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ABSTRACT 

A HYBRID LEHMER CODE GENETIC ALGORITHM AND ITS APLICATION ON 
TRAVELING SALESMAN PROBLEMS 

Jun Zhang 
Old Dominion University, 2011 

Director: Dr. Shannon R. Bowling 

Traveling Salesman Problems (TSP) is a widely studied combinatorial 

optimization problem. The goal of the TSP is to find a tour which begins in a specific city, 

visits each of the remaining cities once and returns to the initial cities such that the 

objective functions are optimized, typically involving minimizing functions like total 

distance traveled, total time used or total cost. 

Genetic algorithms were first proposed by John Holland (1975). It uses an 

iterative procedure to find the optimal solutions to optimization problems. 

This research proposed a hybrid Lehmer code Genetic Algorithm. To compensate 

for the weaknesses of traditional genetic algorithms in exploitation while not hampering 

its ability in exploration, this new genetic algorithm will combine genetic algorithm with 

2-opt and non-sequential 3-opt heuristics. By using Lehmer code representation, the 

solutions created by crossover parent solutions are always feasible. 

The new algorithm was used to solve single objective and multi-objectives 

Traveling Salesman Problems. A non Pareto-based technique will be used to solve multi-

objective TSPs. Specifically we will use the Target Vector Approach. In this research, we 

used the weighted Tchebycheff function with the ideal points as the reference points as 

the objective function to evaluate solutions, while the local search heuristics, the 2-opt 

and non-sequential 3-opt heuristics, were guided by a weighted sum function. 
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CHAPTER 1 

INTRODUCTION 

Morse and Kimball (1951) defined Operations Research (OR) as "a scientific 

method of providing executive departments with a quantitative basis for decisions 

regarding the operations under their control." OR uses methods to get optimal or near 

optimal solutions to complex problems. These methods include mathematical modeling, 

statistics and algorithms, etc. Hillier and Lieberman (2005) summarized the usual phases 

of an operation research study as the following: 

1. Define the problem and collect the data. 

2. Formulate mathematic model to represent the problem. 

3. Develop a procedure to find the solutions to the problem from the model. 

4. Test and refine the model. 

5. Prepare for the application of the model. 

6. Implement the application. 

1.1 Background 

Searching for optimal or near optimal solutions to optimization problems is the 

subject matter of much research in the field of operations research. There are several 

reasons that make it difficult to solve real-world optimization problems; these include: 

• The search space is too large to perform an exhaustive search. 

• The problems are so complicated that we need to use simplified models. But the 

results from simplified models are essentially useless. 

• The evaluation functions are noisy or time dependent. This requires finding not 

just a single solution but a series of solutions. 
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• The possible solutions are so heavily constrained that it is difficult to construct 

even one feasible answer, let alone an optimal solution. 

When attacking hard complex optimization problems, especially combinatorial 

optimization problems, classical optimization methods may fail to be effective and 

efficient. From the 1970s a number of metaheuristics have been proposed for solving 

these kinds of problems, among which are genetic algorithm (Holland, 1975), simulated 

annealing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989), ant colony 

algorithms (Colorni, Dorigo & Maniezzo, 1991) and particle swan optimization 

(Kennedy & Eberhart, 1995). 

Combinatorial optimization is defined as the mathematical study of finding an 

optimal arrangement, grouping, ordering, or selection of discrete objects usually finite in 

numbers (Osman and Laporte, 1996). For many combinatorial optimization problems it is 

computationally impossible to find the optimal solution. Usually what can practically be 

produced are near-optimal solutions. 

The term metaheuristic was first introduced by Glover (1986). It derives from the 

composition of two Greek words: heuristic, which means "to find" and the suffix Meta, 

which means "beyond, in an upper level." A metaheuristic is a heuristic method to solve 

optimization problems. Much of the development of metaheuristics comes from 

observing nature and implementing simple rules to solve complex problems. It can be 

defined as a high-level framework or method which is specialized to solve optimization 

problems, or a high-level strategy that helps other optimization methods in the process of 

searching for feasible solutions. Osman and Laporte (1996) defined a metaheuristic as 

" an iterative generation process which guides a subordinate heuristic by combining 
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intelligently different concepts for exploring and exploiting the search space, learning 

strategies are used to structure information in order to find efficiently near-optimal 

solutions." 

Exploration and exploitation of the solution spaces are the two competing goals 

which direct the design of a metaheuristic. The success of a metaheuristic depends on the 

good balance between exploration and exploitation. Exploration is needed to make sure 

that the solution space is searched enough to make a reliable estimate to the global 

optimal. Exploitation is also important because the improvement of the current solution 

often produces a better solution (Talbi, 2002). Generally, a metaheuristic is applied to 

complex problems which no specific general algorithms or methods can solve. The most 

common problems that metaheuristics solve are combinational optimization problems. 

Although in theory metaheuristics can solve any optimization problem, especially 

complex problems which no general algorithm can solve, according to the "no free 

lunch" theorems (Wolpert & Macready, 1997), there is no optimization method that is 

perfect enough to solve all optimization problems efficiently. The performance of any 

algorithm over one class of problems is offset by its performance over another class. This 

is one of the reasons that a number of metaheuristics which focus on solving certain kinds 

of optimization problems are proposed, such as genetic algorithm (Holland, 1975), 

simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989), 

ant colony (Colorni, Dorigo & Maniezzo, 1991), particle swarm optimization (Kennedy 

and Eberhart, 1995), etc., and variants for metaheuristics which introduce some changes 

to the original algorithm to improve its performance were also proposed (Grefenstette, 

1986; see also Chiang & Russell, 1997; Li & Li, 2008; Wang & Wang, 2008). 
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Over the years, research on hybrid metaheuristics has risen considerably in 

combinatorial optimization. This research attempts to combine the best features from 

different metaheuristics to develop more powerful hybrid implementations than the 

original metaheuristics. One of the most common formats of the hybrid metaheuristics is: 

the population-based metaheuristics, like genetic algorithm, ant colony, particle swarm 

etc., which are powerful in exploring the solution space, were combined with local search 

metaheuristics, like hill climbing, simulated annealing, tabu search etc., which are more 

powerful in terms of exploitation to develop more powerful hybrid metaheuristics (Suh & 

Van Gucht, 1987; see also Fleurent & Ferland, 1994; Kim, Hayashi & Nara, 1995; Chen 

& Flann, 1994; Chen et al., 1995). 

Talbi (2002) categorized all hybrid metaheuristics into four hierarchy categories: 

Low-level relay hybrid, low-level teamwork hybrid, high-level relay hybrid and high-

level teamwork hybrid. He also categorized all hybrid metaheuristics using flat 

classification: homogeneous versus heterogeneous, global versus partial, specialist versus 

general. Figure 1.1 shows the hierarchical and flat classification of hybrid metaheuristics 

(Talbi, 2002). 

Hybrid Metaheuristics 

Homogeneous Heterogeneous Global Partial General Specialist 

Figure 1. Classification of Hybrid Metaheuristic (Talbi, 2002) 

Traveling Salesman Problems (TSP) is a widely studied combinatorial 

optimization problem. The goal of the Traveling Salesman Problems is to find a tour 
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which begins in a specific city, visits each of the remaining cities once and returns to the 

initial cities such that the objective functions are optimized, typically involving 

minimizing functions like total distance traveled, total time used or total cost. The 

simplest TSP involves finding a shortest path that visits n cities and returns to the initial 

point and the distances between cities are symmetric while in multi-objective TSP, the 

goal is to simultaneously optimize distances, cost, times or other objectives. 

TSP is NP-hard even with only a single objective. For multi-objective TSP, it has 

the difficulty of the TSP itself and the difficulty of multiple objectives (Ehrgott, 2000). 

Therefore, heuristics which provide sub-optimal solutions are widely used to tackle 

multi-objective TSP, such as tabu search (Hansen, 2000), genetic algorithm (Jaszkiewicz, 

2002), particle swarm (Shi, 2007), evolutionary algorithm (Jozefowiez, 2008), etc. 

As a population based algorithm, GA deals with multiple solutions in one single 

simulation run. Because of this, GA can maintain a diverse set of solutions. This makes 

GA promising in dealing with multi-objective TSP. Many variant GAs were proposed to 

attack TSP and multi-objective TSP (Fonseca & Fleming, 1993; see also Chatterjec, 

Carrera & Lynch, 1996; Merz & Freisleben, 2002; Deb et al., 2002; Jaszkiewicz, 2002; 

Samanlioglu, Ferrell & Kurz, 2008). The performance of GAs on TSP depends very 

much on the encoding methods and the genetic operators, crossover and mutation. To 

overcome the problem of infeasible solutions coming from the crossover that uses the 

natural representation, repairing methods were proposed, such as partially mapped 

crossover (Goldberg & Lingle, 1985; Oliver, Smith & Holland, 1987), edge 

recombination crossover (Whitley et al., 1989), etc. Another way to solve the creating 

infeasible solutions problem is to change the encoding method. For example, random 
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keys (Bean, 1994; Samanlioglu, Ferrell & Kurz, 2008), and Lehmer code (Mantaci & 

Rakotondrajao, 2001; Martin, 1990) were used to code the solutions for TSP. 

2-opt heuristic was first introduced by Croes (1958). It involves in breaking the 

route by deleting two edges and reconnecting the broken paths in the other possible way. 

If the 2-opt heuristic results in an improved tour, this change will be kept. Otherwise, the 

tour would not change. Figure 2 shows how 2-opt heuristic works. Please note that this 

picture is a schematic. If the distances were as shown in the figure, the tour will not 

change because the 2-opt will not result in a shorter tour. The Genetic Algorithms 

incorporated with 2-opt heuristic has been used to optimize TSP and Multi-objective TSP 

(Merz & Freisleben, 2002; see also Deb et al., 2002; Jaszkiewicz, 2002; Nilsson, 2003; 

Ghoseiri & Sarhadi, 2007; Samanlioglu, Ferrell & Kurz, 2008). 

c D C D 

Figure 2. 2-opt Move (Original Tour Left, Resulting Tour Right) 

3-opt heuristics involves in breaking the solution route by deleting three edges 

and reconnecting the broken paths in the other possible ways. Solutions that are 3-opt are 

also 2-opt. 

1.2 Problem Statement 

A meta-heuristics can be a high-level framework or method which is specialized 

to solve optimization problems, or a high-level strategy that helps other optimization 
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methods in the process of searching for feasible solutions. But according to the "no free 

lunch" theorems (Wolpert & Macready, 1997), the performance of any optimization 

method over one class of problems is offset by its performance over another class. Hybrid 

meta-heuristics combine different meta-heuristics to produce more powerful 

implementations than the original ones. 

Over the past decades, genetic algorithm attracted a lot of attention as a global 

optimization technique for complex optimization problems. Genetic algorithms were first 

proposed by John Holland (1975). They use an iterative procedure to find the optimal 

solutions to optimization problems and are categorized as a global search method. 

Genetic algorithms have been applied to solving optimization problems like numerical 

function optimization, scheduling, cognitive modeling, transportation problems, travel 

salesman problems, graph coloring problems, database query optimization, etc. (Bennett, 

Ferris & Ioannidis, 1991; see also De Jong, 1985; Goldberg, 1989; Vignaux & 

Michalewicz, 1991). 

Genetic algorithm took clues from nature: genetic inheritance and fitness survival. 

As a population based optimization method, genetic algorithm is powerful in exploration 

but weak in exploitation. The hybrid genetic algorithm which combined genetic 

algorithm and local search meta-heuristics, such as hill climbing, simulated annealing, 

tabu search, etc. can be more efficient and effective than the original genetic algorithm 

and local search meta-heuristics. One of the weaknesses with genetic algorithm is that 

sometimes it converges towards local optimal. 

In (Rugolph, 1994), the convergence properties of canonical genetic algorithm 

with mutation and crossover operators, proportional reproduction applied to static 
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optimization problems were analyzed. It concluded that "a canonical genetic algorithm 

will never converge to the global optimal regardless of the initialization, operators and 

objective function. But the variants of canonical genetic algorithm that always maintain 

the best solution in the population are shown to converge to the global optimal due to the 

irreducibility of the underlying original non-convergent canonical genetic algorithm" 

(Rugolph, 1994). 

This research proposes a Lehmer code Genetic Algorithm to solve single 

objective and multi-objective TSPs. To compensate for the weakness of traditional 

Genetic Algorithms in exploitation while not hampering its ability in exploration, local 

search heuristic—2-opt heuristic and non-sequential 3-opt heuristic was incorporated into 

the new Genetic Algorithms. Whenever a new solution was produced, no matter if it is 

produced by crossover or mutation, 2-opt heuristic and/or non-sequential 3-opt heuristic 

will be used to improve it until a local optimal solution is obtained. This Genetic 

Algorithm will benefit from using the local search heuristics, 2-opt and non-sequential 3-

opt heuristics because they are powerful in exploitation. Therefore, these Genetic 

Algorithms will have both good exploration and exploitation ability. The algorithms will 

converge towards a solution quicker. Ideally, this solution will be a global optimal 

solution or near optimal solution. 

Traditional Genetic Algorithms use direct representation of the solutions. That is, 

for the Traveling Salesman Problem, the solution was directly coded by the numerical 

representation of the cities. This makes it difficult for the traditional Genetic Algorithms 

to maintain feasibility from parents to offspring when solving many optimization 

problems, like multiple machine scheduling, traveling salesman problems, etc. Crossover 
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is a genetic operator used to vary the programming of chromosomes from the two 

individuals of the fittest to form the next generation. Traditional Genetic Algorithm uses 

one point crossover (Holland, 1975). Suppose we have a traveling salesman problem that 

has 6 cities. A candidate for this problem is a permutation of these 6 cities. Two such 

permutations are 1—• 3 —•2—>4—>5—•6—>1 and 6—> 4 —>2—>3—>1—>5—>6. In traditional 

Genetic Algorithm, the genetic representation of these two sequences are the 

permutations x = [ 1,3,2,4,5.6,1 i and* = ' 6,4,2,3,1,5,6) A one-point crossover will divide 

each permutation at the crossover point and exchange certain segments of the two 

permutations. Suppose the crossover point is the fourth place of the permutation. From 

the Figure 1, we can see that the resulting sequences are 1—>• 3 —>2—»4—>1—>5—>6 and 

6—> 4 —>2—>3—>5—>6—>1. Both of them are infeasible. So the crossing over of two 

feasible solutions does not result in feasible solutions. 

crossover point 

After crossover 1 3 2 - 4 1 5 6 6 4 2 3 5 6 1 

Figure 3. Traditional Single Point Crossover (Infeasible Solution) 

To overcome the difficulty in maintaining feasibility from parent to offspring, 

Bean (1994) proposed the Random Keys Genetic Algorithm. Not like traditional Genetic 

Algorithm using direct chromosomal representation of the candidate solution, the 

Random Keys Genetic Algorithm uses chromosomal representation in a soft manner. It 

encodes the candidate solution with random numbers. The values of these random 
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numbers range from 0 to 1. The random numbers are used as the sort keys to encode the 

candidate solutions. This encoding technique will eliminate the feasibility problem. 

Although the random key genetic algorithm can solve the infeasible solutions 

problem, it has its own difficulties. First, when implemented on a large problem, the 

sorting process to determine the ranks is expensive. Moreover, the encoding process does 

not preserve the adjacency of cities in a given tour when crossover with random keys 

(Chatterjee, Carrera & Lynch, 1996). 

This research will use Lehmer code to encode the permutation of a candidate 

solution. Lehmer code can code each permutation Tln of n numbers with a function 

LC(YI ) :{l,...,n} —>{l,...,n-l} to a special sequence of n-1 numbers (Kromer, Platos 

and Snasel, 2009). Lehmer code of a permutation can be expressed by using an inversion 

table. Consider a sequence of n numbers x = (x-[x2...xn) . An inversion is a pair 

(jc;,x;)such that i < j and*, > x}. Fori e {l,...,n}, let dtcount the number of inversions 

with i as the smaller index. Then the sequence (d^d2..Jn)is called inversion table of 

permutation x. 0 < dl <n-i fori = l,...,n . 

The evolutionary multi-objective optimization methods can be classified into two 

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell 

& Kurz, 2008). In the Pareto-based techniques, the selection is directed by the Pareto 

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by 

Fonseca and Fleming (Fonseca & Fleming, 1993), the niched Pareto genetic algorithm 

(Horn, Nafpliotis & Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler, 

Laumanns & Thiele, 2001), etc., belong to this type of technique. 
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In the non Pareto-base techniques, the selection does not directly rely on the 

Pareto dominance and Pareto ranking, such as vector evaluated genetic algorithm 

(Schaffer, 1984), target vector approach (Coello, 2001), memetic random key genetic 

algorithm (Samanlioglu, Ferrell & Kurz, 2008), etc. 

According to (Samanlioglu, Ferrell and Kurz, 2008), the main advantage of 

Pareto-based techniques is that these methods don't need to normalize objective functions, 

set reference points and specify weighting coefficients for each objective function 

according to its importance. But the Pareto-based techniques also have some 

disadvantages. First, the Pareto ranking does not work for hybrid meta-heuristics with 

local search because many local moves do not influence the rank of a solution. In some 

cases, change of a rank of a solution may need to change the objective function value a 

lot. But this may not be achieved by local move. And for solutions which have been 

already ranked 1, local improvement is not possible (Jaszkiewicz, 2002). Another 

problem with the Pareto-based techniques is with the comparability of the solutions. 

According to (Knowles and Corne, 2004), the Pareto-based techniques may be suited for 

problems with only two or three objective functions. When working on the multi-

objective optimization problems with four or more objective functions, the Pareto-based 

technique may cause many problems because many solutions will be incomparable. 

This research presents a hybrid Lehmer code genetic algorithm, which combines 

genetic algorithm with 2-opt heuristics and non sequential 3-opt heuristics. And this 

algorithm will be used to solve single objective Traveling Salesman Problems and multi-

objective Traveling Salesman Problems that have up to four or more objective functions. 

And this research will use a non Pareto-based technique. Specifically we will use the 
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Target Vector Approach that was also used in (Coello, 2001), (Samanlioglu, Ferrell and 

Kurz, 2008), etc. In Target Vector Approach, the goal is to minimize the distance 

between the generated solution and the target vector. In this research, we use the 

weighted Tchebycheff function with the ideal points as the reference points. 

