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Protein structure networks
Lesley H.Greene

Advance Access publication date 4 October 2012

Abstract
The application of the field of network science to the scientific disciplines of structural biology and biochemistry,
have yielded important new insights into the nature and determinants of protein structures, function, dynamics
and the folding process. Advancements in further understanding protein relationships through network science
have also reshaped the way we view the connectivity of proteins in the protein universe.The canonical hierarchical
classification can now be visualized for example, as a protein fold continuum.This review will survey several key ad-
vances in the expanding area of research being conducted to study protein structures and folding using network
approaches.
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INTRODUCTION
Proteins are the building blocks of almost all biolo-

gical processes that constitute life. Soluble, globular

proteins have many function including transporting

molecules such as oxygen, lipids and odorants, fight-

ing foreign invaders such as bacteria and viruses to

protect the organism, catalyzing reactions in meta-

bolic pathways that are central to catabolism and an-

abolism, transcribing and translating DNA and RNA

respectively, and generating signaling cascades, to

name just a few critical roles. Proteins are also

found in less-soluble fibrous forms that compose

key structural elements. The protein a-keratin for

example is found in hair and fingernails and collagen

is found in connective tissue which composes cartil-

age, bones and blood vessels [1]. They are also inte-

gral constituents of membranes and as peripheral or

integral membrane proteins play a pivotal role in

controlling the transport of metabolites into and

out of the cell, serve as receptors, adhesion molecules

as well as participate in cell–cell communication [1].

There are also a small group of proteins which are

intrinsically unstructured and these disordered pro-

teins are gaining considerable attention in biochem-

istry for their unique structural and functional

properties [2–4].

Protein structures have been traditionally viewed

as constructs of secondary structure which pack into

a 3D arrangement. This view was originally and most

obviously conceived when the first 3D structures

were being determined by John Kendrew, Max

Perutz, Dorothy Hodgkin and other early crystallog-

raphers in the 1950’s, 60’s and 70’s [5–7]. By the start

of the 1980’s the complexity of protein structures

had been simplified through the systematic develop-

ment and use of schematic ribbon drawings to illus-

trate the then approximately 75 known protein

structures [8–11] and in its essence remains the

most popular way to visualize these highly complex

forms today. Through the development of protein

structure visualization programs such as RASMOL

[12], Chimera [13], Mage [14], VMD [15] and

Jmol (Jmol: an open-source Java viewer for chemical

structures in 3D. http://www.jmol.org/) for ex-

ample we can not only see the all-atom 3D structure

with atomic resolution but a generalized backbone

pattern of the protein which reinforces the structure

as a construct of secondary structure. Biology and

biochemistry textbooks also preferentially use these

ribbon-like images to convey protein structures

worldwide to educate new generations.

The way in which we view proteins can affect the

way we think about the biology and thus, can have

serious ramifications in the development of hypoth-

eses, experimental design and interpretation of data.

During the past decade an alternative view of
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proteins structures has emerged in a concerted effort

and begun to take hold. This view proposes that

proteins structures can be modeled as an abstract net-

work system [16–21]. In order to achieve this, we

first have to translate terminology which is borrowed

from graph theory, known more commonly today as

network science. In the case of a graph, also defined

as a network, you have nodes which can be people,

cities or terminals for example which interact

through links that can be friendships, highways or

routers, respectively. To model a protein structure

into a network you begin by adapting proteins to

network terminology. In this way an amino acid

can be considered a node or vertex and an inter-

action between residues can be considered a link or

edge. In this review, we will use the term node and

link.

Proteins are composed of amino acids linked by

covalent peptide bonds to form polypeptide chains,

also known as the primary structure. There are 20

common naturally occurring amino acids whose side

chains have different physical characteristics that can

be classified for example as polar, non-polar, acidic

or basic in chemical nature. The packing of amino

acid side chains through different types of non-co-

valent interactions which include hydrogen bonds,

ionic interactions, van der Waals interactions and

hydrophobic interactions as well as covalent inter-

actions such as disulfide bonds ultimately confers

the native 3D structure also known as the tertiary

structure. This review will be focused on soluble,

globular tertiary structures and not quaternary struc-

tures which involve the higher level interaction be-

tween individual protein structures to form a

multimeric complex.

