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ABSTRACT

APPLICATION OF REANALYSIS TECHNIQUES 
FOR PATTERN DESIGN OF SPOT WELDS.

Young San Kim 
Old Dominion University, 1996 

Director: Dr. Gene Hou

Extensive benchmarking on competitive cars has shown that the durability of 

vehicles, assembly-induced variations, and assembly cost are directly related to the 

quality and number of spot welds. On most luxury cars, approximately 4,500 to 5,000 

spot welds are found. On less expensive cars, the range is from 3,500 to 4,500. These 

cars usually inherit more noise, rattles, squeaks, and other quality-related problems. 

These problems have motivated the search for a new capability to systematically place 

welds in the most critical areas, with a minimum number of welds for car bodies, 

while satisfying all performance requirements (e.g., stiffness, stress distribution, load 

paths, and durability). This research represents an initial attempt to develop this 

aforementioned capability.

The main thrust of the research is to develop the framework for a numerical 

approach for optimal pattern design of spot welds and to assess the applicability of 

the approach in an industrial environment

The pattern design of spot welds in this study is viewed as a combinatory 

design optimization problem and is solved by a genetic-algorithm-based search method 

incorporated with an efficient reanalysis technique. The reanalysis technique models 

the spot welds as multiple-point constraints and uses the Sherman-Morrison identity 

to recursively calculate the new solution of the structure subjected to modification on
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the joint and support conditions. This optimization procedure is verified with several 

numerical examples. The results show that the proposed optimization procedure is 

effective and can be extended to realistic applications for pattern design of spot welds.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives

Spot welding is a common manufacturing process in the automobile industry used 

in the assembly of vehicle body parts. In this process, the parts to be welded are 

placed on a specially designed floor jig and held together with clamps before welding. 

The quality of the welded product depends upon the initial gaps between the parts, the 

pattern of the spot welds, the welding sequence, and the quality of the spot-welding 

process. Extensive benchmarking on competitive cars has shown that the durability 

of vehicles, assembly-induced variations, and assembly cost are directly related to the 

quality and number of spot welds. On most luxury cars, approximately 4,500 to 5,000 

spot welds are found. On less expensive cars, the range is from 3,500 to 4,500. These 

cars usually inherit more noise, rattles, squeaks, and other quality-related problems.

Table 1.1 summarizes a survey of 13 domestic and imported cars marketed 

between 1990 and 1995. The numbers of body parts and spot welds in domestic cars 

are generally less than those in imported ones, which reflects the difference in design 

policies; domestic-car design emphasizes a reduction in the number of pieces and in 

die and tooling costs, whereas imported-car design emphasizes the increase in the 

structural and manufacturing flexibility.

In acknowledgment of the importance of spot welds, several research efforts 

have been undertaken to study the spot-welding process and modeling; however' a 

systematic and numerically oriented approach has not yet been established to aid 

in design and manufacturing processes. The development and implementation of

1
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2
such an approach is, thus, an ultimate goal for many engineers and researchers in 

the automobile industry. The research reported here represents an initial attempt in 

reaching this goal.

Table 1.1. Survey of 13 Model Cars for Body Parts and Spot Welds

Domestic cars: 1990—1995 Imported cars: 1990—1995
Car No. of body No. of spot Car No. of body No. of spot
no. parts welds no. parts welds
1 290 3320 1 410 4300
2 300 4070 2 430 3940
3 310 3300 3 440 4900
4 320 4620 4 450 3930
5 320 3980 5 460 4290
6 340 3550 6 470 4590
7 390 4490 - - -

Ave. 320 3904 Ave. 443 4325

The main thrust of this research is, therefore, to develop a framework for a 

methodology for the optimal pattern design of spot welds. The specific issues to be 

studied are listed below:

1. To derive a design formulation for measuring the performance of different patterns 

of spot welds in terms of structural integrity and manufacturability.

2. To develop an efficient reanalysis technique for analyzing structures with different 

spot weld patterns. It is understand that a spot weld can be modeled as a multiple- 

point constraint(MPC), a rigid element, or a flexible beam.

3. To develop an efficient design methodology for optimal patterning of spot welds 

under modification of joint and support conditions.
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3
In order to facilitate the implementation and validation of the proposed method, 

several sample problems in spot welding are investigated later in this study.

1.2 Scope of the Study

A methodology that combines an efficient reanalysis technique and a genetic 

algorithm is proposed here to optimally determine the required number of spot welds 

between a pair of assembled automotive components, as well as the locations of the 

spot welds. The genetic algorithm is used to deal with the discrete nature of the 

variables in the pattern design of spot welds; the efficient reanalysis technique is used 

to reduce the computational cost for repetitively analyzing the modified structure. 

This reduction in cost is necessary in order to apply this methodology to a large-scale, 

realistic problem.

Similar to a sensitivity analysis, the efficient reanalysis technique takes advantage 

of the fact that the stiffness matrix of the original structure has been factorized; thus, 

the technique uses only forward and backward substitution for quick analysis. Note, 

though, that the efficient reanalysis technique is different from sensitivity analysis in 

that the former will give an exact calculation of the perturbed design subjected to 

finite modifications and the latter will give only an approximate calculation. Finite 

modifications in this study pertain to the addition and the removal of spot welds.

The genetic algorithm selected for use here is a random search algorithm that 

follows Darwin’s survival law to determine a set of better designs from iteration to 

iteration. Unlike the algorithms that are commonly used in engineering optimization 

techniques, the genetic algorithm does not need gradient information to determine 

the search direction. As a result, the genetic algorithm can conveniently handle 

discrete design variables. Furthermore, the random nature of the genetic algorithm 

has been proved to be able to locate the global minimum of the design problem. With 

these attractive features, the genetic algorithm has recently gained popularity among
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4
researchers and designers in design optimization. Nevertheless, the genetic algorithm 

becomes highly effective only when the analysis code does not require a great deal 

of computational time.

The rest of the chapters are organized as follows. Chapters 2, 3, and 4 discuss the 

proposed reanalysis technique for analyzing a structure; linear constraints are added 

or removed. The derivation of the basic equation for structural reanalysis is given in 

chapter 2. The procedure for using such an equation for reanalyzing structures with a 

modified constraint condition is given in chapter 3 and this procedure is demonstrated 

by numerical example in chapter 4. Chapter 5 presents the proposed methodology for 

optimum spot-weld patterning. Several sample problems are included in chapter 5 for 

verification. Concluding remarks are given in chapter 6.

13 Literature Review

Spot welding is an industrial application of interface methods that connect 

component members together. Mathematically, a spot weld represents a set of equality 

constraints that require the displacements of joining members at the spot weld to be 

the same. Therefore, spot welding can be formulated and analyzed by using the 

methods of tearing and interconnecting [1,2]. One group of these methods uses the 

theorem of Lagrange multipliers to form an augmented system equation that includes 

the Lagrange multipliers as unknowns to account for the equality constraints in 

modeling the interface conditions. Much of the recent work on structural tearing and 

interconnecting focuses either on discretization of the continuous interface conditions 

[3-5] or on improvement of computational efficiency by parallelization [6]. Moreover, 

those works emphasize only the interconnecting portion of the analysis, in which the 

structure members are connected together; these works do not address problems for 

tearing structural members apart. (Here, tearing implies the removal of the interface 

constraints from the involved structures.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5
Another group of methods that can be extended to structural tearing and 

interconnecting are the methods for structural modification. The structural 

modifications referred to here include the addition and removal of structural members 

from the structures. These methods efficiently reanalyze the modified structures 

without explicidy introducing the Lagrange multipliers. Generally speaking, these 

methods can be categorized into three groups: those based on the initial strain or 

initial stress concept [7-9], those based on the concept of parallel elements [10,11], 

and those based on algebraic approaches [12-14].

