purify proteoglycans from other macromolecules in 

the extract and to begin to separate them from each other. The advantage of 

this method is that CsCl can be added directly to the clarified tissue extract 

(direct dissociative gradient). It is, therefore, easy to process large volumes of 

the extract, and the proteoglycans remain in dissociative conditions that should 

prevent hydrolytic degradation by associated enzymes. Since proteoglycan 

contents in aorta are small, it is necessary to keep the proteoglycans in 

dissociative conditions until some partial purification is achieved. Dialysis of 

extracts of aorta into associative solvents may lead to formation of intractable 

coacervates.

Proteins usually have partial specific volumes greater than 0.75 ml/g and 

thus should have buoyant densities less than 1.35 g/ml (Eyring and Yang, 1968;
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Table 1. Uronate recovered in the bottom three-fifths of the gradient after the 

initial ultracentrifugation

Total UAa 
(figlg wet tissue)

UA in bottom three 
fractions (% of total UA)

Fresh 460 ±  5.7 92.6 ±  1.7

Cryopreserved 470 ±  34.4 93.5 ±  0.6

a UA, uronic acid.

Values represent the mean +  standard error, n =  3.
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Luscombe and Phelps, 1967). Glycosaminoglycans, which have partial specific 

volumes in the range of 0.5 - 0.65 g/ml (Cox and Schumaker, 1961; Ifft and 

Vinograd, 1962), have buoyant densities of 1.6 - 2.0 g/ml depending on the 

nature of the supporting solvent. Proteoglycans (proteinpolysaccharide), with 

partial specific volumes between those of pure protein and glycosaminoglycan, 

should have buoyant densities in the range of 1.35 - 1.6 g/ml. Because of these 

differences in density, isopycnic density gradient sedimentation should allow 

efficient separations of proteins, proteoglycans, and glycosaminoglycans from 

each other. Degradation of proteoglycan molecules is minimized with this 

method since degradative enzymes, which are often present in tissue extracts, 

readily sediment away from the more dense carbohydrate-containing substances.

The proteoglycans from aorta often have lower average buoyant densities 

than the majority of the population of cartilage proteoglycans, and thus lower 

initial densities in the dissociative density gradient (1.33 g/ml) were used in the 

initial centrifugation of extracted proteoglycans. The purification step of CsCl 

isopycnic centrifugation at a density of 1.33 g/ml in the isolation procedure 

(Figure 5) removed most of the proteinaceous material from the extract by 

distributing it to the top of the gradient, which otherwise would have interfered 

in later fractionation procedures. Most of the uronate containing material 

centrifuged (>  90 %) was recovered in the bottom three-fifths of the gradients
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with fresh and cryopreserved tissue preparations (Table 1). The density range 

of the gradient formed after the first ultracentrifiigation is not, however, 

sufficient for the optimal separation of proteoglycans from aorta. A further 

saparation of proteoglycan was therefore performed with the pooled bottom 

three fractions by a second dissociative isopycnic centrifugation at a beginning 

density of 1.46 g/ml with density adjusted by adding solid CsCl. There were 

density variations (between 1.36 g/ml to 1.58 g/ml) in the gradients after the 

second CsCl isopycnic ultracentrifugation with fresh and cryopreserved tissues 

(Figures 6 and 7).

C. Characterization of Extracted Proteoglycans.

1. Quantitative Analysis of Proteoglycans.

Ultracentrifugation profiles from the second centrifugation of 

proteoglycans in Gdn-HCl extracts from fresh tissue is illustrated in Figure 6 

and from cryopreserved tissue in Figure 7. The amounts of uronic acid in 

proteoglycans from fresh and cryopreserved aorta tissues were calculated using 

a standard curve from the carbazole reaction assay (glucuronolactone as a 

standard) where the slope was derived from a linear regression analysis of the 

data (Figure 8). The protein contents in proteoglycans from the fresh and
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Figure 6. Ultracentrifugation profiles of proteoglycans from fresh porcine aorta 

conduit tissue. Ultracentrifugation was carried out under dissociative conditions 

(4 M Gdn-HCl) in CsCl at an initial density of 1.46 g/ml. Six fractions were 

collected starting from the bottom of the centrifuge tube and analyzed for 

uronic acid and protein. Based on analyses, proteoglycans were pooled into 

three fractions I, II, and III.
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Figure 7. Ultracentrifugation profiles of proteoglycans from cryopreserved 

porcine aorta conduit tissue. Ultracentrifugation was carried out under 

dissociative conditions (4 M Gdn-HCl) in CsCl at an initial density of 1.46 

g/ml. Six fractions were collected starting from the bottom of the centrifuge 

tube and analyzed for uronic acid and protein. Based on analyses, 

proteoglycans were pooled into three fractions I, II, and III.
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Figure 8. Linear regression analysis for the standard curve of the uronic acid 

assay with glucuronolactone as a standard. Glucuronolactone in sulfuric acid 

reagent (0.025 M sodium tetraborate in sulfuric acid) was reacted with 

carbazole reagent (0.125 % carbazole in absolute ethanol) in boiling water and 

the absorbance at 530 nm was determined.
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cryopreserved tissues were quantitated using a standard curve from the Lowry 

protein assay with bovine serum albumin as a standard (Figure 9). There was 

no difference in the dissociative CsCl isopycnic centrifugation profiles of 

proteoglycans between fresh and cryopreserved porcine aorta tissue (Figures 6 

and 7).

Based on the uronic acid and protein profiles, the ultracentrifugation 

fractions were pooled into three proteoglycan fractions, I, II, and III, as shown 

in Figures 6 and 7. In extracts from fresh and cryopreserved tissues, fraction I 

had the highest uronate concentrations (238.46 +  20.68 fig uronate/g tissue 

with fresh tissue and 231.28 +  20.78 fig uronate/g tissue with cryopreserved 

tissue) and fraction III had the lowest (72.38 +  9.98 fig uronate/g tissue with 

fresh tissue and 84.18 ±  7.76 fig uronate/g tissue with cryopreserved tissue). 

Fraction III had the highest protein concentration, consistant with the buoyant 

density characteristic, of the CsCl gradient. Most of the proteoglycan material 

(83 % of total uronic acid in fresh tissue and 81 % of total uronic acid in 

cryopreserved tissue) sedimented in the bottom I and II fractions (density >  

1.43 g/ml in fresh tissue and density > 1.44 g/ml in cryopreserved tissue).

The total uronic acid (P >  0.05) and protein contents of proteoglycans (P > 

0.05) extracted from fresh and cryopreserved porcine aorta tissues were not 

statistically significantly different (Figure 10).
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Figure 9. Linear regression analysis for the standard curve of the Lowry 

protein assay with bovine serum albumin (BSA) as a standard. Bovine serum 

albumin in reagent A (2 % sodium carbonate, 2 % potassium tartarate, 1 % 

cupric sulfate) was reacted with Folin phenol reagent and the absorbance at 500 

nm was determined.
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Figure 10. Total concentrations of uronic acid and protein contents from 

proteoglycans, after the second ultracentrifugation, in fresh versus 

cryopreserved aorta conduit tissue. Data shown are mean values with error 

bars indicating the standard error of the mean (n =  3).
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2. Gel Permeation Chromatography Studies.

Gel permeation chromatography is one of the most widely applied 

analytical procedures for identifying and characterizing proteoglycans. This 

technique separates groups of proteoglycans containing multiple components 

and is suitable for obtaining information on the size (hydrodynamic volume) 

distribution of proteoglycans. The general considerations for choice of an 

appropriate procedure are the hydrodynamic range and resolving capacity of the 

support, the capacity of the support, time for elution, recovery of solute from 

column, and the kinds of analytical procedures to be performed on the eluent 

solutions.

(a) Determination of Void Volume (VJ and Inclusion Volume (V{).

Void volume (V0) is the total volume surrounding the gel particles in a 

packed column. The value is determined by measuring the volume of solvent 

required to elute a solute that is completely excluded from the gel matrix.

Most columns can be calibrated for void volume using blue dextran, which has 

an average molecular weight of 2,000,000. The void volume of the Sepharose 

CL-4B column (1.5 x 100 cm) used in the present study was determined to be 

52.5 ml using Escherichia coli (measuring for turbidity at 600 nm) (Figure 11)
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Figure 11. Gel permeation chromatography of Escherichia coli on a Sepharose 

CL-4B to calibrate the void volume (V0) of the column. Samples were eluted 

with 4 M Gdn-HCl/0.05 M sodium acetate buffer, pH 5.8. Fractions were 

collected and monitored for absorbance at 600 nm.
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or using blue dextran by measuring for absorbance at 620 nm (Figure 12).

Blue dextran was less suitable for use in determination of void volume than 

Escherichia coli because it appeared to be partially retained in later fraction of 

column eluent (Figure 12).

The inclusion volume (V;) of a column denotes the inner volume of the 

gel bed and represents that volume accessible in the bed particles to very small 

molecular weight solutes. The inclusion volume of the Sepharose CL-4B 

column (1.5 x 100cm) was determined to be 157.5 ml (Figure 13) with 5, 5’ - 

dithiobis [2-nitrobenzoic acid] (DTNB) by measuring absorption of eluent 

materials at 280 nm.

Samples (Escherichia coli. blue dextran, and DTNB) for calibration of 

the column were eluted with 4 M Gdn-HCl / 0.05 M sodium acetate (pH 5.8) 

at a constant flow rate of 16 ml/hour.

(b) Gel Permeation Chromatography of Proteoglycans.

Figure 14 illustrates the procedure used for characterization of 

proteoglycans by gel permeation chromatography after purification by CsCl 

isopycnic ultracentrifugation and concentration by freeze-drying. The cross-
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Figure 12. Gel permeation chromatography of blue dextran on a Sepharose 

CL-4B column for the determination of void volume (V0). The eluent fractions 

were measured for absorbance at 620 nm.
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Figure 13. Gel permeation chromatography of 5,5’-dithiobis [2-nitrobenzoic 

acid] on a Sepharose CL-4B to determine the inclusion volume (Vj) of the 

column. The eluent was measured for absorbance at 280 nm.
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Figure 14. Scheme used for the characterization of proteoglycans from fresh 

and cryopreserved porcine aorta conduit tissue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proteoglycan fractions

Dialysis vs ultra pure water

Dialysate

Freeze-Dry

Concentrated proteoglycans 
in 4M Gdn-HCl/0.05 M sodium acetate, pH 5.8

Sepharose CL-4B 
chromatography

Kav = 0.13, 0.50 (fresh)
Kav = 0.13, 0.47 (cryopreserved)
Kav = 0.23 (fresh)
Kav = 0.20 (cryopreserved)
Kav = 0.40 (fresh)
Kav = 0.43 (cryopreserved)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



linked Sepharose 4B support was used since Sepharose CL-4B improves 

separation of small proteoglycans. To avoid nonspecific aggregation (unwanted 

interactions), elution was performed with 4 M Gdn-HCl buffered with 0.05 M 

sodium acetate, pH 5.8. Column eluent was monitored for absorbance at 280 

nm for protein content and analyzed for distribution of uronic acid content of 

the fractions using the carbazole assay procedure. Since no appropriate 

proteoglycans with known molecular weights were available, it was not possible 

to determine the absolute molecular weights of these proteoglycans.