The abstraction of a 3D protein structure into a

network considers only amino acids and their inter-

actions through space without consideration of the

polypeptide backbone, secondary structure compos-

ition or fold type. In general, there are two funda-

mental types of interactions: those that dictate the

formation and stabilization of secondary structures

(a-helices, b-sheets and turns)—known as short-

range interactions; and long-range interactions that

dictate the tertiary structure, which as mentioned

earlier is the global organization of secondary

structures. Both short-range and long-range inter-

actions can also be interchangeably referred to as

local- and non-local interactions, respectively;

though we will use the more common former

terms for consistency.

PROTEIN STRUCTURE
NETWORKS
Approach to model proteins as networks
The traditional view of protein structures is shown in

Figure 1. Here secondary structures are organized

into 3D arrangements which can be further divided

into fold-types, for example: an up–down a-helical

bundle, a b-sandwich and a mixed a/b-barrel

(Figure 1). The translation of these structures in-

volves calculating the interactions between amino

acids in 3D space and representing it in one instance

as a 2D graph or in another instance as a 3D net-

work. The key is in the calculation of the inter-

actions between amino acids through space. This

can be distilled down to two basic parameters. The

first considers the number of residues apart in

the primary structure for the interacting pair and

the second the distance between the interacting

pair in the 3D structure. Both rely on their designa-

tion as being either a short-range or a long-range

interaction. The definition of a short-range inter-

action is straight-forward, consisting of contacts be-

tween residues within secondary structures.

Hydrogen bonds within a b-sheet or within an

a-helix, for example, are the most obvious descrip-

tors. The definition of a long-range interaction is

found to be more variable in the literature and is

based on the selection of distances used as param-

eters. Fundamentally, however a long-range inter-

action is a contact between pairs of residues located

on different secondary structures.

One early analysis which modeled proteins as net-

work systems defined long-range interactions as the

contacts between amino acids that are �10 residues

apart in the primary structure but within 5 Å in the

tertiary structure [17]. Other cutoffs can range from

4 to 18 residues apart in the primary structure [17].

Interaction distances can vary for example between 4

and 10 Å in the tertiary structure in the construction

of these networks and may or may not take into

account the location of interacting residues in the

primary structure [16,17,20–24]. The interactions

between residues or residue side chains can be calcu-

lated using all heavy atoms or select atoms such as the

Ca or Cb carbons for example. Translating proteins

into network systems using pair-wise amino acid

interactions converts the structures into a 2D graph

as represented in Figure 2 or a 3D network as shown

in Figure 3. Algorithms written to conduct these

distance calculations results in the generation of

pairs of interacting residues that equates to linked
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nodes. There are also many programs such as Pajek

(http://vlado.fmf.uni-lj.si/pub/networks/pajek/),

Cytoscape [25] and RINalyzer [26] available to fa-

cilitate the construction, visualization and analysis of

networks based on the distance calculations used to

identify the nodes and links. This imagery of trans-

lating protein structures into network systems is also

beautifully illustrated for example in the work of

Estrada using hemoglobin and in the work of

Atilgan et al. using interleukin 1-b (refer to Figure

1 in both references) [20,21]. The present discussion

is applicable both to single domain and multidomain

proteins. With respect to the later, the analysis [20]

and prediction of discrete structural domains is an-

other novel application of network science to the

field of structural biology [27–29].

For general reference, there are several compre-

hensive analyses conducted to define meaningful

contacts between amino acids. One for example,

rigorously defines amino acid contacts in the tertiary

structure based on residue distance separation in the

primary structure for the different protein classes

[30]. Another, details the effect of using different

angstrom cutoff distances between contacting pairs

in the 3D structure, which is highly informative

[31]. These are valuable resources to facilitate decid-

ing upon distance parameters to construct protein

structure networks.

Protein structure networks include construction

from wide variety of information in addition to the

long- and short-range contact information outlined

above. Protein structure networks may also be de-

veloped by using for example interaction energies

[32], covariance data [33], evolutionary conservation

[34] and parameters that lead to formation of elastic

networks such as amino acid fluctuations [35] and

energy [36]. The wealth of diverse information that

can be used is ultimately providing a richly layered

and novel multidimensional view of these key bio-

logical molecules.

Application of network science to
analyze protein structure networks
The establishment of protein structures as network

systems opens up the application of the arsenal of

mathematical principles in the field of network sci-

ence to the analysis of these forms which until this

conversion was not possible. The rigorous analysis of

globular protein structure networks involving for ex-

ample the following calculations: small-world,

scale-free, betweeness-centrality and degrees of sep-

aration have been conducted by research groups

across the world. The results revealed that protein

structures have small-world properties [16–18,21] a

concept originally pioneered by Watts and Strogatz

in the analysis of a worm neural network, film actor

collaborations and the Western United States power

grid [37]. This means that protein structure networks

involving both long- and short-range interactions

have a high clustering coefficient C and a relatively

short characteristic path length L [16–18,21].