The application of the initial strain concept for structural modifications is not a 

new concept [7]. However, Argyris and Kelsey [8] are the first to present it in matrix 

notation. In their early work, initial strains are introduced to the cut-out member 

so that no internal forces are exerted from the cut-out element to the remaining 

structure. More recently, the initial strain concept has been extended to more general 

applications [9].

In the concept of parallel elements, a structural modification is modeled as an 

element attached in parallel to the element member that is to be modified [10]. The 

stiffness of the parallel element is equal to the change in the stiffness of the modified 

member. The forces of interaction between the parallel element and the member 

to be modified can then be calculated based on the compatibility and equilibrium 

conditions. The response of the modified structure obtained is that of the original 

structure subjected to the interaction and original external forces. The concept of 

parallel elements has been extended to shape optimization recently in Ref. 11, in 

which the stiffness of boundary elements is subjected to modification as a result of 

the change of boundary shape.

The fundamental equation used in the algebraic approach is the Sherman-Morrison 

equation [15]. To use the Sherman-Morrison equation, modifications of the stiffness
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6
matrix must be represented in the form of vector products. The Sherman-Morrison 

equation can then be used to calculate the exact inversion of the modified stiffness 

matrix in terms of the inversion of the original stiffness matrix. Various forms of the 

Sherman-Morrison equation have been developed in the past for structural reanalysis 

[12-14].

In this study, the Sherman-Morrison equation is modified and applied for fast 

reanalysis of various patterns of spot welds. In the equation, the original stiffness 

matrix is associated with the structures with no spot welds, and the matrix modification 

is associated with Lagrange multipliers, which represent constraint sets for spot welds. 

The matrix modification is changed for different patterns of spot welds, and the 

constraint set is changed if the pattern of spot welds is changed.
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CHAPTER 2 

MODIFIED SHERMAN-MORRISON IDENTITY

This chapter lays out the theoretical foundation for the development of the modified 

Sherman-Morrison identity that is used in the later part of this dissertation for efficient 

structural reanalysis.

The original Sherman-Morrison identity is given as

(K + xyTy l = K - l - K ' lx ( \ + y TK - lx y 1yTK - 1 (2.1)

where xyT represents modification of K.  Moreover, Eq.(2.1) can be extended to more 

general modifications as

( K  +  V W T} ~X =  K ~ l -  K ~ l v ( l  +  WTK ' 1V} ~1W t K ~ 1 (2.2)

In this study, the Sherman-Morrison identity is generalized as

( k  + VDVt ^~X = K ~ l -  K - 1V D ( l  + VTK - 1V D y l VTK ~ l (2.3)

which considers the modification of K  to be VDVT, where V and D are matrices of

dimension n x  m  and m  x m, respectively. If the dimension of m is much smaller 

than n, then the above equation provides an efficient method for determining the 

solution of the modified matrix equation.

To prove Eq.(2.3), we begin with the following equation:

( A T - t - V W r ) x  =  f  (2 .4 )

By premultiplying the above equation with K ~ l, we obtain

( l  + K - l VDVTy  = K~H  (2.5)

7
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which gives

x +  K ' 1 VD ( v Tx)  = xo (2.6)

where xo is the solution of the original matrix (Le., K xq =  f). By premultiplying 

VT with Eq.(2.6) again, one has

( VTx )  +  V TK - lV D ( v Tx ) =  V t xq (2.7)

or

VTx  =  ( /  +  V r K ~ lVD)  ~ V Txo (2.8)

Note that the dimension of /  in the above equation i s m x m .  Equation (2.6) can 

then be rewritten as

x =  xo -  K ~ 1V d ( i  +  VTK~lV D y l VTx Q (2.9)

which yields Eq.(2.3). Note that K ~ l V  can be obtained as the solution Q of the 

following equation:

KQ  =  V  (2.10)

As K  has been assembled and factorized when xo is solved, the solution of Eq.(2.10) 

can be found with m backward substitutions. Any matrix modification AK  can be 

decomposed by singular value decomposition [15] as

A K  = VD V t (2.11)

where D is a diagonal matrix with nonzero singular values of A K.  Therefore, 

at least theoretically, Eq.(2.9) can be used for efficient reanalysis of a structure 

under any modification represented by AK.  This proposed reanalysis technique 

can be implemented with any commercially rated finite-element analysis code (e.g., 

MSC/NASTRAN).
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CHAPTER 3

REANALYSIS TECHNIQUES FOR MODIFICATION 
OF STRUCTURAL SUPPORT CONDITIONS

Many connections and fasteners used in structural assembly can be modeled 

as single-point constraints (SPC’s) or muldple-point constraints (MPC’s), which

involve only 1 or more than 1 degree of freedom, respectively. In this chapter,

an efficient computational procedure is presented to analyze structures for which 

support conditions are under modification.

3.1 Introduction

An MPC is a linear constraint that involves more than 1 degree of freedom. 

Mathematically, this constraint can be written as

n

= Cj, j  =  1 through p (3.1)
«=i

or in matrix form as

A x =  c (3.2)

where A is a p x n rectangular matrix and c is a constant vector.

A spot weld is a typical example of an MPC in practice. The purpose of a spot 

weld is to join several metal sheets together at a single point A method for modeling 

the characteristics of the welded metal has not yet been determined. In practice, the 

spot weld is usually modeled as a rigid bar or as a stiffened beam that connects the 

metal sheets. Mathematically, spot welds can be viewed as an interface condition,

9
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where two structural parts are joined together at discrete points. The compatibility 

condition requires that the displacements at the spot welds be equal. That is,

Xa =  Xb (3.3)

for a spot weld that joins nodes Na and Nb, where xa and Xb are the displacement 

vectors at nodes Na and Nb, respectively. Specifically, the set of six compatibility 

conditions in Eq.(3.3) can be represented by MPC as follows:

=  «b 

W a, =  W]i

(3.4)
@x, a =  ^x,b 

0 y,a =  #y,b 

a =  ^z,b

The MPC described above can then be conveniently rewritten in the form of Eq.(3.2), 

where A  is a 6  x n matrix and x  is the n x 1 displacement vector of the structure. 

However, most of the entries in A are zero, except those degrees of freedom that are 

associated with nodes Na and Nb. More specifically, A  can be expressed as

A =  [0 0 0...01 0 0...0 -  / 0  0] (3.5)

where [0 ] is a 6  x 6  null matrix and [/] and [—/] are positive and negative 6 x 6  identity 

matrices that correspond to the degrees of freedom associated with nodes Na and Nb.