The format of this dissertation is as follows; there will be nine chapters in the 

dissertation, including: 

The first chapter is the introduction. In this chapter, background is given and the 

problem statement will be discussed. 

The second chapter is a literature review. Literature on related topics will be 

summarized in this chapter. 

The third chapter is methodology. This is the main part of the dissertation. This 

chapter will discuss how to develop and implement the hybrid Lehmer code genetic 

algorithm and how it is applied on a multi-objective Traveling Salesman Problem. 

Chapter four will test the performance of the new algorithm proposed in chapter 

three. In this chapter, I will use the method proposed in chapter three to solve some bench 

mark TSPs and compare the performance of the new genetic algorithms with the 

performances of other meta-heuristics. 

Chapter five will summarize the results for chapter four. We can get a good 

understanding about how the Lehmer code can be used in genetic algorithms to solve 

multi-objective TSPs. And we will summarize the advantages and disadvantages of the 

proposed genetic algorithms on solving multi-objective meta-heuristics. 

Chapter six will discuss future work. This chapter will discuss the potentials of 

the other techniques that can be used to improve the performance of the hybrid Lehmer 



13 

code genetic algorithms on solving multi-objective TSPs and the potential to use this new 

genetic algorithm to solve other combinatorial optimization problems. 

1.3 Contributions 

In this research, after investigating metaheuristics, especially Genetic Algorithms 

and Random Keys Genetic Algorithms and their applications on the Traveling Salesman 

Problem, a new Hybrid Lehmer Code Genetic Algorithm was proposed. This new 

Genetic Algorithm used Lehmer code to represent the potential solutions to solve the 

infeasible solutions problem associated with traditional Genetic Algorithms when solving 

discrete optimization problems. And 2-opt and non-sequential 3-opt heuristics were 

embedded into the new algorithm to conduct a local search. This provided an alternative 

way to use Genetic Algorithm to solve discrete optimization problems. 

This new Genetic Algorithm was implemented by using Matlab, and experiments 

were conducted to test its performance on single objective and multi-objective TSPs. The 

results showed that the new Genetic Algorithm had some advantages on some bench 

mark single-objective TSPs over the newly proposed methods, more specifically Hansen 

and Samanlioglu's methods (Hansen, 2000; Samanlioglu, Ferrell & Kurz, 2008) even 

with small population size and fewer generations. And the results of this new Genetic 

Algorithm on multi-objective TSPs were comparable with those from the methods 

proposed in the new literatures. 

Another advantage of the new Genetic Algorithm over traditional Genetic 

Algorithms and Random Keys Genetic Algorithms is easy implementation. No fixing 

procedure is required as in traditional Genetic Algorithms when solving discrete 

optimization problems. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Traveling Salesman Problem (TSP) is a well studied combinatorial optimization 

problem. Many exact and approximate heuristics and meta-heuristics were proposed to 

solve this problem. It has also served as the bench mark problem to test the efficiency of 

the newly proposed heuristics and meta-heuristics. 

2.1 Traveling Salesman Problem 

The Traveling Salesman Problem is a well studied and important combinatorial 

optimization problem. The idea of the Traveling Salesman Problem is to find the shortest 

tour that visits each city exactly once and returns to the start city, given a list of cities. 

The origin of the Traveling Salesman Problem was not clear. But the Traveling Salesman 

Problem was first formulated as a mathematical problem in 1930 by Karl Menger. 

Mathematically, the TSP can be defined as the following: 

In the graph G = (V, C) , V is the set of nodes, or cities, C is the "cost matrix", 

where c represents the cost of going from city i to j , i, j e V . The goal is to find the 

permutation (i^,i2,...,in) of the integers from 1 to n such that the total cost 

c,, +C,, +... + c,, is minimized. 

The traveling salesman problem is a NP-complete problem. There is no 

polynomial-time algorithm that is capable of solving it exactly (Karp, 1977). Homaifar 

(1992) states "one approach which would certainly find the optimal solution of any TSP 

is the application of exhaustive enumeration and evaluation." But in most situations, 

conducting exhaustive enumeration and evaluation will take a long time. And obviously 
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we need to find an algorithm that gives us a solution in a short time. This means that we 

probably need to sacrifice optimality to get a good solution in a shorter time. 

The algorithms for solving the traveling salesman problem can be classified into 

two classes: exact algorithm and approximate algorithms (Helsgaun, 2000). The most 

direct method would be the method that tries all permutations and finds the shortest path. 

The running time for this approach is within a polynomial factor ofO(n!). Various 

branch-and-bound algorithms belong to the exact algorithms. These algorithms are 

inefficient concerning the running time, especially when solving the traveling salesman 

problem with a large number of cities. 

So many approximate heuristics were proposed to solve the travel salesman 

problem. Ghosh et al. (2007) introduced tolerance-based greedy algorithms to solve 

traveling salesman problem. The nearest neighbor algorithm is one of the first algorithms 

used to find a solution for the traveling salesman problem (Karp, 1977; Gutin, Yeo & 

Zverovich, 2002). Several genetic-based algorithms were proposed to solve the traveling 

salesman problem (Grefenstette, Gopal & Rosmaita, 1985; see also Jog, Suh & Gucht, 

1989; Oliver, Smith & Holland, 1987; Seniw, 1991). Dorigo and Gambardella (1997) 

proposed an artificial ant colony algorithm that is capable of solving the traveling 

salesman problem. Shi, Zhou, Wang, Wang and Liang (2007) presented a discrete 

particle swarm optimization algorithm for traveling salesman problem. Ghoseiri and 

Sahadi (2008) present a memetic algorithm to solve the symmetric traveling salesman 

problem. 

2.2 Multi-objective Traveling Salesman Problem 

The multi-objective optimization (MOP) problem can be defined as the following: 
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min f(x) = {/,(*), f2(x),..., fk (x)} 

S.t. X G 5 

where k > 2, jc = (x1,x2,...,jcn)is the decision variable vector, Sis the feasible solution 

space, f(x) is the objective vector. 

A MOP solution is a set of the non-dominated solutions called the Pareto Set (PS). 

Definition 1 A solution (x* e S) dominates a solution (x e S,x * x*), x* > x if and only 

if V/e{l,2,...,n} /,(x) </,(**) and3ie{l,2,...,«} / , (*)</ , (**)• 

Definition 2 A solution (x* e S ) is efficient if there do not exist a solution (x e S ) that 

dominates it. 

Definition 3 A solution x* e S is weakly efficient if there does not exist a solution 

( x e S,x?t x*) such that/,(x) < / ,(x*). 

Weighted Lp norms are defined as the following (Hansen and Jaszkiewicz, 1998): 

Lp(z\z2,A) = (fjA]\z)-z2
J\y

ip pe{L2,...} (2) 

where A = [A1,A2,...,A,],AJ > 0, is a weight vector. 

For a multi-objective TSP, the general weighted Lp norm is defined as 

min d> , i / , - * i Pyip (3) 
;=1 V ^ 

s.t. x e 5 

where /l ; > 0, j = 1,2,..., J,^Aj =l,z*is the reference point. 

If we set the reference point as the global optimal solution for / ; , when p = <x>, we 

get the weighted Tchebycheff metric 
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min m a x ^ C / j - z * ) } 

s.£. x e 5 

When p = 1, we get the weighted sum function 

min SOW"* ' ) ) 
S.i. X 6 o / C \ 

Multi-objective TSPs belong to the class of NP-complete problems even with 

only two objectives (Hansen, 2000). It has the difficulties of both the TSPs and the multi-

objectives (Ehrgott, 2000). And even a single objective TSP belongs to the class of NP-

hard problems. 

There are many heuristics and meta-heuristics proposed to attack on multi-

objective combinatorial optimization problems. Among these, Jaszkiewicz (Jaszkiewicz 

and Czyzak, 1998) proposed a Pareto simulated annealing algorithm to solve multi-

objective combinatorial optimization problems. Jaszkiewicz (2002) presented a new 

genetic local search algorithm to solve multi-objective TSP. And he concluded that a 

local search guided by weighted linear function gave a better solution than guided by 

weighted Tchebycheff function. Hansen (2000) proposed a tabu search with a local 

search heuristic to solve multi-objective TSPs. He suggested that the heuristic gives 

better solution when using a substitute scalarizing function instead of the Tchebycheff 

function to guide the local search heuristic. Samanlioglu et al. (Samanlioglu, Ferrell & 

Kurz, 2008) present a memetic random key genetic algorithm embedded with a 2-opt 

heuristic to solve multi-objective TSP. In his research, the local search is guided 

randomly by either a weighted Tchebycheff function or a weighted sum function. 
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The evolutionary multi-objective optimization methods can be classified into two 

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell 

and Kurz, 2008). For the Pareto-based techniques, the selection is directed by the Pareto 

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by 

Fonseca and Fleming (1993), the niched Pareto genetic algorithm (Horn, Nafpliotis & 

Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler, Laumanns & Thiele, 

2001), etc. belong to this type of technique. 

In the non Pareto-base techniques, the selection does not directly rely on the 

Pareto dominance and Pareto ranking, like vector evaluated genetic algorithm (Schaffer, 

1984), target vector approach (Coello, 2001), memetic random key genetic algorithm 

(Samanlioglu, Ferrell & Kurz, 2008), etc. 

According to (Samanlioglu, Ferrell & Kurz, 2008), the main advantage of Pareto-

based techniques is that these methods don't need to normalize objective functions, set 

reference points and specify weighting coefficients for each objective function according 

to its importance. But the Pareto-based techniques also have some disadvantages. First, 

the Pareto ranking does not work for hybrid meta-heuristics with local search because 

many local moves do not influence the rank of a solution. In some cases, change of a rank 

of a solution may need to change the objective function value a lot. But this may not be 

achieved by local move. And for solutions which have been already ranked 1, local 

improvement is not possible (Jaszkiewicz, 2002). Another problem with the Pareto-based 

techniques is with the comparability of the solutions. According to (Knowles and Corne, 

2004), the Pareto-based techniques may be suited for problems with only two or three 

objective functions. When working on the multi-objective optimization problems with 
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four or more objective functions, the Pareto-based technique may cause many problems 

because many solutions will be incomparable. 

2.3 Meta-heuristics 

Meta-heuristic is an active field of research with more and more new methods and 

the applications to specific problems being proposed. Some well-known metaheuristics 

are: evolution programming, genetic algorithm, simulated annealing, tabu search, 

artificial intelligence, ant colony algorithms, particle swan optimization and so on. 

Wolpert and Macready (Wolpert and Macready, 1997) explored the relationship between 

effective optimization algorithm and the problems they solve. They presented a number 

of "no free lunch" theorems which state that "for any algorithm, any elevated 

performance over one class of problems is offset by performance over another class." So 

no optimization method is perfect enough to solve all optimization problems efficiently. 

2.3.1 Genetic Algorithm 

A genetic algorithm is an iterative procedure used to find exact or approximate 

solutions to optimization problems. It is categorized as a global search method. Genetic 

algorithm was first used by John Holland (1975). Genetic algorithm took clues from 

nature: genetic inheritance and Darwinian strife for survival. One distinguished character 

of genetic algorithm is the separation of the representation of the problem from the 

variables in which it was originally formulated. 

Five general components are required in a genetic algorithm for a particular 

problem (Michalewicz, 1996): 

> a genetic representation of the solution 

> a way to create initial solutions 
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> a fitness function to evaluate the solution 

> genetic operators to create offspring 

> values for parameters (population size, probability of applying genetic 

operators, etc.) 

In a genetic algorithm the representations (chromosomes or genotype) of 

candidate solutions (phenotypes) to an optimization problem evolve toward better 

solutions. Traditional genetic algorithm uses binary strings as a chromosome to 

represent real values of the decision variables (Holland, 1975). Suppose that the 

decision variable x takes values from a domain (^ = iaJc\ —& ) and eight decimal 

places for the variable's value is required. Obviously, the domain should be cut into 

I c — aj -10 eqUai s i z e range to achieve such precision. A representation having the 

variable coded as a binary string of length n satisfies the precision requirement, if n is 

the smallest integer which satisfies1-c ~ a< " 1 0 — 2 - 1 . And the following function 

shows how to convert a binary string C&î s ™ bn}s into a real number x: 

c — a 
x = aL + (hxb2 - J?.n)s • 2 „ _ 1 

(6) 

Genetic algorithm starts from a population of randomly selected individuals. In 

each generation, the fitness of every individual is evaluated, certain individuals are 

selected from the current population and modified (through the process of recombination 

and mutation) to form a new population of the next generation. Theoretically a genetic 

algorithm can run forever because it is a stochastic research method. In practice, the 

method stops when a certain termination criterion is reached. The criteria are: a satisfied 
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solution is found, a fixed number of generations are reached, the allocated budget is 

reached, and better solutions are no longer produced. 

Pseudo codes for a genetic algorithm are: 

1. Randomly generate a population of individuals. 

2. Compute and save the fitness for each individual in the current population. 

3. Repeat until a stopping criteria is met 

• Select best ranked individuals to reproduce 

• Breed new generation through recombination and mutation 

• Evaluate the fitness of the offspring 

• Replace the worst ranked individuals with the offspring 

4. Get the individuals with the highest global objective fitness. 

Selection is the process in which the fittest individuals of the current generation 

are used to form the next generation. In (Michalewicz, 1996), a roulette wheel with slots 

sized according to fitness of each solution is proposed as follows: 

> Calculate the total fitness of the population 

F = y evalivj) 
(7) 

> Calculate the probability of selection P: for each solution vi 

evaUv, i 
Pi — " F (8) 

> Calculate the cumulative probability <?; for each solution 
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Then we spin the roulette wheel n (n is the population size) times. Each time we 

select a solution for the next generation as follows: 

> Generate a random number T from the range L0» *1J 

> Ifr<(fi, select the first solution vi; otherwise, select the l -th 

solution vi if <?f-i <r<q{ 

There are two genetic operators in genetic algorithm: crossover and mutation. 

Crossover (or recombination) is a genetic operator used to vary the programming of 

chromosomes from the two individuals of the fittest to form the next generation. 

Traditional genetic algorithm applies single point crossover. It involves the following 

steps (Beasley, Bull & Martin, 1993): 

> Select two individuals that will exchange certain bits of their binary string with 

each other. 

> Get the randomly selected crossover point and cut both of two individuals into 

two parts according to the crossover point. 

> Swap over the two individuals to produce new binary strings (see figure 2.1). 

Crossover Point Crossover Point 

Parents 1 0 1 1 <T 1 0 1 1 1 1 0 1 0 0 0 TO 0 0 0 I 1 1 

Oflspnng 1 0 0 0 1 1 0 1 1 110 1 0 1 1 0 0 0 0 0 1 1 1 

Figure 4. Single Point Crossover 

Mutation is a genetic operator used to maintain genetic diversity from one 

generation to the next generation. Mutation provides a small amount of random search 
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and ensures that no point in the search space has a zero probability to be searched 

(Beasley, Bull & Martin, 1993), thus improving the genetic algorithm's exploring ability. 

It involves a probability that an arbitrary bit in a genetic sequence changes from its 

original state. The normal procedure for a traditional genetic algorithm is: generate a 

random number from the range [°- • *] for each bit of each solution; if this number is less 

than a predetermined number called mutation rate, the bit will change from 0 to 1, or 

from 1 to 0 (see figure 2.2). 

Mutation Point 

1 
1 0 0 0 1 0 0 0 0 1 1 1 

A f t e r m u t a t i o n 1 0 0 0 1 1 0 0 0 1 1 1 

Figure 5. A Single Point Mutation 

The strengths of the genetic algorithm are: the ability to evaluate many possible 

solutions simultaneously, easy implementation, good performance over a large number of 

problems (robust), good performance on NP-complete problems and the ability to be 

implemented on parallel processing (Choy, Lam & Lau, 1997-98). 

The weakness of the genetic algorithm: sometimes converges towards local 

optima, has difficulty operating on dynamic data sets, cannot effectively solve problems 

with only single right/wrong measure fitness function, raises differences of opinion 

concerning the importance of crossover versus mutation and for specific problems, and 

other optimization algorithms may find better solutions than genetic algorithms. 
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2.3.2 Random Keys Genetic Algorithm 

It is difficult for traditional Genetic Algorithm to maintain feasibility from parents 

to offspring when solving many optimization problems, like multiple machine scheduling, 

quadratic problem, traveling salesman problem, etc. (Bean, 1994). For example, 

Crossover (or recombination) is a genetic operator used to vary the programming of 

chromosomes from the two individuals of the fittest to form the next generation. 

Traditional Genetic Algorithm uses one point crossover (Holland, 1975). Suppose we 

have a traveling salesman problem that has 6 cities. A candidate for this problem is a 

permutation of these 6 cities. Two such permutations are 1—• 3 —>2—>4—»5—»6 and 6—> 4 

—»2—>3—>1—>5. In traditional Genetic Algorithm, the genetic representation of these two 

sequences are the permutations x = (1,3,2,4,5,6) and x = (6,4,2,3,1,5) . A one point 

crossover will divide each permutation at the crossover point and exchange certain 

segments of the two permutations. Suppose the crossover point is the fourth place of the 

permutation. From the Figure 1, we can see that the resulting sequences are 1—*• 3 

—>2—>4—>1—>5 and 6—»• 4 —>2—»3—>5—>6. Both of them are infeasible. So the crossing 

over of two feasible solutions does not result in feasible solutions. 

crossover point 

After crossover 1 3 2 4 1 5 6 4 2 3 5 6 

Figure 6. Single Point Crossover in Traditional Genetic Algorithms 
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To overcome the difficulty in maintaining feasibility from parent to offspring, 

Bean (1994) proposed the Random Keys Genetic Algorithm. Not like traditional Genetic 

Algorithm using direct chromosomal representation of the candidate solution, the 

Random Keys Genetic Algorithm uses chromosomal representation in a soft manner. It 

encodes the candidate solution with random numbers. The values of these random 

numbers range from 0 to 1. The random numbers are used as the sort keys to encode the 

candidate solutions. This encoding technique will eliminate the feasibility problem. For 

example, suppose that there is a single machine 6-jobs scheduling problem. The 

chromosome (0.45, 0.32, 0.58, 0.74, 0.65, 0.17) would represent the sequence 6—• 2 

—>1—>3—>5—>4. In Random Keys Genetic Algorithm, the crossovers are executed on the 

chromosomes while not the sequence. Suppose that we have another chromosome (0.87, 

0.66, 0.25, 0.14, 0.49, 0.94) that would represent the sequence 4-* 3->5-»2-»l->6. And 

we suppose the crossover point is after the fourth gene. By using the traditional single 

point crossover, we get the two offspring (see Figure 2): (0.45, 0.32, 0.58, 0.74, 0.49, 

0.94) that represents the sequence 2 ->l-»5->3->4-> 6 and (0.87, 0.66, 0.25, 0.14, 0.65, 

0.17) that represents the sequence 4—»6—>3—>5—>2—»1. Both of the offspring are feasible 

solutions. 