Network models of transmembrane proteins are

also now being constructed and analyzed [38]. Like

the globular proteins discussed, transmembrane pro-

teins also exhibit small-world character. The seminal

work of Barabàsi and coworkers highlighted the

Figure 1: Examples of proteins from the all-a, all-b and mixed a/b classes in the traditional view as ribbon draw-
ings. The all a-helical protein is myohemerythrin (pdb code: 1a7d). The all b-sheet protein is b2microglobulin (pdb
code: 1bmg). The mixed a/b protein is triose phosphate isomerase (pdb code: 1tim). The a-helices are dark gray
and the b-strands are light gray. The online color version displays the helices in pink and the b-stands in yellow.
The structures were drawn using RasMol (www.rasmol.org).
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ubiquitous nature of scale-free distributions in net-

work systems where the number of links per node,

scale as a power law [39]. Long-range interaction

networks in proteins have also been shown to

share this quality for simulated partially folded struc-

tures [40]. In the native-state, when considering a

network composed of both short- and long-range

interactions a bell-shaped Poisson distribution was

evident in the pattern of links [17,18].

Integral to the study of protein structures is gain-

ing an understanding of the determinants of struc-

tural stability and dynamics. Excellent examples of

studies analyzing stability and residue fluctuation

using network parameters can be found in references

[19,21,32]. Protein structure networks are now play-

ing a valuable role in biochemistry by facilitating the

identification of functionally relevant residues using

for instance ‘closeness centrality’ measures [41].

In a traditional sense, select regions of a protein

are most often correlated to functional sites, binding

regions, hydrophobic cores and folding nuclei. This

modularity is a feature well-suited for network mod-

eling and analysis. The subnetworks identified in the

analysis of protein allostery, is one aspect of a proteins

modular nature. It is fascinating to consider amino

acids communicating with one another to induce

structural change or effect behavior when proteins

interact or bind ligands. Allostery is an example of

an inducible change in the structure of an enzyme

when binding a cofactor or inhibitor. The interplay

between select amino acid interactions within a

protein can be modeled as a network and provides

fascinating insights into structure–function relation-

ships. Communication within the protein and hence

the modeling of these networks of amino acid inter-

actions has been studied by numerous groups and

makes essential contributions by guiding the design

of experiments as well as facilitating or extending the

interpretation of experimental data: for example,

Selvaratnam et al. used covariance analysis of NMR

chemical shift data to map allosteric networks [33].

Other examples of the analysis of protein structure

networks with respect to function include the work

of del Sol et al. [42] which led to the determination

that many residues key to maintaining the shortest

path across a connected network are both conserved

and essential for the biological role such as active sites

among other interesting findings. This research also

relates the role of network analysis in the evaluation

of robustness of protein structures to mutation,

where the general concept of robustness is an

Figure 2: An alternative view of proteins as a 2D net-
work representation. Shown is the traditional view of
ribosomal S6 (pdb code: 1ris) as a ribbon drawing using
RasMol and a 2D representation of the long-range
interaction network for this protein. The circles are
the amino acids (nodes) and the lines are the long-range
interactions (links). The network was constructed
using long-range interactions between residues that
are ten or more residues apart in the primary structure
and within 5— in the tertiary structure. The method
for generating this network is outlined in reference
[17]. The 2D network using the force directed layout is
visualized used Cytoscape (www.cytoscape.org).
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important one in both network science and bio-

chemistry. The communication between conserved

co-evolving residue networks and functional sites in

proteins by Suel et al. provides further insight

into both allostery and the intrinsic importance of

subnetworks within the whole network [43]. An

early and excellent example of evolutionarily

conserved energetic coupling of long-range inter-

actions between amino acids can be found in refer-

ence [44].

A clear example of the modular division of a pro-

tein through the reduction of protein structure net-

works into modules can be found in reference [45].

Del Sol et al. [45] highlight how this modularity is

key to maintaining shortest pathways in signaling

transmission and suggest interestingly that changes

to modular boundary residues could evolve new or

enhanced functions among other interesting conclu-

sions. In the work of Krishnan et al., structural mod-

ules or ‘clusters’ can be identified and are based in

part on connectivity density within and between re-

gions of the structure [46]. ‘Multi-scale graph parti-

tioning’ also adds another dimension to the analysis

of the modular nature of protein structures [47].

