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Bayesian model averaging based
storage lifetime assessment method
for rubber sealing rings

Di Liu1 , Shaoping Wang1, Chao Zhang1 and Mileta M Tomovic2

Abstract
Rubber sealing ring is one of the most widely used seals. It is always stored for a period of time before put into use,
especially in aeronautic and aerospace applications. It is necessary to evaluate the storage lifetime of rubber sealing rings.
However, due to the long storage lifetime of rubber sealing rings, two issues need to be handled, including model uncer-
tainty and lack of storage lifetime data. A Bayesian model averaging based storage lifetime assessment method for rubber
sealing rings is proposed in this article. The Gamma distribution model and Weibull distribution model are selected as
the candidate models and combined based on Bayesian model averaging method. The Bayesian model averaging method
is applied to handle the model uncertainty. Considering the lack of storage lifetime data, the degradation data are utilized
to give the priors of model probability and distribution parameters based on the similarity principle. The results indicate
that the proposed method has smaller minus log-likelihood value and is better than the other discussed method, consid-
ering both goodness of fit and complexity.
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Introduction

Seal is one of the most important components for
hydraulic system of aircraft, fuel system of aircraft, and
and so on.1,2 Furthermore, the seals are widely used in
centrifugal compressors, pumps, and blowers.3

Generally, the seals are used to prevent leakage of
sealed liquid. The leakage caused by failure of seal is
very harmful and dangerous.4 Precisely, evaluating
reliability and lifetime of seals is essential for improving
the reliability of the systems, even the aircraft.

Several methods have been proposed to evaluate
reliability and lifetime of seals. Zhou and Gu5 applied
artificial neural networks in lifetime evaluation of
mechanical seals. Leakage rate and temperature of seal-
ing zone are selected as performance indicators. The
accelerated degradation tests (ADTs) have been carried

out to obtain degradation data, which were processed
based on wear equation. The artificial neural networks
are trained by the processed degradation data and used
to predict the residual lifetime of the mechanical seal.
The simulation results show that the artificial neural
networks can be used to evaluate the lifetime of
mechanical seals precisely under enough experimental
data conditions. Sun et al.6 proposed a lifetime
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evaluation method for mechanical seals based on the
wear failure mechanism and fractal geometry theory.
The topography parameters of sealing surface, includ-
ing waviness and roughness, are used to indicate the
degradation of mechanical seals. The degradation data
of the mechanical seals are obtained experimentally.
The relationship between the topography parameters
and the degradation of mechanical seals has been
obtained. The method is validated by actual mechani-
cal seal degradation data. Zhou et al.7 proposed a fati-
gue lifetime calculation method for lip seal based on
stress analysis. The method is focus on the seal failure
caused by material fatigue. The rain-flow counting
method is used to evaluate the fatigue lifetime of the
seals. Based on the proposed method, the effects of the
seal–shaft interference on the seal lifetime have been
analyzed. Liu et al.8 proposed a vibration signal
processing–based performance degradation analysis
method for mechanical seals. The root mean square of
vibration signal of mechanical seal is considered as the
indicator of the mechanical seal performance. A wave-
let filter is used to reduce noise in the vibration signal
caused by cavitation. Simulation results show that the
root mean square of vibration signal increases with the
increasing film thickness. All above researches are
focusing on evaluation and prediction of the seal ser-
vice life. However, besides evaluation and prediction of
service life, it is also important to evaluate the storage
life of the seal.