Chondroitin sulfate, used as a standard glycosaminoglycan, eluted at fraction 

number 38 (133 ml) for a value of 0.80 (Figure 15) and was used to permit 

evaluation of degradation of proteoglycans into free proteins and 

glycosaminogly cans.

KaV is a definition of the volumetric distribution coefficient for uronic 

acid-positive and proteinaceous materials. The volumetric distribution 

coefficient is a physical constant which depends on the molecular size of the 

solutes (their hydrodynamic volumes) and the inner gel structure (pore size).

Its value may vary between 0 and 1. The K ,̂ values were calculated from the 

mean elution volume (Ve) of the proteoglycans using the formula: =  Ve -

Vo/Vi - V0, where V 0 = void volume and V; = inclusion volume of the 

column, and V e = elution volume of the proteoglycans. The elution volume
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Figure 15. Gel permeation chromatography of chondroitin sulphate on a 

Sepharose CL-4B. Sample (0.15 mg) was eluted with 4 M Gdn-HCl/0.05 M 

sodium acetate (pH 5.8) at a constant rate of 16 ml/hour. The eluent was 

analyzed for uronic acid.
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(VJ is the volume of eluting buffer necessary to remove a particular solute 

from the packed column. This value depends on the volumetric distribution of 

the gel bed, the quality of the gel, and the properties of the separated substance. 

Ve - V0 denotes the net elution volume or the retention volume. This value 

represents the eluent volume occupied by the solute in the gel phase. If the gel 

particles do not retain the solute molecules then the retention volume is equal to 

zero and the substance will elute in the void volume (V0) of the column.

The elution profiles of proteoglycans in fraction I from the fresh porcine 

aorta tissue is shown in Figure 16 for uronic acid-positive and proteinaceous 

materials. The proteoglycans, as the uronic acid-positive material, resolved 

into two peaks. One hexuronic acid-positive peak occurred near the void 

volume for a K,v of 0.13 and the other peak occurred at a of 0.50 (Figure 

16). The materials absorbing at 280 nm eluted with a Kav of 0.93. All 

hexuronic acid positive materials were eluted from the column as two peaks 

without detectable absorption at 280 nm (Figure 16).

The proteoglycans in fraction I from the cryopreserved tissue also 

resolved into two peaks of uronic acid-positive materials and one peak of 

proteinaceous materials following gel filtration (Figure 17). One uronic acid- 

positive peak occurred near the void volume with a of 0.13 and smaller
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Figure 16. Gel permeation chromatography of proteoglycans in fraction I from 

fresh porcine aorta conduit tissue. Gel permeation chromatography was 

performed on Sepharose CL-4B eluting the column with 4 M Gdn-HCl/ 0.05 M 

sodium acetate buffer, pH 5.8. The column was eluted at a rate of 16 ml/hour, 

and 3.5 ml fractions were collected. Fractions were analyzed for uronic acid 

(530 nm) and protein (absorbance 280 nm). The values were calculated 

using the formula: =  (Ve - V0) / (V; - V0), where VQ == void volume and V;

=  inclusion volume of the column, and Ve = elution volume of the peak.
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Figure 17. Gel permeation chromatography of proteoglycans in fraction I from 

cryopreserved porcine aorta conduit tissue. Gel permeation chromatography 

was performed on Sepharose CL-4B eluting the column with 4 M Gdn-HCl/ 

0.05 M sodium acetate buffer, pH 5.8. The column was eluted at a rate of 16 

ml/hour, and 3.5 ml fractions were collected. Fractions were analyzed for 

uronic acid (530 nm) and protein (absorbance 280 nm).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSORBANCE AT 280 nm
( •  )

lo ro (N t-
•  •  •  •  •

o  o  o  o  o

o LO o LO o m
ro <N CNJ o
o o o o o o

( ° — °)  
wu ocs i v  aoNvaaosav

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FR
AC

TI
ON

 
N

U
M

B
ER



peak occurred at a of 0.47. Proteoglycans in fraction I from the 

cryopreserved tissue was resolved into a single peak of proteinaceous materials 

with KaV of 0.90 (Figure 17). Hexuronic acid positive materials from the 

proteoglycan fraction I of cryopreserved tissue eluted from the column without 

detectable absorption at 280 nm and was similar to the elution profile of the 

proteoglycans in fraction I from fresh tissue.

The chromatographic elution profiles of proteoglycans in fraction II from 

the fresh porcine aorta tissue are shown in Figure 18 for uronic acid-positive 

and proteinaceous materials. Hexuronic acid-positive materials present in 

fraction II from fresh tissue eluted from the column providing for a K,v value of 

0.23 and was broader than the equivalent peak derived for proteoglycans in 

fraction I from fresh tissue (Figure 16). Proteoglycans in fraction II from fresh 

tissue was resolved into two proteinaceous materials peaks with K„v of 0.13 and 

Kgy of 0.93, but only the larger peak (K^ of 0.13) of proteinaceous materials 

paralleled the uronic acid positive materials present in fraction II (Figure 18).

The proteoglycans in fraction II from cryopreserved aorta tissue was 

resolved into one peak of uronic acid positive materials and two peaks of 

proteinaceous materials by gel filtration through Sepharose CL-4B (Figure 19). 

The ^  value of hexuronic acid-positive materials from the cryopreserved
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Figure 18. Gel permeation chromatography of proteoglycans in fraction II 

from fresh porcine aorta conduit tissue. Gel permeation chromatography was 

performed on Sepharose CL-4B eluting the column with 4 M Gdn-HCl/ 0.05 M 

sodium acetate buffer, pH 5.8. The column was eluted at a rate of 16 ml/hour, 

and 3.5 ml fractions were collected. Fractions were analyzed for uronic acid 

(530 nm) and protein (absorbance 280 nm).
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Figure 19. Gel permeation chromatography of proteoglycans in fraction II 

from cryopreserved porcine aorta conduit tissue. Gel permeation 

chromatography was performed on Sepharose CL-4B eluting the column with 4 

M Gdn-HCl/ 0.05 M sodium acetate buffer, pH 5.8. The column was eluted at 

a rate of 16 ml/hour, and 3.5 ml fractions were collected. Fractions were 

analyzed for uronic acid (530 nm) and protein (absorbance 280 nm).
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tissue was 0.20. The first peak of proteinaceous materials occurred near the 

void volume with a K„v of 0.13 and the second peak of proteinaceous materials 

occurred near the inclusion volume with a of 0.90 (Figure 19).

Proteoglycans in fraction III from fresh tissue showed the most 

heterogeneity among the fractions in gel filtration profiles of hexuronic acid- 

positive materials (Figure 20). Hexuronic acid-positive materials in this 

fraction provided for a K^, value of 0.40 and was broader than similar peaks 

obtained for fractions I and II from fresh tissues. Materials in fraction III from 

fresh tissue resolved into two groups of proteinaceous materials (Figure 20). 

One peak of proteinaceous material eluted from the column near the void 

volume with a of 0.10 and the other eluted near the inclusion volume with a 

K,v of 0.83.

Fraction III from cryopreserved tissue was also chromatographed on the 

Sepharose CL-4B under dissociative conditions. The uronic acid-positive 

materials eluted with a value of 0.43 (Figure 21) and was also very broad 

indicating heterogeneity of eluting proteoglycans. The materials absorbing at 

280 nm eluted near the void volume as a small peak with of 0.10 and at Kav 

0.80 as a larger peak (Figure 21).
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Figure 20. Gel permeation chromatography of proteoglycans in fraction III 

from fresh porcine aorta conduit tissue. Gel permeation chromatography was 

performed on Sepharose CL-4B eluting the column with 4 M Gdn-HCl/ 0.05 M 

sodium acetate buffer, pH 5.8. The column was eluted at a rate of 16 ml/hour, 

and 3.5 ml fractions were collected. Fractions were analyzed for uronic acid 

(530 nm) and protein (absorbance 280 nm).
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Figure 21. Gel permeation chromatography of proteoglycans in fraction III 

from cryopreserved porcine aorta conduit tissue. Gel permeation 

chromatography was performed on Sepharose CL-4B eluting the column with 4 

M Gdn-HCl/ 0.05 M sodium acetate buffer, pH 5.8. The column was eluted at 

a rate of 16 ml/hour, and 3.5 ml fractions were collected. Fractions were 

analyzed for uronic acid (530 nm) and protein (absorbance 280 nm).
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3. Distribution of Proteoglycans in Porcine Aorta.

Some proteoglycans in tissue are present in the soluble matrix while 

others are associated with other components, i.e. collagen and elastin. 

Proteoglycans in the soluble matrix could be extracted by use of dissociative 

solvent (Gdn-HCl) by dissociating most noncovalent interactions between 

macromolecules. However, the proteoglycans bound to collagen and elastin 

require solubilization of fibrous components of the tissue for extraction. The 

quantitative distribution of proteoglycans in porcine aorta was thus studied using 

sequential extraction of tissue.

The procedure used for extraction of aorta with 4 M Gdn-HCl (three 

times) and hydrolysis of residual tissue by collagenase, elastase, and papain is 

shown in Figure 22. Porcine aorta conduit tissue was repeatedly (three times) 

extracted until no more appreciable quantities of hexuronic acid-positive 

material was obtained in the extraction solution. The tissue was then digested 

using enzymes (collagenase, elastase, and papain) to study how much 

proteoglycans could be released from the residual tissue by these enzymes.

Analysis of initial Gdn-HCl extracts of the fresh and cryopreserved 

tissues showed that 491 /xg and 500 fig of hexuronate /g of tissue were
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Figure 22. Procedure for isolation of proteoglycans by sequential extraction of 

fresh and cryopreserved porcine aorta tissue with Gdn-HCl, collagenase, 

elastase, and papain.
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Extract: 4 M Gdn-HCl (pH 5.8) and protease inhibitors,
4°C, 48 h (3 times)

Centrifuge 10,000 x g

Supernatant 
Gdn-HCl-soluble proteoglycans

Residue

Hydrolysis: collagenase,37°C, 48

Centrifuge 6,000 x g

Supernatant
Collagenase-solublilized
proteoglycans

Residue

Hydrolysis: elastase, 
37°C, 48 h

Centrifuge 6,000 x g

Supernatant
Elastase-solubilized
proteoglycans

Residue

Treatment with 2.0 % NaOH, overnight

Hydrolysis: papain, 65°C, 24 h

Centrifuge 6,000 x g

Supernatant
Papain-solubilized
proteoglycans

Residue
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extracted from fresh and cryopreserved tissues, respectively. Two additional 

extractions solubilized 73 fig (second extraction) and 40 fig of uronate /g of 

tissue (third extraction) from fresh tissue and 110 fig (second extraction) and 33 

fig of uronate /g of tissue (third extraction) from cryopreserved tissue. 

