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A b s t r a c t - - W e  use a structural characterization of the metric projection PG(f), from the con- 
tinuous function space to its one-dimensional subspace G, to derive a lower bound of the Hausdorff 
strong unicity constant (or weak sharp minimum constant) for PG and then show this lower bound 
can be attained. Then the exact value of Lipschitz constant for PG is computed. The process is 
a quantitative analysis based on the G~teaux derivative of PG, a representation of local Lipschitz 
constants, the equivalence of local and global Lipschitz constants for lower semicontinuous mappings, 
and construction of functions. 

g e y w o r d s - - E r r o r  bounds, Lipschitz constants, G£teaux derivatives, Metric projections, Strong 
uniqueness. 

1. I N T R O D U C T I O N  

Consider the  following minimizat ion problem: 

inf ~(g) ,  (1) 
gEG 

where G, called the feasible set, is a subset of a normed linear space Y with norm [[. [[, and ~ ,  called 

the objective function, is a real-valued function defined on Y. Assume tha t  ~min :=  infgec  O(g) 

is finite and the opt imal  solution set S :-- {g E G : ~(g)  = ( I ) m i n }  is not  empty. Then  there are 
two fundamenta l  problems associated with (1)---error est imates and stabili ty analysis [1-3]. 

Error  es t imates  refer to  est imates of the distance from an approximate  solution to  the opti- 

mal solution set. Error  est imates are extremely impor tan t  in convergence analysis of  iterative 

a lgori thms for finding an opt imal  solution of (1), as shown in recent l i terature [4-21]. Another  
impor tan t  application of  error est imates is to provide a priori information on how far an ap- 

proximate  solution is from the opt imal  solution set [20,22-46]. Such a priori information can be 

used as a reliable te rminat ion  criterion of an iterative method  for solving (1). Stabil i ty analysis 

(or sensitivity analysis) refers to the s tudy  of  the behavior of the opt imal  solution set under  

pe r tu rba t ion  of parameters  (or data)  involved in the definition of • a n d / o r  G [1-3]. 
Here we are interested in the following type  of error estimates: 

dist(g, S) < ~/((I)(g) - ( ~ ) m i n )  , for g e G, (2) 
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256 M. BARTELT AND W. LI 

where 7 is some positive number and dist(g, S) is the distance from g to the optimal solution 
set S defined as 

dist(g, S) := ~ f  ][g - sll. 

If (2) holds, then one can say that (1) has a weak sharp minimum (cf. [5,47-50]). See [4,5,9,21,50] 
for applications of the weak sharp minimum property in convergence analysis of iterative methods 
for solving (1). The existence of 7 is sufficient for qualitative applications of weak sharp minimum 
properties, such as in the convergence analysis of algorithms. However, in order to obtain a priori 
error estimates, one must also have a quantitative analysis of 7. For this purpose, it is important 
to derive an explicit expression for the smallest -y which satisfies (2): 

~min : =  inf ~(g)--(I)min 
gea\s dist(g, S) (3) 

In this paper, we give a quantitative analysis of ~'rnin for a special optimization problem--the 
best approximation problem in continuous function spaces. For this special problem, ")'min is 
closely related to the Lipschitz constant of S with respect to perturbations of the data function 
involved. Therefore, we also give a quantitative analysis of the related Lipschitz constant. 

Let G be a finite-dimensional subspace of the Banach space Co(T) of all real-valued contin- 
uous functions on a locally compact Hausdorff space T which vanish at infinity (i.e., {x c T : 
If(x)[ _> e} is compact for f 6 Co(T) and e > 0). The supremum norm of Co(T) is defined 
as Hf[[ :-- supxeT [f(x)[ for f 6 Co(T) and the objective function for the best approximation 
problem is (I)(g) := I[f - g[I which depends on a (data) function f in Co(T). In this setting, the 
optimal solution set is actually a set-valued mapping PG(') from Co(T) to subsets of G, called 
the range of the metric projection and defined as 

PG(f) := {g ~ a :  I l f  -- gll = d i s t ( f ,  G ) } .  