For example, the rubber sealing ring is one of the
most widely used kind of seals, as the main sealing ele-
ments and auxiliary sealing elements.9–12 Generally, the
seals are always stored for a period of time, before put
into use, especially in aeronautic and aerospace engi-
neering.13 The performance of the rubber sealing rings
continuously degenerates with the aging of rubber
material during storage in air.14 Similar methods have
been proposed in previous works15–18 to evaluate the
storage life of rubber sealing rings. The ADTs were car-
ried out to obtain the degradation data. The permanent
compression ratio is used to indicate the degradation of
the rubber sealing rings. The fitting curve function of
the degradation indicator is used to extrapolate the
rubber sealing ring storage lifetime. Guo and col-
leagues19,20 has studied the degradation process of
rotary lip seal during storage. Based on the experimen-
tal results, it can be seen that the root mean square
roughness becomes smaller during the rubber sealing
rings storage and aging in oil. Furthermore, the sealing
performance degrades with the decrease of the rough-
ness, resulting in the rubber sealing rings performance
degrading during storage. The storage temperature is
an important factor effecting the degradation rate. The
relationship between degradation rate and storage tem-
perature can be described by the Arrhenius equation.

The similar observations are also presented in Brown
and Soulagnet.21 Based on above researches, it can be
seen that the rubber sealing rings are always kept in air
and are not applied any load during storage, so the
rubber aging is the only degradation factor. Hence, the
storage life only depends on the storage temperature,
normally the ambient temperature. Generally, the stor-
age temperature is low, so the storage lifetime is very
long.

Due to the long storage lifetime of the rubber sealing
rings, it is difficult to obtain enough storage lifetime
data and evaluate the storage lifetime of the seal rings
precisely. Generally, the storage degradation data of
the rings are more easily to be obtained compared to
the lifetime data. In most cases, the ADTs are applied
to obtain degradation data.22 Due to the limited under-
standing of the degradation mechanism, limited under-
standing of failure mechanism, and the lack of lifetime
data, the storage lifetime distribution model of rubber
sealing rings is difficult to be determined and the distri-
bution model uncertainty issues are inevitable.
However, it is difficult to find related researches on
storage lifetime assessment for rubber sealing rings con-
sidering the uncertainty issue.

Generally, Akaike information criterion (AIC)23 and
Bayesian information criterion (BIC)24,25 can be used
to select the best fitting model. However, the model
selecting criterions cannot be used to handle the model
uncertainty, especially for the small lifetime data condi-
tions.26 Generally, the model uncertainty can be
handled by evidence theory,27,28 adjustment factor
method,29 and model averaging method.30,31 The model
averaging method is always combined with Bayesian
inference method and extended into the Bayesian
model averaging (BMA) method in the reliability engi-
neering.30,31 In order to access the lifetime evaluation
with multi-distribution fusion, the BMA method pre-
sents the information by random variables and fuses
the predicted results based on the candidate distribu-
tion possibilities.32–35 Liu et al.36 have used BMA
method to combine the candidate models, focusing on
degradation process. The ability of the proposed
method on the s-credibility degradation data analysis is
focused. The authors argued that BMA method can
handle the model uncertainty issue well. Additional
researches on adapting BMA method to handle the
model uncertainty can be found in Droguett and
Mosleh37 and Kabir et al.38

Considering the handling abilities of model uncer-
tainty and the data fusion, the BMA method is used in
this article. There are some issues need to be handled in
this kind of applications. One of the most important
issues is how to obtain the parameter priors based on
the accelerated degradation data. The main contribu-
tions of this article are as follows:
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1. Gamma distribution model and Weibull distri-
bution model are selected as the candidate dis-
tribution models for rubber sealing rings storage
lifetime and fused based on the BMA method.

2. Considering the lack of lifetime data, the priors
of storage life distribution parameters are
obtained from the degradation data based on
the similarity principle, and the distribution
parameters are evaluated by fully Bayesian
method.

This article is organized as follows. Section
‘‘Preliminaries’’ preprocesses the ADT degradation
data based on Arrhenius model and presents the basic
knowledge of BMA method and the basic assumption.
In section ‘‘The distribution model set,’’ the candidate
distribution models are selected and the degradation
data are processed. In section ‘‘The BMA-based life-
time assessment method,’’ the priors of distribution
parameters and model probability are obtained based
on the similarity principle. The storage lifetime of rub-
ber sealing ring is evaluated based on the proposed
method and the effectiveness is validated. Section
‘‘Conclusion’’ concludes the article.