Hydrolysis of the Gdn-HCl extracted tissue with collagenase for 48 hours 

released 125 fig uronate/g tissue from fresh tissue and 211 fig uronate/g tissue 

from cryopreserved tissue. Elastase digestion of the centrifuged pellet of the 

collagenase hydrolysis released 154 fig and 110 fig uronate/g tissue from fresh 

and cryopreserved tissues, respectively. After the digestion of the tissue with 

elastase a small amount of tissue remained, which was hydrolyzed with 2 % 

NaOH and papain. The yield of proteoglycan solubilized by papain was 88 fig 

uronate/g tissue from fresh and 86 fig uronate/g tissue from cryopreserved 

tissue (Figure 23).

Total uronic acid (as fig of the wet weight of tissue) and uronic acid 

distribution (as the % of total uronic acid) in the fresh and cryopreserved 

tissues obtained by sequential extractions of the tissues are reported in Table 2. 

There was no significant difference in total uronate between fresh and 

cryopreserved tissues. Based on analysis of the total uronate, after 48 hours of 

extraction with 4 M Gdn-HCl, 50.6 % (in fresh tissue) and 47.7 % (in 

cryopreserved tissue) of total tissue hexuronic acid content was solubilized.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 23. Uronic acid analysis of proteoglycans from sequential extractions of 

fresh and cryopreserved porcine aorta conduit tissue. The tissue was 

sequentially extracted by 4 M Gdn-HCl (3X) and then digested with 

collagenase, elastase, and papain. Bars represent standard error of mean (n = 

3). (a) Gdn-HCl, 1st, (b) Gdn-HCl, 2nd, (c) Gdn-HCl, 3rd, (d) collagenase 

solubilized, (e) elastase solubilized, (f) papain solubilized.
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Table 2. Uronate distribution in sequential extracts of proteoglycans from fresh 

and cryopreserved porcine aorta conduit tissues. The aorta was sequentially 

extracted by 4 M Gdn-HCl (3X) and digested by collagenase, elastase, and 

papain.

Fresh Cryopreserved
Total UAa
(M9/9 wet tissue) 970 ± 44 1051 ± 25

Gdn-HCl
extract

1st 50.6 ± 0.5 47.7 ± 2.6

UA distribution 
in different 
extraction steps 
(% of total UA)

2nd 7.5 ± 0.2 10.4 ± 2.1
3rd 4.1 ± 0.6 3.1 ± 0.4

Collagenase
solubilized 12.8 ± 2.1 20.1 ± 1.0
Elastase
solubilized 16.0 ± 1.8 10.5 ± 1.1
Papain
solubilized 9.1 ± 0.4 8.2 ± 0.9

a UA, uronic acid.

Values represent the mean +  standard error of replicate assays, n =  3.
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Two additional extractions solubilized 7.5 % and 4.1 % of the total hexuronic 

acid content in fresh tissue and 10.4 % and 3.1 % of the total hexuronic acid 

content in cryopreserved tissue, respectively. Hydrolysis of the extraction 

residue with collagenase released 12.8 % of the total uronate in fresh tissue and 

20.1 % of the total uronate in cryopreserved tissue. Subsequent elastase 

hydrolysis of the fresh and cryopreserved tissues released 16.0 % and 10.5 % 

of the total hexuronic acid content, respectively. The remaining uronate 

positive materials (9.0 % from fresh and 8.2 % from cryopreserved tissue) 

were obtained through papain hydrolysis. There was essentially no difference 

between fresh and cryopreserved tissues in the relative distribution of uronate 

positive materials in the various tissue extracts.

4. Ultrastructural Studies.

Cuprolinic Blue (CB) was used for the ultrastructural staining for 

proteoglycans in the tunica media from porcine aortic conduit since it has been 

shown (Scott, 1972; van Kuppevelt et al., 1984) that Cuprolinic Blue staining 

gives a better representation of the proteoglycans than, for instance, Alcian 

Blue or Ruthenium Red.

Ultrastructural morphology and distribution of proteoglycans in the
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tunica media of porcine aortic conduit was compared between fresh and 

cryopreserved tissues. Cell types in the medial layer of both fresh and 

cryopreserved porcine aorta conduit were primarily smooth muscle cells, and 

the intercellular spaces contained abundant elastin and collagen fibers (Figures 

24 and 25). Viable nuclei were observed, and nuclear morphology was not 

altered in cryopreserved tissue, which may be indicative that no significant 

cellular injury was induced by the cryopreservation processing (Figure 25) 

(partially substantiating earlier work by Dr. Jianfei Hu in this laboratory: Hu, 

1992).

Staining of porcine arterial tissue with Cuprolinic Blue resulted in the 

formation of stick - or egg - shaped precipitates (Figures 24 and 25). The 

precipitates were detectable in the extracellular matrix as a complex perifibrillar 

and interfibrillar array of proteoglycans. The precipitates were closely 

associated with other matrix components, collagen and elastin (Figures 24 and 

25). The Cuprolinic Blue - induced precipitates in this study represent 

polyanionic matrix components which are predominantly sulfated proteoglycans 

since there is no dissociation of the tetracationic Cuprolinic Blue from the 

polyanionic matrix components at a critical electrolyte concentration of 0.3 M 

MgCl2 (Figures 26 and 27) and the stick - shaped precipitates, suggested to 

represent proteoglycan monomers, retained their characteristic appearance.
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Figure 24. Fresh porcine aortic conduit stained with Cuprolinic Blue and post

stained with uranyl acetate and lead citrate. Proteoglycan-Cuprolinic Blue 

precipitates are found in the extracellular matrix surrounding smooth muscle 

cells (SMC). These precipitates are present in the soluble matrix (SM), and are 

associated with collagen (C) and elastin (E) fibers. Original magnification 

xl6,240.
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Figure 25. Cryopreserved porcine aortic conduit stained with Cuprolinic Blue 

and post-stained with uranyl acetate and lead citrate. Proteoglycan-Cuprolinic 

Blue precipitates are found in the extracellular matrix surrounding smooth 

muscle cells (SMC). These precipitates are present in the soluble matrix (SM), 

and are associated with collagen (C) and elastin (E) fibers. Original 

magnification x13,440.
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Figure 26. Tunica media of fresh porcine aortic conduit stained with 

Cuprolinic Blue in the presence of 0.3 M MgCl2. Post-staining with uranyl 

acetate and lead citrate was omitted. Proteoglycan-Cuprolinic Blue precipitates 

are present in the extracellular matrix. These precipitates are found within the 

soluble matrix (SM), and are associated with collagen bundles (C) and elastin 

(E). Original magnification x28,000.
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Figure 27. Tunica media of cryopreserved porcine aortic conduit stained with 

Cuprolinic Blue in the presence of 0.3 M MgCl2. Post-staining with uranyl 

acetate and lead citrate was omitted. Proteoglycan-Cuprolinic Blue precipitates 

are present in the extracellular matrix surrounding smooth muscle cells (SMC). 

These precipitates are found within the soluble matrix (SM), and are associated 

with collagen bundles (C) and elastin (E). Original magnification xl3,440.
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Three categories of Cuprolinic Blue precipitates (proteoglycan - dye 

complex) were identified in fresh tissue, and these three types of precipitates 

were also found in cryopreserved tissue. Each type of precipitated dye showed 

preferred localization in the extracellular matrix.

A large-heavy staining type of Cuprolinic Blue precipitate was designated 

as type I (Figures 28 and 29). Type I precipitates in fresh tissue were found 

accumulated in areas that at low magnification appear to be amorphous and 

devoid of fibrillar component (Figures 24 and 26). Type I precipitates are 

therefore suggested to represent a major component of the tissue known as the 

"soluble matrix". To a lesser extent, type I precipitates are also observed at 

solitary collagen fibers (Figures 30 and 31) and at the external surface of elastin 

fibers (Figures 32 and 33). In cryopreserved tissue, the type I precipitates were 

also found in tissue areas corresponding to soluble matrix (Figures 25, 27, 34, 

and 35), and some of these precipitates were found at the boundary of bundles 

of collagen fibers (Figure 31) and at the external surface of elastin (Figures 33,

36). The distribution of type I precipitates were essentially equivalent in 

histology sections from fresh and cryopreserved tissues.

A weakly stained proteoglycan - Cuprolinic Blue precipitate in the 

arterial wall was denoted as type II. This type of precipitate was usually found
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Figure 28. Proteoglycan-Cuprolinic Blue precipitates (small arrows) in the 

soluble matrix (SM) of fresh porcine aortic conduit. The medial layer of tissue 

was stained with Cuprolinic Blue and post-stained with uranyl acetate and lead 

citrate. Cross-sectioned precipitates reveal circular profiles (large arrows). 

Original magnification x53,200.
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Figure 29. Electron micrograph demonstrating large proteoglycan-Cuprolinic 

Blue precipitates (small arrows) in the soluble matrix (SM) from fresh porcine 

aortic conduit. Tissue was stained with Cuprolinic Blue in the presence of 0.3 

M MgCl2. Post-staining with uranyl acetate and lead citrate was omitted. 

Original magnification x53,200.
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Figure 30. Collagen (C) associated proteoglycan-Cuprolinic Blue precipitates 

(small arrows) from fresh porcine aortic conduit. The specimen was stained 

with Cuprolinic Blue in the presence of 0.3 M MgCl2. When post-staining with 

uranyl acetate and lead citrate is omitted, the collagen fibrils appear as electron- 

lucent lines. Most of the collagen associated precipitates (small arrows) lie 

perpendicular to the fibril axis, whereas some can be detected lying in a parallel 

fashion (large arrows). The larger type I precipitates (single triangles) are 

found at the boundaries of bundles of collagen fibers adjoining soluble matrix 

areas. Original magnification x53,200.
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Figure 31. Collagen (C) associated proteoglycan-Cuprolinic Blue precipitates 

(small arrows) from cryopreserved porcine aortic conduit. The specimen was 

stained with Cuprolinic Blue in the presence of 0.3 M MgCl2. When post- 

staining with uranyl acetate and lead citrate is omitted, the collagen fibrils 

appear as electron-lucent lines. Most of the collagen associated precipitates 

(small arrows) lie perpendicular to the fibril axis, whereas some can be detected 

lying in a parallel fashion (large arrows). The larger type I precipitates (single 

triangles) are found at the boundaries of bundles of collagen fibers adjoining 

soluble matrix areas. Original magnification x53,200.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 32. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with elastin (E) of fresh porcine aortic conduit. The medial layer of aortic 

tissue was stained with Cuprolinic Blue and post-stained with uranyl acetate and 

lead citrate. Cross-sectional precipitates (large arrows) reveal circular profiles. 