See [51] for set-valued analysis. 
Hausdorff strong uniqueness [52], 
ness property of Haar subspaces 
Hausdorff strong unicity constant 

Note that  weak sharp minimum in this case was also called 
because it is a set-valued version of the classical strong unique- 
[53-55]. Here we want to find the exact values of the uniform 
F of Pc and the Lipschitz constant A of PG, respectively, where 

F := inf { [[f -g[[ -d i s t ( f 'G)  } 
dist (g, Pv(f))  : f C Co(T), g C G with g q[ Pc(f)  , (4) 

A := sup { H (PG(f)'PG(h)) } 
[ [ f_h [  I : f, h 6 Co(T) with f # h  , (5) 

where H(A, B) is the Hausdorff distance between two sets A and B defined as 

H(A, B ) : =  max I.aeA~SUp dist(a, B), besSUp dist(b, A)} .  

A special case of the best approximation problem in Co(T) is data  regression in ]~n with the 
supremum norm [56,57]. Note that  Co(T) - (R n, I1" ]]oo), the n-dimensional vector space with 
the norm ]lYlloc := maxl<i<n lYd, if T consists of n isolated points. It is well known that  the 
best approximation problem in (N n, ]]. IIoo) can be reformulated as a linear programming problem 
(cf. [56,58]). In [29,31], sharp Lipschitz constants for (basic) optimal solutions and (basic) feasible 
solutions of a linear program with right-hand side perturbations are given in terms of seminorms 
of pseudoinverses of certain submatrices. However, we do not know whether the analysis given 
in [29,31] can be modified to find the exact values of F and A if G is a closed polyhedral subset 
of (N n, II • [Ioo). By using Hoffman's error estimate, Li proved that  F > 0 and A < c~ for any 
closed convex polyhedral subset G of (R n, II" Iloo) [49]. However, for a finite-dimensional subspace 
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of Co(T), it is not necessary that  F > 0 or A < oo. For any finite-dimensional subspace G 
of Co(T), Li proved that  the following statements are equivalent [59]: 

(a) r > 0 .  
(b) A < ~ .  
(c) supp(g) := {x : g(x) # 0} is compact for any g E G. 

Therefore, we should only consider a finite-dimensional subspace G whose elements have compact 
supports. Due to difficulty of the problem, we will only treat  the one-dimensional case in the 
present paper. Therefore, we make the following assumption throughout this paper, unless stated 
otherwise. 

ASSUMPTION 1. Let G := span{gl} be a one-dimensional subspace of Co(T) such that {x : 
gl(x) -# O} is compact. 

The paper is organized as follows. In Section 2, we use a structural characterization of P v ( f )  
to derive a lower bound of F and then show this lower bound can be attained by constructing 
a function. Section 3 is devoted to finding the exact value of A. The process is a quantitative 
analysis based on the Ggteaux derivative of Pc,  a representation of local Lipschitz constants, the 
equivalence of local and global Lipschitz constants for lower semicontinuous mappings, and con- 
struction of functions. In order to give a clean presentation, we put the complicated construction 
of functions with certain desirable properties in Section 4. 

2. H A U S D O R F F  S T R O N G  U N I C I T Y  

In this section, we first give a structural characterization of Pa( f ) .  Using this characterization, 
we can derive a lower bound for F. Then, by constructing a function, we show that  this lower 
bound can be attained. Thus, we obtain the exact value of F. 

First, we establish a structural characterization of Pc.  

LEMMA 2. Let 1 << u. Then PG(f) = {C91 : l < C < u }  if  and only i f  there exist two points xz 
and xu such that 91(xl) # 0, 91(xu) # O, and 

dist(f ,  G) = D[f - lg lN = sgn (g l (x l ) ) ( f  (xt) - l g l  (zt)),  (6) 

gist(f ,  G) = ]If - u9, [1 = - s g n  (gl (Xu)) ( f  (xu) - u91 (Xu)), (7) 

where sgn(a) denote the sign of a number a. 

PROOF. First assume Pa( f )  = {cgl : 1 < c < u}. Since supp(gl) is compact, sgn(gl(x)) is a 
continuous function on supp(gl). Therefore, there exists xt 6 supp(gl) such that  

sgn (91 (xl)) ( f  (xt) - Igl (xl)) = xEsumppaXgi)sgn (91(x)) ( f (x)  - -  lgl(x)).  

We claim that  

dist(f ,  G) = sgn (91 (xl) ) ( f  (xl) - lgl (xl) ) . (8) 

If (8) does not hold, then 

6 := dis t ( f ,  G) - sgn (gl (Xl)) ( f  (Xl) -- lgl (Xl)) > O. 