Preliminaries

Preprocessing of the ADT degradation data

As shown in Figure 1, a typical lip seal consists of a
metal frame, a spring ring, and a sealing lip. The metal
frame is used to support the rubber ring, the spring ring
is used to provide the pre-tightening force, and the main
sealing lip is used to seal the fluid based on the reverse
pumping principle.39 The reverse pumping effect is
based on the rough sealing lip surface and the asym-
metric profile of sealing lip.40 The reverse pumping rate
is used to indicate the sealing performance. The rough-
ness of sealing lip and the reverse pumping rate decrease
during storage.41 Generally, the reverse pumping rate
decreases with the decrease of the sealing lip surface
roughness. The reverse pumping rate is small enough

the seal is leak. Hence, the reverse pumping rate can be
used to indicate the performance of rotary lip seal dur-
ing storage.

Due to the long storage lifetime of rotary lip seals,
the ADT is carried out to obtain enough degradation
data. Generally, because the seal rubber degradation is
sensitive to temperature, temperature is selected as the
accelerating factor. Normally, the relationship between
the aging rate and accelerating factor can be described
by failure physical models, such as Arrhenius model,42

Eying model.43 Furthermore, this relationship can also
be described by empirical models, such as inverse
power law model,44,45 hazard regression model.46 The
Arrhenius equation is a formula for the temperature
dependence of reaction rates. Arrhenius equation gives
the dependence of the rate constant of a chemical reac-
tion on the absolute temperature. Consistently with the
data source,19 the relationship between the rubber
aging rate and the storage temperature is described by
Arrhenius model, as

k =A 3 exp
�E

RT

� �
ð1Þ

where k is the rubber aging rate, A is a constant, R is
gas constant, T is storage temperature, and E is the acti-
vation energy of the seal rubber.

The relationship between degradation rate and tem-
perature is given by

k2

k1

= exp
�E

RT2

� �E

RT1

� �
= exp

E

R

1

T1

� 1

T2

� �
ð2Þ

where k1 is the degradation rate under temperature T1

and k2 is the degradation rate under temperature T2.
Hence, the relationship between the storage lifetime

and the storage temperature is given by

t2

t1
= exp

E

R

1

T2

� 1

T1

� �
ð3Þ

where t2 is the storage lifetime under temperature T2

and t1 is the storage life under temperature T1.
The ADT degradation data presented in Guo et al.19

is used in this work. In order to obtain the relationship
between storage temperature and degradation rate, the
rotary lip seals were kept in storage under different
temperatures until reach the specified state. The degra-
dation time under different storage temperatures is dis-
played in Table 1.

In Guo et al.,19 three groups of degradation tests
have been carried out on the rotary lip seals. The stor-
age temperatures are 288, 298, and 308 K, respectively.
In the presented work, the degradation test under 288
K storage temperature is considered as the degradation
test under normal stress, and the degradation tests

Figure 1. Schematic of typical lip seal.
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under 298 and 308 K storage temperatures are consid-
ered as the ADTs.

The degradation dataset is shown in Figure 2, where
Q(t) is the reverse pumping rate after storage time t and
Q0 is the initial reverse pumping rate. Furthermore, the
failure threshold is set as 75% of the initial reverse
pumping rate. It should be noted that this threshold is
not the reverse pumping rate which means the seal is
failure. It is the reverse pumping rate which means the
reliability of the aging seal cannot meet the demand of
the systems. It can be observed that the storage life-
times of the rubber sealing rings under 308, 298, and
288 K storage temperatures are given by

to1 = 61days, to2 = 143days, to3 = 401days ð4Þ

Based on the relationship between the storage life-
time and storage temperature described in equation (3),
the equivalent storage lifetimes under normal storage
temperature are given by

tE1 = 450days, tE2 = 400days, tE3 = 401days ð5Þ

The degradation indicator q(t) is defined based on
the reverse pumping rates, as

q tð Þ= Q0 � Q tð Þ
Q0

ð6Þ

Hence, the degradations of the rotary lip seals during
storage are shown in Figure 3.