Type I precipitates (single triangles) are observed at the external surface of 

elastin adjoining soluble matrix areas. In some cases, proteoglycan-Cuprolinic 

Blue precipitates (double triangles) appear to serve as a link between collagen 

(C) and elastin. Original magnification x53,200.
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Figure 33. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with elastin (E) of cryopreserved porcine aortic conduit. The medial layer of 

aorta tissue was stained with Cuprolinic Blue and post-stained with uranyl 

acetate and lead citrate. Cross-sectional precipitates (small arrows) reveal 

circular profiles. Type I precipitates (large arrows) are observed at the external 

surface of elastin adjoining soluble matrix areas. Original magnification 

x53,200.
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Figure 34. Proteoglycan-Cuprolinic Blue precipitates (small arrows) in the 

soluble matrix (SM) of cryopreserved porcine aortic conduit. The medial layer 

of tissue was stained with Cuprolinic Blue and post-stained with uranyl acetate 

and lead citrate. Cross-sectioned precipitates reveal circular profiles (large 

arrows). Original magnification x39,200.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 35. Electron micrograph demonstrating large proteoglycan-Cuprolinic 

Blue precipitates (small arrows) in the soluble matrix (SM) from cryopreserved 

porcine aortic conduit. Tissue was stained with Cuprolinic Blue in the presence 

of 0.3 M MgCl2. Post-staining with uranyl acetate and lead citrate was 

omitted. Cross-sectional precipitates (large arrows) reveal circular profiles. 

Original magnification x53,200.
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Figure 36. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with elastin (E) in cryopreserved porcine aortic conduit. The specimen was 

stained with Cuprolinic Blue in the presence of 0.3 M MgCl2. The larger type 

I precipitates (large arrows) are found at the external surface of elastin 

adjoining soluble matrix areas. Original magnification x53,200.
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associated within the interior of bundles of collagen fibers (Figures 24, 26, 30, 

and 37) in fresh tissue. They lie, highly ordered, perpendicular with respect to 

the fibril long axis and are separated from each other according to the main 

banding period of the collagen fibrils (Figures 30 and 37). When compared to 

the type I precipitates, they are clearly less electron - dense (Figures 24 and 

30). Although most precipitates lie perpendicular to the fibril axis, some of the 

dye precipitates lie parallel to the fibril axis (Figure 30). In some cases, type II 

precipitates appear to connect adjacent collagen fibrils with each other (Figure

37). When poststaining with uranyl acetate and lead citrate is omitted, the 

collagen fibrils can no longer be detected; the collagen - associated filaments 

(type II precipitated material), however, remain clearly visible (Figures 26 and

30). From the pattern of the filaments, it is possible to deduce the position of 

the collagen fibrils.

The ultrastructural morphology of single collagen fibers from 

cryopreserved tissue was similar to that from fresh tissue. However, the 

arrangement of collagen fibers in cryopreserved tissue appeared to be more 

dispersed than that in fresh tissue (Figures 37 and 38). The pattern of the 

proteoglycan associations to the bundles of collagen fibers in cryopreserved 

tissue was similar to that in fresh tissue (Figures 25, 27, 31, and 38) and most 

of the type II precipitates were lying, highly ordered and perpendicular to the
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Figure 37. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with collagen fibers (C) of fresh porcine aortic conduit. The specimen was 

stained with Cuprolinic Blue and post-stained with uranyl acetate and lead 

citrate. Some precipitates (large arrows) connect the collagen fibrils with each 

other. Original magnification x53,200.
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Figure 38. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with collagen fibers (C) of cryopreserved porcine aortic conduit. The specimen 

was stained with Cuprolinic Blue and post-stained with uranyl acetate and lead 

citrate. Some precipitates (large arrows) connect the collagen fibrils with each 

other. Original magnification x53,200.
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fibril axis. Precipitates lying parallel to the fibril axis can also be seen (Figure

31) as well as precipitates connecting two fibrils (Figure 38).

The intermediately stained proteoglycan-Cuprolinic Blue precipitate was 

denoted as type III precipitate. Type III precipitates differ from the type II 

precipitates in width, and they are associated mainly with the elastin proteins 

(Figures 24, 26, 32, and 39). Matrix precipitate connections between collagen 

and elastic proteins were also observed (Figure 32). These relationships are 

particularly well demonstrated in regions containing cross sections of collagen 

fibrils as seen in Figure 32. The elastin structure of aortic conduit also 

remained unaffected by cryopreservation procedure because the delicate 

morphologic feature of elastin tissue was well preserved in cryopreserved 

porcine aortic conduit tissue (Figures 25, 27, 33, and 36) and was not visibly 

different from tissue sections obtained from fresh conduit tissue.

Electron microscopic comparisons demonstrated a retention of 

proteoglycans in the wall of the aortic conduit after cryopreservation, and the 

relative morphological distribution of proteoglycan content in cryopreserved 

tissue was similar to that in fresh tissue.
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Figure 39. Proteoglycan-Cuprolinic Blue precipitates (small arrows) associated 

with elastin (E) in fresh porcine aortic conduit. The specimen was stained with 

Cuprolinic Blue in the presence of 0.3M MgCl2. Original magnification 

x53,200.
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5. M ineral Analyses of Porcine Aorta Tissue.

The procedure for the determination of tissue calcium was based on the 

interaction of calcium with a metallochromic indicator, Arsenazo III (2,2’-[l,8- 

Dihydroxy-3,6-disulfo-2, 7-maphthalene-bis(azo)]-dibenzenearsonic acid). 

Arsenazo III has a specific set of charges and an absorption spectrum which 

depends on its ionization state and conformation. The spectral properties of 

arsenazo III were strongly pH dependent and, therefore, the arsenazo III was 

used in well buffered solutions (0.5 M Tris - HC1, pH 7.4). Arsenazo III 

specifically complexed with calcium in acidic environment to form a purple 

colored complex which has an absorbance maximum at 650 nm. The intensity 

of the purple color was directly proportional to the calcium concentration 

(Figure 40).

The quantitative calcium levels for fresh and cryopreserved porcine aorta 

tissue is shown in Table 3. The average amount of chemically detectable 

calcium was 105.0 ±  3.9 and 164.8 ±  3.2 /ig calcium/g of wet tissue in the 

fresh and cryopreserved porcine aorta tissues, respectively. By means of a t 

test, the value of t was found to be significant at the 0.05 level, which indicates 

that the calcium content in fresh and cryopreserved tissue was statistically 

different. The total calcium level increased in tissue cryopreserved by the
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Figure 40. Linear regression analysis for standard curve of calcium analysis 

using the Arsenazo III assay method. Micro amounts of calcium in IN HC1 

form a complex with Arsenazo III. This purple colored complex had an 

absorbance maximum at 650 nm. The intensity of the color measured at 650 

nm was directly proportional to the calcium concentration.
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Table 3. The quantitative calcium and phosphorous contents of fresh and 

cryopreserved porcine aorta conduit tissues. Tissue for calcium and 

phosphorous analysis was rinsed with 0.9 % NaCl and ashed overnight. The 

ashed sample was solubilized in IN HC1 and analyzed for calcium using the 

Arsenazo III assay method and for phosphorous using ascorbic acid assay 

method.

Calcium phosphorous
0-ig/g wet tissue) (/xg/g wet tissue)

Fresh

Cryopreserved

105.0 ±  3.9 

164.8 ±  3.2

719.8 ±  28.5 

703.1 ±  39.2

Values represent the mean +  standard error, n =  9.
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cryopreservation process which may be due to the higher calcium concentration 

of RPMI 1640 tissue culture medium (used for cryopreservation process) 

compared to calcium content of porcine aorta tissue.

The concentration of phosphorus from the tissues was determined by the 

ascorbic acid method which was based on the color formed by the reduction of 

a phosphomolybdate complex. Reagent C (mixtures of 1 volume of 6 N 

sulfuric acid, 2 volumes of distilled water, 1 volume of 2.5 % ammonium 

molybdate, and 1 volume of 10 % ascorbic acid) was prepared fresh each day 

since it was unstable and would lose its ability to form a color with phosphorus.

The stability, constancy, and linearity of this procedure were good. It 

was not necessary to read solutions immediately or at a certain time after 

starting a color reaction since the stability of the color developed was very 

good. Phosphorus standard 8 ng always reads 0.870 to 0.880 in the 

spectrophotometer with different batches of ascorbic acid and ammonium 

molybdate. Figure 41 shows standard curves of phosphorus using the ascorbic 

acid method. The color development was proportional to phosphorus 

concentration. Standard curves were always linear as ascertained by regression 

analysis.
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Figure 41. Linear regression analysis for the standard curve of the assay for 

phosphorus using the ascorbic acid assay method. Microdetermination of 

phosphorus was performed using ascorbic acid solution for the reduction of 

phosphomolybdate with heating at 37 °C.
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Phosphorus content of fresh and cryopreserved porcine aorta conduit 

tissue is shown in Table 3. The tissues which were ashed and then hydrolyzed 

in 1 N HC1 contained 719.8 +  28.5 fig phosphorus/g wet tissue in fresh and 

703.1 ±  39.2 fig phosphorus/g wet tissue in cryopreserved tissue, respectively. 

There was no difference in phosphorus level between fresh and cryopreserved 

tissues.
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CHAPTER IV 

DISCUSSION

The optimal surgical treatment of cardiac valvular disease would involve 

the restoration of the native valve to a satisfactory functional state through 

conservative reparative procedures (Deloche et al., 1990). Unfortunately, the 

valvular pathology most often encountered at operation is irreparable due to 

advanced rheumatic, degenerative, ischemic, or calcific destruction necessitating 

valve replacement.

Aortic valve allografts have been used clinically for more than 25 years 

for the repair of complex heart malformations ( Fontan et al., 1984; Moore et 

al., 1976; Ross and Somerville, 1966). The performance of fresh antibiotic- 

sterilized valvular homografts has been superior to that of mechanical or 

xenograft valves. However, because of severe limitations in the supply of 

aortic homograft valves, a method was sought that would increase the viable 

lifetime of the valve in storage. Cryopreservation of the viable allograft was 

thus explored as a possible solution for accumulation of the larger number of

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



valves necessary for the selection of a proper match in terms of orifice diameter 

and HLA-defined antigens.

Cryogenic techniques for heart valves developed in the early 1970s and 

confirmed cellular viability (based on histologic and biochemical data) in tissues 

stored for prolonged periods in vapor phase temperatures of liquid nitrogen, led 

to the clinical application of dimethylsulfoxide (DMSO)-cryopreserved aortic 

allografts in the early of 1970s (Angell et al., 1987). Cryopreserved aortic 

valve allografts have enhanced the surgeon’s ability to correct extremely 

complex congenital cardiac anomalies.

The clinical data suggest that properly cryopreserved allograft valves 

have remarkable durability in addition to the other advantages (optimal 

hemodynamic performance, reduced thromboembolism and hemolysis rates 

without anticoagulation therapy, and resistance to endocarditis) of the nonviable 

fresh homograft. However calcification is one of the general causes of allograft 

failure in late results (Maxwell et al., 1989; Miller and Shumway, 1987) 

especially in reconstructive surgery in children with congenital cardiac defects. 