Let 0 < l - 16 < 611gill. Then 

sgn (gl(x) ) ( f (x)  -16gl(x))  <_ sgn (g l (x ) ) ( f (x )  - l g l ( x ) )  + (1 -16)I9(z)l  

_< sgn (91 (xl)) ( f  (xt) - 191 (zl)) + 6 <_ dist(f ,  G) 

and 

- s g n  (gx(x) ) i f (x)  -- 16gl(x)) <_ - sgn  (g l (x ) ) ( f (x )  - Igx(x)) -4- (l - 16)Ig(x)l 

_< sgn (gl (x) ) ( f  (x) - I g l ( x ) )  < IIf - lg l (x )H = dist(f ,  G). 
30:M6-R 
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As a consequence, [If-l~gl(x)[[ _< dist(f, G) and l~gl E Pc( f ) ,  a contradiction to the assumption 
that  Pa( f )  = {cgl : l < c < u}. Therefore, (8) holds. 

Similarly, we can prove that there exists a point xu such that gl(x,,) ~ 0 and 

dist(f,  G) = -sgn (gl (zu) ) ( f  (xu) - ugl (x,,) ) . 

Obviously, we also have 

IIf - zglll = IIf - uglll = d i s t ( f ,  G).  

On the other hand, if (6) and (7) hold, then, by convexity of Pc( f ) ,  we get 

PG(f) D {cgl : I < c < u}.  

Since gl(xl) ~ 0 and gl(xu) ¢ 0, the two equations (6) and (7) imply that  cgl • PG(f) i f c  < l 
or c > u. Thus, 

PG(f) = {cgl:  l < c < u}.  II 

Now we can derive the exact value of F. 

THEOREM 3. 

F = i n f {  'g~(x)' } Ilgll-----~ : z E T with gl(x) ~ 0 . (9) 

PROOF. First we show that, if gl(xt)  ~ 0, then 

F < Igl (Xl)l (10) 
- I l g l l l  

In fact, if Igl(Xl)l = Ilglll, then (10) holds, since F always satisfies F _< 1 (cf. [53, page 83]). 
Otherwise, by Proposition (13), there exists a function f ( x )  in Co(T) such that P c ( f )  = {0} and 

Ill - g l  II -< dist(f, G) + Igl (Xl)l • (11) 

Since 
IIf -g l [ ]  > dist(f,  G) + F .  dist (gl, PG(f)) = dist(f,  G) + F .  Ilglll, (12) 

inequality (10) follows from (11) and (12). 
Now let P c ( f )  = {cgl : 1 < c < u}. By Lemma (2), there exist two points xt and x~ such that 

gl(xt) ¢ 0, gl(xu) ~ 0, and equations (6) and (7) hold. Let g = agl ¢ Pa( f ) .  Assume a < l. 
Then 

II f  - gl l  -> I f  ( x t )  - g ( x l ) l  

> sgn (gl (xl)) ( f  (xt) - g (xl)) 

= sgn (gl (xl)) ( ( f  (xt) - lgl (xt)) 4- (l - ~)gl (xt)) (13) 

= d i s t ( f ,  G) + (1 - a ) I g l  (x~)t 

= d i s t ( f ,  G) + Iga (xt)._.____~l dist  (g, Pc(f)) 
Itglll 

where the second equality follows from (7). 
Similarly, when a > u, we can prove that 

]If - gll ~ dist(f, G) q- - -  ]gl (Xu)] dist (g, Pa(f)). (14) 
IIg~ll 
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It follows from (13) and (14) that  

r - > i n f { / g l ( z ) '  } ]Ig~N : x • T with gx(x) ¢ 0 . (15) 

It is easy to see that  (9) follows from (15) and (10) and the proof is complete. 1 

If G = span{g1} is a Haar space and T is a compact Hausdorff space, then supp(gl) = T is 
compact. Therefore, the following result is a special case of Theorem 3. 

COROLLARY 4. Let T be a compact Hausdorff space and G = span{g1} be a one-dimensional 
Haar space in C(T).  Then 

F = i n f {  [gl(x)[ } 
Ilgll] : z • T  . 

In particular, r = 1 when G = span{l}. 

The result in Theorem 3 holds for a line segment in Co(T) with a similar proof. 

COROLLARY 5. Let G = {agl : A < a < B} be a line segment in Co(T) with {x : gl(x) ¢ 0} 
compact. Then 

F = i n f {  'g'(x)[ } Ilglll : x • T w i t h  gl(x) 7 ~ 0 . 