In the context of theory of Lagrange multipliers, Eq.(3.3) can be treated as a set 

of equality constraints and can be appended to the original finite-element equation to 

form a modified matrix equation as

[*' ?]{;}-(:}
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where A is the vector of Lagrange multipliers, A  is made up of the coefficients of 

Eq.(3.3), and K  and f  are associated with the finite-element equation of the structure 

without an MPC:

where the solution xo is different from x in Eq.(3.6).

With the above definitions, the efficient reanalysis technique discussed in chapter 

2  can be used to find the exact solutions of the modified structures that result from 

the addition and removal of an MPC. An SPC is a special case of an MPC in which 

A  is made up of unit vectors. That is, the only component in a row of A  corresponds 

to the degree of freedom associated with the particular SPC. A typical example of an 

SPC is a roller support for a structure.

The Lagrange multipliers A in Eq.(3.6), which are interface reactions, are 

considered to be unknowns in the following computational procedure. The 

compatibility of the displacements at the degrees of freedom at which the MPC 

is imposed and the internal equilibrium conditions between the interface reactions 

constitute a set of linear equations that can be solved for the interface reactions. 

The displacements at any point of the structure imposed with an MPC can then be 

calculated as a linear function of the interface reactions.

If the structure to be imposed with an MPC is linear and nonsingular, then the 

displacement x of the structure with the addition of the MPC is the solution of

K x o =  f (3.7)

3.2 Addition of Linear Constraints

K x  = f -  At  A (3.8)

which is the upper part of Eq.(3.6). Subsequently, one obtains

x  = K ' H -  K ~ xAt \ (3.9)
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or

x  =  xo +  UX (3.10)

with Eq. (3.7),

K x  o =  f (3.11)

and

KU  =  - A t (3.12)

The lower part of Eq.(3.6) is associated with the MPC, which yields

Ax =  c (3.13)

By substituting Eq.(3.10) for x  in Eq.(3.13), one obtains a set of equations that can 

be solved for A as

where AU is a p x p symmetric matrix. After the interface reactions have been 

determined, the displacements in every part of the structure can be calculated by 

using Eq.(3.10).

With the proposed procedure, Eq.(3.6) is not formed and solved for the 

displacement of the modified structure with MPC’s. Instead, a set of equations is 

solved in the form of Eqs.(3.11) and (3.12). The number of new set of equations 

(Eq.(3.14)) is proportional to the number of MPC’s; the dimension of these equations 

is much smaller than the dimension of the original equation (Eq.(3.6)).

For example, to find the solution of the modified structure in which nodes Na and 

Nb are spot-welded together, one can solve two sets of six additional equations;

AU A =  c — Axo (3.14)

A'xj,a = uj a , i =  1 through 6 (3. 15)
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and

Kxifr = uj b , i =  1 through 6  (3.16)

where pseudo force Ui is a unit force applied to one of 6  degrees of freedom associated 

with node Na or Nb. The solution of the original structure without an MPC, subjected 

to the existing load f, is given as

K x q  = f  (3.17)

As a result, the displacement at node Na can be obtained as

Xa =  Xi,aAa +  X0a (3.18)

The same is true for x ^  In Eq.(3.18), x ia is a subset of xj that relates to node Na 

only. The compatibility equation of Eq.(3.3) yields

X»,aAa +  Xoa =  X^bAft +  Xob (3.19)

and the equilibrium condition at the spot weld yields

Aa =  -A 6 (3.20)

The combination of Eqs.(3.19) and (3.20) provides a set of 12 equations to solve A. 

Once A is found, the displacement of the modified structure can be obtained with 

the following equation:

x =  xiA +  xo (3.21)

Note that Eqs.(3.15) and (3.16) can be solved much faster than Eq.(3.6) for the 

modified displacement because the K  matrix has already been factorized and only 

backward substitution is required to solve Eqs.(3.15) and (3.16). Furthermore, the bulk 

data file, the case control cards, and the force cards in the original MSC/NASTRAN 

file for solving Eq.(3.17) can be easily modified to solve Eqs.(3.15) and (3.16). The
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results can then be processed with an interface program to generate the solution 

of the modified structure. Thus, any commercially rated finite-element code can 

be incorporated into the reanalysis program discussed above to solve complicated, 

large-scale problems.

The modified Sherman-Morrison identity developed in chapter 2 is used here 

to analyze the modified structure with the removal of a linear constraint, without 

reforming and resolving Eq.(3.6).

Here, the finite-element equation for a structure without a linear constraint 

(Eq.(3.7)) is extended to the same dimension as that of Eq.(3.6); that is,

constraints. By comparing Eq.(3.22) with Eq.(3.6), one can easily identify the left- 

hand-side matrix in Eq.(3.22)

'K  ° 1
0  I  3̂,23)

as the coefficient matrix K  of Eq.(3.22), which is symmetric. The matrix modification, 

because of the presence of a linear constraint (Eq.(3.6)), is

3 3  Removal of Linear Constraints

(3.22)

where /  is an identity matrix whose dimension is equal to the number of linear

(3.24)

Thus,
K  0] =  \K  At ] _  [0 At  
0 /  “  A 0 A —I (3.25)

The matrix modification A K  can be defined and factorized as

(3.26)
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where ui and E{ are the eigenvalues and eigenvectors, respectively, of the modification 

matrix. As a result, Eq.(3.24) can be written in a matrix form as

\0 At  
A - I =  —V D V t (3.27)

where V  is an n x m matrix made up of and D is an m x m diagonal matrix 

made up of t/,-. In particular, Eq.(3.24) can be symbolically expressed as the following 

equation for a spot weld with 1 degree of freedom:

0  0  1

0 0 - 1  
1 - 1  - 1

=  ~ ( e xE (  - 2 E 2E$') (3.28)

where eigenvectors £ ,  and E,  are and - ^ )  ,

respectively. The matrices V  and D in Eq.(3.27) are then defined as

V =

1

y
76 -

(3.29)

and

D = 1 0

0 - 2 (3.30)

Each spot weld has six pairs of nonzero eigenvalues and eigenvectors, such as those 

presented in Eq.(3.28).

After V  and D  have been identified, Eq.(2.3) can be recursively used to find 

the solution of the modified structure based on the solution of the original structure, 

without involving the new matrix inversion.

The procedure described in this section can also be applied to reanalyze a structure 

with the addition of linear constraints. However, in this case the modified coefficient 

matrix is related to the original one in the following manner:

(3.31)
K  A7" K O' 0  a t
A 0 0 / + A - I
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with

(3.32)
= V D V t

The major effort here to use the modified Sherman-Morrison identity for 

reanalyzing the modified structure is to solve

On the other hand, the major effort in the reanalysis procedure presented in section

3.2 is to solve

Therefore, if the dimension of Ap  is less than V, as with SPC and MPC, then the 

method introduced in section 3.2 is a better choice than the method introduced here 

for reanalyzing a structure with the addition of linear constraints.

In order to study computational efficiency, a helpful procedure is to count the 

numerical operations involved in the proposed procedure. In accordance with the 

work of Kavlie and Powell [13], an operation is defined as a multiplication step plus 

an addition step, and only the major sequences of operations are counted. Let n be 

the dimension of the structure without spot welds, with b as the averaged bandwidth 

of its stiffness matrix, and let m be the total number of degrees of freedom at spot 

welds (each spot weld has 6  degrees of freedom). Thus, the dimension of A in 

Eq.(3.2) is m x n.