Basic assumption and BMA-based method

Based on the definition of failure rate in reliability engi-
neering, it can be assumed that the failure rate curve of
the tested components and the performance degrada-
tion curve are cognate curves, as equation (7). Hence,
the priors of lifetime distribution shape parameters can
be provided by degradation data

h tð Þ $ q tð Þ ð7Þ

Remark. This assumption is intuitive and reasonable
based on the definition of the failure rate. Some similar
assumptions can be easily found in related
researches.47,48 The same assumption can be found in
Peng.48 Weibull distribution model is selected as the
lifetime distribution model for the milling head.
Considering the lack of lifetime data, the priors of stor-
age life distribution parameters are obtained from the
degradation data based on the similarity principle, and
the distribution parameters are inferred by fully
Bayesian method. The proposed method is demon-
strated more precise and flexible for practical use than
others.

Based on the above assumption, the main method of
the proposed BMA-based storage life assessment
method for rotary lip seals is shown in Figure 4.
Because it is assumed that the failure rate curves are
related to performance degradation curves, the distri-
bution parameters are related to the degradation data.
So, the priors of the distribution parameters and the

Table 1. The degradation times under different storage temperatures.

Storage temperatures 393 K 383 K 373 K 363 K 353 K
Degradation time 1 day 2 days 3 days 7 days 13 days

Figure 2. The reverse pumping rates under different storage
temperatures.

Figure 3. The degradations of the rotary lip seals under
different storage temperatures.
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model probability can be obtained from the degrada-
tion data based on the similarity principle. Using the
proposed method to evaluate the storage lifetime of
rubber sealing ring, four steps need to be performed.
First, the candidate models are selected based on the
related engineering experience, lifetime data, and
degradation data. Second, the priors of distribution
parameters and model prior probability are obtained
from the degradation data based on the similarity
principle. Third, the distribution parameters and
model probability are inferred by fully Bayesian infer-
ence method, based on the above priors and the stor-
age lifetime data. Finally, the storage lifetime is
predicted by each candidate model and fused based
on the BMA method.

The distribution model set

Due to the limited understanding of the rubber sealing
rings failure mechanisms, it is difficult to determine the
storage lifetime distribution model based on the failure
mechanism. Therefore, the BMA method is applied to

handle the model uncertainty issue, in which the pre-
dicted results from each possible distribution model are
fused based on the model probabilities. Using the
BMA method to evaluate the storage life of rubber
sealing ring, the candidate models need to be deter-
mined first. There are several frequently used lifetime
distribution models for mechanical components, such
as Gaussian distribution, Gamma distribution, expo-
nential distribution, Rayleigh distribution, Weibull dis-
tribution, general Gamma distribution, and log-normal
distribution. When the shape parameter is one, the
Weibull distribution becomes to be exponential distri-
bution. When the shape parameter is two, the Weibull
distribution becomes to be Rayleigh distribution. The
lifetime must be positive, so the Gaussian distribution
is not suitable. Considering the parameter size and the
parameters meaning, scale controlling, and shape con-
trolling, general Gamma distribution and log-normal
distribution are also not suitable for this application.
Hence, the Gamma distribution and Weibull distribu-
tion are selected as the candidate storage lifetime distri-
bution models of rubber sealing rings.

Figure 4. The proposed BMA-based storage life assessment method for rotary lip seals.
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Gamma distribution

The cumulative density function (CDF) of Gamma dis-
tribution model is given by

F1 tð Þ= gk

G kð Þ

ðt

0

tk�1 exp �gtð Þdt ð8Þ

where G(a)=
Ð+‘

0
xa�1 exp (�x)dx is Gamma function,

k and g are distribution parameters of Gamma distribu-
tion model, the parameters vector of Gamma distribu-
tion u1 =[k, g].