PROOF. Let P c ( f )  = {agl : l <_ c~ <_ u}. Then it follows as in Lemma (2) that  if A < l 
then (6) holds, and if u < B then (7) holds. Now F is invariant under translation, i.e., if 
Gfl = {agl : A -  fl < c~ < B - fl}, then Fa  = rao. Thus, we may assume that  A < 0 < B so that  
0 • G. Then the conclusion of Proposition (13)  holds. Now the proof of Theorem 3 holds, where, 
to verify (13)  and (14), it is only required that  we consider g = agl f~ Pa( f )  when A <_ c~ < l 
and when u < a _< fl so that  Lemma (2) in this case can be applied. 

3.  L I P S C H I T Z  C O N S T A N T S  

It is well known that  the uniform Hausdorff strong unicity constant F provides an upper 
bound 2/F for the uniform Lipschitz constant A. That is, 

2 
A < ~. (16) 

The above inequality was first established by Cheney [53] for a Haar space G and then extended 
by Park [60] to general cases. However, it was not clear whether the estimate (16) was sharp or 
not. Our first main result in this section is to show that  the equality holds in (16) if G is not a 
Haar space (i.e., supp(gl) ~ T). In this case, we prove A = 2/F by constructing two functions f ,  h 
in Co(T) such that  

2 
H ( P c ( f ) , P c ( h ) )  >_ ~ Ill - hH > O. 

However, if G is a Haar space and T is not a singleton, then we always have A < 1/F and it is 
not easy to find the exact value of A. Fortunately, the G£teaux derivative formula of Kolushov [61] 
provides some information on the exact value of A. The existence of the G£teaux derivative of Pc  
for a Haar space G was first discovered by Kro5 [62]. Later, Kolushov derived a formula for the 
G£teaux derivative of PG [61]: 

lim P c ( f  + re) - P c ( f )  = p(f ,  ¢), (17) 
t-.0+ t 

where p(f ,  ¢) is the unique solution of the following minimax problem: 

min max (¢(x) - g(x)) ,  sgn(f(x) - PG(f) (x) ) ,  (18) 
gEG xEE(f-Pc(f)) 
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where E ( f  - Pc(f))  := {x • T :  [(f - PG(f))(x)l = Ilf - PG(:)II}. Note that, by (17), 

liP(f, ¢)1_______~ _ lim I lPc(f  + t¢) - Pc(f)l[  < A. 
II¢II t-~o+ tll¢ll  

Therefore, 
s u p {  ][p(f' ¢)[[ } II¢I-------F : f ' ¢  • Co(T) (19) 

provides a seemly tight lower bound for A. It turns out that the expression (19) is the so-called 
uniform local Lipschitz constant of P c  [63]: 

A t =  sup { [[P(f'¢)[[[[¢[[ : f , ¢  • Co(T) with ¢ ~ 0} , (20) 

where 

:= sup inf sup ~ H(Pc(f)-2'PG(h)) } A t 
fECo(T) 5>0 [ [If -- hi[ : h • Co(T) with 0 < [If - hi[ _< 5 . 

Even though for a specific function the local Lipschitz constant need not equal the (global) Lip- 
schitz constant, it is known that the uniform local Lipschitz constant of any Lipschitz continuous 
mapping is the same as the uniform Lipschitz constant of the mapping (cf. [31, Theorem 2.1] 
or Lemma (7). As a consequence, A t = A. Therefore, in order to get the exact value of A, 
we only need to compute the norm of p(f, ¢) and to do this, we will use the following explicit 
representation of p(f, ¢): 

sgn (gl (Xl)) • ~)(Xl) q- sgn (gl (x2)) " ~b (X2)gl(x) ' 
p(f, ¢)(x) = [gx(xl)[ + [gl (x2)l 

(21) 

where xl and x2 are two distinct points in E ( f  - Pa(f)). 
In short, when G is a one-dimensional Haar space, by using (20), (21), and A l = A, we are able 

to prove that 
2 [Iglll (22) A =  

inf{Igl (Xl)] + Igl(x2)l: Xl,X2 • T with zl ~ z2}" 

The first main result of this section shows that A -- 2/F if G is not a Haar space. 

THEOREM 6. Suppose that G = span{g1}, supp(gl) is compact, and Z(gl) := {x : gl(x) = 0} is 
not empty. Then 

2 Ilgl II 2 Ilglll 
A _ _  _ _  - -  

r inf {[gl(x)[ : gl(x) ~ 0}" 

PROOF. By inequality (16), we have 
2 

A < - .  
- F  

Thus, by Theorem 3, it only remains to show that there exist f ,  h • Co(T) such that 

H(Po(f) ,Po(h))  > rllY - hll > 0. 