C r o s s o v e r ?o tn t 

(Z +5.„ C.32, 0.5S. C.~-J0.65. C 1"; iO.S". Q.SS. ? 25. 0 1~\ C.-iS. 0.S4 

fC - 5 0 52. C 5S. C~- G.49 C.S-; (C.S~. C oS 0 25. C 1~. D.S5. C I " ; 

Figure 7. One Point Crossover for Random Keys Genetic Algorithms 

Bean (1994) used the Random Keys Genetic Algorithm to solve the multiple 

machine scheduling problems, the resource allocation problem and the quadratic 
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assignment problem to test its effectiveness. Chatterjee, Carrera and Lynch (1996) solved 

traveling salesman problems by using Random keys Genetic Algorithm. Snyder and 

Daskin (2006) presented a Random Keys Genetic Algorithm to solve generalized 

Traveling Salesman Problems. Samanlioglu et al. (Samanlioglu, Ferrell & Kurz, 2008) 

proposed a random-key genetic algorithm to solve the multi-objective traveling salesman 

problem. 

While random key genetic algorithm can overcome the difficulty of maintaining 

feasibility from parents to offspring, there are two main difficulties with it (Chatterjee, 

Carrera & Lynch, 1996). First, when implemented on large problem, the sorting process 

to determine the ranks is expensive. Moreover, the encoding process does not preserve 

the adjacency of cities in a given tour when crossover with random keys. This makes the 

random key genetic algorithm very slow and inefficient. 

2.3.3 Simulated Annealing 

Simulated annealing is a generic probabilistic metaheuristic for the global 

optimization problem. It was derived from the annealing process of metals in which the 

crystalline configurations are dependent on the rate of the cooling process. A common 

use of simulated annealing is to find near globally minimum cost solutions to large 

optimization problems. Kirkpatrick, Gelatt and Vecchi (Kirkpatrick, Gelatt and Vecchi, 

1983) were the first to come up and demonstrate applications of simulation techniques in 

a wide range of fields, from statistical physics to problems of combinatorial optimization. 

At each step of the simulation algorithm a new state is constructed from the 

current state by giving random displacement to a randomly selected particle. If the energy 

of the new state is lower than that of the current state, then the displacement was accepted, 
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therefore, the new state became the current state. However, if the energy of the new state 

was higher by m joules it became the current state with probability 

e X p(S). 
(10) 

This basic step can be mentioned indefinitely. The procedure was called 

metropolis loop. The generation of current states by applying this method led to a states 

distribution in which the probability of a given state with energy e; to the be the current 

state was 

exP( " e'Ar ) (11) 

This is called the Boltzmann distribution, where k is Boltzmann's constant and T is 

the temperature. 

Each iteration of the search process of simulated annealing moves from the current 

trial solution to an immediate neighbor. The selection of that immediate neighbor 

(candidate to be next trial solution) depends on certain rules, which represent the 

fundamentals of the simulated annealing search process. Those fundamentals are: 

Zc = objective function value for the current trial solution 

Zn = objective function value for current candidate to be the next trial solution 

T = Temperature, a parameter that measures the tendency to accept the current 

candidate to be the next trial solution if this candidate is not an improvement on the 

current trial solution. 

Now we will discuss the rule in which we apply those fundamental concepts for the 

selection of one of the immediate neighbors. Assuming the objective is minimization; the 
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simulated annealing search process accepts or rejects a candidate solution to be the next 

trial solution as follows: 

If Zn < Zc always accept this candidate 

If Zn > Zc accept the candidate with the following probability: 

Probability (Acceptance) = exp ((Zc - Zn) / Ti) 

In the case of having a worse solution (Zn > Zc in case of minimization), a 

probability of acceptance is introduced. This probability is compared to a random number 

(between 0 and 1) to determine if the current candidate solution will become the next trial 

solution. 

If random number < Probability (Acceptance), accept the current candidate 

solution. Otherwise, reject. 

The application of simulated annealing to optimization problems requires some 

preliminary steps: 

1. Identify the analogues of the physics concepts in the optimization problem at hand. 

• Energy function becomes objective functions. 

• Particles configurations become parameter values configurations 

• Finding a low-energy configuration becomes looking for a near-optimal 

solution. 

• Temperature becomes the control parameter for the process. 

2. Select an annealing schedule that consists of lowering a set of temperatures 

together with the amount of time that should be spent at each temperature. 

3. Develop a way of generating and selecting new configurations. 



29 

Any optimization technique has strengths and weaknesses. Simulated annealing is 

no exception to that. The relative straightforwardness and the ability to solve many 

combinatorial solutions is an important strength of simulated annealing, however, there is 

always a need for long computer processing times. Table 2.1 lists some strengths and 

weaknesses of simulated annealing presented by research done in Antwerp University, 

Belgium. 

Strengths 

1. Can deal with arbitrary systems and cost 

functions. 

2. Statistically guarantees finding an 

optimal solution. 

3. Is relatively easy to code, even for 

complex problems. 

4. Generally gives a good solution. 

Weaknesses 

1. Repeatedly annealing with a schedule is 

very slow, especially if the cost function is 

expensive to compute. 

2. For problems where the energy 

landscape is smooth, or there are few local 

minimum values, SA is overkill - simpler, 

faster methods will work better. 

3. Heuristic methods, which are problem-

specific or take advantage of extra 

information about the system, will often be 

better than general methods. But simulated 

annealing will often be comparable to 

heuristics. 

4. Simulated annealing cannot tell whether 

it has found an optimal solution. 

Table 1. Advantages and Disadvantages of Simulated Annealing 
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2.3.4 Tabu Search 

Tabu search is a metaheuristic which belongs to the class of local search 

techniques. Fred Glover (1989) is regarded as the one who created the method. 

According to Webster's dictionary, tabu is defined as "forbidden to profane use or 

contact because of what are held to be dangerous or supernatural powers" or "banned on 

grounds of morality or taste" or "banned as constituting a risk." 

By using tabu, the method guides a local heuristic search procedure to explore 

the solution space beyond local optimality, thus improving the performance of the 

procedure. Glover and Laguna (1997) mentioned that "distinguished feature of Tabu 

Search is embodied in its exploitation of adaptive forms of memory, which equips it to 

penetrate complexities that often confound alternative approaches." They thought 

adaptive memory and responsive exploration are the general tenets of Tabu Search. Hertz, 

Taillard and Werra (1997) defined the Tabu Search procedure: 

1. Choose an initial solution i in S. Set i*=i and k=0. 

2. Set k = k + 1 and generate a subset V* of solution in N(i,k) such that either one 

of the tabu conditions tr(i,m)eTr is violated (r=l,...,t) or at least one of the 

aspiration conditions ar(i,m) eAr(i,m) holds (r=l,...,a). 

3. Choose a best j=i©m in V* (with respect to f or to the function f+) and set i=j. 

4. If f(i) < f(i*) then set i* = i. 

5. Update tabu and aspiration conditions. 

6. Stop if a stopping condition is met. Else go to Step 2. 

They also defined the stopping criteria as: 
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1. The next iteration does not yield any solutions in the new neighborhood, 

N(i,k+1) = 0 . 

2. Perform a set number of iterations, k. 

3. The objective reaches a pre-specified threshold value. 

4. Evidence can be given that a global optimum has been reached. 

And because the aspiration criteria can allow a move that would be otherwise 

forbidden, it can affect the performance of Tabu Search. Glover and Laguna (1997) gave 

a basic aspiration criteria "consisting of removing a tabu classification from a trial move 

when the move yields solution better than the best obtained so far." 

The strengths of Tabu Search: 

1. Allows a move to an inferior solution to escape local optimums 

2. Steers away from unpromising inferior solutions 

3. Can be applied to both discrete and continuous optimization problems 

The weaknesses of Tabu Search (Hertz, Taillard & Werra, 1997): 

1. Overwhelmed by the number of parameters to be defined 

2. Overwhelmed by the number of iterations 

3. The performance depends on the settings of the various parameters. 

4. The objective function is hard to evaluate or may not provide enough 

information to effectively drive the search to a more interesting area of the 

search space. 
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2.3.5 Ant Colony Optimization 

Ant colony optimization is a metaheuristic technique for solving hard 

combinatorial optimization problems, like the Traveling Sales Problem. Macro Dorigo 

(1992) originally proposed it in his PhD thesis in 1992. The inspiration came from the 

ants which took shortest path through the communication among the ants by laying and 

following the pheromone. The ant colony optimization is based on the communication 

among a colony of agents, called ants, mediated by pheromone trails. 

Dorigo (Dorigo, 1992; Dorigo & Caro, 1999) defined the framework of the Ant 

Colony Algorithm. 

• A finite set C = K - cv- • CA'j 

• " I C J S T J I i> 11 y ~ c is a finite set of possible connection 

among the elements of c , where c is a subset of the Cartesian product 

CxC 

. fcic}=I\lcic/t) is a connection cost function associated with each 

# fi = £1{C, L, t) j s a finite set of constraints assigned over the elements of C 

and L. 

• s ~ ^ci'€y •••'ck> - Ms a sequence over the elements of C. A sequence S is 

also called a state of the problem. If S is the set of all possible sequences, 

the set s of all the sequences that are feasible with respect to the 
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constraint litC.L.t)^ is a subset of S. The elements in 5 define the 

problem's feasible states. 

A neighborhood structure is defined as follows: Given two states si and 5 ? , 

if both si and ss are in S, and the state ss can be reached from s% in one 

logical step, ^s is said to be a neighbor of ^ i . The neighbor of a state s is 

denoted by Ns , 

ill is a solution if it is an element of s and satisfies all the problem's 

requirements. 

>$"' ' t• is a cost associated to each solution lp. 

Ants of the colony have the following properties: 

• An ant searches for minimum cost feasible solutions ?$> = minfJ^] L,t1 _ 

• An ant k has a memory of M that is used to store information on the path it 

followed so far. Memory is used to build a feasible solution, to evaluate the 

solution and to retrace the path backward. 
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• An ant k in state •*> - (Sr-i* 0 can move to any node j which is in its feasible 

neighborhood ™? . The move is selected through a probabilistic decision rule 

which is the function of the values stored in a node local date structure that is 

obtained by a functional composition of node locally available pheromone trails 

and heuristic values, the ant's memory and the problem constraints. 

• An ant k can be assigned a start state ss and one or more termination conditions 

e . Ants start from the start state and move to a feasible neighbor state until at 

least one of the termination conditions is satisfied to build the solution in an 

incremental way. 

• When ants move from node i to neighbor node j , they update the pheromone trail 

Tu on the arcCM). This is called online step-by-step pheromone update. 

• Once a solution is built, the ant can retrace the same path backward and update 

the pheromone trails on the traversed arcs. This is called online delayed 

pheromone update. 

• Once it has built a solution and it has retraced the path back to the source node, 

the ant dies and frees all the allocated resources. 

Besides ants' activities, an ant colony optimization algorithm includes two 

additional procedures: pheromone trail evaporation and daemon actions. Pheromone 

evaporation is the process through which the pheromone deposited by previous ants 

decreases over time. It can avoid a too-rapid convergence to a suboptimal region. 

Daemon actions can be used to implement centralized actions which can not be 

performed by a single ant. The daemon can observe the path formed by each ant in 

the colony and choose to deposit extra pheromone on the components used by the ant 
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that built the best solution. The pseudo code (Glover & Kochenberger, 2002) for ant 

colony optimization is in Figure 3. 

Procedure ACO metaheuristic 

If not termination 

AntsActivity ( ) 

PheromoneUpdate ( ) 

DameonActions ( ) 

End if 

End Procedure 

Figure 8. The Pseudo Code for Ant Colony Optimization 

When the ant k is at the city i at time t, the probability that it will move to the city 

j i s 

k * I n lI } e " I 
PiJ11' = 1 S, .M f c[TU( t )]o[r7B i ( tHP 

vO otherwise 

(12) 

Where 

Ti i is the amount of pheromone on edge@« / ) . 

a is a parameter which controls the influence of^1'-./). 

^J is the desirability of edgefei). In traveling sales problem, ' / " u , "-u is the 

distance between i and j . 

P is a parameter which controls the influence of *kj. 

In this way, we will favor the choice of edges which are short and have a greater 

amount of pheromone. The pheromone update is done by the following function: 
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m. 
TyCt + 1) = <1 - f) • Ty (f) + Y AT§(t) 

k^i (13) 

Where 0 — P ^ 1 is the pheromone trail evaporation rate, m is the number of 

ants. The parameter P is used to avoid unlimited accumulation of the pheromone trails 

and let the algorithm forget the previous bad solution. 

,fe tf.\ _ 
1 

if edge {Uj^isused by ant k Ar*(t) = lik(t) 
k 0 otherwise (14) 

where £*(0 is the length of the & th ant's tour. 

Ant colony optimization can be applied to a wide range of combinatorial 

optimization problems. It is mainly used in these two fields: NP-hard problems and 

shortest path problems in which the properties of the problems' graph representation 

change over time. The ant colony optimization has an advantage over simulated 

annealing and genetic algorithm when the graph may change dynamically. It can be run 

continuously and adapt to changes in real time. 

The first problem with ant colony optimization is difficult in definition. It is not 

easy to give a precise definition of what algorithm is or is not ant colony because the 

definition may change according to the authors and uses. Another weakness is the search 

may fall into a local optimum. 

2.3.6 Particle Swarm Optimization 

Particle swarm optimization is a population-based evolutionary computation 

algorithm for solving optimization problems. It was developed by Kennedy and Eberhart 

(Kennedy and Eberhart, 1995). It is derived from the research and simulation of the social 

behavior of a bird flock. Particle swarm optimization is similar to genetic algorithm in 
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that it is also initialized with a population of random solutions. The difference between 

them is that in particle swarm optimization, each particle is also assigned a randomized 

velocity so it flows through the problem space (Eberhart and Shi, 2001). 

Each particle keeps track of its coordinates in the problem space. The coordinates 

are associated with the best solution it has achieved so far. This value is called pbest. 

Another best value tracked is the overall best value and its location obtained by any 

particle in the population so far. It is called gbest. 

Eberhart and Shi (2001) defined the process for implementing the global version 

of particle swarm optimization in the following: 

1. Initialize a population of particles with random position and velocity in the 

problem space. 

2. Evaluate each particle's desired optimization fitness function. 

3. Update each particle's pbest and its location. If current value is better than 

pbest, set pbest value equal to the current value and its location equal to the 

current location. 

4. Update gbest. If current value is better than gbest, then set gbest to the current 

value. 

5. Change the velocity and position of each particle according to : 

i. Vz(t + l} = wVl{t)^C1rand1()(xl-xl)-hC.rand~{)(3-x,) (15) 

ii. JTi(r + 1) = Xitt) +FS(t + 1) (16) 

where w is inertia weight, £1 and C* are acceleration constants, rflftwfi () 

and rand.() a r e two different random function range from 0 to 1. ~xi is the 
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location of each particle's local best value (pbest), 8 is the location of 

global best value (gbest). 

6. Loop to step 2 until a criterion is met. The criterion is usually a sufficiently 

good fitness or a maximum number of iterations. 

Particle swarm optimization has been used in a wide range of applications. Like 

other evolutionary optimization methods, particle swarm optimization can be applied to 

solve most optimization problems. 

One of the reasons that particle swarm optimization is attractive is that there are 

very few parameters to adjust and it is easy to implement. Wang, Zhang, Zhou and Yin 

(2008) summarized that the advantages of particle swarm optimization are: simple 

structure, immediate accessibility for practical application, ease to implementation, quick 

convergence and robustness. But there are still problems with it. First its applications in 

solving global combinatorial optimization are limited and not as effective as in global 

continuous optimization. And on the other hand, the search in particle swarm 

optimization is mainly based on the local information. It is based on each particle's own 

best position information and the best global position information so far; therefore, the 

particle swarm optimization has no mechanism to get and use global information about 

the search space. 

2.3.7 Harmony Search 

Harmony search is a new heuristic algorithm which mimics the improvisation 

process of music player. Geem and Kim (2001) first discussed this new metaheuristic 

algorithm. Musical performers seek to find harmony, which is determined by an aesthetic 

standard, just as the optimization process seeks to find an optimal solution which is 
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determined by an objective function. And still the pitch of each musical instrument 

determines the aesthetic quality; just as each decision variable determines the value of the 

objective function. In the algorithm, the harmony is analogous to the optimization 

solution and the improvisations are analogous to local and global search schemes (Lee & 

Geem, 2005). When a musician improvises one pitch, he usually chooses one of three 

options: 1) playing any one pitch from his memory; 2) playing an adjacent pitch of one 

pitch from his memory; 3) playing a totally random pitch from the possible sound range. 

Similarly, in a harmony search algorithm, each decision variable follows one of three 

rules to choose one value: 1) choosing any one value from the harmony search memory, 2) 

choosing an adjacent value of one value from the harmony search memory, 3) choosing 

totally random from the possible value range. 

Lee and Geem (2005) defined the process of harmony search optimization as 

follows: 

1. Initialize the optimization problem and parameters. 

2. Initialize the harmony memory (HM) by randomly generating solution vectors 

and sorting by the values of the objective function. x l• x2, - • ••. x* '' (HM5 [s 

the number of solution vectors in harmony memory.). 

3. Improvise a new harmony from the HM. The new harmony vector, 

x = (xi'Xs>-",xN) is generated based on memory considerations, pitch 

adjustments and randomization. 

( xz- € [xl. xf, •••. xf*MS\ with probability HMCR 

( x'. G Xi with probability ( 1 — HMCR) 

(17) 
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The HMCR is the probability of choosing one value from the historic values 

stored in the HM, while ' * ~ HMCR) [s the probability of randomly selecting one 

feasible value not limited to those stored in the HM. Each component of the new 

harmony vector, x = (*i.-*s*'" >xx), is examined to determine if it should be pitch-

adjusted. 