Calcification is significantly greater in the conduit wall than in the leaflets, and 

the consequent lack of distensibility limits their long-term effectiveness.
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The pathophysiology of cardiovascular implant calcification is complex 

and poorly understood. However, calcification processes occurring normally in 

skeletal and dental tissues, and pathologically in implanted arterial grafts, share 

important features (Anderson, 1983; Anderson, 1989; Schoen et al., 1988).

The study of cartilage matrix and the process of mineralization indicates that 

matrix proteoglycans inhibit cartilage mineralization.

Proteoglycans are inherently heterogeneous and polydisperse in nature in 

terms of molecular size, charge density, constituent protein, and 

glycosaminoglycan moieties. Some of the aorta proteoglycans have features 

similar to those attributed to hyaline cartilage. For example, large 

proteoglycans identified in aorta, at least in part, are capable of forming high 

molecular weight link-stabilized aggregates with hyaluronic acid which indicates 

some similarity to the proteoglycans present in cartilage (Gardell et al., 1980; 

Heinegard et al., 1985; Oegema et al., 1979). However, Heinegard et al. 

(1985) demonstrated that the large proteoglycans had different peptide maps and 

showed only partial homology when compared to the aggregating proteoglycans 

in cartilage suggesting differences in primary structure in the core proteins of 

these two proteoglycans. In studies with rotatory shadowing, these molecules 

contain the pair of globules typical for the hyaluronate binding region. A single 

link protein has also been identified in aortic tissue (Vijayagopal et al., 1985),
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indicating that this tissue, like cartilage, possesses accessory proteins which 

function to stabilize the proteoglycan aggregate. The proteoglycan matrix 

granules in aorta are very prominent and have a close association with both the 

collagen and elastic fibers in the extracellular matrix. Often, the proteoglycans 

can be seen condensed on the collagen fibrils at constant intervals similar to the 

patterns observed in cartilage. This observation suggests that there are ordered 

interactions between the proteoglycan molecules and the collagen fibrils in the 

aorta. Aorta, like cartilage, undergoes repetitive, transient pressure changes, 

and it is likely that the proteoglycans, in concert with the elastin component of 

the tissue, buffer these cyclical changes.

Most previous studies on cellular viability and histology of valve tissues 

were undertaken to assess the metabolic state of aortic leaflets before and after 

processing for transplantation (Hu et al., 1989; Hu et al., 1990). Although 

allograft aortic conduits have been in use for almost as long as valves, little 

study has been done on them. This study was focused on the arterial conduit 

wall since a major concern in using allograft tissue in cardiac reconstruction is 

late wall calcification and possible conduit obstruction.

The first objective in studying proteoglycans is to extract them from the 

tissue as quantitatively as possible and under conditions that reduce the chances

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for degradation. Proteoglycans constitute a minor component of aorta 

(approximately 1- 5 % by weight) as compared to cartilage (approximately 50 

% by weight). Proteoglycans isolated from cartilage have been most widely 

studied, primarily because cartilage contains large amounts of proteoglycans. A 

number of methods, initially applied to cartilage, have been adapted for soft 

tissues such as aorta. However, there are great variabilities in the 

proteoglycans depending on the tissue source, location of sample, and 

extraction procedure. It is necessary to devise an extraction procedure for 

porcine aorta conduit tissue. The extraction procedure must satisfy the criteria 

mentioned above (quantitative yields and inhibition of degradation of 

proteoglycans).

In early studies of proteoglycans, exhaustive high-speed homogenization 

(disruptive extraction) in water or low concentrations of salt were used as the 

primary methods for extraction of proteoglycans (Pal et al., 1966). However, 

these disruptive isolation procedures can introduce shear artifacts. A new 

extraction technique, using high ionic strength solution, was introduced for 

solubilizing proteoglycans from tissue without requiring homogenization and has 

been designated as dissociative extraction (Sajdera and Hascall, 1969). The 

ease and efficiency of proteoglycan extraction from the tissues are dependent on 

the ability of the extracting medium to dissociate proteoglycan aggregates in the
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tissue.

The study to find optimal concentrations of Gdn-HCl for proteoglycan 

extraction from porcine aorta tissue has indicated that Gdn-HCl (denaturing 

solvent) at a concentration of 4 M is the most effective. The yield of 

proteoglycans from Gdn-HCl concentrations lower or higher than 4 M Gdn-HCl 

was significantly less than that obtained with 4 M Gdn-HCl. Antonopoulos et 

al. (Antonopoulos et al., 1974) also found that the concentration of 4M of Gdn- 

HCl was the most effective for the extraction of proteoglycans from bovine 

sclera, and cornea. The amount of proteoglycans extracted from sclera and 

cornea with 5 M Gdn-HCl was similar to that with 4 M Gdn-HCl. However, 

the yield of proteoglycans increased slightly with increases in the concentration 

of Gdn-HCl (from 1 to 5 M) from these tissues in contrast with porcine aorta in 

the present study. Sajdera and Hascall (1969) suggested that the rate of 

proteoglycans extraction from bovine nasal cartilage was greater for the optimal 

Gdn-HCl concentration than for optimal inorganic electrolyte (calcium chloride, 

magnesium chloride) solution. Gdn-HCl in 3 M concentration was the most 

effective, and the range of optimal concentrations (between 3 and 8 M) for 

extraction of cartilage was broad for Gdn-HCl but rather narrow for the 

inorganic salts. In the present study, the sharp optima for extraction of porcine 

aorta conduit tissue exhibited by different concentrations of Gdn-HCl indicated
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that a reasonable amount of care must be exercised in utilizing Gdn-HCl for the 

purpose of dissociative extraction.

At a 4 M concentration of Gdn-HCl, most intermolecular noncovalent 

bonds appear to be broken in aortic conduit tissue. At lower concentrations, 

the denaturing effect of the Gdn-HCl is less pronounced and extraction is less 

efficient, and extremely long periods of time may be needed to extract high 

yields of the soluble proteoglycans. Also, at higher concentrations extraction 

yields becomes lower, possibly an effect of alterations in the network of 

fibrillar protein as a result of denaturation.

Another general problem in isolation of proteoglycans is that the core 

protein is very sensitive to protease activity (Heinegard and Sommarin, 1987).

It is therefore important to protect the core protein during extraction from the 

activities of proteases present in the tissue. One efficient way of inhibiting 

protease activity is the use of denaturing conditions for extraction. Extraction 

of tissues at low temperature (4 °C) is another way for inhibiting enzyme 

activity. Additionally, protease activity may be inhibited by selecting an 

appropriate pH for the extracting solvent. A pH of 5.8 for the extraction 

solution was used in this study since it is above the optimum for acid pH 

proteases and below the optimum for neutral and alkaline pH proteases. A
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number of protease inhibitors with a broad range of specificities were also 

included in the extraction solutions. The choice of conditions utilized in the 

present study appear to be appropriate since minimal degradation of isolated 

proteoglycans was observed.

A maximum value of tissue proteoglycans was isolated after 48 hours 

extraction. More uronate could be extract by a second 48 hours extraction of 

the tissue, but the extraction was not repeated in order to minimize potential 

degradation of these macromolecules, facilitating further assessment of 

aggregate size of extracted proteoglycans.

There were density variations after the second CsCl density gradient 

centrifugation. Oegema et al. (1979) suggested that these variations in the 

gradients are the result of changes in the number of glycosaminoglycan chains 

attached to the protein core(s) rather than changes in the chain length or the 

presence of different populations of core protein. The patterns of the 

dissociative CsCl isopycnic centrifugation profiles of proteoglycans with porcine 

aorta tissue in this present study were similar to those observed in bovine aorta 

(Radhakrishnamurthy et al., 1986), bovine lung (Radhakrishnamurthy et al., 

1980), and human aorta (Dalferes et al., 1987). The results obtained in the 

CsCl isopycnic centrifugation study indicated that there was no change in the
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levels of total proteoglycans after cryopreservation of porcine aorta conduit 

tissue. Manley (Manley, 1965) observed no significant effect on aorta 

glycosaminoglycan composition with post mortem intervals up to 90 hours.

Because proteoglycans were extracted in dissociative solvent and 

fractionated by dissociative isopycnic centrifugation, it was expected that the 

top fraction would contain the hyaluronate (density approximately between 1.4 

and 1.5 g/ml) and link proteins (density approximately less than 1.4 g/ml). 

Although gel permeation chromatography was performed under dissociative 

conditions, 4 M Gdn-HCl/0.05 M sodium acetate was removed from the eluent 

solution (using a hollow fiber system) just before collection of eluent fractions, 

it is possible that the uronic acid-positive materials eluted near the void volume 

of the column in proteoglycan fractions II and III might represent aggregated 

proteoglycans since there might be hyaluronic acid in these fractions.

Although it was not demonstrated in this study that proteoglycans occur 

as mixtures or as a hybrid proteoglycan with different glycosaminoglycans on 

the same protein core, all proteoglycan preparations (fractions I, II, and III) 

from fresh and cryopreserved tissues were bigger than the monomer form 

because values of proteoglycan fractions (K^ =  0.13 and 0.50 (I), 0.23 

(II), and 0.40 (III) in fresh tissue and =  0.13 and 0.47 (I), 0.20 (II), and
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0.43 (III) in cryopreserved tissue) were much smaller than that of chondroitin 

sulfate (Kav =  0.80). Even if they were from a hybrid-type proteoglycan, 

heterogeneity with respect to individual glycosaminoglycan and polydispersity 

with respect to their molecular size could be possible in these preparations. 

Hybrid glycosaminoglycans are present in several tissues (Fransson and Roden, 

1967; Habuchi et al., 1973) and in the proteoglycans from bovine aorta 

maintained in culture (Kresse et al., 1971).

The similar overall values of uronic acid positive and proteinaceous 

materials of proteoglycans from fresh and cryopreserved porcine aorta conduit 

tissues indicate that proteoglycans isolated from cryopreserved tissue have 

similar molecular weights to proteoglycans of the fresh tissue. The similar 

molecular weight proteoglycan fractions in the cryopreserved tissue presumably 

result from normal synthesis of the core protein with several 

glycosaminoglycans prior to procurement, and suggest that processing for 

cryopreservation does not result in enzymatic modification or loss of 

proteoglycans during processing and cryopreservation. Berberian and Fowler 

(1979) reported that there was no significant effect on the specific activities of 

lysosomal enzymes of human aorta up to 40 hours of postmortem interval.

Proteoglycans exert significant influence over cartilage calcification.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Loss or alteration of proteoglycans accompanies cartilage calcification or 

transformation of cartilage into bone. Reddi et al. (1977) found that the 

proteoglycans present in plaque at the time of maximum chondrogenesis are 

primarily in the aggregated form. However, when the hypertrophic cartilage 

undergoes extensive calcification, there is a decline in the synthesis of 

proteoglycans and a large proportion of the newly synthesized molecules are of 

lower molecular weight (Reddi et al., 1977).