By the assumption, there exists a point xo such that gl(xo) = 0. Let xl • T such that 

r = Igl (x~)l 
Ilgxll 

Then, by Proposition (14), there exist f, h • Co(T) such that 

H(Pc(f ) ,Pc(h))  > 21I f  - hi[ > 0. | 
t 
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From now on, we proceed to establish the identity (22). First we show that  A l = A. For a 
finite-dimensional subspace G of Co(T), we say that  P c  is locally upper Lipschitz continuous 
with modulo A, denoted by PC E UL(A) (cf. [64]), if, for any f E Co(T), there exists a positive 
constant 6 > 0 such that  

dist (Pc(h), Pc(f))  ~ Aiif - hi[, for h E Co(T) with [If - hi[ -< 6, 

where dist( . , -)  is defined as 

dist (Pc(h) ,Pc(f))  := sup inf l iP -  g[[. 
pEPG(h) gePc(f) 

Note that ,  if P c  is Lipschitz continuous, then P c  E UL(A). However, the converse is also true if 
P c  is also Hausdorff lower semicontinuous, i.e., 

lira dist (Pa(f), Pa(h)) : 0, for every f • Co(T). 
h---.f 

Note [52] that  P c  is Hausdorff lower semicontinuous if and only if, for any nonzero function g E G, 

card(bdZ(g)) < dim{p • G :  intZ(g) c Z(p)} - 1, (23) 

where Z(g) := {x • T : g(x) = 0}, bdZ(g) and intZ(g) are the boundary and the interior of Z(g), 
respectively, card(K) denotes the number of points in a set K. Therefore, the following result is 
a consequence of [31, Theorem 2.1]. 

LEMMA 7. Suppose that G is a finite-dimensional subspace of Co(T) such that (23) holds for 
every nonzero function g in G. Then PG E UL(A)/if and only if A <_ A. 

Using Lemma 7, we can easily show that  A = A l. In fact, we can prove the following more 
general result. 

LEMMA 8. Suppose that G is a finite-dimensional subspace of Co(T) such that (23) holds for 
every nonzero function g in G. Then 

A ~ = A z = A, 

where 
A ~ := sup !n fsup{  dist(Pa(h) 'Pc(f))  } 

SeCo(T) 0>0 h : 0 < IIf - hll < 6 (24) 

PROOF. It is easy to see that  A u < A t _< A. On the other hand, let e > 0. Then, by the definition 
of A u, Pc E UL(A ~ + e). By Lemma 7, A <_ A u + e. Since e > 0 is arbitrary, we have A _< A u. I 

Next we give a representation of A by using the norms of the G£teaux derivatives of Pc- 

THEOREM 9. Let T be a compact Hausdorff space and G -- span{g1} a one-dimensional Haar 
subspace of C(T). Then 

A = sup{llp(f,¢)ll : f, cb • C(T) with I1¢11 ~ 1}. (25) 

PROOF. 
proved that ,  for any f E C(T), 

inf sup (~ H (PG(h), PG(f)) C(T) with h / l :he  

= sup{liP(f, ¢)1[ : ~ E C(T) with II•l[ -< 1}. 

Thus, equation (25) follows from (26) and Lemma 8. 

In fact, for any finite-dimensional Haar subspace G of C(T), Bartelt  and Swetits [63] 

(26) 

I 
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LEMMA 10. Suppose that T is a compact Hausdorff space and G = span{g1} is a one-dimensional 
Haax subspace of  C(T).  Let  f in C(T)  \ G and ¢ in C(T).  Then there are two distinct points x l  

and x2 in E ( f  - Pa ( f ) )  such that 

p(f, ¢)(x) = sgn (gl (Xl)) • • (Xl) ÷ sgn (gl (X2))" ¢ (X2) gl(X) 
Igl (xl)l + Im (x2)l 

and 
( f  -- P G ( f ) )  (Xl) "gl (Xl)" ( f  -- P G ( f ) )  (X2) "gl (X2) < 0. 

PROOF. By Kolushov's representation of the Ghteaux derivative of PG (cf. (17) and (18) or [61]), 
one can easily verify that  there exist two distinct points xl and x2 in E ( f  - Pa ( f ) )  such that 

- sgn  (gl (Xl)) ((~ (Xl) - P ( f , ¢ )  (Xl)) ----- sgn (gl (x2)) (¢ (x2) - p(f ,  ¢) (x2)) (27) 

and 
( f  - P c ( f ) )  (Xl) "g l  (Xl)" ( f  - P c ( f ) )  (x2) " gl (x2) < O. 