The identification of hydrophobic clusters was ele-

gantly done by Kannan and Vishveshwara and found

to be conserved between evolutionarily related pro-

teins and as well as correlated to contain sites experi-

mentally shown to be important in protein folding

[27]. Protein structures may also be reduced to dis-

tinct subdivisions termed ‘protein sectors’ which can

be used to decompose the protein structure network

[48]. The dynamic nature of proteins is a crucial

feature that has been harnessed to find clusters or

‘structural communities’ when looking at a physical

parameter such as stability versus time [49].

Algorithm development such as the plug-in

‘ModuLand’ for Cytoscape will significantly enhance

our ability to rigorously interrogate the modular

nature of protein structure networks by resolving

key aspects such as ‘overlapping network modules’

and ‘hierarchical layers’ [49]. The associated paper by

Szalay-Bekö et al. also provides a an excellent discus-

sion and illustrative examples of the ‘community

centrality’ measure as well as a comprehensive

modular analysis of the Met-tRNA synthase protein

structure network [50].

Protein classification and the structure
of the protein universe
Concomitant with the traditional view of pro-

tein structures is the way in which we organize

and classify these forms [51]. The Worldwide

Protein Databank and partners such as the RCSB

Protein Databank are the central depository of all

experimentally derived protein structure coordinates

for the scientific community and public (http://

www.wwpdb.org) [52,53]. There are two leading

databases which organize this vast collection of struc-

tures using a hierarchical approach. These are the

CATH [54] and SCOP [55] databases. Both data-

bases initially group proteins according to secondary

structure content such as mainly a-helical, mainly

b-sheet or a combination of a and b structure

which is termed ‘Class’ and then move down the

hierarchy. In the CATH databases the primary

levels in order of hierarchy are: Class, Architecture,

Topology (fold family) and Homologous superfam-

ily. In the SCOP database the primary levels in des-

cending order are: Class, Fold, Superfamily and

Family.

Where proteins have traditionally been viewed in

a hierarchical manner, relationships were seen only

in a vertical orientation. Protein relationships are

now being visualized with horizontal connections

Figure 3: A view of a long-range interaction network
in protein structures using ribosomal S6 as a model
system.The long-range interaction network for riboso-
mal S6 (pdb code: 1ris) is shown stemming from valine
6 in degrees of separation. The location of valine 6 is
shown in a dashed circle. The image on the left shows
the network in the context of the polypeptide back-
bone with the Ca shown as gray circles. The image on
the right is the network without the polypeptide back-
bone and the Ca are shown in gray circles. The color
version depicting the links stemming in five degrees
going from red to blue is online. This figure is adapted
from reference [17].
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Figure 4: The interconnectivity of the protein universe. (A) Schematic of the CATH protein structure database
organization. The four main levels in the hierarchy are class, architecture, topology (fold type) and homologous
superfamily. A very simplified network view of representatives at each level is denoted by circles and their relation-
ships by solid black lines. The solid gray arrow is drawn to emphasize the vertical nature of relationships in a hier-
archical classification scheme. The dotted gray arrow provides a visual example of hypothetical horizontal
relationships between proteins in traditionally different classes. (B) An example of three proteins which have been
traditionally been assigned to different classes, architectures and topologies can be connected by a common

(continued)
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meaning that proteins previously classified into

different classes can be connected. For example, an

all a-helical protein can share the same topology as

an all b-sheet protein as in the example of the

Greek-key proteins illustrated by Higman and

Greene [40]. This lends itself to a network represen-

tation of fold space such as a continuum [56,57] or

galaxy [58]. Both the Cuff [57] and Alva [58] papers

display seminal examples of the continuous and

interconnected nature of regions of fold space that

can in some instances transcend hierarchical class,

architecture, fold type and superfamily divisions

(refer to Figures 10 and 1–3, in [57] and [58], re-

spectively). Figure 4 in this review displays the con-

cept of converting the hierarchical view of the

protein universe into an interconnected network

that embodies non-traditional links between proteins

from the different classes.

PROTEIN FOLDING NETWORKS
The protein folding problem remains one of the

major unsolved questions in science today.

Researchers from a myriad of disciplines which in-

clude biochemistry, chemistry, computer science,

mathematics and physics have sought for over 30

years to resolve the mechanism by which the primary

structure dictates the tertiary structure and computa-

tionally predict this structure from the sequence. A

particularly challenging facet of the protein folding

problem is to elucidate the transition-state structure.