Lohmander and Hjerpe (1987) also found that rib cartilage lost 

approximately half its content of proteoglycans with the onset of calcification, 

and the proportions of very high molecular weight proteoglycans were 

decreased in mineralized tissue. They suggested that the quantitative and 

qualitative change of the proteoglycans of cartilage during calcification resulted 

from the concerted actions of released lysosomal hydrolytic enzymes. The 

presence in cartilage of both proteases (Woessner, 1973) and a hyaluronidase 

(Wasteson et al., 1975) has been demonstrated. These enzymes may be 

released into the intercellular matrix directly from cells and/or from matrix 

vesicles during and after degeneration and disintegration of chondrocytes 

(Anderson, 1969; Thyberg and Friberg, 1970). Degeneration of chondrocytes 

is frequent in the hypertrophic and mineralizing parts of epiphyseal cartilage 

(Thyberg and Friber et al., 1970).
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Lysozyme (a protein synthesized by chondrocytes) also exists in cartilage 

matrix (Kuettner et al., 1971; Kuettner et al., 1974) and appears to be 

concentrated in the hypertrophic zone of the growth plate. In vitro studies 

(Kuettner et al., 1974; Pita et al., 1975; Pita, Muller and Howell, 1975) 

showed that lysozyme reduces proteoglycan aggregates to the size of subunits 

and removes their inhibitory effect on mineral growth. Although the 

mechanism of lysozyme action on proteoglycan aggregates is unclear, the 

evidence from in vitro studies suggests that lysozyme disassembles aggregates 

or reverses aggregation by binding to hyaluronate and displacing subunits and 

link proteins (Tang et al., 1981). It might also prevent aggregate formation. 

Since the lysozyme exists throughout the matrix but apparently does not 

disassemble aggregates throughout the matrix, there must be some mechanism 

to control lysozyme activity. Howell’s group (1981) demonstrated that 

lysozyme inhibitors exist in cartilage and that they can prevent lysozyme from 

reducing aggregate size of proteoglycans.

It was found that proteoglycan aggregates inhibit hydroxyapatite growth 

in a dose dependent fashion (Chen et al., 1984). Boskey et al (1992) 

demonstrated that the enzyme-mediated alteration in the size of proteoglycans 

can significantly enhance the amount of mineral formed in an in vitro 

hydroxyapatite formation and growth assay. They suggested that the degraded
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proteoglycan can function as a hydroxyapatite nucleator, or may reflect the 

easier accessibility of calcium ions to the phosphate ions in solution because of 

the loss of the steric hindrance properties of the proteoglycan. It was also 

found that there was the parallel increase in alkaline phosphatase activity with 

increased protease activity in the calcification process of healing fracture callus 

(Einhorn et al., 1989). These data are consistent with the view that the 

proteoglycanases function to prepare the matrix for calcification.

In the study of explant cultures of bovine articular cartilage (Bolis et al., 

1989), degraded proteoglycan subunits were lost from the extracellular matrix 

of the tissue into the culture medium. Proteolytic cleavage of the core protein, 

especially in the hyaluronate-binding region, was the initial step in the 

catabolism within the extracellular matrix of cartilage of the large 

proteoglycans. The core protein of this proteoglycan is usually cleaved in more 

than one place. Mok et al. (1992) suggested that there is a region that is 

susceptible to proteinase attack within the interglobular domain of the core 

protein of aggregates.

Most studies attempting to understand the relationships between 

proteoglycan metabolism and the mineralization process reported that once 

mature mineralization is established, the proteoglycans tend to fall to low levels
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and reduce aggregate size to the subunit. The results obtained in this study 

indicate that the concentrations and molecular weights of proteoglycans were 

not changed in porcine aorta conduit tissue by those processes associated with 

cryopreservation, and we may therefore suggest that properly cryopreserved 

allograft valves may be less prone to calcification than valves which have 

alteration in proteoglycan content, for example valves with extended warm 

ischemic times where cell death occurs. It has been reported that allograft 

calcification is usually present more than 10 years after implantation.

Therefore, calcification may be influenced by a number of systemic and local 

tissue factors (including availability of calcium and phosphate, hormone levels, 

cell synthetic function, death of matrix fibroblast cells, matrix protein changes, 

phospholipids, and/or infiltration of the graft by recipient cells) after 

transplantation although these factors and the relationship between them are not 

certain.

Proteoglycans isolated from atherosclerotic lesions have higher molecular 

weights than proteoglycans of the normal tissue (Dalferes et al., 1987; Rowe 

and Wagner, 1985). Dalferes et al. (1987) suggested that higher molecular 

weight proteoglycan from atherosclerotic tissue resulted from formation of 

complexes of proteoglycans with other arterial wall proteins, plasma 

lipoproteins, or peptides derived from these proteins. The lack of change of
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proteoglycans sizes in cryopreserved porcine aorta conduit tissue, indicated by 

gel permeation chromatography profiles of proteoglycans in this study, suggests 

that there is no formation of higher molecular weight proteoglycan aggregates 

with tissue fibrous proteins during the cryopreservation processing.

The extracellular matrix of arterial wall is a complex in that it contains 

heterogeneous proteoglycans and the fibrous proteins (collagen and elastin). 

They are closely associated with one another which explains the observations of 

the sequential extraction study described. About 60 % of the total 

proteoglycans of the porcine arterial wall could be easily extracted by 

dissociative salt solutions, but extraction of the remainder of proteoglycans 

from association with the fibrous components of the tissue requires other 

methods for solubilization. Although it is possible to extract most of the 

proteoglycan material from several cartilageous tissues by dissociative 

techniques (Sajdera and Hascall, 1969), these methods fail to isolate all 

proteoglycans from aortic tissue.

The large amount of proteoglycans present in an insoluble form could 

represent: (a) the existence of cross-linked complexes between proteoglycans 

and fibrous protein; (b) the formation of more stable cross-linked complexes 

between several molecules of proteoglycans and hyaluronic acid with or without
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involvement of link proteins; (c) the formation of insoluble complexes by 

interaction of proteoglycans with collagen and elastin in the presence of Ca2+ or 

Mg2-1"; or (d) a high degree of physical entrapment in the network of fibers.

The use of specific enzymes, collagenase and elastase, elucidates the 

nature of the insoluble proteoglycans. The release of proteoglycans from the 

nonextractable residue by the enzymes indicates a general physical entrapment 

of proteoglycans in the collagen-elastin network, or that proteoglycan-collagen 

and proteoglycan-elastin cross-linkings play an important role in making 

proteoglycan material insoluble. If the insolubility were unrelated to specific 

interactions and reflected an intrinsic property of these proteoglycans alone, 

hydrolysis with these enzymes would not have further released proteoglycans. 

The specificity of these enzymes may be questioned since they may hydrolyze 

other components of the tissues. However, even highly purified preparations of 

elastase may have some non-specific protease activity. This extraneous activity 

can be inhibited by protease inhibitors which were used for extraction of tissue 

with dissociative solvent. In aorta, elastin and collagen constitute the bulk of 

the proteins, especially since elastin constitutes about 60 to 70 % of the tissue. 

Although another fibrous protein (microfibrillar protein that is closely related to 

elastin) is present in small amounts, Ross and Bornatein (1969) demonstrated 

that this protein is not hydrolyzable by elastase. Collagenase is highly specific
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and does not have any nonspecific protease activity (Radhakrishnamurthy et al., 

1977). It was found that sulfated glycosaminoglycans are capable of binding 

with serum low density lipoproteins in the presence of Ca2+ and Mg2+ to form 

insoluble complexes (Srinivason et al., 1970) and Ca2+ binds to neutral sites of 

elastin and collagen (Radhakrishnamurthy et al., 1977). It is, therefore, 

possible that proteoglycans form insoluble complexes with collagen and elastin 

in the presence of Ca2+ and Mg2+ and are resistant to extraction with salt 

solutions. The result of the sequential extraction of proteoglycans in the present 

study indicates that there is essentially no difference between cryopreserved and 

fresh tissue in the relative proportions of uronate per unit weight of wet tissue 

extracted in the procedure, except perhaps for the amount of proteoglycans 

solubilized by collagenase from cryopreserved tissue.

In the ultrastructural morphology study, dispersed collagen fibers were 

found in cryopreserved tissue, which may explain the result that more amounts 

of proteoglycans were extracted from the collagenase digestion of cryopreserved 

tissue than from fresh tissue. Because of the slightly more dispersed 

arrangement of collagen fibers in cryopreserved tissue, it might be more easy to 

digest the collagen with enzyme treatment which could then result in extraction 

of more proteoglycan from cryopreserved tissue.
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Electron-microscopic observations contributed to an understanding of the 

distribution of proteoglycan in the fresh and cryopreserved porcine aortic 

conduit. The electron density of the Cuprolinic Blue dye-precipitated 

proteoglycan is sufficient for most histological evaluations, but the electron 

density of the dye can be increased by the changes to the Cuprolinic Blue dye 

reaction to see fine details of proteoglycan structure. Since Cuprolinic Blue is 

tetracationic, the four charges on the dye can bind to four negative sites on a 

polyanion. However, diffusible anions in solution, e.g. Cl' from MgCl2, can 

replace the polymer-bound anions and much more dye is then bound per unit of 

substrate (Scott, 1972).

It has been shown (Scott, 1972) that due to the competitive action of 

Mg+2 ions, cationic dyes are easily displaced from carboxylic groups at a 

relatively low concentration of MgCl2 (about 0.05 M), but sulfate groups need 

considerably higher concentrations of MgCl2 for displacement. At 0.3 M 

MgCl2, Cuprolinic Blue can predominantly stain sulfated polyanions, where 

polycarboxylates and polyester phosphates remain unstained (Scott, 1980). 

Hence, at this concentration of MgCl2 it is likely that Cuprolinic Blue-positive 

structures contain sulfate groups, suggesting that these anionic sites contain 

sulfated glycosaminoglycans. The appearance of the precipitates closely 

resembles that of spread proteoglycan monomers with the glycosaminoglycan
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chains condensed (Buckwalter et al., 1982; Buckwalter and Rosenberg, 1982; 

Hascall, 1980). Therefore Cuprolinic Blue precipitates represent proteoglycans. 

This is in agreement with the study of Hascall (1980), who showed that the 

Ruthenium Red-positive granules, as observed in rat chondrosarcoma, 

corresponded to the condensed form of proteoglycan monomers. This 

observation also corresponds with the study of Scott (1980), who considered the 

Cuprolinic Blue-positive precipitates as observed in rat tail tendon, to be 

proteoglycans and the filamentous structure of precipitates indicated the collapse 

of the glycosaminoglycan side chains on the protein core of the proteoglycan 

(individual proteoglycan monomeric unit which exists as an extended 

"bottlebrush" structure in its native state).

The present study shows that the sulfated proteoglycans from porcine 

aortic conduit form differently shaped precipitates with the tetracationic dye 

Cuprolinic Blue and exhibit a site specific distribution within the arterial tissue. 

Three proteoglycan populations have been (Gardell et al., 1980; Oegema et al., 

1979; Salisbury and Wagner, 1981) separated based on hydrodynamic size: a 

large chondroitin sulfate proteoglycan (CSPG) which is capable of forming high 

molecular weight aggregates with hyaluronic acid, a smaller dermatan sulfate 

proteoglycan (DSPG), and heparan sulfate proteoglycan (HSPG). Types I, II, 

and III proteoglycan-Cuprolinic Blue precipitates reported in this study may be
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attributed to three individual proteoglycans having different chemical 

composition.