The probability density function (PDF) of Gamma
distribution model is given by

f1 tð Þ= g

G kð Þ gtð Þk�1 exp �gtð Þ ð9Þ

where f1 is PDF of Gamma distribution model.
The failure rate function of Gamma distribution

model is given by

h1 tð Þ= gk tk�1 exp �gtð Þ

G kð Þ � gk
Ðt
0

tk�1 exp �gtð Þdt

ð10Þ

where h1 is the failure rate function of Gamma distribu-
tion model.

Based on the assumption, the following relationship
is satisfied

h1 tð Þ $ q1 tð Þ=Kq

gq
kq tkq�1 exp �gqt

� �
G kq
� �

� gq
kq
Ðt
0

tkq�1 exp �gqt
� �

dt

ð11Þ

where q1 is approaching curve function.
The fitting results for the tested samples are given by

equations (12)–(14), and shown in Figure 5

q1, 1 tð Þ=Kq

gq
kq1 tkq1�1 exp �gq1t

� �
G kq1
� �

� g
q1
kq1
Ðt
0

tkq1�1 exp �gq1t
� �

dt

Kq1 = 19550, gq1 = 0:00233, kq1 =1:833 ð12Þ

q1, 2 tð Þ=Kq2

g
q2
kq2 tkq2�1 exp �gq2t

� �

G kq2
� �

� g
q2
kq2
Ðt
0

tkq2�1 exp �gq2t
� �

dt

Kq2 = 19550, gq2 = 0:00233, kq2 =1:564 ð13Þ

Figure 5. Fitting results of q1 (a) under 288 K, (b) under 298 K, and (c) under 308 K.
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q1, 3 tð Þ=Kq3

g
q3
kq3 tkq3�1 exp �gq3t

� �

G kq3
� �

� g
q3
kq3
Ðt
0

tkq3�1 exp �gq3t
� �

dt

Kq3 = 19550, gq3 = 0:00233, kq3 =1:435 ð14Þ

where q1, i is the curve fitting function of ith tested sam-
ple; gqi and kqi are the curve fitting parameters based
on nonlinear least squares method.

Weibull distribution

The Weibull distribution is widely used in reliability
engineering to describe the products lifetime distribu-
tion, especially mechanical products.48–50 The CDF of
Weibull distribution model is given by

F2 tð Þ= 1� exp �ltb
� �

ð15Þ

where l and b are Weibull distribution model para-
meters; the vector u2 =[l, b].

The PDF of Weibull distribution model is given by

f2 tð Þ= lbtb�1 exp �ltb
� �

ð16Þ

where f2 is the PDF of Weibull distribution model.

The failure rate function of Weibull distribution
model is given by

h2 tð Þ= lbtb�1 ð17Þ

where h2 is the failure rate function of Weibull distribu-
tion model.

Based on the assumption, the following relationship
is satisfied

h2 tð Þ $ q2 tð Þ= lqbqtbq�1 ð18Þ

where q2 is approaching curve function.
The fitting results are given by equations (19)–(21)

and are shown in Figure 6

q2, 1 tð Þ=3:1906t0:325 lq1 =2:408,bq1 =1:325 ð19Þ

q2, 2 tð Þ=1:4813t0:448 lq2 =1:023,bq2 =1:448 ð20Þ

q2, 3 tð Þ=0:5049t0:652 lq3 =0:3056,bq3 =1:652 ð21Þ

where q2, i is the curve fitting function of ith sample; lqi

and bqi are the curve fitting parameters based on non-
linear least squares method.

As shown in Figures 5 and 6, the goodness of fit of
the failure rate function of Weibull distribution model

Figure 6. Fitting results of q2 (a) under 288 K, (b) under 298 K, and (c) under 308 K.
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is better than that of Gamma distribution model, but
we still cannot select one of them as the true model,
because the difference of goodness of fits between the
two candidate models is not obvious enough. Hence,
the distribution uncertainty needs to be considered. The
BMA method is a generalization of model averaging
method by combining the model averaging method with
Bayesian inference method. In order to access the life-
time evaluation with multi-distribution fusion, based on
Bayesian framework, this method presents the informa-
tion by random variables and fuses the predicted results
based on the candidate distribution possibilities. The
BMA method is used in this article to evaluate the stor-
age lifetime of rotary lip seal due to its ability to quan-
tify the uncertainty.