( Yes with probability PAR 
Pitch adjusting decision for * l *~ I No with PTob ability i 1 - PARj 

(18) 

The pitch adjusting is only performed after a value is chosen from the HM. 

ajj — xl ± bw - rand{ 0,11 ng\ 

^w is the distance bandwidth, the amount of maximum change for pitch 

adjustment. 

The value {1 — PAR) sets the rate of doing nothing. 

4. Update the HM. If the harmony vector is better than the worst harmony in the 

HM in terms of the objective function value, the harmony replaces the worst 

harmony to be put into HM. 

5. Repeat steps 3 and 4 until the termination criterion is satisfied. 

Harmony search is a global search algorithm which can be easily applied to 

various optimization problems. The advantages of the harmony search are: when making 

a new vector, it considers all existing vectors rather than only two parents like the genetic 
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algorithm. And harmony search does not require setting initial values for the decision 

variables. These advantages may help it in escaping local optima and finding better 

solutions. Harmony search gets into trouble when performing a local search for numerical 

application (Mahdavi, Fesanghary & Damangir, 2007). 

2.4 Hybrid Meta-heuristics 

Over the years, research on hybrid metaheuristics has risen considerably in 

combinatorial optimization. This research attempted to combine the best features from 

different metaheuristics to develop more powerful hybrid implementations than the 

original metaheuristics. The most common format of the hybrid metaheuristics is: the 

population-based metaheuristics, like genetic algorithm, ant colony, particle swarm etc., 

which are powerful in exploring the solution space were combined with local search 

metaheuristics, like hill climbing, simulated annealing, tabu search etc., which are more 

powerful in terms of exploitation to develop more powerful hybrid metaheuristics (Suh & 

Van Gucht, 1987; see also Fleurent & Ferland, 1994; Kim, Hayashi & Nara, 1995; Chen 

& Flann, 1994; Chen et al., 1995; Javadi and Tan, 2005; Li and Li, 2008). 

According to (Raidl, 2006), the motivation behind hybrid metaheuristics is to 

obtain better performance metaheuristics that exploit and unite advantages of the 

individual pure metaheuristics. 

Talbi (2002) categorized all hybrid metaheuristics into four hierarchy categories: 

Low-level relay hybrid metaheuristic, low-level teamwork hybrid, high-level relay 

hybrid and high-level teamwork hybrid. 
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In low-level relay hybrid metaheuristics, a metaheuristic is embedded into a single 

solution metaheuristic. For example, simulated annealing was combined with local search 

to solve the traveling salesman problem (Martin, Otto & Felten, 1992). 

A metaheuristic embedded into a population-based metaheuristic forms low-level 

teamwork hybrid metaheuristic. For example, local search metaheuristics, like tabu 

search, simulated annealing, etc., had been embedded into genetic algorithm to form this 

kind of hybrid metaheuristics (Fleurent & Ferland, 1994; see also Thiel & Voss, 1994; 

Kim, Hayashi & Nara, 1995; Davis, 1985; Chen & Flann, 1994; Chen, Wang, Kao, 

Ouhyang & Chen 1995). 

High-level relay hybrid metaheuristics involve several metaheuristics executed in 

a sequence. For example, in (Javadi & Tan, 2005), a hybrid intelligent genetic algorithm 

based on the combination of neural network and the genetic algorithm was proposed. In 

this algorithm, a neural network is used to improve the convergence of the genetic 

algorithm. 

In high-level teamwork hybrid metaheuristics, several metaheuristics conduct a 

search in parallel. For example, some searches proposed distributed genetic algorithms in 

which a fixed number of subpopulations evolve competing solutions. Each one of the 

subpopulations is processed independently by a genetic algorithm. An extra operator, 

called migration, is proposed to produce exchange between the subpopulations (Tanese, 

1989; see also Whitley & Starkweather, 1990; Sun & Wan, 1995; Herrera, Lozano & 

Moraga, 1999). 

As a population based optimization method, genetic algorithm is powerful in 

exploring the solution space while weak in the exploitation of the solutions found. So 
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genetic algorithms have been combined with local search heuristics that are powerful in 

exploitation to create more powerful hybrid metaheuristics. 

There are several types of hybrid metaheuristics concerning genetic algorithms. 

Some hybrid metaheuristics are this type: a local search metaheuristic is embedded into 

genetic algorithm. The genetic algorithm is used as a global optimizer while its 

recombination operators (mutation and crossover) are augmented with the ability to 

perform a local search. Not like classical genetic algorithm using blind operators 

regardless of fitness of the original individual and the operated one, the hybrid genetic 

algorithms use heuristics as operator which consider an individual as the origin of its 

search, apply itself to the individual and replace the original individual with the enhanced 

one. The local search heuristics here can be hill climbing (Suh & Van Gucht, 1987; Jog, 

Suh & Van Gucht, 1989) , tabu search (Fleurent & Ferland, 1994; see also Thiel & Voss, 

1994; Kim, Hayashi & Nara, 1995), greedy heuristics (Davis, 1985), simulated annealing 

(Chen & Flann, 1994; Chen, Wang, Kao, Ouhyang and Chen 1995). 

Another type of hybrid genetic algorithm is: genetic algorithm and other 

metaheuristics are executed in a sequence. As a population based optimization method, 

genetic algorithm is powerful in exploring the solution space. This means that genetic 

algorithm can quickly locate the high performance regions of the solution spaces. Once 

these high performance regions are located, it will be useful to use a local search 

metaheuristic to exploit these regions. 

According to Talbi (2002), after a certain amount of time, the population of 

genetic algorithm is quite uniform. Thus, the process fell into a basin of attraction from 

which it has a low probability to escape. It will improve the performance of the 
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metaheuristic to exploit the basin to get the optimal solution in the basin as efficient as 

possible. Because genetic algorithm is not good in exploitation, it will be efficient to use 

a local search metaheuristic, like hill climbing, tabu search, simulated annealing, etc. 

Mahfound and Goldberg (1995) used simulated annealing as local search metaheuristic to 

improve the population obtained by a genetic algorithm to get a more powerful hybrid 

metaheuristic. Nissen (1994) introduced hill climbing as a local search heuristic to 

improve the results obtained by genetic algorithm. In (Javadi & Tan, 2005), a hybrid 

intelligent genetic algorithm based on the combination of neural network and the genetic 

algorithm was proposed. In this algorithm, a neural network is used to improve the 

convergence of the genetic algorithm. 

Another direction is using other metaheuristics, like greedy search, simulated 

annealing, etc., to generate initial population for genetic algorithm. For example, Lin, 

Kao and Hsu (1991) proposed a hybrid genetic algorithm which incorporated genetic 

algorithm into simulated annealing. This hybrid genetic algorithm started with simulated 

annealing and used genetic algorithm to augment the solution founded by simulated 

annealing. 

Still another type of hybrid genetic algorithm is: several genetic algorithms 

perform a search in parallel. Potter and De Jong (1994) proposed a cooperative co-

evolutionary genetic algorithm. In this algorithm, there are multiple interacting species 

and each species represents a subcomponent of a potential solution. And the evolution of 

each species is handled by a standard GA. 

Some searches proposed distributed genetic algorithms in which a fixed number 

of subpopulations evolve competing solutions. Each one of the subpopulations is 



45 

processed independently by a genetic algorithm. An extra operator, called migration, is 

proposed to produce exchange between the subpopulations (Tanese, 1989; see also 

Whitley & Starkweather, 1990; Sun & Wan, 1995; Herrera, Lozano & Moraga, 1999). In 

(Li & Li, 2008), Li and Li proposed a dual species genetic algorithm in which two 

subpopulations with the same size individuals have different characteristics, such as 

crossover rate and mutation operator. One subpopulation has a higher crossover rate 

while the other has a higher mutation rate. So the new hybrid genetic algorithm has both 

good exploration and exploitation ability. 

2.5 Lehmer Code 

Lehmer code can effectively represent a permutation. It was proposed by Lehmer 

(1960). 

Lehmer code can code each permutation ITn of n numbers with a function 

LC(Y1 ) : {l,...,n} -» {l,...,n -1} to a special sequence of n-1 numbers (Kromer, Platos & 

Snasel, 2009). Lehmer code of a permutation can be expressed by using an inversion 

table. Consider a sequence of n numbers x = (x1x2...xn) . An inversion is a pair 

(x,,jc;)such that i < j andx, > xr Fori e {l,...,n}, let d, count the number of inversions 

with i as the smaller index. Then the sequence (d1d2..dn)is called an inversion table of 

permutation x. Q<dl < n-i fori=l,...,n. 

For example, the permutation ( 3 4 5 2 6 1 ) can be coded into (2 2 2 1 1 0) by 

Lehmer code. When the genetic algorithm uses Lehmer code to encode the solutions, the 

offspring created by crossover of the parent solutions are always feasible. Moreover, it 

can preserve some edge information from the parent solutions to the offspring. 



46 

In (Kromer, Platos & Snasel, 2009), Kromer et al. presented a Lehmer code 

genetic algorithm and compared it with the other encoding methods. Pesko (2006) 

proposed a differential evolution algorithm with Lehmer code encoding the candidate 

solutions to solve the Traveling Salesman Problem. 

By using Lehmer code representation, the difficulty for traditional Genetic 

Algorithms to maintain feasibility from crossover parent solutions to offspring solution 

will be solved automatically. The solutions getting from crossover will be always feasible. 

The following figure shows how Lehmer code representation crossover works. 

After crossover- 13 2 415 6 4 2 3 6 5 After crossover o 1 0 0|o"o 5 3 llTTo 

Traditional GA Me pomt crossover Decode J [_ 

1 3 2 4 5 6 6 4 2 3 5 1 

Figure 9. Lehmer Code One Point Crossover 

From this figure, we can see that neither solution is feasible in the one point 

crossover of traditional GA. While in Lehmer code GA, both solutions getting from 

crossover of parent solutions which are the same with those in traditional GA are feasible. 

And we can see that with the Lehmer code representation, a certain part of the parent 

solutions information can be transferred to the offspring solutions. This means that a 

certain part of the schematic information can be reserved. As we know, this is one of the 

advantages that Genetic Algorithms has, while random keys Genetic Algorithms can't 
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keep any edge information to transfer to the offspring. This can be one of the 

disadvantages of random keys Genetic Algorithms. 
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CHAPTER 3 

METHODOLOGY 

This research proposes developing a hybrid meta-heuristic consisting of 

combining genetic algorithms and local search heuristics, 2-opt heuristics and non 

sequential 3-opt heuristics. This method compensates for the weakness of a traditional 

genetic algorithm in exploitation while not hampering its ability in exploration. The new 

genetic algorithm will have both good exploration and exploitation ability because as a 

population based meta-heuristic, genetic algorithm is powerful in exploring the solution 

space and as local search heuristics, 2-opt heuristics and non sequential 3-opt heuristics 

are powerful in exploitation. 

Lehmer code will be used to encode the candidate solutions to solve the infeasible 

solution problems for traditional Genetic algorithms brought by crossover when solving 

discrete optimization problems. By using Lehmer code representation, the solutions 

coming from crossover of parent solutions are always feasible solutions. 

In this research, whenever a new solution was produced, no matter if it was 

produced by crossover of two solutions from the last generation or by mutation, 2-opt 

heuristics and/or non sequential 3-opt heuristics were used to improve this solution until a 

local optimal solution was obtained. The 2-opt heuristics and non sequential 3-opt 

heuristics were guided by a weighted sum of the objectives. The evaluation function was 

a weighted Tchebycheff metric with an ideal point. 

The programming language, MATLAB, will be used to implement this new 

hybrid genetic algorithm. 
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3.1 Research Problems 

There are several research problems that need to be addressed when creating the 

hybrid genetic algorithm. These include: 

1. How to use the Lehmer code to encode the candidate solution? 

2. What kind of local search heuristics will be used to perform a local search? 

3. How to combine genetic algorithm and 2-opt heuristic? 

4. How to evaluate the solutions? 

5. How to test the performance of the new hybrid algorithm? 

An approach to each of these research questions is given below. 

How to use the Lehmer code to encode the candidate solution? 

To overcome the difficulty in maintaining feasibility from parents to offspring for 

traditional genetic algorithms that use direct representation, Bean (1994) proposed 

random key genetic algorithms. But this encoding technique also has some disadvantages. 

For example, the sorting process to determine the ranks of the cities is time-consuming; 

the information about the adjacency cannot be preserved, this means that no schematics 

can be transferred from this generation to the next one. 

In this research, I will use the Lehmer code to encode the solutions. For the initial 

solutions, I can definitely use Lehmer code to create the random permutations of n (n is 

the number of cities) to represent the initial solutions. But after the initial solutions are 

created, these solutions need to be evaluated, improved until local optimal solutions are 

obtained and sorted. So these solutions should be decoded to represent the path. Then 

these solutions need to be encoded by Lehmer code so the crossover and mutation 

operators will create feasible solution. And these coding and encoding processes will be 
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expensive and time consuming. To make these processes simpler, this research will create 

the random permutations of n to represent the initial solutions directly using the natural 

representation. After these solutions are evaluated, improved and sorted, they will be 

encoded by Lehmer code to prepare for the crossover and mutation. 

And as stated above, Lehmer code representation can not only guarantee the 

feasibility of the solutions getting from crossover of parent solutions, but also keep some 

parts of edge information. This makes it a better representation than random keys. 

Another possible advantage with Lehmer code representation in Genetic Algorithms will 

be the easy implementation of the genetic operator, mutation. This research will 

implement one point mutation. 

To implement this mutation, first randomly select a number in [0, n-5] (n is the 

number of the cities). This number will indicate the position of the city that will mutate. 

For example, the number is j , the Lehmer code for this city is temp(j). Then create 

another random number in [0, 1]. This number will determine that the Lehmer code for 

selected city will be increased by 3 or be decreased by 3. If the random number is less 

than 0.5 and temp(j)-3>0 or temp(j)+3>n-j, the Lehmer code of the city will be changed 

to temp(j)-3. Or else, the Lehmer code for the selected city will be temp(j)+3. 

What kind of local search heuristics will be used to perform local search? 

There are many local search algorithms and their variants that we can select from. 

Therefore, we need to determine what kind of local search heuristics will be used in the 

new hybrid genetic algorithm. The idea is that we will use a local search algorithm to find 

local optimal solutions, a non-exhaustive list of local search techniques includes: nearest 

neighbor, greedy, 2-opt, 3-opt, k-opt, L-K, etc. 
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The 2-opt heuristic involves in deleting two edges from a tour and reconnecting 

the two paths created. Only if the resulting tour is shorter than the previous one will we 

make this change. Otherwise, we will keep the initial tour. This procedure will be 

continued until no improvement can be made. At this point, we can say a 2-opt local 

optimal solution is obtained. 

According to (Joson & Mcgeoch, 1995), the 2-opt heuristic will often result in a 

tour with a length less than 5% above the Held-Karp bound. The 2-opt heuristic considers 

the pair-wise exchange. It involves selecting an edge (Cj,c2) and searching for another 

edge (c3,c4) , if distance{cx,c2) + distance(c3,c4)> distance(c},c3) + distance(c2,c4) , 

the change will be accepted. This new solution will be served as the candidate solution to 

find another better solution until no better solution can be found. In the worst situation, 

each edge will be compared with the rest n-2 edges. Therefore, a simple implementation 

of 2-opt heuristic runs ino(n2). Although the other heuristics, like 3-opt, L-K opt, etc., 

can find better solutions than 2-opt, they are more complex than 2-opt. For example, a 

simple 3-opt runs in o(n3). 

To take advantage of the exploitation ability of 3-opt heuristics and not increase 

CPU time too much, this research will also use non sequential 3-opt heuristics. We only 

picked up one of four possible 3-opt exchanges. After balancing the effectiveness and 

efficiency of all these local search heuristics, this research decides to choose 2-opt 

heuristics and non sequential 3-opt heuristics as the local search heuristic. 

How to combine genetic algorithm and 2-opt heuristics, non sequential 3-opt 

heuristics? 
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As discussed above, there are many types of hybrid genetic algorithms, like 

embedding other local search meta-heuristic into genetic algorithm to augment the 

genetic operators of genetic algorithms, executing other meta-heuristics and genetic 

algorithm in a sequence, having distributed genetic algorithms, etc. In this research, 2-opt 

heuristics and non sequential 3-opt heuristics were embedded into genetic algorithms. 

Whenever a solution was gotten, 2-opt heuristics or non sequential 3-opt heuristics were 

used on this solution until a local optimal solution was obtained. For single objective 

TSPs, the 2-opt heuristics and non sequential 3-opt heuristics are guided by the objective 

values of the solutions. For multi-objective TSPs, 2-opt heuristics and non sequential 3-

opt heuristics are directed by the weighted sum function. 

How to evaluate the solutions? 

In traditional genetic algorithm, solutions are evaluated according to the fitness 

values of the solutions. For single objective Traveling Salesman Problem, solutions are 

evaluated by the objective values of the solutions. For multi-objective TSP, each solution 

has multiple objective values. The goal is to find a set of the non-dominated solutions 

called the Pareto Set (PS). The evolutionary multi-objective optimization methods can be 

classified into two types: the Pareto-based technique and non Pareto-based technique. 

This research will use non Pareto-based technique, Target Vector Approach, for 

multi-objective Traveling Salesman Problems. In Target Vector Approach, the goal is to 

minimize the distance between the generated solution and the target vector. And in this 

research, solution will be evaluated by the weighted Tchebycheff function with the ideal 

points as the reference points. The ideal points here are the optimal solutions for each 

objective function. And this research considers only fixed weight vector. To be more 



53 

specific, the vector for each objective function is the same. For example, for a 4 

objectives TSP, the weight for each objective function is 1/4. 

How to test the performance of the new genetic algorithm? 

To test the performance of the algorithm proposed by this research, first, the 

newly created algorithm will be used to work on some bench mark single objective TSPs. 

The bench mark single objective TSPs can be available at TSPIB (Reinelt, 1995). To be 

more specific, I will use this hybrid Lehmer code Genetic Algorithms to solve the TSPs: 

att48, kroA 100, kroB 100, kroC 100, kroD 100, kroE 100, kroA150, KroB150, KroA 200 

and KroB 200. These problems have cities from 48, 100, 150 and 200. And their optimal 

solutions are known. All these make them good bench mark problems to test the 

performance of the heuristics and meta-heuristics like our algorithm. 