Substituting p(f ,  ¢) := Agl into (27), we have a linear equation in A with the solution 

A = sgn (gl (Xl)) " ¢ (Xl) ÷ sgn (gl (x2)) • ~b (x2) 
Igl (Xl)l ÷ Igl (x2)] 

THEOREM 11. Suppose that T is a compact Hausdorff space and G = span{gl} is a one- 

dimensional Haar subspace of C(T).  I f  G = C(T),  then A = 1; otherwise, 

2 Ilgl II 1 
A -- inf {Igl (xl)[ + Igl (x2)l : x l , x2  E T with xl # x2} -< F" 

(28) 

PROOF. If G = C(T), then PG is the identity mapping and, obviously, A = 1. Otherwise, it 

follows from Theorem 9, and Lemma 10 that 

A = sup{llP(¢,f)ll : f , ¢  e Co(T) with I1¢11 < 1} 

< sup sgn(gl (Xl)) . ¢(Xl) +sgn (g l  (x2)) • ¢(x2) . Hgl[[ 

- jml<1,~1~ ]m (xl)l + ]m (x2)l 
{ 2 Ilglll } 

_< sup Igl (xl)l + ]gl (x2)l : x l , x2  e T, x 1 • x2 • 

Now, let Xl, x2 E T with Xl # x2. By Proposition (15), there exist functions f, ¢ in C(T) such 

that I1¢]1 = 1 and 
2 IIglll (29) 

lip(f, ¢)11 -> Im (x~)l + Im (x2)l" 

By Theorem 9 and (29), we get 

A>_sup Ig l (x l ) [+lg l (x2) l  : x t , x 2 E T w i t h x l  ¢ x 2  • 

This completes the proof. | 

COROLLARY 12. Suppose that T is a compact Hausdorff space with no isolated points and 

G = span{g1 } is a one-dimensional Haar subspace of C(T).  Then 

1 Hmll 
r i n f { l g l ( z ) l : z  e T}" 
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4. CONSTRUCTION OF F U N C T I O N S  

In this section, we construct  several functions with certain desirable properties.  Let  

T1 : = { x  • T :  9t (x)  ¢ 0 } .  

For convenience, we use the following notation: 

0, 

a, [fl(x)]ba : =  
b, 

f l ( x ) ,  

if x q~ T1, 

if x • T1 and f l ( x )  < a, 

if x • 7'1 and f l  (x) > b, 

i f x • T 1  a n d a < _ f l ( x ) < _ b  

for scalars a,b with a < b and a function f l  defined on T1. Note tha t  [f l(x)]  b is actually the 
t runca t ion  of f l (X) on T1 by the lower bound a and the upper  bound b which is na tura l ly  extended 
to  a funct ion on T with values 0 outside T1. If fx (x) is continuous on T1, then [fl (x)]b a is in Co (T) 
for any a < b, due to  the fact tha t  7"1 is bo th  open and compact .  

PROPOSITION 13. For any xl E T with gl(Xl) ¢ 0, there exists a function f ( x )  in Co(T) such 
that Pc(. f )  = {0} and 

Ill - roll < dist ( f ,  G) + Igx (xl)l  • (30) 

PROOF. If 91(X) ---- 0 for all x ~ Xl, then f = 0 is the required function; otherwise, let x2 • 
7"1 \ {xl}.  Wi thou t  loss of generality, we may assume Ilgxll - 1 and g l (x l )  > 0. 

Define a function ]1 on {Xl,X2} by ] l (Z l )  := - 1  and ]1(x2) := sgn(gx(x2)). Since Igl(x2)l <_ 1, 
it follows t ha t  

] l ( X i ) - g l ( x i )  _< 1 +  ]gl ( z l ) l ,  for i = 1,2. 

By  the  Tie tze  Extension Theorem,  there exists a continuous extension ( f l  - 9 1 )  of (]1 - 9 1 )  on TI 
such t ha t  

i l l (X)  -- gl(X)l  ~ 1 -+-[gl (XI)[ , for x E T1. (31) 

Let  f ( x )  := [fa(x)]l_l. Then  f ( x )  E Co(T) and [[fll <- 1. Since f l ( x l )  = ]1(xl )  = - 1  and 

fl(X2) = ] l (x2 )=sgn(91(x2) ) ,  we have f ( x x ) = - 1  and f (x2)=sgn(gl (x2)) .  Therefore,  for a > 0, 

I l l  - ~glH ~ I ( f  - ~ m )  (xl)[ = [1 + O~g I (Xl) [ > 1, 

and, for a < 0, 

[If - a911[ > I(f  - c~91)(x2)l = [sgn (91 (x2)) - ag l  (x2)l > 1. 