Iozzo et al. (1982) emphasized the possibility that the size and shape of 

the cationic dye-positive structures reflect the chemical size of individual 

proteoglycan monomers. They have shown a direct relationship between the 

number and size of the cationic dye-positive granules and the quantity and 

molecular size of the proteoglycan isolated from the interstitial matrix of 

normal and malignant colon. Similar techniques have been applied to blood 

vessels as well (Huang et al., 1984; Richardson et al., 1980). Quantitative 

morphological techniques were used in these studies to demonstrate that the 

number of cationic dye-positive granules increases in the interstitial space in 

areas of blood vessels undergoing intimal hyperplasia. Biochemical studies also 

demonstrated that these regions preferentially accumulated proteoglycan (Wight,

1985).

Studies (Oegema et al., 1979; Wegrowski et al., 1986) showed that 

dissociative agents solubilize mainly chondroitin sulfate and small amounts of 

dermatan sulfate proteoglycans. It was reported that the aortic chondroitin 

sulfate proteoglycan is a hydrodynamically large molecule (molecular weight 

approximately 1.4xl06: Oegema et al., 1979), which could be represented by
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the large proteoglycan-Cuprolinic Blue precipitates in soluble matrix. Studies 

using a monoclonal antibody against aortic chondroitin sulfate proteoglycan 

(CSPG) revealed that this proteoglycan is confined to regions of the arterial 

interstitium which contains the large cationic dye granule (Lark and Wight,

1986). Volker and coworkers (1986) found large electron dense proteoglycan- 

Cuprolinic Blue precipitates in soluble matrix of bovine aorta and suggested this 

precipitate is due to the presence of chondroitin sulfate proteoglycan. 

Furthermore they found that the precipitates in the soluble matrix are attached 

to 2 nm fibrils. They suggested that association of proteoglycan-Cuprolinic 

Blue precipitates in a repeating distance with 2 nm fibrils indicates the presence 

of a proteoglycan-hyaluronate complex. The appearance of this precipitate in 

soluble matrix of bovine aorta is similar to that of the type I precipitates 

reported in this present study. Therefore, large type I precipitates in porcine 

aortic conduit may represent proteoglycans mainly containing chordroitin 

sulfate.

Type II proteoglycan-Cuprolinic Blue precipitates associated with the 

collagen fibrils are separated from each other according to the major banding 

period of the collagen fibrils, indicating a specific interaction between 

proteoglycan and collagen. It is otherwise difficult to explain the very regular 

distribution of proteoglycan precipitates along the collagen fibrils.
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Ultrastructural association of cationic dye-positive structures and collagen 

fibrils has also been demonstrated in a variety of tissues, for instance, predentin 

(Nygren et al., 1976), primate arteries (Wight and Ross, 1975), and embryonic 

cornea (Trelstad et al., 1974). Using either Ruthenium Red or Alcian Blue for 

staining, the anionic granules in these tissues were mostly observed to be next 

to the collagen fibrils. However, Scott (1980), using Cuprolinic Blue and the 

critical electrolyte concentration method, found that in tendon, electron dense 

precipitates were distributed on the outside of the collagen fibers, and there 

were also precipitates running parallel to the fibril axis. In this study, it was 

found that there were few precipitates running parallel to the axis in comparison 

to those running perpendicularly. Furthermore, precipitates connecting adjacent 

collagen fibrils to each other could also be detected. Hence it is possible that 

collagen fibrils in the porcine aortic conduit are surrounded by a network of 

proteoglycans and in such a way as to provide structural coherence.

Dermatan sulfate has been shown to bind specifically to collagenous 

fibers in a culture system (Gallagher et al., 1983). Experiments in solution also 

demonstrated that dermatan sulfate interacts more strongly with collagen than 

does chondroitin sulfate (Obrink, 1973). Studies have shown that the 

proteoglycans associated with collagen mostly have dermatan sulfate and 

smaller amounts of chondroitin sulfates. Aortic dermatan sulfate proteoglycan
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is a hydrodynamically smaller molecule than aortic chondroitin sulfate 

proteoglycan (Rowe and Wagner, 1985). Chondroitin sulfate proteoglycans can 

be solubilized both by dissociative solvents and collagenase, which suggest that 

at least two species of chondroitin sulfate proteoglycans may be present in the 

aorta. Therefore, type II Cuprolinic Blue (CB)-positive precipitates reported in 

this study could represent proteoglycans containing mainly dermatan sulfate. 

Dermatan sulfate proteoglycan have also been isolated from skin and tendon 

(Fuji and Nagai, 1981; Vogel and Heinegard, 1983), and they are characterized 

by the presence of a few (1-4) dermatan sulfate chains. In this study, less 

electron dense type II proteoglycan-Cuprolinic Blue precipitates, in comparison 

with the type I and III precipitates of the porcine aortic conduit, might be due 

to this limited number of glycosaminoglycan chains in the proteoglycans 

associated with collagen.

Two important functions probably occur at the gap zone of collagen: 

cross-linking of collagen fibrils, and calcification of collagenous matrices. A 

proteoglycan molecule may influence both functions with its high charge and 

considerable excluded volume. Radial growth of the fibril, by accretion of 

collagen molecules or fusion of fibril, could be inhibited by restricted access to 

the cross-linking sites, due to proximity of the proteoglycan. It appears from 

electron microscopy that proteoglycans must be displaced during fibril fusion
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(Scott et al., 1981). Scott and Orford (1981) showed that dermatan sulfate 

containing proteoglycans are localized to the d-band (gap region) of the collagen 

I fibril in tendon, and further study (Vogel et al., 1984) indicates that a 

dermatan sulfate proteoglycan isolated from tendon is capable of inhibiting type 

I and II collagen fibrillogenesis in vitro. Whether the small dermatan sulfate 

proteoglycan present in blood vessel exhibits a similar activity is not yet clear, 

but a periodic association of a small proteoglycan precipitate to aortic conduit 

collagen was found in porcine aorta in this study as well as in collagen gels 

populated by arterial smooth muscle cells (Lark and Wight, 1986). A similar 

enrichment of proteoglycan was seen within collagen gels from cultures of lung 

(Vogel et al., 1981), skin (Gallagher et al., 1983) fibroblasts, and endothelial 

cells (Winterbourne et al., 1983).

Hydroxyapatite initially appears in newly calcified bone in the holes of 

the gap zone of collagen. Proteoglycans in the spaces later to be occupied by 

hydroxyapatite would probably have to be displaced or removed for 

calcification to occur. This would suggest that proteoglycan contents would be 

much lower in calcified as compared with uncalcified matrix, since 

disappearance of proteoglycan is a necessary prerequisite to the process of 

mineralization.
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By connecting collagen fibrils with each other, proteoglycans in collagen 

may also contribute to achieve their functioning together as fibers, rather than 

as separated fibrils. In such a way they may provide structural coherence.

The intermediate-sized type III precipitates represent elastin-associated 

proteoglycan. Pasquali-Ronchetti et al. (1984) reported that 

glycosaminoglycans associated with lathyritic elastin include mainly dermatan 

sulfate and heparan sulfate. Vijayagopal et al.(1983) observed that the bulk of 

proteoheparan sulfate was released from aortic tissue on treatment with 

pancreatic elastase and suggested a close association of heparan sulfate with 

elastin. Dalferes et al. (1987) also found that there are greater amounts of 

heparan sulfate in the elastase hydrolyzed tissue extracts than in dissociative 

solvent extracts in human aorta, and they suggested that this proteoglycan is in 

large part bound to elastin of the tissue. Heparan sulfate proteoglycans are 

important in the maintenance of the integrity of the intimal surface of the 

arterial wall as well as their role in atherogenesis. A decrease in heparan 

sulfate proteoglycans was observed in atherosclerotic lesions (Berenson et al., 

1984). This finding may be accounted for by large areas of distorted and 

depleted elastic fibers which may be important in the initiation of 

atherosclerosis. Therefore, type III proteoglycan precipitates described in this 

study probably contain mainly heparan sulfate.
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The affinity of type III precipitate for elastin resembles similar findings 

by Kadar et al. (1972) who demonstrated numerous granules associated with 

newly formed elastic fibers in chick embryo aortas. The observation of close 

association of elastin and proteoglycan-Cuprolinic Blue precipitate in this study 

suggests that one function of arterial proteoglycan may be to hold elastic fibers 

together. Furthermore, the proteoglycan-Cuprolinic Blue precipitates appear to 

interconnect elastin with collagen, suggesting that the major intercellular matrix 

components are held together in a type of mesh work by proteoglycans. These 

linkages might also serve to keep the major aortic conduit tissue components 

separated and thus could help to maintain turgor in the artery wall. In this 

capacity, the proteoglycans might function as a type of plastic interstitial 

substance, important in absorbing and/or dissipating stress imposed on the aorta 

under various physiological conditions (Balazs and Gibbs, 1970).

The histologic status of the fresh and cryopreserved porcine aortic 

conduit did not differ markedly. The normal tissue architecture was not 

affected markedly by the cryopreservation procedure as neither alteration of 

elastic structure, fibrous proteins nor alteration of nuclear distribution or 

smooth muscle cell morphology was detected.

The size and spatial distribution of proteoglycan-Cuprolinic Blue 

precipitates in both fresh and cryoporeserved porcine aortic tissues appeared to
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be qualitatively similar. These results correlated well with the results of a 

quantitative biochemical study of sequentially extracted tissue, which 

demonstrated that there is essentially no difference in the relative quantitative 

distribution of proteoglycans in fresh and cryopreserved porcine aortic tissue.

It can be suggested that the functional performance of proteoglycans in fresh 

and cryopreserved tissue is probably similar, especially with respect to the role 

of proteoglycans in calcification.

Pathological studies (Maxwell et al., 1989; Miller and Shumway, 1987) 

in aortic allograft calcification demonstrate prominent calcification of the aortic 

wall and, to a lesser extent the valve leaflets. The observed aortic wall 

mineralization involves calcification of elastin as a prominent feature. Intrinsic 

calcification (calcific deposits both in cellular remnants and in collagen fibrils) 

of the aortic allograft was also demonstrated in rat circulatory studies.

Urist and Adams (1967) reported on factors that influence calcification in 

transplants of the aorta as a result of their experiments of implanting aortic 

fragments into the anterior chamber of the eye in rats. They demonstrated that 

various physical and chemical properties of the implant are important. This 

work on chemical factors influencing the incidence of calcification is clearly of 

great potential importance. In proportion to the amount of calcium, phosphate
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ion association may occur such that the tissue contains a relatively soluble 

tripartite elastin-calcium-phosphate complex. Elastin can respond more rapidly 

than other tissues to hypercalcemia, can bind more calcium ion, and can calcify 

more rapidly than other tissues. Uptake of phosphate ion is influenced chiefly 

by the amount of calcium in elastin, since elastic tissue binds almost no 

phosphate (Eisenstein et al., 1964). Phosphorylated aorta, like phosphorylated 

tendon, is less, rather than more, calcifiable (Urist and Adams, 1967).