And the performance of the new Genetic Algorithms will also be tested on 

solving multi-objective TSPs. I will compare the performance of my method on multi-

objective TSPs with the methods proposed by Hansen (2002) and Samanlioglu et al. 

(Samanlioglu, Ferrell & Kurz, 2008). To make a good comparison, this research will test 

the performance of the algorithm proposed on the same Traveling Salesman problems as 

those used in (Hansen, 2000) and (Samanlioglu, Ferrell & Kurz, 2008). More specifically, 

I will use the set of Krolak instances with 100 cities from TSPLIB (Reinelt, 1995). The 

Krolak instances include 5 instances, kroA 100, kroB 100, ..., kroE 100. For the multi-

objective TSP problem of this research, each instance correspond to the cost matrix of 

one objective function, for example, for a three objective TSP problem, kroA 100 

corresponds to the cost matrix of objective function 1, kroB 100 corresponds to that of 

objective function 2, kroC 100 to that of objective function 3. There are two main 
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advantages by doing this. First, the tours will be within the same scale of range for the 

different objectives. This makes the range scaling unnecessary. Furthermore, the optimal 

value to each problem is known. So we get the exact ideal point for each objective 

function. This makes the implementation of the weighted Tchebycheff function very easy. 

Moreover, to make the comparison between the method of this research and the 

methods proposed by Hansen (2002) and Samanlioglu, Ferrell and Kurz (2008) valid, the 

method proposed by this research will work on TSP problems that have two objectives to 

up to five objectives and each problem will be run for 30 times. 

3.2 Procedure and Pseudo Code 

As mentioned above, the hybrid genetic algorithm will combine genetic algorithm 

and 2-opt heuristics and non sequential 3-opt heuristics. 

The procedure for the new genetic algorithm: 

1. Representation 

This research will use the Lehmer code to represent the chromosome. Traditional 

genetic algorithm uses binary strings as a chromosome to represent real values of the 

decision variables (Holland, 1975). Michalewicz (1996) described the representation of a 

chromosome in traditional genetic algorithm. 

Suppose we need to maximize a function of n variables,/^*i*-Ts» ••• * -TP : R ~* R , 

and each variable xi takes values from a domain ®i ~ lai>®z] E R . We also suppose six 

decimal places for the variables' values are desirable. Obviously, each domain should be 

cut into ' h< ~ at' ' 1° equal size range to achieve such precision. A representation 

having the variable coded as a binary string of length ni satisfies the precision 
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requirement, if nt is the smallest integer which satisfies^ h ~ ai ' • 10 < 2 '= - 1 Thus, 

k 

totally we need 1=1 binary bits to represent each chromosome (potential solution). 

But it is difficult for traditional Genetic Algorithm to maintain feasibility from 

parents to offspring when solving many optimization problems, especially discrete 

optimization problems like TSP. For example, Crossover (or recombination) is a genetic 

operator used to vary the programming of chromosomes from the two individuals of the 

fittest to form the next generation. Traditional Genetic Algorithm uses one point 

crossover (Holland, 1975). Suppose we have a traveling salesman problem that has 6 

cities. A candidate for this problem is a permutation of these 6 cities. Two such 

permutations are 1—>• 3 —>2—»4—»5—»6—>1 and 6—> 4 —>2—>3 —>1—>5 —>6. In traditional 

Genetic Algorithm, the genetic representation of these two sequences are the 

permutations x = (1,3,2,4,5,6,1) and x = (6,4,2,3,1,5,6). A one point crossover will 

divide each permutation at the crossover point and exchange certain segments of the two 

permutations. Suppose the crossover point is the fourth place of the permutation. From 

Figure 1, we can see that the resulting sequences are 1—• 3 —>2—>4—»1—>5—>6 and 6—>• 4 

—»2—»3—>5—>6—>1. Both of them are infeasible. 

In this research, we will use the Lehmer code to represent the candidate solution. 

But doing this, all solutions creating by crossover two parent solutions will be feasible. 

To do this, we first randomly generate a population of permutation of n (n is the number 

of the cities) vi . 

where i = l.»2,». ,n (n is the number of solutions in the population) 
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Then we use the inversion table to change this initial solution to Lehmer code 

representation. 

2. Use 2-opt heuristic to improve these initial solutions until all solutions obtained 

are local optimal solutions. This 2-opt heuristic will be guided by both a weighted 

sum function. Then these initial solutions will be sorted according to their 

evaluation values which are obtained by evaluating these solutions by using a 

Tchebycheff function. 

3. Repeat the following step until a stopping criterion is met. 

• Copying the best p% of solutions from the current generation to the next 

generation. To avoid the early convergence of the solutions, these 

solutions are different from each other. To do this, before a solution is 

selected, it needs to be compared with the solutions that have already been 

selected to see if there is a solution that is the same as this one. Only the 

solution that is different from the solutions that have already been selected 

will be selected and kept into next generation. 

• Crossover using the classical crossover to form c% of the solutions for the 

next generation. 

First, pick up two solutions from the current generation to serve as 

the parent. To make the algorithm converge to good solutions, we only 

select the 50% best solutions to crossover with each other. This means that 

only good solutions can be crossed over with each other. This can be done 

by picking up two different random numbers from 1 to 0.5 *n (n is the 

population size). 
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In this research, the classic one point crossover will be use. And as 

we discussed above, the Lehmer code representation can keep edge 

information from the parents to the offspring. To keep enough edge 

information from the parents to the offspring while not hampering the 

exploration ability of the algorithm, we set the crossover point with 70% 

and 90% of the number of the cities. 

For example, the first two random numbers are 1 and 3. This 

means that solution 1 that is - r i = ,-xliix±2 '" xim) will exchange 

certain bits with solution 3 that i s - y s = I ^_si>xa2* " ' * x2m J. Then pick 

up another random number from 0.7*m to 0.9*m (m is the number of the 

cities), and this number will serve as the crossover point. For example, the 

number is 75. The solutions 1 and 3 exchange the bits after the 75th bit 

with each other. Thus the new solutions are 

lvr
x = (x~21xlsxu — x 3 7 6 ...x3m) and 

> a = i X_2i X„ X33 ••• X176 -Xlm ) . 

• Using 2-opt heuristics and non 3-opt heuristics on the newly created 

solutions 

The solutions created by crossover will be served as initial solution and 

put into 2-opt heuristic to find local optimal solutions. Again, the 2-opt 

heuristic will be guided by a weighted sum function. And 20% best 

solutions created by crossover will be further improved by using non 

sequential 3-opt heuristics. This non sequential 3-opt heuristics will also 

be directed by a weighted sum function. 
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• Mutation to form another p% solutions for the next generation 

In this research, mutation will be worked on the p% best solutions 

of the current generation to form the p% solutions for the next generation. 

Thus solutions for the next generation will be completely generated 

(p%+c%+p%=l). 

We noticed that if the Lehmer code of a city in a route is changed 

by 3, there will be 4 cities changed in this route. In this research, to 

implement mutation operator, we first select the p% best solutions from 

the population of the current generation. For each selected solution, pick 

up a random number j between 1 and n-5 (n is the number of the cities). 

This number indicates the position of the city that will be changed. Then 

pick up a random number in [0,1]. This number tells us the selected 

Lehmer code will be increased or decreased by 3. Finally, use non 

sequential 3-opt heuristic to find the local optimal solution for the new 

solution created by mutation. Again, here the non sequential 3-opt 

heuristics is guided by a weighted sum function. 

Current population Next generation 

Improve best solutions 

Crossover 

Mutation 

p% 

c% 

p% 

Figure 10. Generation Transition 
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• Evaluate the solutions using the weighted Tchebycheff function with ideal 

points. 

• Sort the solutions according to the evaluation values getting from the 

above step. 

4. Get the solution with best evaluation value. 

This solution will be the optimal solution gotten by the new hybrid genetic 

algorithm. 

The pseudo code for the hybrid genetic algorithm is in the following: 

Begin /* hybrid genetic algorithm* 

Generate initial population of solutions 

Use Lehmer code encode the initial solutions 

Find local optimal solutions by using 2-opt heuristic 

Evaluate these local optimal solutions and sort them according to the fitness value. 

While not finished Do 

Copy certain part of solutions to form one part solutions for the next generation. 

Breed new individuals through crossover and mutation 

Find local optimal solutions for the newly generated solutions by using 2-opt 
heuristic and/or non sequential 3-opt heuristics 

Evaluate these local optimal solutions and sort all the solutions for the next 
generation. 

end 

Get the best solution (this solution will be right on the first row of the solutions of 
last generation) 

end 
Figure 11. Pseudo code for the new Hybrid Lehmer code Genetic Algorithm 



60 

CHAPTER 4 

IMPLEMENTATION ON SINGLE OBJECTIVE TSPS 

4.1 Introduction 

To test the performance of the new hybrid Lehmer code Genetic Algorithms, this 

Genetic Algorithms will be used on solving some single objective bench mark TSPs. 

These TSPs will be att48, kroA 100, kroB 100, kroC 100, kroD 100, kroA 150, kroB 150, 

kroA 200 and kroB 200. These TSPs were served as bench mark problems to test 

performance of many newly proposed heuristics and meta-heuristics on solving 

combinatorial problems. And their global optimal solutions are known. All these make 

them good bench mark problems in this research. They are available at TSPLIB (Reinelt, 

1995). 

For each bench mark problem, the algorithm will be run for 5 times to test the 

robustness of the algorithm so we can compare the results from this research with the 

results from Samanlioglu's (2006) research. The criteria used here will be the number of 

the optimal solutions obtained by using the new algorithm and the average relative excess. 

4.2 Implementation 

Since all these TSP problems are single objective, the solutions will be evaluated 

and sorted according to their objective values directly. And the fitness value will also 

guide the search of the local search algorithms, 2-opt and non sequential 3-opt. 

In this research, the new genetic algorithm will use Lehmer code represent the 

candidate solutions. By using Lehmer code, the solutions getting from the crossover of 
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the parent solutions will be always feasible. 

Except for the genetic operators, crossover and mutation, that were used in 

traditional Genetic Algorithms, we add another operator that is called elite. To implement 

this operator, the 20 percent best solutions from last generation are selected to keep it to 

the next generation. And to avoid the early converge to the local optimal solutions, these 

20 percent best solutions are non repeatable. This means that no solution can be selected 

twice in each generation. 

In this research, non sequential 3-opt heuristic will be used in this research. As we 

know, local optimal solutions getting from 3-opt heuristic are also 2-opt optimal. The 

following figure show the pseudo code for the 3-opt heuristic used in this research. 

3-opt 

for k=l:m (m is the number of cities) 
for j=l:m-4 

for l=l:m-2-j 
prior_change=summation of distances between z(k)and z(k+l), z(k+j) and z(k+j+l), z(k+j+l) and 
z(k+j+l+l); 
post_change=summation of distances between z(k) and z(k+j+l), z(k+l) and z(k+j+l), z(k+j) and 
z(k+j+l+l) 

if post_change-prior_change<0 
make the change and update the fitness value 

end 
end 

end 
end 

Figure 12. Pseudo Code for 3-opt Heuristic 

The non sequential 3-opt heuristic will work the following way: 

1. Randomly pick up 3 points from the selected path. 

2. Compute the distances between each point and its successive point and sum up 

these distances. The summation is defined as pre-distance. 

3. Recombine these 3 points and their successive points and get the summation of 

the distances of the newly created lines. The summation is defined as post-
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distance. 

4. Define the change of distance as: the post-distance - the pre-distance. If the 

change of the distance is less than 0, change the sequence of the selected path as 

the new created path and the fitness value as the fitness value plus change of the 

distance. 

5. Repeat the step 2-4, until no improvement can be made. 

The following figure shows how the 3-opt works. 

C C 

Figure 13. Non Sequential 3-opt Heuristics Move 

By cutting a route into 3 parts, there will have 8 combinations for these 3 parts 

and only 4 combinations within these 8 combinations involve in exchanging 3 edges, 

AB'C, ACB', AC'B, A'BC (A' is the reverse of A). To make it simpler, we only take into 

account one of these combinations AB'C. And we called this non sequential 3-opt 

heuristic. In this research, solutions obtained by using non sequential 3-opt are also 2-opt 

optimal. 

As stated above, the new hybrid Lehmer code Genetic Algorithms will use the 

Lehmer code to represent the permutation of the cities. By using Lehmer code 

representation, the offspring solutions created by crossover the parent solutions are 
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always feasible. And the algorithm will also use traditional genetic operators: crossover 

and mutation. The crossover used here is the traditional one point crossover. First, 

randomly pick up two solutions. Then randomly pick up a number from 1 to n (n is the 

number of the cities). This random number will be served as the crossover point. 

Furthermore, switch certain parts of the two solutions according to the crossover point. 

At last, use 2-opt heuristic to find the local optimal solutions for the newly created 

offspring solutions. 

For mutation, this research will use one point mutation. We noticed that if the 

Lehmer code of a city in a route is changed by 3, there will have 4 cities changed in this 

route. In this research, we first select the c% best solutions from the population of the 

current generation. For each selected solution, pick up a random number j between 1 and 

n-5 (n is the number of the cities). This number indicates the position of the city that will 

be changed. Then pick up a random number in [0,1], this number tells us the selected 

Lehmer code will be increased or decreased by 3. Finally, use non sequential 3-opt 

heuristic to find the local optimal solution for the new solution created by mutation. The 

following figure shows how one point mutation works. 

Lelmiei code lepiesentation of solution Solution path 

{ 4 , 3 , 0 , 2 , 0 . 1 , 0 , 0 } C Z Z Z ^ 5--4->2- 6- 1- "- 3- 8 

Fus t create random numbei to indicate the 
position of imitation, for example. 3 

•—i Create a random numbei (0,1), to determine 
! this selected code will be increased or deciease 

, I by 3. Since here the selected numbei is 1, it 
v can only be increased b y 3 

New solution Solution path 
{ 4 , 3 , 4 , 2 , 0 , 1 , 0 , 0 ) ^-—-—x^ 5_ 4- -7- -3. - i - -g-->- 8 

Non sequential 
3-opt heuristic 

\7 
Local optimal solution 
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Figure 14. One Point Mutation Procedure 

Whenever a solution is created, no matter if it is created by mutation or crossover 

of the parent solutions, 2-opt heuristic or non sequential 3-opt heuristic will work on it to 

find a local optimal solution. In this way, the solutions that comprise the population of 

each generation will be local optimal solutions. Thus, this new Genetic Algorithm will 

converge early. The 2-opt heuristic involves randomly picking up two edges in the 

current route and replacing them with another two edges that have same end points such 

that the resulting route has shorter distance. The following figure shows how 2-opt works. 

2-opt 
for k=l:m (in is the numbei of cities) 

forj=2:m-2 
priorchange^swmnation of distances between z(k) and z(k+l), z(k+j) and z(k+j+l) 
pQst_change=siininiation of distances between z(k) and z(k+j), z(k+l) and z(k+j+l) 

if postcliange-prioichangr 0 
make the change and update the fitness value 

end 
end 

end 

Figure 15. Pseudo Code for 2-opt Heuristics 

In this chapter, the new algorithm will work on single objective TSP. So the 

evaluation of each solution will use its objective value directly. And solutions will be 

sorted according to their objective values. The 2-opt and 3-opt heuristics will be also 

guided by the objective values to search for local optimal solutions. 

The following diagram (Figure 10) shows how the new hybrid Lehmer code 

Genetic Algorithms works on single objective TSP. 
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Start 

V 

Generate initial solutions and evaluate them 

v 

Use 2-opt heuristic to find local solutions for 
these initial solutions 

V 

Sort these local optimal solutions according to 
their evaluation values 

No 

w 

For Generation =1: n 

i ' 

Select p% best solutions 

* 
Create c% solutions of next generation by 
crossover the solutions of current generation 
and use 2-opt to find local optimal solutions 
and for 20% best local optimal solutions use 3-
opt to improve them 

1 
Mutate p% best solutions and use Non 
sequential 3-opt to find local optimal 
solutions for them 

^"^ nr A *>». 

Yes 

Get optimal solution 

i ' 

End 

Figure 16. Process of the Hybrid Lehmer Code Genetic Algorithm 

4.3 Experiment and Results 

The new hybrid genetic algorithm will work on TSPs with cities from 48, 100,150 

to 200. The following table shows the coordinates of the cities in Att48 that has 48 cities. 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

X 

6734 

2233 

5530 

401 

3082 

7608 

7573 

7265 

6898 

1112 

5468 

5989 

4706 

4612 

6347 

6107 

7611 

7462 

7732 

5900 

4483 

6101 

5199 

1633 

y 
1453 

10 

1424 

841 

1644 

4458 

3716 

1268 

1885 

2049 

2606 

2873 

2674 

2035 

2683 

669 

5184 

3590 

4723 

3561 

3369 

1110 

2182 

2809 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

X 

4307 

675 

7555 

7541 

3177 

7352 

7545 

3245 

6426 

4608 

23 

7248 

7762 

7392 

3484 

6271 

4985 

1916 

7280 

7509 

10 

6807 

5185 

3023 

y 
2322 

1006 

4819 

3981 

756 

4506 

2801 

3305 

3173 

1198 

2216 

3779 

4595 

2244 

2829 

2135 

140 

1569 

4899 

3239 

2676 

2993 

3258 

1942 

Table 2. The Coordinates of Cities (ATT 48) 

Att48 is a set of 48 cities (US state capitals) from TSPLIB. The distances between 

cities are Euclidean distance. So the goal of att48 is to minimize the distances of the route 

that visits each city once and return to the start point. The global optimal solution for this 

problem is known with the shortest distance: 10628. And the tour for the global optimal 

solution is: 1 - • 8 -> 38 -»• 31-* 44 -»• 18 -> 7 -»• 28 -* 6 - • 37 -»• 19 -» 27 -»17-+ 43 

-»• 30 -»• 36 -»- 46 - • 33 - • 20 -> 47 -»• 21 -> 32 - • 39 -> 48 -»• 5 -> 42 - • 24 

-> 10 -»• 45 - • 35 -> 4 -»• 26 -> 2 - • 29 -> 34 - • 41 -»• 16 -> 22 -> 3 -»• 23 

-»• 14 -»• 25 -> 13 -»11 -^ 12 - • 15 -»• 40 -> 9 -»1. 
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To implement the algorithm here, the initial parameters are set as the following: 

population size: 25 generations: 100, p% (percent of solutions being improved and 

mutated): 20%, c% (crossover rate): 60%. Each bench mark problem was run for 30 

times. And the experiments were conducted computer with CPU, Intel Core 2 6600, 2.40 

GHz, and 2 GB of RAM. And the algorithm was implemented in Matlab. 