Using interaction networks between residues experi-

mentally shown to be important for folding as re-

straints in a Monte Carlo sampling procedure,

insightful models of the transition state structure en-

semble have been constructed [59]. Dokholyan et al.
have also used a network approach to provide

important insights into the determinants of pre-

and post-transition state ensembles [22]. The value

of a network approach in understanding conform-

ational space along the protein folding landscape can

be highlighted for example by the work of Rao and

Caflisch [60]. Here the folding of small b-sheet pep-

tide using molecular dynamics simulations is analyzed

by considering the generated conformations as nodes

and the transition between the forms as links along

the folding trajectory. They find among other inter-

esting results that the network is scale-free and

transition-state conformations as well as two main

average folding pathways could be identified. A net-

work approach was recently applied by Greene and

Grant to propose a novel model for the formation of

native protein structure networks from the

transition-state in a modification of the network

concept ‘degrees of separation’ into ‘levels of separ-

ation’ [61]. Further examples of the application of

network parameters can be found in the work of

Li et al. where folding nuclei were identified based

on an analysis of the native state of six proteins [62],

in the folding of the villin headpiece subdomain in

the work of Lei et. al. [63] and in the unfolding of

lysozyme by Ghosh et. al. [64].

Another advance in understanding the protein

folding problem using network principles comes

from the application of the network centrality meas-

ures such as, ‘betweeness’ [65–67]. Here nodes with

high betweeness are considered to be keys to gov-

erning the network [67]. In proteins it was used

to identify and characterize important residues for

folding [16,40]. This was applied to several protein

structures including chymotrypsin inhibitor 2, acyl-

phosphatase, ribosomal S6 and iceberg [16,40]. It was

shown in one study that the residues with high

betweeness are important to forming and stabilizing

‘Greek-key topology’ thus generating horizontal relationships. Shown is the all-a helical protein, the Fas-associated
death domain (pdb code:1e3y), the mixed a/b-protein is ribosomal S6 (pdb code: 1ris) and the all b-sheet protein is
titin (pdb code: 1tit) [40]. Each secondary element is assigned a different color in the online version.The five key sec-
ondary elements and their connectivity which share the same canonical Greek-key topology are colored in purple,
blue, green, yellow and orange. For orientation the N^terminus of the protein is purple for 1e3y and 1ris and gray
for 1tit. It is also interesting to note that they share a common network of long-range interactions between the
structures [40]. (C) Relationships between proteins classified in different classes and architectures can be seen in
this panel as an interconnected network. The numbering system denotes levels in the hierarchy with the first
number specifying class and the number after the decimal point specifies the architecture classification number in
the CATH database. For example, 3.30 signify the two-layer a/b-sandwich. The color of the circles corresponds to
the class (black¼mainly a-helical, white¼mainly b-sheet and gray¼mixed a/b) and the size represents the
number of sequence subfamilies. The line thickness represents the number of overlapping superfamilies between
the architectures. Figure 4C is reproduced from reference [57].
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the transition-state structure [16] and in another

study are highly conserved between proteins that

share a related Greek-key topology which suggests

they are topological determinants [40]. This would

not have been possible were it not for the transform-

ation of protein structures into network systems.

CONCLUSION
While great strides have been made to advance our

understanding of the determinants of protein

transition-state and native state structures as well as

the folding landscape continued interrogation of

proteins and the dynamic folding process from a net-

work perspective will invariably bring about deeper

insights. It is ultimately fascinating to know that a

protein structure conceptually embodies similar char-

acteristics to other seemingly disparate network sys-

tems such as the world-wide web, social networks,

power grids and neural networks. We would also

like to refer our readers to an excellent review of

protein structure networks which covers a wide

range of topic areas such as features of the network

topology, protein function, dynamics and folding

which can be found in reference [68]. The applica-

tion of network science is also infiltrating the way in

which we perceive protein relationships. This takes

the form of alternative views of the protein structure

universe and their interactions and is having pro-

found conceptual effects.

Key points

� Protein structures canbemodeled as network systemsby trans-
lating amino acids into nodes and both long- and short-range
interactions into links.

� By viewing proteins as network systems significant insights into
the determinants of protein structure, stability and folding can
be gained.

� Network models of proteins are essential for understanding a
wide arrayof biochemistry questions such as structural relation-
ships in protein space.
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