As a consequence, Ilfll = 1 < IIf - aglll for a ~ 0 and PG( f )  = {0}. 
Now we claim tha t  

I f (z )  - gx(x)l <_ 1 + Igl (Xl)], for x • T. (32) 

In fact, (32) is trivially t rue  if x • Ti.  If x • Ti and Il l(x)]  _< 1, then  (32) follows from (31). For 
x • T1 with f l ( x )  > 1, by (31) and [91(x)[ <_ 1, 

0 < 1 - 91(x) = f ( x )  - gl(x) <_ f l ( x )  - gl(x) < 1 + [gl(Xl)l • 

For x • T1 with f l(X) < - 1 ,  by (31) and I91(x)l <_ 1, 

- (1 + Igl ( X l ) [ )  <_ f l ( x )  - g l ( x )  <_ f ( x )  - g l ( x )  = - 1  - g l ( x )  <_ O. 

Thus,  (32) holds. The  inequality (30) follows from (32) and dis t ( f ,  G) = 1. | 
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PROPOSITION 14. Let xo and x l be two distinct points in T such that gl ( xo ) = 0 and gl ( x l ) # O. 
Then there exist f ,  h E Co (T) such that 

2 Ilglll 
H(PG(f),PG(h)) >_ Igl ( X l ) " " ' - ~  I l l  - hll > o. 

PROOF. Suppose first that gl(x) = 0 for x ~ 51. Let f l (x)  be a nonzero function in C o ( T \  {Xl}) 
and define ( f l ( X ) ,  if x ~ Xl, 

I(5) := / ~11~(5)1 ,  i f 5=51 .  

Then it is easy to verify that P c ( f )  = {cgl(x) : 0 <_ c <_ 2f(xl)} .  Let h(x) = 0. Then 

Pc(h) = {0} and 

2 [[glJ] Ilf - hll > 0. H(PG(f) ,PG(h))  = 2 If (xl)[ = 2 [If - hll = Igl (Zl)-----~ 

Now suppose that  gl(x2) ¢ 0 for some x2 c T \ {x0,xl}. Without  loss of generality, we may 
assume that Ilglll = 1 and gl(xl)  > 0. Let ~ := [gl(xl)l and ~ := (1/7) + 1. Define 

{ /3+1,  x = x o ,  

]l(X) = -,6', 5 = 51, (33) 

/~. sgn (gl (52)), x = x2. 

Then it is easy to verify that 

fil (xi) gl ~xi) _< ~ + 1, for 0 < i < 2. 

According to the Tietze Extension Theorem, there exists a continuous extension (f l  - (gl/~)) 

o f  ( ] 1  --  (if1/?'})) on 7"1 such that 

(x) - g-~ (x) < 13 + 1, for x E T1. (34) f l  

Let f ( x )  := [fl(Z)]Z_-~ 1. Then f e Co(T) and f ( z i )  = ]l(xi)  for 0 < i < 2. Obviously, for any 

scalar a, 
I l l  - O~fflll --> [f (x0) - -  agl (X0)[ : I]1 (X0) - -  agl (50) : ~ + 1. (35) 

We claim that 

f ( x )  __gl 1 - -~ - (x )  ~ + 1 ,  f o r x 6 T 1 .  (36) 

In fact, (36) follows from (34) if -/3 ~ fl(X) ~ /~q- 1. For f l (x)  > ~q-1,  by (34) and Igl(x)l < 1, 
we have [ \ 

0 < ~ + 1 g1~5) _ f ( 5 )  - g1~5) <_ ] 1 ( 5 )  - gl~5---AJ < Z + 1. 

If f l (x)  < -/3, it follows from (34) and Igl(x)l < 1 that 

--(f~ q- ]) _< f l (5)  -- gl(X) ~ _ / 3 _  91(5__.__~) ---- f (x )  -- gl(x-----!) ~ O. 