The relative excess over the best known solution is defined as 

, . evalutaticn valuegettingfromour method- the best known evaluationvalue 
relativeexcess = 

the best known evaluationvalue 
The following table shows the results of the new genetic algorithm on Att48. 

Att48 

Opt 

10628 

Best 
Solution 

10628 

Worst 
Solution 

10628 

Average Relative 
Excess 

0 

Number of Opt 

30 

Table 3. Results for Att48 

From Table 2, we can see that the average relative excess is 0 and the number of 

optimal solution is 30. The new Genetic Algorithms seems robust when dealing with 

small single TSPs, like att48. 

More experiments are executed on TSPs with the number of cities, 100, 150 and 

200. These TSPs are the set of Krolak instances from TSP (Reinelt, 1995). They are 

KroA 100, KroB 100, KroC 100 and KroD 100 with 100 cities and KroA 150, KroB 

2150, KroA 200 and KroB 200 with 200 cities. All these problems are generated from 

randomly placing cities in a rectangle measuring 4000 by 2000 and the using the rounded 

2 dimensional Euclidean distance to generate the cost matrix (Hansen, 2000). 

For all these TSPs, the same parameters will be used for the hybrid genetic 

algorithms. The new Genetic Algorithms worked on all these TSPs 5 runs. And for each 

run, the parameter was set to be the same, population size: 25, elite rate: 0.2, mutation 
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rate: 0.2, crossover rate: 0.60 and generations: 100. The following table shows the results 

for TSPs with the 100 cities. 

KroA 100 

KroB 100 

KroC 100 

KroD 100 

KroE 100 

Opt 

21282 

22141 

20749 

21294 

22068 

Best 
Solution 

21282 

22141 

20749 

21294 

22068 

Worst 
Solution 

21282 

22197 

20749 

21294 

22106 

Average Relative Excess 

0.00% 

0.0524% 

0.00% 

0.00% 

0.0335% 

Number of 
Opt (out of 5) 

5 

4 

5 

5 

4 

Table 4. Experiment Results for TSPs with 100 Cities 

From the table, we can see that the new genetic algorithms proposed in this 

research can almost always find optimal solutions for all the selected TSPs with 100 

cities with 4 to 5 out 5 runs. And the average relative excess for each TSP is very close to 

0%, less than 0.1%. The average CUP time for this new Genetic Algorithms on solving 

single TSPs with 100 cities is around 398 second. 

To make the new Genetic Algorithms more efficient, this means to make the new 

Genetic Algorithms running faster on single objective TSPs, we made a change to the 

algorithm. We only use 2-opt heuristics on the solutions created by mutation while not 

using non sequential 3-opt heuristics. We still got good results while the average CPU 

time was reduced to 152 seconds. 

KroA 100 

KroB 100 

KroC 100 

KroD 100 

KroE 100 

Opt 

21282 

22141 

20749 

21294 

22068 

Best 
Solution 

21282 

22141 

20749 

21294 

22068 

Worst 
Solution 

21282 

22141 

20749 

21310 

22106 

Average Relative Excess 

0.00% 

0.00% 

0.00% 

0.015% 

0.0335% 

Number of 
Opt (out of 5) 

5 

5 

5 

4 

4 

Table 5. Another Experiment on TSPs with 100 Cities 

Samanlioglu (2006) proposed a hybrid random key genetic algorithm to solve 

single TSPs. The population size used in her research was 300, 400, 500 and 1000 with 
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generations 200 and 300, respectively. The following table shows the results from her 

research (Table 6). 

kroBlOO 

k r a O O O 

kroDlOO 

kroFHOO 

N 

300 

400 

500 

1000 

300 

400 

500 

1000 

300 

400 

500 

1000 

300 

400 

500 

1000 

300 

400 

500 

1000 

X 

200 

300 

_ _ 2 0 Q _ _ 

300 

200 

300 

200 

300 

200 

300 

200 
300 
200 
300 

200 

300 

200 
300 

200 

300 

200 

300 

200 

300 

200 
300 

200 
300 
200 
300 

200 

300 

200 

300 
200 

300 

200 

300 

200 

300 

Average Relative 
Excess 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.000867 

0 
0 
0 
0 

0.000714 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0.000282 

0.000141 
0.000282 
0.000423 
0.000282 
0.000282 

0.000141 

0.000141 

0.001133 
0.001251 
0.00029 

0.00048 

0.001251 

0.00048 

0 

0 

Average CPU 
Time (s) 

2.4842 

S.1092 

3.0814 

4.2908 

6.7092 

5.372 

6.7722 

7.75 

15.4158 
16.9404 

21.588 
37.053 

40.8218 
25.5312 

62.9218 

60.0842 

14.225 
13.2596 

18.05 
14.3656 
21.053 
18.7996 

36.9718 

35.3532 

21.472 

19.047 
23.4812 
27.641 
28.7062 
31.5592 

57.803 

56.5436 

24,5692 
21.147 

21.2564 

22.8406 

32.016 

24.8406 

48.3846 

45.1778 

Oat of Five 
Replications 

So 

So 

5o 

5o 

5o 

So 

5o 

5o 

5o 
4 o l t 

5o 
So 

So 

5o 

4 o l t 

5o 

5o 
5o 

5o 
5o 
5o 

5o 

So 

So 

3o2l 

4 o h 

3o2t 
2o3t 
3o2t 
3o2s 

4 o l t 

4 o l t 

3o2t 

2o3t 

4 o l t 

4 o l t 

2o3t 
4 o l t 

5o 

5o 

Table 6. Samanlioglu's Results for Single TSPs (2006) 

Compared to the results from Samanlioglu's research, we can see that the results 

getting from the method proposed in this research are better than Samanlioglu's method 
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even by using smaller population size and fewer generations. For example, for KroD 100, 

this research got 5 out of 5 optimal solutions with population size 25 and generation, 100 

while Samanlioglu's research got 3 out of 5 optimal solutions with population size 300 

and generation 300. 

• My method (N=25, G-300) 

i 

Samanlioglu's. results! N=300, 
G=200) '• 

! 
i 
! 

100 KroE 100 1 
! 
i 

Figure 17. Comparison of Numbers of Optimal Solutions on TSPs with 100 Cities 

Since in this research we programmed the code by using Matlab on the VCL 

(Virtual Computer Lab) computer with CPU, L5420, 2.50 GHz, and 2 GB of RAM while 

Samanlioglu's coae was programmea by using C++ on a distributed computer system, we 

can't compare the CPU time for both methods. 

To demonstrate the performance of the new hybrid Genetic Algorithms, more 

experiments were conducted on single objective TSPs with bigger sizes of cities. For 

these TSPs, the parameters are the exactly same as those used for the experiments with 

100 cities, that is, population size: 25, generation: 100, c% (percent of solutions being 

improved and mutated): 20%, p% (crossover rate): 60%. And all these TSPs will be ran 

for 5 times. 

5 

4 

3 

2 

1 

0 

9 " 

KroA 100 KroB 100 KroC 100 KroO 
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The following table shows the results for the new genetic algorithms on TSPs 

with 150 cities and 200 cites. We can see that the new genetic algorithms can still find the 

optimal solutions with probability. And the average relative excess for the TSPs with 150 

and 200 cities is very low, less than 1% percent. This means that the performance of the 

proposed new hybrid Lehmer code Genetic Algorithms on medium size TSPs, such as 

TSPs with 150 cities and 200 cities, is also good. And it may need to use bigger 

population size or run longer generation to obtain better performance for the proposed 

method on bigger size TSPs. 

KroA 150 

KroB 150 

KroA 200 

KroB 200 

Opt 

26524 

26130 

29368 

29437 

Best 
Solution 

26524 

26130 

26431 

29455 

Worst 
Solution 

26598 

26140 

26590 

29695 

Average Relative 

0.1108% 

0.0115% 

0.4358% 

0.0591% 

Excess 
Number of 

Opt (out of 5) 

4 

4 

1 

1 

Table 7. Results for Single TSPs with 150 and 200 Cities 

From the above table, we can see that the algorithm also work well when dealing 

with bigger single TSPs with the same configuration. The average relative excess is less 

than 1%. To get better solutions on TSPs with more cities, the population size and the 

generation should be increased. 

4.4 Conclusion 

From the above experiments, we can see that the new hybrid Genetic Algorithm 

can easily find the optimal solution for small size TSPs, for example, att48, kroA 100, 

kroB 100, kroC 100 and kroD 100, and also the optimal solutions for medium size TSP, 

such as, kroA 150, kroB 150, KroA 200 and KroB 200. 

Compared with the other Genetic Algorithms and hybrid Genetic Algorithms, the 

new hybrid Lehmer code Genetic Algorithms has some advantages on single TSP. 
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First, by using Lehmer code, the new hybrid Genetic Algorithms can easily 

overcome the difficulty with traditional Genetic Algorithms in keeping feasibility when 

crossover parent solutions create offspring. As we can see in the experiments, the 

crossover operator directly work on the Lehmer code represented parent solutions and no 

repairing process needed for the offspring solutions. All the solutions from crossover are 

feasible. 

Furthermore, although the random keys Genetic Algorithms can also solve this 

difficulty, it loses the edge information at the same time when it solves the difficulty of 

keeping feasible solutions. This means, the random keys Genetic Algorithms can keep 

any schematic information from the parent solutions to the offspring. As we know, this 

schematic information is very important feature of Genetic Algorithms. And it's one of 

the reasons that makes Genetic Algorithms converge quicker. While by using Lehmer 

code representation, at least certain part of the edge information can be transferred from 

the parent solutions to the offspring. For example, the following figure shows how 

Lehmer code representation one point crossover keeps part of parent information into the 

offspring solutions. 

ciossovei point 

Figure 18. One Point Crossover of Lehmer Code GA (Keep Parent Information) 

From the figure, we can see that the parent edge information, 1—> 3 —• 2 —• 4 and 

6 —• 4 —• 2 —> 3 were kept from the parent solutions to the offspring respectively. 
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Finally, the implementation of the new Genetic Algorithms is very easy compared 

to the random keys Genetic Algorithms. For example, for the encoding and evaluation of 

the solutions, the random keys Genetic Algorithms must sort all cities and get the ranks 

of all cities first. This means that at least an extra sort process is needed. And you don't 

know the neighbors for a specific city before you sort all cities. While in Lehmer code 

Genetic Algorithms, the position of each code is the rank of the city represented by the 

code. And the city represented by the code can be easily gotten from the list {1, 2, 3, ..., 

n} (n is the total number of the cities) according to the code of the city. The neighbors of 

this city are the cities right before and behind it. 

Another advantage of this new Genetic Algorithm is in tuning up the solutions. 

For example, in this research, I used an improvement operator in this new hybrid Genetic 

Algorithms. The idea is to improve the solution by randomly changing the locations of 4 

cities. This operator can be very simply implemented by randomly picking up a random 

number and decreasing or increasing the code which is located in the position of the 

random number by 3. The following figure shows how this works. 

selected city 

1 3 @ 4 6 5 R I O - 9 C = C ^ > - O l @ 0 1 O 1 2 O 0 

dcode 

13g2[508 1O-9 < ^ - Z J 0 1 

Figure 19. One Point Mutation 

From this figure, we can see that three cities change position by simple add 3 for 

one of the cities' Lehmer code. While in random keys Genetic Algorithms, it is not so 

easy to implement the similar operator. For example, in Samanlioglu's Random Keys 

G * 
3 0 1 0 1 2 0 0 
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Genetic Algorithms, 4 cities were randomly picked up and all the combinations of these 

cities were taken into account. Then 2-opt heuristics worked on these possible solutions 

and selected the best one. At last, repeated the above procedure for 10 times and selected 

the one that had the best fitness value. 

Based on the above experiments and discussion, we can reach the conclusion that 

the new hybrid Lehmer code Genetic Algorithms is very robust when dealing with the 

single small and medium size of single objective TSPs. And it's very easy to implement 

this new hybrid Genetic Algorithms. 

The future work will be to find ways to improve the performance of the 

algorithms on medium and large size of single objective TSPs. As we can see the 

algorithm performed not good even for medium size of single TSPs as it on small size 

problems. Another direction is to improve the efficiency of the algorithms. Since we used 

non sequential 3-opt heuristic as one of the local search heuristics and as we know, 3-opt 

heuristic is time consuming compared to 2-opt heuristic, the time expense for this new 

hybrid genetic algorithm is higher than Samanlioglu's random keys genetic algorithm 

which used only 2-opt heuristic as the local search method. The main reason is that the 

algorithm in this research was coded by using Matlab on the VCL computer with CPU, 

L5420, 2.50 GHz, and 2 GB of RAM while Samanlioglu's code was programmed by 

using C++ on a distributed computer system. So it leaves some room for us to improve 

the efficiency of the algorithm in the future. 
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CHAPTER 5 

IMPLEMENTATION ON MULTI-OBJECITVE TSPS 

The single objective TSPs belong to the class of NP-hard problems. It's hard to 

find a global optimal solution efficiently and effectively. While for multi-objective TSPs, 

the difficulty of the TPS itself and the difficulty of multiple objectives make it a NP-

complete problem. It's much harder to find the global optimal solutions for multi-

objective TSPs. Many research used the methods that were used to solve the single 

objective TSPs to solve multi-objective TSPs. But the performance was not as good as 

solving the single objective TSPs. And the solutions for multi-objective TSPs are highly 

depended on the preferences of the decision makers and the compromises between 

different objectives. 

Many heuristics and meta-heuristics were proposed to attack the multi-objective 

TSPs. Within all these heuristics and meta-heuristics, the evolutionary meta-heuristics, 

such as Genetic Algorithms and all its variants, etc., are very promising. These meta­

heuristics start from initial solutions and gradually improved to better solutions. Ideally, 

an acceptable solution can be found within a certain timeline. And these techniques deal 

with a population of solutions simultaneously. This makes them a good option to deal 

with multiple objectives since a compromise between different objectives can be made 

within a population of solutions. 

The evolutionary multi-objective optimization methods can be classified into two 

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell 

& Kurz, 2008). For the Pareto-based techniques, the selection is directed by the Pareto 

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by 
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Fonseca and Fleming (1993), the niched Pareto genetic algorithm (Horn, Nafpliotis & 

Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler, Laumanns & Thiele, 

2001), etc., belong to this type of technique. 

In the non Pareto-base techniques, the selection does not directly rely on the 

Pareto dominance and Pareto ranking, like vector evaluated genetic algorithm (Schaffer, 

1984), target vector approach (Coello, 2001), memetic random key genetic algorithm 

(Samanlioglu, Ferrell & Kurz, 2008), etc. 

In this research, a new hybrid Lehmer code Genetic Algorithms will be proposed 

to solve the multi-objective TSPs. A non Pareto-based technique will be used for this new 

algorithm in solving multi-objective TSPs. More specifically, Target Vector Approach 

will be used in this research. In this approach, the goal is to minimize the distance 

between the generated solution and the target vector. This goal guides the new Genetic 

Algorithms to find solutions for multi-objective TSPs. Here we will use the weighted 

Tchebycheff function with the ideal points as the reference points. And the built-in local 

search technique, 2-opt heuristic and the non-sequence 3-opt will be guided by a 

weighted sum function. 

5.1 Introduction 

The main difference between single objective TSPs and multi-object TSPs is that 

for single the evaluation of the solution is solely dependent on the single fitness value of 

the solution while in multi-objective TSPs, the evaluation will depend on multiple fitness 

values. Therefore, the difficulties to solve multi-objective TSPs come from both the 

difficulty of TSPs itself and the difficulty of multiple objectives. As we know, even 
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single TSP is a NP-hard problem. The multiple objectives make multi-objective TSPs 

NP-complete problems. 

The multi-objective optimization problem (MOP) can be defined as the following: 

min f(x) = {f,(x),f2(x),...,fk(x)} 

s.t. xeS 

Where k > 2, x = (xl,x2,...,xn)is the decision variable vector, S is the feasible 

solution space, f(x) is the objective vector. 

Weighted LP norms are defined as the following (Hansen and Jaszkiewicz, 1998): 

Lp(z\z2,A) = (£A]\z)-z2
]\y"' pe{l,2,...} (21) 

7=1 

Where A = [Al,A2,...,Al],A] > 0 , is a weight vector. 

For a multi-objective TSP, the general weighted Lp norm is defined as 

(22) 

Where A} >0, j =l,2,...,J,^iA] = 1 , z*is the reference point. 
7=1 

If we set the reference point the global optimal solution for / , when p - oo, we 

get the weighted Tchebycheff metric 

min max{^ ( / 7 - z* )} 

s.t. xeS 

When p = 1, we get the weighted sum function 

min £(/l;(/,-z*)) 
7=1 

S.t. X £ o (OA\ 

Many heuristics and meta-heuristics were proposed to solve single and multiple 

J 

J x 

s.t. x e S 

p 

y/p 
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objectives TSPs, including Genetic Algorithms (Holland, 1975), Simulated Annealing 

(Kirkpatrick, Gelatt & Vecchi, 1983), Tabu Search (Glover, 1989), Ant Colony (Dorigo, 

1992) and Particle Swarm (Kennedy & Eberhart, 1995), etc. Within all these techniques, 

genetic algorithm is very promising in solving TSPs including single and multiple 

objectives TSPs because of its ability to deal with a population of solutions 

simultaneously and evolve to better solutions, especially when it is combined with 

domain-specific local search heuristics, such as 2-opt, 3-opt, n-opt, etc. With its genetic 

operators, such as mutation and crossover, genetic algorithms can have good exploration 

and exploitation abilities. The mutation operator can keep diversity for genetic algorithm 

while crossover together with the elite selection procedure can let genetic algorithms 

converge to better solutions. 