3.4.1 Addition of Spot Welds

The major computation in analyzing a structure with a new set of spot welds 

includes solving U in Eq.(3.12) and solving a set of m equations associated with

KQ = V (3.33)

KU  =  —At (3.34)

3.4 Computational Efficiency of Reanalysis Procedure
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Eq.(3.14). The former requires the following number of operations:

N =  ——— +  3nmb — (3.35)

The latter requires

(3.36)

operations, where the first term in Eq.(3.35) is for one matrix decomposition and the 

remainder of terms are for load-vector modifications and backward substitutions.

In the proposed optimization procedure for the pattern design of spot welds, U is 

only solved once, whereas equations in the form of Eqs.(3.12) and (3.14) are called 

frequently to analyze the structure with a new pattern of spot welds. Furthermore, 

U can be solved in advance. Thus, the total number of operations in the proposed 

optimization procedure is essentially

where p is the number of new patterns that are reanalyzed in the design optimization 

process. For a problem with a large number of spot welds, Eq.(3.37) still represents 

an expensive computation; however, this computation is less costly than the standard 

analysis procedure, which involves the following number of operations:

and does not include the reformulation of the stiffness matrix.

3.4.2 Removal of Spot Welds

The major computation in the proposed procedure for removal of a spot weld 

involves the solution of the following equation:

3
(3.37)

+  3pnmb (3.38)

KQ  =  V (3.39)
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where Q represents the 12 eigenvectors associated with 1 spot weld, as indicated by 

Eq.(3.24); K  in Eq.(3.39) does not need to be factorized because Eq.(3.39) is in the 

same form as Eq.(3.7). The number of operations is essentially

N  =  36nb -  18b2 (3.40)

which, obviously, is more efficient than a standard analysis.

3.5 Application to SPC

An SPC is a special case of an MPC. In particular, each row of matrix A  has only 

a nonzero component, which simplifies the computation. Equations (3.11), (3.12), and 

(3.14) are still valid for the addition of an SPC, as is Eq.(2.9) for the removal of an 

SPC. Nevertheless, the A K  for an SPC is symbolically given as

0  1

1 - 1
(3.41)

whose associated eigenvalues v\ and 1/2 are and — respectively, and the

normalized eigenvectors E\  and £ 2  are (-0.8506, -0.5257)T and (0.5257, -0.8506)T, 

respectively. Therefore, the matrices V  and D in Eq.(3.27) should be modified as

V = -0.8506 0.5257
-0.5257 -0.8506

and

D =
r = i± &  0

2 / -  
20

(3.42)

(3.43)
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CHAPTER 4

ANALYTICAL EXAMPLES

A cantilever beam is used as an example to demonstrate the reanalysis procedure 

for a structure for which the support conditions are being modified. The beam is 

discretized into two elements, each 100 in. in length. A vertical and a horizontal 

force of -700 and 500 lb, respectively, is applied at node 2, as shown in Fig. 4.1. 

The sectional properties of the beam, El and EA are 15E+6 lb-in2  and 45E+6 lb,

z
a 7001b

/
/
/
*

A 5001b A

100 in. 1 0 0  in.

Figure 4.1. Cantilever beam.

respectively. This study uses the standard beam finite element, which has 3 degrees 

of freedom at a node: the axial displacement u, the lateral displacement w, and the 

rotation 0. The finite-element equation of the beam is given as

Kx  o =  f0  (4.1)

where the reduced-order stiffness matrix K  for the beam is obtained as

k = 104 .

90 0 0 - 4 5  0 0

0 0.036 0 0 -0 .0 1 8  0.9

0 0 120 0 - 0 .9  30

- 4 5  0 0 45 0 0

0 -0 .0 1 8  - 0 .9  0 0.018 - 0 .9

0 0.9 30 0 - 0 .9  60

(4.2)

19
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the force fo is equal to (500, -700, 0, 0, 0, 0)T lb, and the solution of the problem xo 

is (0.00111, -15.55556, -0.23333, 0.00111, -38.88889, -0.23333)T in.

4.1 Addition of Simple Support

This example analyzes the beam shown in Fig. 4.1, with a support added to node 

3. The modified beam is shown in Fig. 4.2.

7001b

1 A 5001b A

100 in. 100 in.

Figure 4.2. Beam with simple support at node 3.

The solution of the modified beam can be obtained, with the help of a Lagrange 

multiplier, by the equation

K x  =  f

where the augmented stiffness matrix K  is given as

(4.3)

7  = io‘ .

• 90 0 0 -4 5 0 0 0

0 0.036 0 0 -0 .0 1 8 0.9 0

0 0 120 0 - 0 .9 30 0

- 4 5 0 0 45 0 0 0

0 - 0 .0 1 8 - 0 .9 0 0.018 - 0 .9 io - «

0 0.9 30 0 - 0 .9 60 0

. 0 0 0 0 10~* 0 0

(4.4)

the force f  is (500, -7 0 0 ,0 ,0 ,0 ,0 ,0)T, and the solution x  is (u2, u>2, #2 , 0 3 , 1 0 3 , 03, A)T 

in which A is equal to the reaction R  at the additional support with an opposite sign. 

The exact value of x is obtained from Eq.(4.3) as (0.00111, -3.40278, -0.01458, 

0.00111, 0, 0.05833, -218.75)T in.
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However, one can find the solution of the modified beam by using the original 

stiffness matrix given by Eq.(4.2) based on the procedure discussed in section 3.2. In 

this process, one applies a single unit of force along the z  axis to node 3 to obtain 

the displacement x i = (0, 0.05556, 0.00100,0, 0.17778, 0.00133)T. One then obtains 

the reaction force R  at node 3 of the modified beam, based on the condition that the 

vertical displacement at node 3 should maintain zero. That is,

which yields a reaction of 218.75. The exact solution x for the modified beam can 

be obtained with the relation

Note that in the process discussed above, K  of Eq.(4.4) does not need to be formed 

and Eq.(4.3) does not need to be solved.

Here, the support at node 3 is now removed from the structure shown in Fig. 4.2. 

In this case, K  of Eq.(4.4) has been formed, and x has been found by solving Eq.(4.3). 

The task here is to find the solution xo of the beam with the simple support removed 

by taking the advantage of the fact that x  is known and that K  has been factorized.

By comparing K  of Eq.(4.4) with K  of Eq.(4.2), A /f can be conveniently 

identified for this problem as

0.17778# — 38.88889 =  0 (4.5)

x =  x i * R  +  xo (4.6)

42  Removal of Simple Support

rO 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

A X  = 0 0 0 0 0 0  0 (4.7)
0 0 0 0 0 0

0 0 0 0 0 0 0 

A 0 0 0 1 0 - 1

=  u \E \E i  +  1/2E2E2 (4.8)
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0 0
T

0 0

0 0 0 0

0 0 0 0

0 > •  1 0
- i - V s  

+  2 * 0 > •  . 0

-0 .8 5 0 6 -0 .8 5 0 6 0.5257 0.5257

0 0 0 0

-0 .5 2 5 7 -0 .5 2 5 7 -0 .8 5 0 6 -0 .8 5 0 6

The solution of the beam without the right-end support is given by applying 

Eq.(2.6) as

x0  =  x  +  vx Qi xo) +  U2 Q2 (E%xo) (4.10)

The vectors Qi and Q2 are obtained as (0, -0.1643, -0.0030, 0, -0.5257, 

-0.0039, 2.1065)t  and (0, -0.2658, -0.0048,0, -0.8506, -0.0064, 5.3103)T by solving 

KQ\ = E\ and KQ2 =  E2 . Note that Q\ and Q2 are also the solutions of the beam 

with the right-end support, subjected to loads, (0 ,0 ,0 , 0, -0.8506,0)T and (0, 0, 0, 0, 

0.5257, 0)T and to the nonhomogeneous constraints that the z direction displacements 

at node 3 are prescribed as -0.5257 and -0.8506, respectively.