The BMA-based lifetime assessment
method

Normally, degradation data and lifetime data can be
obtained from degradation tests. In the presented
method, the lifetime data are seemed as sample data,
which directly reflect the storage lifetime of the tested
samples. The degradation data are seemed as related
information and used to give the priors. It should be
noted that because the lifetime distribution is used to
evaluate the tested samples, only the lifetime data can
be used to build the likelihood function.

The fully Bayesian inference method is used to eval-
uate the distribution parameters, including shape and
scale parameters. Using Bayesian inference method,
generally, priors of the parameters can be set based on
physical meaning or/and engineering experience.
However, under non-prior information conditions, the
non-informative prior is frequently used. Furthermore,
it is common to use both informative prior and non-
informative prior in one application, because the
Bayesian inference can inference the sample date and
the priors. Certainly, the priors are more precise; the
evaluated results are more precise. To fully use the
sample data, the priors of model probability and shape
parameters are given based on similarity principle.
However, in the presented application, it is difficult to
find the information about the scale parameters.
Hence, the model prior probabilities and priors of
shape parameters are given based on similarity princi-
ple. The non-informative priors of scale parameters are
used.

Model prior probability

As discussed above, the failure rate of the candidate dis-
tribution model is related to the curve fitting function,
so it is reasonable to utilize the degradation data to give

the model prior probability. The tested degradation of
the reverse pumping rates vector is expressed by q0, as

q0 Nð Þ= q0 t1ð Þ, q0 t2ð Þ, . . . , q0 tNð Þ½ � ð22Þ

where N is tested samples size.
The predicted degradation of the reverse pumping

rates vector from the fitting curve function qk is
expressed by qk, as

qk Nð Þ= qk t1ð Þ, qk t2ð Þ, . . . , qk tNð Þ½ � ð23Þ

The Euclidean distance between the tested degrada-
tion and predicted degradation from the fitting curve
function is used to reflect the fitting error, as

dk Nð Þ= 1

N

XN

i= 1

qk tið Þ � q0 tið Þ½ �2 ð24Þ

The similarity measure, Sk, is defined as

Sk =
1

dk

ð25Þ

Based on the similarity principle, it can be assumed
that the model prior probability is positively related to
the similarity measure. Hence, the model prior prob-
ability for kth candidate model p(Mk) is given by

p Mkð Þ=
SkPnM

k = 1

Sk

Mk is true

0 other

8<
: ð26Þ

where nM is the candidate model size.
The model prior probabilities for Gamma distribu-

tion model and Weibull distribution model in this appli-
cation are given by equations (27) and (28)

p M1ð Þ= 0:556 M1 is true
0 other

�
ð27Þ

p M2ð Þ= 0:444 M2 is true
0 other

�
ð28Þ

Parameter priors

Gamma distribution. The likelihood function of Gamma
distribution model is given by

L tE l, k,M1j
� �

=
Ynt
i= 1

1

nG kð Þ
tEi
n

� �k�1

exp � tEi
n

� �
ð29Þ

where n = 1/g is scale parameter of Gamma distribu-
tion model, tEi is storage lifetime of the ith storage tem-
perature group, and nt is the tested group size.
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Based on the assumption, equation (11), the priors
for the scale parameter of Gamma distribution model
are provided from the curve fitting results of parameter
kq as

p kð Þ;Normal E kq
� �

,Var kq
� �� �

ð30Þ

where

E kq
� �

=
Xnt

i= 1

kq, i ð31Þ

Var kq
� �

=
1

nt

Xnt

i= 1

kq, i � E kq
� �� �2 ð32Þ

The priors for the shape parameter of Gamma distri-
bution model in the presented application are given by

p kð Þ;Normal 1:61, 0:08247ð Þ ð33Þ

There is no related priori information about the
scale parameter n for Gamma distribution model, so
the non-informative prior is adopted to the scale para-
meter, equation (34). It should be noted that generally,
the uniform distributions with large interval are used to
describe the non-informative priors. However, the
bounds of the uniform distributions are normally set
based on lifetime data and/or engineering experience

p nð Þ;Uniform 0, 800ð Þ ð34Þ

Weibull distribution. The likelihood function of Weibull
distribution model is given by