There are also many heuristics and meta-heuristic proposed to attack on multi-

objective combinatorial optimization problems. Among these, Jaszkiewicz and Czyzak 

(1998) proposed a Pareto simulated annealing algorithm to solve multi-objective 

combinatorial optimization problems. Jaszkiewicz (2002) presented a new genetic local 

search algorithm to solve multi-objective TSP. And he concluded that local search guided 

by weighted linear function gave better solution than guided by weighted Tchebycheff 

function. Hansen (2000) proposed a Tabu Search with local search heuristic to solve 

multi-objective TSP. He suggested that heuristic of the Tchebycheff function gives better 

solution when using a substitute scalarizing function instead of the Tchebycheff function 

to guide the local search heuristic. Samanlioglu, Ferrell and Kurz (2008) present a 

memetic random key genetic algorithm embedded with a 2-opt heuristic to solve multi-
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objective TSP. In her research, the local search is guided randomly by either a weighted 

Tchebycheff function or a weighted sum function. 

In this research, a new hybrid Lehmer code Genetic Algorithm which combined 

Genetic Algorithm with local search techniques, 2-opt and non sequential 3-opt. We used 

Lehmer code to represent the potential solutions for Genetic Algorithms. With the 

exploration ability of Genetic algorithm and the exploitation ability of local search, this 

new genetic algorithm is good in exploration and exploitation. And by using Lehmer 

code, the solutions created by mutation and crossover operators are always feasible. So 

an extra repairing step is not required in this new algorithm. 

And to attack the multiple objectives difficulty associated with multi-objective 

TSPs, we used non Pareto-based technique. To be more specific, the Target Vector 

Approach will be used in this research. The goal of this technique is to minimize the 

distance between the generated solution and the target vector. This goal guides the new 

Genetic Algorithms to find good solutions for multi-objective TSPs. 

In this research, 2-opt heuristics and non-sequence 3-opt heuristics were directed 

by a weighted sum function to find local optimal solutions. 

5.2 Implementation 

The implementation of the new hybrid Lehmer code on multi-objective TSPs is 

similar to the implementation of this algorithm on single objective TSPs. But since multi-

objective TSPs is more complicated than the single objective TSPs, it's much more 

difficult to solve multi-objective TSPs than single objective TSPs. Additional procedures 

are needed to solve multi-objective TSPs. 

The following diagram (Figure 10) shows how the new hybrid Lehmer code 
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Genetic Algorithms works on multi-objective TSP. 

Start 

Generate initial solutions and evaluate them 

Use 2-opt heuristic to find local solutions for 
these initial solutions (guided by a weighted 
sum function) 

I 
Sort these local optimal solutions according to 
their evaluation values (Tchebycheff value) 

For Generation =1: n 

Select p% best solutions and keep it to 
the next generation 

T 
Create c% solutions of next generation by crossover the solutions 
of current generation and use 2-opt to find local optimal solution, 
20% best solutions from these newly created solutions will be 
improved by non sequential 3-opt 

Mutate p% best solutions and use non 
sequential 3-opt to find local optimal 
solutions for them (guided by weighted sum) 

No 

End 

Yes 
' 

Get optimal solution 

i ' 

End 

Figure 20. Multi-objective TSPs Process of the Hybrid Lehmer Code Genetic Algorithm 

The procedure for the new genetic algorithm: 

1. Initial solutions 
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To create initial solutions, we randomly created a population of permutations of n 

cities (n is the total number of the cities). And in this research, 2-opt heuristic was used to 

improve these initial solutions until local optimal solutions was obtained. 

Unlike the 2-opt heuristic used in single objective TSPs, here the 2-opt heuristic 

was guided by weighted sum function. The 2-opt heuristic in single objective TSPs is 

solely guided by the single objective value. This means that change in the single 

objective value will determine if the change in the solution will be accepted. While in 

multi-objective TSPs, because of the existence of multiple objectives, whether a change 

will be accepted or rejected can't be determined by only one objective value. In this 

research, we used a weighted sum function to guide the 2-opt heuristics. This means that 

a change will be accepted if it can lead to a lower value of the weighted sum function. 

After the population of initial solutions was created, they were sorted according to 

their evaluation values obtained by using the Tchebycheff function with an ideal point. 

2. Representation 

To prepare the initial solutions for the processing of genetic operators, these 

solutions should be represented by a certain representation method. As discussed above, 

it is difficult for traditional Genetic Algorithm to maintain feasibility from parents to 

offspring when solving many optimization problems, especially discrete optimization 

problems like TSP. The problem is with the representation of traditional Genetic 

Algorithms. When solving TSPs, traditional Genetic Algorithms used the permutation of 

the cities to represent the potential solutions. This will cause infeasible solutions problem 

when crossing over the current solutions to created offspring solutions. 
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For example, we have a traveling salesman problem that has 6 cities. A candidate 

for this problem is a permutation of these 6 cities. Two such permutations are 1—* 3 

—»2—>4—»5—•6—>1 and 6—> 4 —»2—>3—> 1—>5—>6. These two permutations served as two 

parent solutions. When we use one point crossover and set the third place as the crossover 

point, the resulting sequences are 1—>3—>2—>3—>1—>5—»6 and 6—>4 —>2—>4—>5—>6—>1. 

Neither of them is feasible. To solve this problem, the repairing procedure is need for 

traditional Genetic Algorithms. 

While by using the Lehmer code representation, these two parent solutions are 

represented as (0, 1, 0, 0, 0, 0) and (5, 3, 1,1, 0, 0). When we use the one point crossover 

and the same crossover point as in the traditional Genetic Algorithms, the resulting 

solutions are (0, 1, 0, 1, 0, 0) and (5, 3, 1, 0, 0, 0). These two solutions represent the 

sequence 1—>3—>2—»5—>4—>6—>1 and 6—>4—»2—>1—>3—»5—>1. Both solutions are feasible 

solutions. Crossover solutions represented by using Lehmer code always create feasible 

solutions and no repairing procedure is needed here. 

And Lehmer code representation has an advantage over random key 

representation. One of the important features for Genetic Algorithms is that Genetic 

Algorithms can keep some parent information from the parents to the offspring. 

Although random key representation can overcome the infeasible solutions difficulty, it 

can't keep any edge information from the parent solutions to the offspring solutions. 

While in Lehmer code representation, the edge information before the crossover point 

can be preserved from the parent solution to the offspring solutions. For example, in the 

above example, the first three cities in the offspring solutions are exactly the same as 
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those in the parent solutions while in random keys Genetic Algorithms, no any edge 

information can be preserved from the parents to the offspring. 

Lehmer code of a permutation can be expressed by using inversion table. 

Consider a sequence of n numbersx = (x1x2...xn) . An inversion is a pair (xt,Xj) such that 

i< j andxi >x}. For/e{l,.. . ,n}, let dt count the number of inversions with i as the 

smaller index. Then the sequence {dxd2...dn)is called inversion table of permutation x. 

0<di <n-ifori = l,...,n. 

fiuic t ion m n n = c o d e ( s o lu t ions ) 
i==size( s o l u t i o n s , 2 ) - 3 ; 
m i i i i ( l : i ) = 0 ; 

f o r j = l : i - l 
o r d e r = 0 ; 

f o r k = j + l :i 
i f s o l u t i o n s (j) s o lu t ions (k) 

o r d e r = o r d e r + l ; 
e n d 

e n d 
inun<j)= or dei'; 

e n d 
e n d 

f n n c t ion I esnlr= d c o d e ( c o d e d ) 
i = s i z e ( c o d e d , 2 ) ; 
r e s n l t ( l : i ) = 0 ; 
list==[l:i]; 

f o r j = l : i 
m = c o d e d ( j ) + l ; 
resiilt(j )= l i s t(ni); 
U s t ( m ) = [ ] ; 

e n d 
e n d 

Figure 21. Matlab code for Lehmer Presentation and Decoding Process 

3. Repeat the following step until a stopping criterion is met. 

• Copying the best p% of solutions from the current generation to the next 

generation and keep it to the next generation. And as discussed above in single 

objective TSPs, these p% best solutions are different with each other. 
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• Crossover using the classical one point crossover to form c% of the solutions for 

the next generation. 

Randomly pick up two solutions from the current generation to serve as the parent 

solutions. This can be done by picking up 2 different random numbers for 1 to 0.5 *k 

(k is the population size). This is the same as in the single objective TSPs, only 50 

percent best solutions can crossover with each other. In this research, the classic one 

point crossover will be use. And since all solutions are local optimal solutions, to 

keep more edge information while not hampering the exploration ability, the 

crossover point is selected between 0.7m to 0.9m (m is the number of cities). 

For example, the first two random numbers are 1 to 3. This means that solution 1 

that is ^vl - i x 11X12 ""x*ia) will exchange certain bits with solution 3 that 

is- v3 = (x_3i -x32 •"••s!m ).Then pick up another random number from 0.7*m to 

0.9*m (m is the number of the cities). This number will serve as the crossover point. 

For example, the number is 75. Then the solutions 1 and 3 exchange the bits after the 

75th cities. The new solution created will be -v i = l X . i i x i 2 x i 3 ""x576 — x3ai) and 

_Vj = i x 3i X32 X33 • " x i 7 6 - s i m ) . Use 2-opt heuristics on the newly created 

solutions to get local optimal solutions. Then these two newly created solutions will 

be compared with each other. The one with the better fitness value (evaluated by 

Tchebycheff function with an ideal point) will be kept in next generation. At last, non 

sequential 3-opt heuristics will work on 20% best solutions created by 2-opt heuristics. 

Again, the 2-opt heuristics and non sequential 3-opt heuristics will be guided by the 

weighted sum function. 

• Mutation to form another c% solutions for the next generation 
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In this research, mutation will be worked on the p% best solutions of the current 

generation to form the p% solutions for the next generation. The solutions created by 

mutation will be put into non sequential 3-opt heuristic to find local optimal solutions. 

Again the non-sequential 3-opt heuristic was guided by weighted sum function. 

Thus solutions for the next generation will be completely generated 

(p%+c%+p%=l). 

To perform mutation, for each solution of the p% best solutions in the current 

generation, first we generate a random number j between 1 and m-5 (m is the number of 

cities). This number tells us the position of the number that will be mutated. Then pick 

up a random number in [0,1], this number tells us the selected Lehmer code will be 

increased or decreased by 3. 

After new solutions were created by mutation, non-sequential 3-opt heuristic was 

used to improve them until a local optimal solution was obtained for each solution. Again 

this non sequential 3-opt heuristic was guided by a weighted sum function. 

• Sort the solutions according to the evaluation values from the above step. 

Newly created Solutions were sorted according to their evaluation values from the 

weighted Tchebycheff function no matter if they were created by 2-opt heuristics and non 

sequential 3-opt heuristics that are guided by the weighted sum function or they were 

created by just copying p% best solutions of last generation. 

4. Get the solution with the best evaluation value. 

This best solution will be the optimal solution gotten by the new hybrid genetic 

algorithm. It can be obtained by just simply picking up the first solution in the last 

generation. 



86 

5.3 Experiment and Results 

The new hybrid Lehmer code Genetic Algorithms will work on TSPs with 2 to 5 

objectives TSP with the size of cities 100. To make an effective comparison, the 

proposed algorithm will be used to solve the same multi-objective TSPs as those used in 

(Hansen, 2000) and (Samanlioglu, Ferrell & Kurz, 2008). More specifically, I will use the 

set of Krolak instances with 100 cities from TSPLIB (Reinelt, 1995). The Krolak 

instances include 5 instances, kroA 100, kroB 100, ..., kroE 100. For the multi-objective 

TSP problems of this research, each instance correspond to the cost matrix of one 

objective function, for example, for a three objective TSP problem, kroA 100 

corresponds to the cost matrix of objective function 1, kroB 100 corresponds to that of 

objective function 2, kroC 100 to that of objective function 3. 

There are two main advantages in doing this. First, the tours will be within the 

same scale of range for the different objectives. This makes the range scaling unnecessary. 

Furthermore, the optimal value to each problem is known. So we get the exact ideal point 

for each objective function. This makes the implementation of the weighted Tchebycheff 

function very easy. 

Moreover, to make the comparison between the method of this research and the 

methods proposed by Hansen (2002) and Samanlioglu et al. (2008) valid, the method 

proposed by this research will work on TSP problems that have two objectives to up to 

five objectives, and each problem will be run 30 times. 

For all these multi-objective TSPs, the same parameters will be used for the 

hybrid genetic algorithms. First, the new genetic algorithms will work on all these TSPs 
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30 runs. And for each run, the parameter will be the same, population size: 25, improve 

rate: 0.2, mutation rate: 0.2, crossover rate: 0.60 and generations: 125. 

And the experiments were conducted on the computer with CPU, Intel Core 2 

6600, 2.40 GHz, and 2 GB of RAM. And the algorithm was implemented in Matlab. 

The following table shows the best solution gotten from Hansen's method and the 

best solution obtained by using the proposed method on 3 objects TSP with 100 cities. 

From the table, we can see that the proposed method can find better solution than 

Hansen's method. 

Hansen Proposed Method 

1-53-26-49-10-97-99-5921-
72-38-88-22-94-70-56-75-80-
65-79-47-67-40-85-68-30-
100-81-69-73-3-29-46-12-27-
35-86-62-20-55- 83-43-71-
39-5-95-76-91-28-8-90-98-25-
34-58-54-50-2-64-13-41-14-
33-82-78-48-96-44-51-63-16-
24-18-19-92-45-36-74-84-66-
4-89-31-42-6-15-17-23-77-60-

57-87-52-37-7-9-61-32-11-93 

Cost in KroA 67274 

Cost in KroB 68054 

Cost in KroC 66751 

W, w,=l/k (1/3,1/3,1/3) 

Solution 15334 

1-53-26-49-10-97-99-59-21-
70-94-22-88-72-38-56-75-80-
65-79-47-67-40-85-29-46-12- , 
27-35-86-62-20-55-83-43-71-
34-25-58-98-90-8-28-91-76-95-
5-39-68-30-3-73-69-81-100-37-
52-96-44-78-82-33-13-41-14-
48-51-63-16-24-18-19-92-45-
36-74-84-66-4-89-54-50-2-64-
42-31-6-15-17-23-77-60-57-87-
7-9-61-32-11-93 

67202 

68079 

66553 

(1/3,1/3,1/3) 

15313 

Table 8. Solutions Obtained by Hansen's Method and the Proposed Method 

The following tables (Table 9, Table 10) shows the results of the new Genetic 
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Algorithms on multi-objective TSPs with N=25, G=125 and N=50, G=62, respectively 

(N is the population size, G is the generations). 

KroABlOO 

KroABClOO 

KroABCD 100 

KroABCE 100 

KroACDE 100 

KroABCDElOO 

Table 9. 

KroABlOO 

KroABClOO 

KroABCD 100 

KroABCE 100 

KroACDE 100 

KroABCDElOO 

Opt 

14256 

15313 

14241 

14292 

14088 

12888 

Results 

Opt 

14256 

15313 

14241 

14292 

14088 

12888 

Best 
Solution 

14256 

15313 

14295 

14292 

14121 

12936 

Worst 
Solution 

14417 

22197 

14431 

14564 

14310 

13111 

on Multi-objective TSPs 

Best 
Solution 

14256 

15313 

14295 

14292 

14121 

12936 

Worst 
Solution 

14417 

22197 

14431 

14564 

14310 

13111 

Average Relative 
Excess 

0.5346% 

0.7715% 

0.8357% 

0.9328% 

0.8327% 

0.9846% 

(N=25, G=125) 

Average Relative 
Excess 

0.5752% 

0.7580% 

0.7651% 

0.9118% 

0.7427% 

0.9539% 

Number of Opt 
(out of 30) 

4 

1 

0 

1 

0 

0 

Number of Opt 
(out of 30) 

2 

1 

0 

1 

0 

0 

Table 10. Results on Multi-objective TSPs (N=50, G=62) 

The following table shows the comparison of results of this research and 

Samanlioglu on multi-objective TSPs with 2, 3, 4 and 5 objectives with population size 

25, generation 125 and population size:50, generation 62, respectively. 

N=25 G=125 

KroABlOO 

KroABClOO 

KroABCDIOO 

KroABCElOO 

KroACDElOO 

KroABCDElOO 

Samanlioglu 

ARE R 

0.452 

0.7138 

0.6873 

0.785 

0.7394 

0.9469 

3 

1 

0 

1 

1 

1 

This resea 

ARE 

0.5346 

0.7715 

0.8357 

0.9328 

0.8327 

0.9846 

rch 

R 

4 

1 

0 

1 

0 

0 

N=50 G=62 
Samanlioglu 

ARE 

0.4003 

0.723 

0.5597 

0.646 

0.5829 

1.0027 

R 

2 

0 

0 

0 

1 

0 

This resea 

ARE 

0.5752 

0.758 

0.7651 

0.9118 

0.7427 

0.9539 

rch 1 
R 

2 

1 

0 

1 

0 

0 

Table 11. Comparison of Results from This Research and Samanlioglu's Research 



The relative excess over the best known solution is defined as 

, . evalutatiai valuegettingfromourmethod-thebestknownevaluationvalue 
relativeexcess= 

the best known evaluationvalue 

From this table, we can see that the proposed Genetic Algorithm works well on 

multi-objective TSPs with objectives from 2 to up to 5. For all these multi-objective TSPs, 

the average relative excess is less than 1%. And the results getting from this research can 

find comparable results with Samanlioglu's research. For example, for KroAB 100, the 

proposed method found 4 out 30 optimal solutions while Samanlioglu's method 3. And 

for kroABCDElOO, the average relative excess for this research is 0.9539% while 

Samanlioglu's method is 1.0027%. 

I i 2 

D Samanlioglu 

This research 

Fi IE (N=25, G=125) 

generation 125 We can se 

sses are very 

The figure shows average relative excess 

similar re 
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above. The results for both methods are very close. 

1 2 

1 

08 

06 

04 

02 

0 I I Samanlioglu 

This research 

# 
^ 

^ ^ 
^ 

CX o ^ c ^ 
& cV cV 

Figure 23. Comparison of ARE (N=50, G=62) 

5.4 Conclusion 

In this research, we proposed a hybrid Lehmer code Genetic Algorithm to solve 

multi-objective TSPs. This algorithm provided an alternative way to use Genetic 

Algorithms to solve discrete optimization problems. There are many researches using 

Random Keys Genetic Algorithms to solve discrete optimization problems, but not that 

many researches on Lehmer code Genetic Algorithms, especially using Lehmer code 

solving multi-objective combinatorial optimization proolems. 