The values of ( E f x 0 ) and ( E j x 0 ) in Eq.(4.10) can be obtained by using the 

known vectors E\, E2 , Q1 , Q2 . and x  for the problem of concern to compute

E fQ i  =  -0.6602 

Ei Q2 =  -2.0681 

E fQ i  = -2.0681
(4.11)

E2 Q2 =  -4.9641 

E [ x =  114.9969 

E j x  = 186.0688
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which constitute the desired matrix equation

(4.12)

This matrix equation, in turn, gives the values of (E ^ xq) and (EJxq) as 33.0757 and

-20.4488, respectively. Finally, the solution of the modified beam can be calculated 

by using Eq.(4.10) as x 0  = (0.00111, -15.55556, -0.23333, 0.00111, -38.88889, 

-0.23333)7.

Note that the exact solution of the modified beam has been recovered without forming 

the corresponding stiffness matrix K.

This example analyzes a modified beam, shown in Fig. 4.3, which is obtained by 

adding an inclined support to node 3 of the original beam (Fig. 4.1). The inclined 

support yields an MPC as

where U3 and u?3 are the axial and vertical displacements at node 3, respectively.

43  Addition of Inclined Support

U3 sin 6  — W3 cos 8  =  0 (4.13)

z
7001b

A 2 3

/ M e
1 0 0  in. 1 0 0  in.

Figure 4.3. Beam with inclined support at node 3.

Similar to the example in section 4.1, the solution of the modified beam can be 

obtained by the equation

K x  = f (4.14)
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where the augmented stiffness matrix is given as

- 90 0 0 - 4 5  I

0 0.036 0 0 - 0 .

0 0 120 0 - (

=  104 •  - 4 5  0 0 45 (

0 - 0 .0 1 8  - 0 .9  0 O.C

-0 .0 1 8  0.9

- 0 .9  30 0

0 0 i in « /1 0 4

0.018 - 0 .9  — co»9 /10 '

0 0 0

0

(4.15)

0 0.9 30 0

0 0 0 sin  9 /

30 0 - 0 .9  60

0 s in 9 /1 0 4 — co« 6 /1 0 4 0

0

0

The force f  in Eq.(4.14) is (500, -700, 0, 0, 0, 0, 0)T, and the solution x is 

(u2 , i0 2 1 0 2 > «3 , u>3 , 03, A)t , in which the Lagrange multiplier A is equal to the reaction 

R at the additional support with an opposite sign. If 9 is equal to 30°, then the 

exact value of x  is obtained from Eq.(4.14) as (0.00083, -3.4027, -0.01458, 0.00055, 

0.00032, 0.05834, 252.60)T.

The solution of the modified beam can be found by using the original matrix 

equation of Eq.(4.2), based on the procedure discussed in section 3.2. In this process, 

one applies a single unit of force along the direction of R  at node 3, which is 

equal to (0,0,0, — sin 0, cos 0,0), with which the solution of Eq.(3.12) results in U 

= (-0.000001, 0.04811, 0.00087, -0.000002, 0.15396, 0.00115)T for 6 = 30°. The 

constraint condition of Eq.(4.13) can be used to find the reaction force R  at node 

3 of the modified beam as

specifically, u3 = —0.000002, w'3 =  0.15396, us =  0.00111, and ws = —38.88889, 

where U3 and ws are the displacements at node 3 of the structure shown in Fig. 4.1.

Note that Eq.(4.16) is in the same form as Eq.(3.14). Finally, the exact solution x  for 

the modified beam can then be obtained with the relation of Eq.(3.10) as

(4.16)

where (u3R + u3) and (w'3R + w3J are the total displacements at node 3. More

With known values of u3, U3 , w3, w3, and 6, Eq.(4.16) gives a reaction of 252.6.

x =  xo +  UR (4.17)
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4.4 Removal of Inclined Support

The procedure demonstrated here is for the removal of the inclined support at node 

3 of the structure shown in Fig. 4.3. In this case, K  in Eq.(4.15) has been formed, and 

x has been determined by solving Eq.(4.14). The task here is to take the advantage 

of the fact that x  is known and ~K has been factorized to find the solution xo.

By comparing K  in Eq.(4.15) and K  in Eq.(4.2), AK  may be conveniently 

identified for this problem as

ak =

rO o o 
o o o  
o o o  
o o o  
o o o  
o o o

o o 
0 0 

0 0 

0  * i n f  

0  —  c m  8  

0 0

- 0  0  0  ( i n f  - c m S  0  — 1

The A K  can be decomposed as

A K  — vxExEJ  +  1/2 E2 E2 

where i/t and E{ are the zth eigenpair of AK.  That is,

(4.18)

(4.19)

CxK =
- l  +  > / 5

0 0
T

0 0

0 0 0 0

0 0 0 0

0 .618 .in  B / r > •  ■ 0.618(in  S / r
- 1  -  >/5 

' +  2 • '
— 1.618«in t / » > •  . — 1.618»in 8 / s

—0 .6 1 8 co « < /r —0 .6 1 8 co » 4 /r 1 .618cos « /* 1 . 6 1 8 c m  8 / s

0 0 0 0

0 .3 8 1 9 /r 0 .3 8 1 9 /r 2.6179/« 2 .6 1 7 9 /,

( 4 . 2 0 )

where r  =  |o .6182 sin2 6 -f (—0.618)2 cos2 6 +  0.38192|   ̂ and s =

[ ( —1.618)2 sin2 6 +  1.6182 cos2 B + 2.61792} 1/2.

The solution of the beam without the right-end support can be solved by Eq.(4.10). 

If 9 is assumed to be 30°, sin 6 is 0.5 and cos 6 is 0.866. Then, the vectors Qx and Q2
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are obtained as (0.000004, -0.1897, -0.0034, 0.000009, -0.6070, -0.0046, -3.0923)T 

and (0.000007, -0.3069, -0.0055, 0.00001, -0.9822, -0.0074, -6.9056)1 by solving 

KQi  =  Ei and KQ 2 =  E2 . Note that Q\ and Q2 are also the solutions of the beam 

with the right-end support, subjected to loads (0, 0, 0, 0.4253, -0.7367, 0)T and (0, 0, 

0, -0.2629, 0.4553, 0)T and to the nonhomogeneous constraints that the 72-direction 

displacements at node 3 are prescribed as 0.5257 and 0.8506, respectively.