L tE h,b,M2j
� �

=
Ynt
i= 1

bh�btEi
b�1

exp �h�btEi
b

� �
ð35Þ

where h= l�1=b is scale parameter of Weibull distribu-
tion model, tEi is the storage lifetime of ith storage tem-
perature group, and nt is the tested groups size.

Based on the assumption, equation (18), the priors
for the scale parameter of Gamma distribution model
are provided from the curve fitting results of parameter
kq, as

p bð Þ;Normal E bq

� �
,Var bq

� �� �
ð36Þ

where

E bq

� �
=
Xnt

i= 1

bq, i ð37Þ

Var bq

� �
=

1

nt

Xnt

i= 1

bq, i � E bq

� �� �2 ð38Þ

The priors for the shape parameter of Weibull distri-
bution model in the presented application are given by

p bð Þ;Normal 1:475, 0:086ð Þ ð39Þ

There is no related priori information about the scale
parameter h for Weibull distribution model, so non-
informative prior is adopted to the scale parameter as

p hð Þ;Uniform 0, 450ð Þ ð40Þ

Parameters estimation

The fully Bayesian inference method is used to estimate
the model probabilities p(M) and distribution model
parameters u=(u1, u2)= l, k,h,bð Þ, as shown in
equation (41). The system parameters are as follows:
the Gamma distribution model parameter u1 =(l, k),
the Weibull distribution model parameters u2 =(h,b).
The posterior distribution of the parameters and model
probabilities p(u,M tE

		 ) can be obtained from equation
(42), where the likelihood function is given by
equation (43)

p u,M tE
		� �

=

PnM
k = 1

L tE uk ,Mkj
� �

p uk Mkjð Þp Mkð Þ

PnM
k = 1

ÐÐ
uk

L tE uk ,Mkjð Þp uk Mkjð Þp Mkð Þduk

ð41Þ

p u,M tE
		� �

}L tE uj
� �

p uð Þp Mð Þ ð42Þ

L tE uj
� �

=
Ynt
i= 1

½ 1

nG kð Þ
tEi
n

� �k�1

exp � tEi
n

� �
p M1ð Þ

+bh�btEi
b�1

exp �h�btEi
b

� �
p M2ð Þ� ð43Þ

where M1 means the Gamma distribution model, M2

means the Weibull distribution model, p(M) is the
priors of the model probabilities, equations (27) and
(28), p(uk Mkj ) is the priors of the distribution model
parameters uk, equations (33)–(40), L(tE uk ,Mkj ) is the
likelihood function of model Mk, equations (29) and
(35), ftEg is the lifetime data, and p(u,M tEi

		 ) is the pos-
teriors of the model probabilities and distribution
model parameters.

Discussions

The posteriori estimates of the model probability and
distribution model parameters are obtained based on
Markov Chain Monte Carlo (MCMC) simulation
method using software OpenBUGS. Generally, the
Gelman–Rubin ratio can be used to indicate the
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convergence of the computation. The Gelman–
Rubin ratio is closer to 1 the computation is more con-
vergent. The plots of the Gelman-Rubin ratios of the
parameters are illustrated in Figure 7, which suggest
that the values of the parameters become stable and
converge after about 300,000 iterations. Therefore, a
total of 200,000 iterations, from 300,001 to 500,000, are
selected as samples from the posterior distribution.

The posteriori estimates of the model probability are
shown in Figure 8. It can be seen that both Gamma dis-
tribution model and Weibull model are possibly the
storage lifetime distribution model for rubber sealing
rings. Hence, it is necessary to consider the model
uncertainty in storage lifetime assessment of rubber
sealing rings, especially under small life data conditions.