The quantitative biochemically detectable calcium in the cryopreserved 

porcine aorta tissue was more than that in fresh tissue. The amount of 

phosphorus in cryopreserved aorta tissue was similar to that in fresh aorta 

tissue. If  the elastin structure, normally saturated with protein-calcium 

complexes, develops the capacity to calcify after degradation or splitting of 

fibers and increased rate of uptake of calcium ions, the implanted cryopreserved 

allograft might calcify because of a higher content of total calcium.

It has been suggested that an immunological basis exists for calcification, 

demonstrating significantly more severe valvar calcification in allografts to 

transgenic rats compared with syngeneic rats (Khatib and Lupinetti, 1990). 

Gonzalez-Lavin et al. (1988) also demonstrated the importance of immunologic 

influences on allograft valve degeneration. They found that calcium content of
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allograft valve leaflet and aortic conduits was greater when the transplant was 

performed between unrelated dogs than when the transplant was between 

littermates. It was initially believed that valve allografts may be 

immunologically privileged since the graft does not retain cellular viability 

following transplantation or the cells are rapidly replaced by those of recipient 

origin. However, it is now acknowledged that valve grafts are antigenic and 

provoke host immune response (Gonzalez-Lavin et al., 1988; Heslop et al., 

1973). Some investigators have proposed that ABO matching between donor 

and recipient should be performed if possible, or it is necessary to consider 

immunosuppression, at least temporarily, after implantation of homovital grafts 

in growing individuals (Gonzalez-Lavin et al., 1988; Yankah et al., 1988). 

Fresh aortic allografts are antigenic and their antigenicity is not altered by 

cryopreservation (Cochran and Kunzelman, 1989). Jonas et al. (1988) 

suggested that cryopreservation might enhance immunogenicity since they 

observed more lymphocytic infiltration of the cryopreserved conduits relative to 

the fresh grafts in a sheep model. Cellular viability of cryopreserved allograft 

valves is superior to that of tissues preserved by other methods and the 

antigenic effect may result from enhanced endothelial preservation since the 

endothelium of vascular structures is the most immunostimulatory of all 

vascular components (Pober et al., 1986).
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It has been speculated that persistence of the endothelium may be 

desirable in grafted valve leaflets to protect the physicochemical balance of the 

matrix and facilitate the retention of basic structural features until new fibrous 

connective tissue develops (Armiger et al., 1985). However, since the 

endothelium is antigenic and incites host immune response, its value is in 

question. Processing and storage techniques that result in gentle displacement 

of the graft endothelium may be optimal.

The extended performance of the cryopreserved allograft valve was 

previously ascribed to persisting cell viability and linked to retention of the 

original viable cell population of the donor tissue (O’Brien et al., 1987; 

O’Brien, Kirklin et al., 1987). The evidence for this in human cryopreserved 

valves is demonstrated from cell growth that occurred on tissue cultures of 

explanted human valves. Chromosomal analysis showed that donor cells 

persisted in leaflet tissue of a transplanted allograft valve for 9U years. 

However, Allen and coworkers (1991) demonstrated that no donor cells were 

cultured from aortic valve leaflets in a growing sheep model and retention of 

viable donor cells does not appear to be essential for preservation of valve 

function in this model. Indeed, persistence of donor cells was more prevalent 

in calcified allograft wall specimens than in unaffected valve leaflets. They 

suggested that the retention of living donor cells may induce degenerative
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changes, perhaps through an increased immune response to the graft. Maxwell 

et al. (1989) suggested that the development of calcification in allografts is 

much less extensive than in xenografts because of the different mode of 

initiation of calcification in the two types of graft. The persistence of donor 

fibroblast remnants in the glutaraldehyde-treated xenografts is not seen in the 

antibiotic-sterilized allografts in which all donor cells undergoes necrosis and 

disappear (Gavin et al., 1973).

In a study of single cusp homologous aortic valve replacement in dogs, it 

was demonstrated that improved leaflet mobility and pliability occurred in 

nonviable leaflets that had been repopulated by the ingrowth of host cells as 

compared with viable valves containing residual donor cells (Mohri et al., 

1968). Studies in explanted fresh human allograft valves (Armiger et al., 1983; 

Gavin et al., 1973) suggested that freedom from valve deterioration may be 

related to ingrowth of host tissue onto the connective tissue of fresh homograft 

leaflets.

Fresh and cryopreserved human aortic valves when used as allografts on 

stents have a tendency to calcify whereas those used as free hand orthotopic 

aortic valve replacements appear to calcify only rarely and have increased 

longevity (Angell et al., 1989; Gavin et al., 1973). If access of recipient cells
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to the leaflets is important in preserving long-term valve function, the presence 

of the stent may interfere with ingrowth of recipient cells onto the valve matrix, 

rendering the stented allograft at risk for more rapid deterioration.

Alternatively, the presence of the stent may facilitate calcification by alteration 

of stresses placed on the valve during repeated function.

The presence of viable donor cells may be a key to extended protection 

from degenerative changes, but the effect may correlate more with the existence 

of living host cells and repopulation phenomena rather than the persistence of 

donor cells. Therefore, the recipient cell population may play a significant role 

in the protection of the allograft from degenerative changes, or they may 

contribute to subsequent calcification through death and release of hydrolytic 

enzymes. These enzymes would presumably alter the content and size of 

proteoglycans.

No effective therapy presently exists for removal of established 

cardiovascular calcific deposits and no clinically useful preventive measures are 

available. However, a broad range of compounds and treatment processes 

demonstrably reduced bioprosthetic calcification in animal models, but had 

potentially serious ramifications through deleterious effects on bone metabolism 

(Levy et al., 1987). Strategies for controlled release of antimineralization
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compounds in the vicinity of the valve might serve to reduce the systemic 

toxicity of this approach (Golumb et al., 1986). Criteria need to be considered 

to evaluate both efficacy and safety for each of the anticalcification approaches 

considered.

Detergent pretreatment of bioprosthetic heart valve tissue inhibits 

subdermal bioprosthetic leaflet calcification and delays the onset of circulatory 

deposits in some studies (Jones et al., 1988; Thiene et al., 1986). The 

mechanism of action of detergent mitigation of calcification may be due to 

either the extraction of membrane lipids, net surface charge modification, or 

removal of endogenous alkaline phosphatase. Diphosphonates are synthetic 

analogues of pyrophosphate and can inhibit hydroxyapatite crystal growth 

(Fleisch, 1989). Irving et al. (1966) demonstrated that polyphosphates prevent 

calcification even in aorta saturated with calcium complexes produced by 

hypercalcemia; they postulate an acidic phospholipid of unknown composition 

to be a local factor in calcification of aorta. Other reagents are probably less 

selective than pyrophosphate and may prevent crystal growth of apatite. Fe3+ 

and Al3+ are said to block nucleation by inhibiting membrane-linked 

calcification in devitalized cells (Webb et al., 1988).

Based on the findings presented in this study in conjunction with research
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presented by other groups, the following suggestions may be made:

(1) The standard preimplantation processing procedure such as utilized 

by LifeNet Transplant Services for human tissues does not have a significant 

damaging effect on the microscopic structure of porcine aorta conduit tissue.

(2) Quantitative proteoglycan content of porcine aorta conduit tissue is 

not changed after cryopreservation.

(3) The size distribution of proteoglycans in fresh and cryopreserved 

porcine aorta tissue is similar. This observation suggests that enzyme-mediated 

alteration in the content and size of proteoglycans during cryopreservation is 

minimized.

(4) Proteoglycans in porcine aorta tissue are primarily present in a form 

which is extractable by use of a dissociative solvent, and the remainder of the 

proteoglycans are associated with the collagen or elastin matrix. The results of 

the sequential extraction of proteoglycans in this study suggest that the relative 

proportions of proteoglycans in valve conduit are essentially similar in fresh 

and cryopreserved tissue.

(5) The topological distribution of proteoglycans within aorta conduit 

tissue was not affected by the cryopreservation procedure.

(6) There is more biochemically detectable calcium in cryopreserved 

tissue than in fresh tissue. Cryopreserved aorta conduit tissue might be more 

likely to calcify after implantation because of this higher content of total
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calcium if this characteristic contributes to subsequent calcification.

(7) The phosphorus content of fresh and cryopreserved porcine aorta 

conduit tissue was similar which suggests that cryopreservation processing does 

not influence the tissue phosphorus content.

It has generally been assumed that retention of a viable fibroblast cell 

population in a cryopreserved allograft heart valve improves long-term 

durability. The basis of this improved durability was thought to be due to a 

continued synthesis and repair of the valve matrix. As an alternative 

explanation, it might be suggested that retention of a viable donor fibroblast cell 

population in cryopreserved allograft valves is important in that a reduction in 

cell death limits the release of hydrolytic enzymes into the matrix space. These 

enzymes would degrade, to varying extents, the collagenous and noncollagenous 

proteins. It is suggested that degradation, i.e. alteration in quantity and size, of 

proteoglycans in a transplanted allograft heart valve may be responsible for the 

initiation of the process of mineralization as has been reported in cartilagenous 

tissues (bone). In addition, dead cells and their phospholipid membranes, may 

serve as sites for nucleation of hydroxyapatite crystallization. Previous research 

in this laboratory have suggested that conditions such as increased warm 

ischemia time results in valve conduit tissue which stimulates differentiation of 

a human dermal fibroblast into an osteoblast-like cell as measured by increased
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levels of the enzyme alkaline phosphatase (Hu, 1992). Increased levels of this 

enzyme have been found to be associated with the process of mineralization, 

presumably by increasing the effective concentration of inorganic phosphate at 

essentially the same tissue location where proteoglycan degradation is altering 

the distribution of free and complexed calcium ion.

The present study suggests that the procedures associated with 

cryopreservation do not alter the content or size distribution of proteoglycans in 

conduit tissues. These studies, however, do not take into account the possible 

effects that warm ischemic times might have on changes in proteoglycan content 

and the effects that processing of these valves for cryopreservation might have 

on tissues with increased cell death. Following transplantation of a 

cryopreserved allograft valve with some degree of warm ischemic time and cell 

death, recipient mesenchymal cells may migrate into the conduit portion of the 

allograft where they may be induced to differentiate into an osteoblast-like cell 

with increased levels of alkaline phosphatase. Via a process of mineralization 

similar to that for cartilage (bone formation), i.e. alteration in proteoglycan 

quantity and size, hydroxyapatite crystallizes may nucleate on membrane 

fragments of dead donor cells, and mineralization may proceed along the 

elastin/collagen fibers until degenerative calcific deposits are formed. That 

recipient cells are less likely to migrate into leaflet tissues, as opposed to the
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conduit tissues, may explain the greater tendency of conduit tissue to calcify 

following transplantation.
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