The values of ( E f x 0 ) and (E$xq) can be obtained by using the known vectors 

E\, E2 , Q1 , Q2 , and x to first compute

EjQx  =  -1.1784 

E IQ 2 =  -2.9067 

E2 Q1 =  -2.9067
(4.21)

E l Q 2 =  -6.3211 

E U  =  132.7919 

E j x  = 214.8617 

and then constitute the desired matrix equation

132.7919 'j
\  (4.22)

214.8617 J
which in turn gives the values of { E f x 0 ) and ( E j x 0) as 28.6490 and -17.7078, 

respectively. Finally, the solution of the modified beam can be calculated by using 

Eq.(4.10) as x0 = (0.00111. -15.55556, -0.23333, 0.00111, -38.88889, -0.23333)T. 

Again, note that the exact solution of the modified beam has been recovered without 

forming the corresponding stiffness matrix K.

‘1.7282 -4.7030' Efxo
1.7963 -9.2275 p T* { Ei Xo _
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CHAPTER 5

APPLICATION OF REANALYSIS TECHNIQUES 
FOR OPTIMUM PLACEMENT OF SPOT WELDS

A design optimization scheme that provides a systematic procedure to determine 

the minimum number of spot welds required and the best locations to place these spot 

welds is introduced in this chapter. The key elements of this scheme are a genetic 

algorithm and the reanalysis technique presented in chapters 3 and 4.

5.1 Introduction

Spot welding is a basic type of solid resistance welding [19]. Squeeze time, weld 

time, hold time, and off time are the fundamental variables in spot welding. For 

welding most metals, but especially the nonferrous types, these variables must be 

controlled within very close limits.

Spot welds are made by first cleaning the two pieces of metal to be lapped and 

placing them between the copper electrodes of the spot-welding machine. During the 

squeeze time, the two pieces of metal are brought together. A current flows through 

the electrodes during the weld time, which causes a nugget to form at the interface of 

the two pieces of metal. The hold time is basically a cooling period; this period is the 

interval from the end of the current flow until the electrodes part The water-cooled 

electrodes transfer the heat rapidly away from the weld. The off time is the interval 

during which the electrodes are apart before the cycle automatically repeats for the 

next weld. If this portion of the control is switched off, then the machine will stop 

after each weld.

27
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The weld that is produced by the sequence described above contains three 

distinctive features, as shown in Fig. 5.1 [20]. The central region where the metal 

has been melted has a cast structure that is typical of fusion welds, with columnar 

grains that meet at the line of the original interface. Surrounding the weld nugget is 

a heat-affected zone, which shows that the parent metal has undergone a heating and 

cooling cycle. The outer surfaces of the sheets show indentations that result from the 

pressure of the electrode tips. The reduction in thickness of the sheet at this point 

should not be more than 10 percent under normal conditions.

Indentation

Heat-affected
zone

Weld
nugget

Indentation 

Figure 5.1. Features of spot weld.

A direct relationship exists between the weld strength of a given joint and its 

design. The factors that must be taken into consideration for a given material are the 

amount of overlap, the spot spacing, and the weld size. An acceptable weld size for a 

thickness range of 0.032 to 0.188 in. (0.08128 cm to 0.47752 cm) is roughly 0.10 in. 

(0.254 cm) plus two times the thickness of the thinnest member. The overlap should 

be equal to two times the weld size plus 0.125 in. (0.3175 cm). (The 0.125 in. value 

is the tolerance for positioning the weld.) If fixturing is used to center the spot in the 

overlap, then the 0.125 in. (0.3175 cm) tolerance can be disregarded.

Welds placed too close to the edge will often squirt to the previous weld and, thus, 

reduce the size of the weld that is made. A general rule is to allow 16r between welds,
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where t is the thickness of the material. However, if the elimination of distortion is 

more important than strength, this figure should be increased to 48r.

5.2 Optimum Placement of Spot Welds

The design-optimization problem for spot-weld placement is to select the minimum 

number of spot welds from a predetermined set, subject to the constraint that the 

modified structure should perform satisfactorily in terms of structural strength and 

rigidity.

To begin this placement design scheme, one can specify N  number of possible 

locations to place spot welds. This set of design candidates for the spot welds 

constitutes the design space. Two design choices exist for each of the candidate 

positions in the design space: the space is either selected for spot welding or it is not 

selected. Therefore, the potential number of arrangements for placing the spot welds 

is 2N. This problem is a typical design-optimization problem with discrete design 

variables. Here, a genetic algorithm is applied for this type of application. The major 

steps of the proposed approach are depicted in Fig. 5.2. The reanalysis technique in 

conjunction with a genetic-algorithm code is used to find the best placement for the 

spot welds. The reanalysis technique indicated in Fig. 5.2 (introduced in chapters 3 

and 4) is used to reanalyze the performance of the modified structure with the new 

spot-weld pattern.

Thus, in the optimization procedure, equations similar to Eq.(3.15) must be 

solved for each spot-weld pattern. Subsequently, the performance of each of the 

design alternatives can be evaluated and used by the design-optimization algorithm 

to generate an improved design.
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No
Convergence

Yes

Stop

FAST REANALYSIS 
New patterns of spot welds

GENETIC ALGORITHM 
Better designs

INITIAL DESIGN 
Generated randomly

INPUT
Data for possible patterns of spot welds 
Displacement output from NASTRAN

Figure 5.2. Solution process for optimal pattern design of spot welds.
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S3  Genetic Algorithm

31

A genetic algorithm is a numerical procedure that produces a set of better designs; 

the principle behind this algorithm is the process of natural evolution [17] (Le., 

Darwin’s theory of the survival of the fittest). Evolution primarily relies on the 

random generation of new designs, from which only the superior designs survive to 

participate in future reproduction. Initially, a set of designs, called the population 

of designs, is generated randomly. The designs are evaluated and ranked, based on 

certain criteria, before the reproduction process begins. The designs in this population 

are then selected, with favor given to the superior designs, to mate (called crossover) 

and produce a new set of designs. Some of these new designs are again selected to 

undergo other reproductive mechanisms, such as mutation and permutation, which are 

also commonly found in the process of evolution.

Genetic algorithms have been applied to many engineering design-optimization 

problems and have been proved to be effective for both nonconvex and 

nondifferentiable types of problems. The most attractive feature of such algorithms 

is that they have the ability to locate the global minimum, whereas gradient-based 

algorithms often converge to a local minimum. Because genetic algorithms work 

according to Darwin’s theory, the good chromosomes, called schema, which are 

attributed to the good characteristics of the design, will be preserved and accumulated 

throughout the reproduction process to eventually lead to the best global design.

A string of integers is usually used in a genetic algorithm to symbolically represent 

an individual design. The integers play the role of the chromosomes in biology. The 

determination of the correspondence between the integers and the numerical values 

of the physical design variables is called the coding process. For example, a design 

alternative for a 10-bar truss can be represented by a string of 10 integers. If each of 

the integers ranges from 1 to 4, then each truss member has up to four possibilities
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in its properties and size.

The reproduction process is performed by manipulating the chromosomes (Le., 

the integers in a genetic algorithm) of the parent designs. Three major operations 

shown in Fig. 5.3 are implemented in this study for this manipulation: crossover, 

mutation, and permutation. The determination of whether any of these operations will 

be activated to modify the designs is, again, a random process.

Crossover is simply a mating process in biological terms. In this operation, 

chromosomes from a pair of parent designs are exchanged to produce child designs. 