Thus, (36) holds. Since f ( x )  : gl(x) = 0 for x ¢ T1, by (35) and (36), we get 

f _  gl 
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which, along with (35), implies 

g~l E Pc( f ) .  rl 

This completes the analysis of f (x) .  Next we construct a function h(x). 
Let 0 < e  < 1/2 and h(x) := Il l(x) - ¢]~_-~1_-~. Since 

(37) 

h ( x )  = I l l ( x )  - ¢ 1 G ' - 7  = [ f , ( x ) l G  x - ¢  = - ,  

for all x E T1, we have 

and 

IlY - hll = ¢ 

h ( X l )  = f ( X l )  - -  ¢ = - - f l  - -  ¢ .  

Now we show that  

Po(h) C {agl  : a <_ l --~2¢ } . 

By the definition of h(x), 
dist(h, G) < ]]hll < fl + 1 - ¢. 

If a > (1 - 2¢)/~?, by (38), we get 

(38)  

(39) 

(40)  

h (Xl) - agl (Xl) = - - f l  - -  ¢ - -  O~?~ < --fl - -  ¢ - -  (1 - 2¢) = - f l  - 1 + ¢. 

Thus, for a > (1 - 2¢)/~, I Ih  - a g ~ l l  > fl + 1 - ¢ and, by (40), agl • Pa(h). This proves (39). 
By (37) and (39), we see that  

H (Pc( f ) ,Pc(h) )  >_ dist ( g-~,Po(h)) 

_>min{ ~ - a g l  : a < l - 2 e } _  

_ gl 1 - 2eg 1 2e 

2 Ilalll 
= lal ( x l ) - - - - ~  IlY - hll > 0. 

This completes the proof of Proposition 14. | 

PROPOSITION 15. Let T be a compact Hausdorff space and G = span{g1} a one-dimensional 
Haar subspace of C(T). Then, for any two distinct points xl and x2 in T, there exist [unctions f ,  ¢ 
in C(T) such that  I1¢11 = 1 and 

lip(Y, ¢)11-> 
2 IIg~ II 

191 (xl)l  + Ig~ (x~)l" 

PROOF. Without  loss of generality, we may assume that  gl(xl) > 0. Let V1 and V2 be disjoint 
neighborhoods of xl  and x2. By Urysohn's Lemma, there is a function hi such that  hi(xi) = 1, 
O < h < l, and hi(x) = O for x ~ V~. Let 

f i(x) := max {hi(x) - I g l  (xi) - gl(x)l,  0}, for i = 1,2. 

Then 0 < f i(x) <_ hi(x) _ 1. If fi(x) = 1, then 

1 = fi(x) = hi(x) - Igl (xi) - gl(X)l <_ 1 - Igl (xi) - gl(x)l ,  
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which implies hi(x)  = 1 and gl(x)  = gl(xi ) .  Thus,  

{ z : / ~ ( x )  = 1} c {z • y~: gl(z)  = gl (x~)}. (41) 

Define 

f ( x )  :=  sgn (gl (z2))-  f2 (x)  - f l ( x ) .  

Then  - 1  ___ f ( x )  _< 1, since the suppor ts  of f l  and f2 are disjoint. I t  is easy to verify tha t  

P c ( f )  = {0}. Moreover, if x • Vi and [f(x)l  = 1, then f i(x)  = 1 and it follows from (41) t ha t  

gl (z)  = gl (xi) .  Therefore,  

( - 1 ) i f ( x )  • gl (x)  > 0 (42) 

and 

gl(x)  : gl (xi) (43) 

for x • V /wi th  I f (x) l  = 1. 

Let ¢(x)  = sgn(gl(x2)) ,  f2(x) q- fl(X). Then  I1¢11 = 1. By Lemma 10, there exist two points x~ 

* such tha t  I f(z*)l  = 1, and x 2 

p( f ,  ¢)(x)  = sgn (gl (x~)) • ¢ (x~) -q- sgn (gl (x~)) • ¢ (x~) gl (x ) ,  

Igl (x~)[ + 161 (X~)I 

f (X~)" gl (X~)" f (X~) ' g l  (X~) < O. 

(44) 

(45) 

If  bo th  x~ and x~ are in the same Vi, then (45) contradicts  (42). Wi thou t  loss of generality, we 

may  assume tha t  x* • Vi. Since f ( x )  = ( - 1 ) i ¢ ( x )  for x • Vi, it follows from (45) and I f(x*)l  = 1 

t ha t  

Isgn (gl (x~)) • ¢ (x~) + sgn (gl (x~)) • ¢ (x~) I = 2. 

Thus,  by (44) and (43), we get 

2 rlgl(Z)H 
IlP(f,¢)l] = Igl (xl)l + Igl (x2)l" II 
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