The MCMC simulation results for the distribution
parameters are displayed in Table 2. Generally, the
mean values of the posterior distribution are used to
estimate the distribution parameters. The unreliability
of rubber sealing rings after storage t days is given by
equation (44)

F tð Þ=0:23
1

73:78:459G 8:459ð Þ

ðt

0

t8:459�1 exp � t

152:1


 �
dt

+0:83 1� 385:3�13:44 exp �t13:44
� �� �

ð44Þ

The comparisons of predicted results of different
methods are displayed in Table 3. The proposed
method considers the model uncertainty, so the pro-
posed method has smaller minus log-likelihood value
and is a better model considering the goodness of fit.
Furthermore, the proposed method utilized the degra-
dation data to obtain the model prior probabilities and
priors of distribution model parameters, so the pro-
posed method is more precise in predicting storage life-
time of the rubber sealing rings. It indicates that the
proposed method can be more widely used in engineer-
ing practices. The prior for the compared BMA-based
method is shown in Appendix 1.

Generally, the AIC and BIC are frequently used to
describe the appropriateness of the model for fitting a
dataset, considering both goodness of fit and complex-
ity of the model. Furthermore, the AIC provides a cri-
terion to estimate both the goodness of fit and

Figure 7. Gelman–Rubin ratio of k, n, h, and b.

Figure 8. MCMC simulation results of the model probability.
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estimation complexity of the selected model, while the
BIC not only considers these two factors but also
includes the effects of the sample size. Hence, the AIC
and BIC are introduced to discuss the effectiveness of
different models. The definition of AIC value is AIC =
2k – 2l (u), whereas definition of BIC value is BIC = k
ln(mnt) – 2l (u), where k is the number of parameters in
the model, u represents estimated values of the para-
meters, nt is tested sample size, m is the observations
size of each sample, and l (u) is the value of the log-
likelihood. The calculated results for AIC and BIC val-
ues are presented in Table 3. Whether the AIC or BIC
is used in model selection, the proposed method is bet-
ter. The proposed model also provides flexibility for
the reliability and lifetime evaluation, and it still per-
forms well considering both the goodness of fit and
complexity.

Conclusion

A BMA-based storage lifetime assessment method for
rubber sealing rings is proposed in this article.
Considering the model uncertainty, Gamma distribu-
tion model and Weibull distribution model are selected
as the candidate lifetime distribution models and fused
based on BMA method. In order to handle the lack of
storage lifetime data, the degradation data are utilized
to obtain the parameter priors and the model prior
probability based on similarity principle. The distribu-
tion parameters are estimated by fully Bayesian
method.

A storage ADTs dataset, which includes three fail-
ure samples, is used to demonstrate the effectiveness
of the proposed method. It can be seen that the good-
ness of fit of the proposed method is better than the

compared method. An important distinguishing fea-
ture is that the predicted lifetime of the proposed
method is more precise. As degradation data are
used, the predictions of the proposed methods are
more practicable. The further work will focus on the
approach to estimate the storage lifetime of rubber
sealing rings using degradation data under zero fail-
ure sample conditions.
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Appendix 1

The non-information priors of compared BMA-based
method are given as follows. The priors for the shape
parameter of Gamma distribution model are given by

p(k);Uniform(0, 10) ð45Þ

The priors for the scale parameter of Gamma distri-
bution model are given by

p(n);Uniform(0, 800) ð46Þ

The priors for the shape parameter of Weibull distri-
bution model are given by

p(b);Uniform(0, 100) ð47Þ

The priors for the scale parameter of Weibull distri-
bution model are given by

p(h);Uniform(0, 450) ð48Þ

The model prior probabilities for Gamma distribu-
tion model and Weibull distribution model are given by

p(M1)=
0:5 M1 is true
0 other

�
ð49Þ

p(M2)=
0:5 M2 is true
0 other

�
ð50Þ
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