The crossover points are determined randomly. Mutation, on the other hand, is 

modeled after the sudden change that can occur in chromosomes in biology. Any 

integer in a design string can be selected to undergo this random change. Finally, 

permutation simply reverses the order of chromosomes in a design string.

Next, a genetic algorithm evaluates, ranks, and selects some of the child designs 

for creation of the next generation. The life cycle continues until no improvement 

is realized within a certain predetermined number of consecutive generations. A 

computational flowchart for a basic genetic algorithm is shown in Fig. 5.4.

Although genetic algorithms are simple to implement, the quality of the results 

depends primarily on certain input parameters, such as the size of the population and 

the parameters that control the occurrence of certain reproduction processes. A smaller 

population may not produce better designs. On the other hand, a larger population 

may require a larger number of function evaluations; hence, more computational time 

is required. In general, a population size equal to three times the length of the integer 

string is recommended. In addition, during the reproduction process, a high probability 

should be assigned to the crossover and permutation processes, and a low probability 

should be assigned to the mutation process.

A genetic algorithm ranks the performance of each design by evaluating a
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single-valued function. Hence, the genetic algorithm can be directly applied to an 

unconstrained minimization problem. To solve the constrained minimization problem, 

the problem must be converted into an equivalent unconstrained minimization problem 

by using the penalty function method [16]. For example, a typical constrained 

minimization problem can be stated as

min F(b) (5.1)

subject to

£ , - ( & ) <  0 ,  t' =  l , 2 , . . . , p

(5.2)
hj(b) = 0 , j  =

where F  is the objective function, b are the design variables, and g and h are 

the inequality and equality constraints, respectively. This constrained minimization 

problem can be converted to an equivalent unconstrained minimization problem by 

using a penalty function. For example, by using an exterior penalty function, the 

problem can be written as

mo m  = m + ’-'E(<K+M)2+s'£(hy)2 (5.3)
• = i  j = i

where r' and s' are the penalty coefficients that are used to penalize those designs 

that violate the constraints. Now the single-valued merit function $  can be directly 

used to rank various designs in the population.
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CROSSOVER 

Parent 1 Parent 2

3 1 4 / 2 2 3 1 4  1 4 2 / 4 3 1 4 1

-̂---------  Crossover location-------^

Child 1 Child 2

3 1 4 / 4 3 1 4 1  1 4 2 / 2 2 3 1 4

(a) Crossover operation between two parent chromosomes.

MUTATION

Before mutation ---------------- 1 4 2 2 2 3  14

  Mutation location

After mutation  ► 1 4 2 3 2 3 1 4

(b) Mutation operation in string.

PERMUTATION

Before permutation --------------► 1 4 ^ 3 ^ 3 1 4

Permutation location 

After permutation  ► 142 3 4 3 1 4

(c) Permutation operation in string.

Figure 5.3. Three major operations in genetic algorithm.
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Yes

No

Stop

Replace old population with 
new ones

Check convergence

Define dimension and genetic 
parameters

Store best solutions

Evaluate new population

Rank population according 
to normalized fitness values

Apply selection procedure

Generate initial population

Apply genetic manipulation: 
crossover, mutation, permutation

Analysis subroutine to 
calculate merit function 

Fast reanalysis technique

Figure 5.4. Basic flowchart associated with genetic algorithm.
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5.4 Numerical Implementation

The proposed computational procedure has a major advantage in reanalysis in 

that it does not involve any modification of the stiffness matrix; thus, this procedure 

can be conveniently interfaced with any commercially rated finite-element analysis 

codes. In our initial numerical experiments, MSC/NASTRAN is used to find Q in 

Eq. (2.10). Code modules are developed to solve Eqs.(3.9), (3.11), and (2.1), which 

are incorporated with the genetic algorithm.

The most difficult part of the proposed approach for optimum spot-weld pattern 

design is the mathematical formulation of the problem to properly measure the 

quality of a pattern of spot welds. This study focuses on three performance criteria: 

maximizing the rigidity of the welding structure, minimizing the number of spot welds, 

and maintaining a satisfactory stress level in spot welds. These criteria are blended 

into a single merit function with weighting coefficients assigned to each. The genetic 

algorithm then uses the merit functions of different designs as a guideline to perform 

genetic evolution and eventually produce better designs.

5.5 Application Examples

Two examples are presented here to evaluate the developed computational 

procedure. These sample problems also facilitate the study of design-problem 

formulation for optimum spot-weld pattern design. The structural components to 

be welded together in these two examples are all fully constrained.

The design variables in the examples are the patterns of spot welds. Each design 

variable is represented as a string of integers (with a value of 1 or 2). The length 

of the string is the same as the number of the candidate spots in which the welds 

are to be placed. Each integer in the string corresponds to a candidate spot A 1 

indicates that the candidate location has not been selected for a weld; a 2  indicates 

that the candidate location has been selected. If the number of possible locations for
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spot welds is m, then the developed computational procedure will select the best ones 

from among the 2 m possible patterns of spot welds.

Several criteria, including the number and the strength of the spot welds and the 

rigidity of the welded structure, are selected in this study to measure the performance 

of any pattern of spot welds. These criteria can be mathematically formulated as a

constrained design-optimization problem as
min N

(5.4)
subjected to :

a,* <  a0, i =  \ to N  (5.5)

C < C0 (5.6)

where N  is the number of spot welds, a, is a measurement of the state of stresses in 

spot weld i, and C represents the compliance of the structure.

In the problem formulation of Eqs.(5.4) to (5.6), the objective function is defined 

as the number of spot welds so as to minimize the manufacturing cost of spot welds. 

The stress constraint prevents spot welds from being overloaded, and the compliance 

constraint ensures the minimum rigidity of the welded structure. The compliance is

calculated as the work done by the external forces. A higher compliance implies a

lower rigidity of the welded structure. Equation (5.6) specifies the upper bound of 

the compliance as C0, which is the compliance of the welded structure with all of 

its candidate spots filled with welds. Thus, the constraint of Eq.(5.6) is expected to 

be violated or at most to be a tight constraint because C0 has the least value among 

all possible spot-weld patterns.

The use of stress values is the most direct way to establish the constraint of 

Eq.(5.5). However, for simplicity, the internal forces at the spot welds, which are 

proportional to the stresses, are directly used to measure the strength of spot welds 

in this study. A more sophisticated method for calculating the strength of spot welds 

can be found in Ref. [18].
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Because the genetic algorithm can be applied to the unconstrained maximization 

problem only, the above-stated design optimization must be converted into an 

unconstrained problem. To this end, a composite function is generated to characterize 

the above-stated problem as a reciprocal of a product of three quantities:

F  =  1 / { ( N  + l ) ( S  + 1 ){W  +  1)} (5.7)

where the first term is associated with the number of the spot welds and the other terms 

are associated with the constraints defined by Eqs.(5.5) and (5.6). More specifically, 

S  is defined as

n

5 =  ^ { ( a , - a <,) +  | ( a , - a 0)|} (5.8)
i=i

which yields a positive value if the reaction force on any of the spot welds is greater 

than the desired bound. In addition, W  is defined as

W  = { C - C o )  + \ (C-Co)\  (5.9)

which again generates a positive value if the compliance is greater than the given 

value. With the above definitions, maximization of F in Eq.(5.7) will result in a 

reduction in the number of spot welds N  and reduce the amount of the violations 

in S  and W.  Note that 1 is added to each of the terms in F  (Eq.(5.7)) to avoid 

a zero denominator.

In addition to the problem formulation, several problem parameters are also 

important to the performance of the genetic algorithm. These parameters include the 

size of the population and the probabilities for various genetic manipulations. The 

size of the population is equal to the number of design candidates selected in one 

generation. Statistically, the problem with a larger population size has a better chance 

of obtaining a global optimal design than the problem with a smaller population

size. However, this increased probability is achieved at the expense of more function
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evaluations. Thus, the selection of an appropriate population size is important In 

this study, the population size used is approximately three times of the number of 

possible locations for spot welds. In regard to genetic manipulations, the probabilities 

are set at 1 0 0  percent for crossover and permutation, and at 1 0  percent for mutation 

in most of the examples.

Example 1

Two constrained components are welded together with IS possible spot-weld 

locations, as shown in Fig. 5.5. A point load is applied to each of the components. 

Because the problem is symmetric, the optimum pattern of the spot welds is expected 

to be symmetric as well. In the formulation of S  in Eq.(5.8), at- is taken as the 

vector sum of the axial and shear forces at a spot weld, and a0 is taken as 17 units. 

Furthermore, the C0 in Eq.(5.9) is taken as 0.789 units.

The best three designs are shown in Figs. 5.6 to 5.8; these designs are obtained 

by using the genetic algorithm with 1357 function analyses. The best design has 

eight spot welds with an objective function of 0.0591 and a compliance of 0.792. The 

pattern of spot welds is symmetric. The end welds of the upper row sustain the highest 

reaction forces. The second best design has nine spot welds with an objective function 

of 0.0559. The pattern of spot welds is also symmetric. Its compliance is 0.790, which 

is slightly better than that of the best design. However, the design has one more spot 

weld than the best design. Again, the end welds of the upper row are subjected to 

the highest reaction forces. The third best design is not symmetric. It has eight spot 

welds with an objective function value of 0.0553. The maximum reaction force acts 

on the upper right comer of the pattern. Note that the magnitude of the maximum 

reaction force for the third best design is quite close to that of the best design.
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Example 2

A simpler model of the B pillar-to-rocket joint is used here. As shown in Fig. 

5.9, six parts are spot welded together to assemble the B pillar-to-rocket joint In 

this study, only a series of nine spot welds along the bottom edge that connect two 

parts are selected as the design variables. (See Fig. 5.10.) Both sides of the joint are 

fully constrained, and three point moments are applied at the open end of the joint 

The problem formulation is the same as the formulation defined by Eqs.(5.7) through 

(5.9), except that the W  term is multiplied by 106  in this example to ensure that the 

three terms in the denominator of Eq.(5.7) have an equal order of magnitudes.

A total of 725 function evaluations are necessary to reach the best designs. The 

constraint of S  considers only the axial and shear forces in the spot welds, in which a0 

is taken as one unit The C0 here is 0.58115 x 10“*. The best three designs are shown 

in Figs. 5.11 through 5.13. Because the structure of the B pillar-to-rocket joint is not 

symmetric, the solution is not expected to be symmetric. However, the best designs 

have only one or two spot welds. This surprising result demonstrates the importance 

of selecting the proper parameters in Eqs.(5.7) through (5.9) for design optimization. 

The three best designs shown here violate the compliance constraint described by 

Eq.(5.9). Furthermore, the second and third designs also violate the weld-strength 

constraint in Eq.(5.8). In other words, the best design is selected because it requires 

the fewest spot welds. This result is a direct consequence of the formulation of the 

merit function in Eq.(5.7), which implicitly places more weight on the number of the 

spot welds than on the strength of the welds and the magnitude of the compliance. 

A suggestion for overcoming this difficulty is to assign weighting coefficients to the 

factors in Eq.(5.7) as

F = \ /{{aN + l)(/3S -I- IX 7 W + 1 )} (5.10)

where the values a , 0, and 7 , along with the proper selection of C0 and a0 in Eqs.(5.8)
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and (5.9), will yield a design formulation that leads to more realistic designs. For 

example, if a  is changed from 1 to 0 .0 1 , then the above problem yields an optimal 

design with eight spot welds, as shown in Fig. 5.14.

In conclusion, the proposed algorithm has been successfully implemented and 

demonstrated with two sample problems. The results show that the proposed algorithm 

can be used effectively to generate near-optimal patterns for spot welding. The results 

also reveal that the algorithm is sensitive to the parameters used in the problem 

formulation, such as a, /?, 7 , and a0. Thus, research efforts are needed to provide 

general guidelines for the selection of these problem parameters in order to make the 

proposed algorithm a practical design tool.
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CHAPTER 6

CONCLUDING REMARKS

The main thrust of this research was to develop a framework for a numerical 

approach for the optimal pattern design of spot welds and to assess this applicability 

of the approach in an industrial environment

The pattern design of spot welds in this study is viewed as a combinatory 

design-optimization problem and solved by a genetic-algorithm-based search method 

incorporated with an efficient reanalysis technique. The reanalysis technique models 

the spot welds as multiple-point constraints and uses the Sherman-Morrison identity 

to recursively calculate the new solution of the structure, subjected to modification 

of the joint and support conditions. Simple examples are provided to validate and 

evaluate the method. The proposed computational procedure has a major advantage for 

reanalysis; because this procedure does not involve any modification of the stiffness 

matrix, it can be conveniently interfaced with any commercially rated finite-element 

analysis code.

The most difficult part of the proposed approach for optimum spot-weld patterning 

is the mathematical formulation of the problem to properly measure the quality of 

patterns of spot welds. This study focuses on three performance criteria: maximizing 

the rigidity of the welded structure, minimizing the number of spot welds, and 

maintaining satisfactory strength requirements in spot welds. These criteria are blended 

into a single merit function, with weighting coefficients assigned to each. The genetic 

algorithm then uses the merit functions of different designs as a guideline to produce 

offspring and, eventually, better designs.

52
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In this study, the rigidity of the welded structure and the strength of the spot 

welds are represented, respectively, by the compliance of the welded structure and 

the magnitude of internal forces in the welds. The representation of the rigidity by 

compliance is an acceptable practice. However, because the characteristics of the 

materials that surround the spot weld are changed in spot welding, internal forces 

alone cannot sufficiently represent the strength of the spot welds. A better model than 

the one used in this study is needed to calculate the strength of the spot welds.

The proposed algorithm has been successfully implemented and demonstrated 

with two sample problems. The results show that the proposed algorithm can be used 

effectively to generate near-optimal patterns for spot welding. The results also reveal 

that the algorithm is sensitive to parameters used in the problem formulation, such as 

a , 0, 7 , and a0. Thus, research efforts are now needed to provide general guidelines 

for the selection of these problem parameters in order to make the proposed algorithm 

a practical design tool.

Finally, the success of the proposed research has demonstrated a new application 

of the Sherman-Morrison identity for efficient reanalysis of a structure under 

modifications of joint and support conditions. This research may ultimately lead to 

the discovery of additional applications of the Sherman-Morrison identity in structural 

reanalysis.
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