The experiments showed that the proposed Lehmer code Genetic Algorithms 

worked well on multi-objective TSPs. The average relative excesses for all examples are 

less than 1%. And the results getting from the Lehmer code Genetic Algorithms are 

comparable to the results from Samanlioglu's Random keys Genetic Algorithms. 

The new hybrid Lehmer code Genetic Algorithms has some advantages over 

Random keys Genetic Algorithms. 

First, by using Lehmer code, the new hybrid Genetic Algorithms can easily 
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overcome the difficulty with traditional Genetic Algorithms in keeping feasibility when 

crossover parent solutions to create offspring. As we can see in the experiments, the 

crossover operator directly work on the Lehmer code represented parent solutions and no 

repairing process needed for the offspring solutions. All the solutions obtained from 

crossover are feasible. 

Furthermore, although the random keys Genetic Algorithms can also solve this 

difficulty, it loses the edge information at the same time when it solves the difficulty of 

keeping feasible solutions. This means, the random keys Genetic Algorithms can keep 

any schematic information from the parent solutions to the offspring. As we know, this 

schematic information is very important feature of Genetic Algorithms. And it's one of 

the reasons that makes Genetic Algorithms converge quicker. While by using Lehmer 

code representation, at least certain part of the edge information can be transferred from 

the parent solutions to the offspring. This is obvious in this research. In this new Genetic 

Algorithms, we set the crossover point between 0.7m and 0.9m (m is the number of the 

cities). This means that at least 70% of parent edge information will be kept from the 

parents to the offspring. For example, the following figure shows how Lehmer code 

representation one point crossover keeps part of parent information into the offspring 

solutions. 

p a t e n t s c i o w m o j w n i f 

1 3 .2 -» 6 5 <5 -4 .2 .sl 1 * 

O t f K p i i i a : 

Figure 18. One Point Crossover of Lehmer Code GA (Keep Parent Information) 

From the figure, we can see that the parent edge information, 1—> 3 —> 2 —• 4 and 
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6 —> 4 —> 2 —• 3 were kept from the parent solutions to the offspring, respectively. 

Finally, the implementation of the new Genetic Algorithms is very easy compared 

to the random keys Genetic Algorithms. For example, for the encoding and evaluation of 

the solutions, the random keys Genetic Algorithms must sort all cities and get the ranks 

of all cities first. This means that at least an extra sort process is needed. And you don't 

know the neighbors for a specific city before you sort all cities. While in Lehmer code 

Genetic Algorithms, the position of each code is the rank of the city represented by the 

code. And the city represented by the code can be easily gotten from the list {1, 2, 3, ..., 

n} (n is the total number of the cities) according to the code of the city. The neighbors of 

this city are the cities right before and behind it. 

Another advantage of this new Genetic Algorithm is in tuning up the solutions. 

For example, in this research, I used an improvement operator in this new hybrid Genetic 

Algorithm. The idea is to improve the solution by randomly changing the locations of 4 

cities. This operator can be very simply implemented by randomly picking up a number 

and decreasing or increasing the code which is located in the position of the random 

number by 3. The following figure shows how this works. 

selected citv 
„ehmer code representation 

i 3 0 4 6 5 8 1 0 7 9 l—C^~ 0 1 ^ 0 1 0 1 2 0 0 

+3 
dcode 

13@g|508 1O7 9 < ^ Z = 3 O10O1G12OO 

Figure 19. One Point Mutation 

From this figure, we can see that three cities change position by simple adding 3 

to one of the cities' Lehmer code. In random keys Genetic Algorithms, it is not so easy to 
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implement the similar operator. For example, in Samanlioglu's Random Keys Genetic 

Algorithms, 4 cities were randomly picked up and all the combinations of these cities 

were taken into account. Then 2-opt heuristics worked on these possible solutions and 

selected the best one. Lastly, the above procedure was repeated 10 times and the one that 

had the best fitness value was selected. 

Based on the above experiments and discussion, we can get the conclusion that 

the new hybrid Lehmer code Genetic Algorithms works well on multi-objective TSPs. 

This research provided an alternative way to use Genetic Algorithms to solve multi-

objective combinatorial optimization problems. And it's very easy to implement this new 

hybrid Genetic Algorithm. 
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CHAPTER 6 

FUTURE WORK AND CONCLUSION 

6.1 Contributions of the Dissertation 

This research proposed a new hybrid Lehmer code Genetic Algorithm to solve 

single objective and multi-objective TSPs. The major contributions of the dissertation are: 

• After investigating the performance of traditional Genetic Algorithms and 

Random Keys Genetic Algorithms on Traveling Salesman Problems, a new 

Lehmer code Genetic Algorithms was proposed to solve both single objective and 

multi-objective TSPs. This provided an alternative way to use Genetic Algorithms 

to solve discrete optimization problems, especially Traveling Salesman Problems. 

• Lehmer code was proposed to represent the potential solutions. By using Lehmer 

code representation, solutions created by using genetic operators are always 

feasible solutions. Another advantage by using Lehmer code representation is that 

certain parts of edge information can be retained from the parent solutions to the 

offspring. 

• 2-opt and Non sequential 3-opt were proposed to conduct local search in this new 

Genetic Algorithm. By doing this, the new Genetic Algorithm has good 

exploitation ability while not increasing the computation time too much. 

• The proposed Hybrid Lehmer code is very easy to implement compared to the 

traditional Genetic Algorithms and Random Keys Genetic Algorithms when 

solving discrete optimization problems. No additional fixing procedure is needed 

as in traditional Genetic Algorithms. And only traditional genetic operators: 

crossover and mutation were used. 
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• Matlab was used to implement this new hybrid Lehmer Code Genetic Algorithm. 

• The new Genetic Algorithm was used to solve some bench mark single objective 

TSPs with up to 200 cities from the TSPLIB (Reinelt, 1995) and multi-objective 

TSPs with up to 5 objectives and 100 cities. The results getting from the proposed 

method were compared with the results from the newly proposed methods in the 

literature, more specifically; the results form Hansen and Samanlioglu's methods 

(Hansen, 2000) (Samanlioglu, Ferrell & Kurz, 2008). 

The experiments showed that this new algorithm worked well on both single 

objective and multi-objective TSPs. Through the experiments and the comparison of the 

results from the proposed method and the results form Hansen and Samanlioglu's 

methods, we can see that the proposed method's performance on single objective TSPs is 

better than Samanlioglu's method even using smaller population size and fewer 

generations. 

And for multi-objective TSPs, we can see that the proposed hybrid Genetic 

Algorithms got comparable solutions with Samanlioglu's method. And compared to 

Samanlioglu's method, the proposed algorithm is much easier for implementation. 

6.2 Limitation and Future Work 

But there is still some room to improve this new Genetic Algorithm: 

• The results obtained from the new algorithm on multi-objective TSPs is 

only comparable to the results from the Random keys Genetic Algorithms 

while not much better than them. 

• The performance of the new Genetic Algorithm on single objective TSPs 

with large number of cities is not as good as on that with small number of 
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cities. 

• 3-opt is more time consuming compared to 2-opt. Although we only used 

non-sequential 3-opt in this new Genetic Algorithm, the efficiency of the 

algorithm was influenced a little bit because of the using of the 3-opt. In 

addition, we used to Matlab to implement the new Genetic Algorithm. As 

we know, Matlab is not good in dealing with loops. The efficiency of the 

algorithm was decreased further. 

• Another limitation for this research is that we only used the new algorithm 

solving several single objective TSPs from TSPLIB and multi-object TSPs 

from Hansen and Samanlioglu's research. More experiments should be 

conducted on more single objective TSPs, multi-objective TSPs and other 

discrete optimization problems to test the robustness of the new Genetic 

Algorithm on discrete optimization problems. 

The future work will be to find ways to improve the performance of the algorithm 

on multi- objective TSPs. As we discussed above, the Lehmer code Genetic Algorithms 

has some advantages over Random Keys Genetic Algorithms, such as, keeping edge 

information from parents to the offspring, easy implementation, etc. 

One direction to improve the performance of this new algorithm is to add more 

complexity to the algorithms. As we discussed above, one of advantages of this new 

Genetic Algorithms is easy to implement. But this also means that there is some room for 

us to improve the performance of the algorithm. For example, this new Genetic 

Algorithms only use non sequential 3-opt heuristics. Maybe in the future, we can try to 

implement 3-opt heuristics to see if this can improve the performance of the new Genetic 



97 

Algorithms. This means that we will take into account of all the possible combination of 

the three parts of the router while not just taking into account of 1 of the 4 combinations. 

But this will definitely increase the running time of the algorithm. 

And this new algorithm uses one point mutation. To implement this mutation, this 

algorithm only randomly changes 4 cities position and uses non sequential to improve it. 

But in Samanlioglu's random keys Genetic Algorithms 4 cities were randomly selected 

and all the combinations of these cities were improved by 2-opt. Then select the best one. 

This procedure was repeated 10 times. And the best solution for this repetition was 

selected as one of solutions in next generation. Maybe in the future, similar procedure can 

be implemented in the Lehmer code Genetic Algorithms proposed by this research. At 

least, we can repeat the one point mutation several times and select the best one to keep it 

to the next generation. 

Another direction is to do sensitive analysis. We had already tested the algorithms 

by using different parameters. So far the parameters used in this research seem to have 

the best performance. But we did not try all the combinations of the parameters to test the 

performance of the algorithms because it takes time to run the model, especially if we 

need to run the algorithm 30 times. In the future, if we can run this algorithm in a 

distribute computer system, we may find a better combination of the parameters that can 

improve the performance of the algorithm. 

And in the future, we can try to use the new Genetic Algorithms to solve the other 

optimization problems. 

Lastly, we used Matlab to code the new Lehmer code Genetic Algorithms. As we 

know, Matlab does not perform well when dealing with loops. While in this algorithm, 
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we need to use many loops for 2-opt and 3-opt heuristics. Maybe in the future, we can try 

to code this algorithm by using objective-oriented programming package, such as C++, 

Java, etc. This will greatly decrease the running time for this algorithm. 
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APPENDIX 

COORDINATE FOR CITIES OF TSPS 

KroAlOO 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1380 
2848 
3510 
457 
3888 
984 
2721 
1286 
2716 
738 
1251 
2728 
3815 
3683 
1247 
123 
1234 
252 
611 
2576 
928 
53 

1807 
274 
2574 
178 
2678 
1795 
3384 
3520 
1256 
1424 
3913 
3085 
2573 
463 

939 
96 

1671 
334 
666 
965 
1482 
525 
1432 
1325 
1832 
1698 
169 
1533 
1945 
862 
1946 
1240 
673 
1676 
1700 
857 
1711 
1420 
946 
24 

1825 
962 
1498 
1079 
61 

1728 
192 
1528 
1969 
1670 



37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

3875 
298 
3479 
2542 
3955 
1323 
3447 
2936 
1621 
3373 
1393 
3874 
938 
3022 
2482 
3854 
376 
2519 
2945 
953 
2628 
2097 
890 
2139 
2421 
2290 
1115 
2588 
327 
241 
1917 
2991 
2573 
19 

3911 
872 
2863 
929 
839 
3893 
2178 
3822 
378 

598 
1513 
821 
236 
1743 
280 
1830 
337 
1830 
1646 
1368 
1318 
955 
474 
1183 
923 
825 
135 
1622 
268 
1479 
981 
1846 
1806 
1007 
1810 
1052 
302 
265 
341 
687 
792 
599 
674 
1673 
1559 
558 
1766 
620 
102 
1619 
899 
1048 



80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

1178 
2599 
3416 
2961 
611 
3113 
2597 
2586 
161 
1429 
742 
1625 
1187 
1787 
22 

3640 
3756 
776 
1724 
198 
3950 

100 
901 
143 
1605 
1384 
885 
1830 
1286 
906 
134 
1025 
1651 
706 
1009 
987 
43 
882 
392 
1642 
1810 
1558 

EOF 

KroA150 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

1380 
2848 
3510 
457 
3888 
984 
2721 
1286 
2716 
738 
1251 
2728 
3815 
3683 
1247 
123 
1234 

939 
96 

1671 
334 
666 
965 
1482 
525 
1432 
1325 
1832 
1698 
169 
1533 
1945 
862 
1946 



18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

252 
611 
2576 
928 
53 

1807 
274 
2574 
178 
2678 
1795 
3384 
3520 
1256 
1424 
3913 
3085 
2573 
463 
3875 
298 
3479 
2542 
3955 
1323 
3447 
2936 
1621 
3373 
1393 
3874 
938 
3022 
2482 
3854 
376 
2519 
2945 
953 
2628 
2097 
890 
2139 

1240 
673 
1676 
1700 
857 
1711 
1420 
946 
24 

1825 
962 
1498 
1079 
61 

1728 
192 
1528 
1969 
1670 
598 
1513 
821 
236 
1743 
280 
1830 
337 
1830 
1646 
1368 
1318 
955 
474 
1183 
923 
825 
135 
1622 
268 
1479 
981 
1846 
1806 



61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

2421 
2290 
1115 
2588 
327 
241 
1917 
2991 
2573 
19 

3911 
872 
2863 
929 
839 
3893 
2178 
3822 
378 
1178 
2599 
3416 
2961 
611 
3113 
2597 
2586 
161 
1429 
742 
1625 
1187 
1787 
22 

3640 
3756 
776 
1724 
198 
3950 
3477 
91 

3972 

1007 
1810 
1052 
302 
265 
341 
687 
792 
599 
674 
1673 
1559 
558 
1766 
620 
102 
1619 
899 
1048 
100 
901 
143 
1605 
1384 
885 
1830 
1286 
906 
134 
1025 
1651 
706 
1009 
987 
43 
882 
392 
1642 
1810 
1558 
949 
1732 
329 



104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

198 
1806 
538 
3430 
2186 
1513 
2143 
53 

3404 
1034 
2823 
3104 
3232 
2790 
374 
741 
3083 
3502 
1280 
3326 
217 
2503 
3527 
739 
3548 
48 

1419 
1689 
3468 
1628 
382 
3029 
3646 
285 
1782 
1067 
2849 
920 
1741 
876 
2753 
2609 
3941 

1632 
733 
1023 
1088 
766 
1646 
1611 
1657 
1307 
1344 
376 
1931 
324 
1457 

9 
146 
1938 
1067 
237 
1846 
38 

1172 
41 

1850 
1999 
154 
872 
1223 
1404 
253 
872 
1242 
1758 
1029 
93 
371 
1214 
1835 
712 
220 
283 
1286 
258 



113 

147 
148 
149 
150 

EOF 

KroA 
200 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

3613 
1754 
2916 
2445 

1357 
2650 
1774 
1307 
3806 
2687 
43 
3092 
185 
834 
40 
1183 
2048 
1097 
1838 
234 
3314 
737 
779 
2312 
2576 
3078 
2781 
705 
3409 
323 
1660 
3729 
693 
2361 
2433 
554 
913 
3586 

523 
559 
1724 
1820 

1905 
802 
107 
964 
746 
1353 
1957 
1668 
1542 
629 
462 
1391 
1628 
643 
1732 
1118 
1881 
1285 
777 
1949 
189 
1541 
478 
1812 
1917 
1714 
1556 
1188 
1383 
640 
1538 
1825 
317 
1909 



114 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

2636 
1000 
482 
3704 
3635 
1362 
2049 
2552 
3939 
219 
812 
901 
2513 
242 
826 
3278 
86 
14 
1327 
2773 
2469 
3835 
1031 
3853 
1868 
1544 
457 
3174 
192 
2318 
2232 
396 
2365 
2499 
1410 
2990 
3646 
3394 
1779 
1058 
2933 
3099 
2178 

727 
457 
1337 
1082 
1174 
1526 
417 
1909 
640 
898 
351 
1552 
1572 
584 
1226 
799 
1065 
454 
1893 
1286 
1838 
963 
428 
1712 
197 
863 
1607 
1064 
1004 
1925 
1374 
828 
1649 
658 
307 
214 
1018 
1028 
90 
372 
1459 
173 
978 



78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

138 
2082 
2302 
805 
22 
3213 
99 
1533 
3564 
29 
3808 
2221 
3499 
3124 
781 
1027 
3249 
3297 
213 
721 
3736 
868 
960 
1380 
2848 
3510 
457 
3888 
984 
2721 
1286 
2716 
738 
1251 
2728 
3815 
3683 
1247 
123 
1234 
252 
611 
2576 

1610 
1753 
1127 
272 
1617 
1085 
536 
1780 
676 
6 
1375 
291 
1885 
408 
671 
1041 
378 
491 
220 
186 
1542 
731 
303 
939 
96 
1671 
334 
666 
965 
1482 
525 
1432 
1325 
1832 
1698 
169 
1533 
1945 
862 
1946 
1240 
673 
1676 



121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

928 
53 
1807 
274 
2574 
178 
2678 
1795 
3384 
3520 
1256 
1424 
3913 
3085 
2573 
463 
3875 
298 
3479 
2542 
3955 
1323 
3447 
2936 
1621 
3373 
1393 
3874 
938 
3022 
2482 
3854 
376 
2519 
2945 
953 
2628 
2097 
890 
2139 
2421 
2290 
1115 

1700 
857 
1711 
1420 
946 
24 
1825 
962 
1498 
1079 
61 
1728 
192 
1528 
1969 
1670 
598 
1513 
821 
236 
1743 
280 
1830 
337 
1830 
1646 
1368 
1318 
955 
474 
1183 
923 
825 
135 
1622 
268 
1479 
981 
1846 
1806 
1007 
1810 
1052 



164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
EOF 

2588 
327 
241 
1917 
2991 
2573 
19 
3911 
872 
2863 
929 
839 
3893 
2178 
3822 
378 
1178 
2599 
3416 
2961 
611 
3113 
2597 
2586 
161 
1429 
742 
1625 
1187 
1787 
22 
3640 
3756 
776 
1724 
198 
3950 

302 
265 
341 
687 
792 
599 
674 
1673 
1559 
558 
1766 
620 
102 
1619 
899 
1048 
100 
901 
143 
1605 
1384 
885 
1830 
1286 
906 
134 
1025 
1651 
706 
1009 
987 
43 
882 
392 
1642 
1810 
1558 

KroBlOO 
1 3140 1401 



2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

556 
3675 

1182 

3595 

962 
2030 

3507 

2642 

3438 

3858 

2937 

376 
839 
706 
749 
298 
694 
387 
2801 

3133 

1517 

1538 

844 
2639 

3123 

2489 

3834 

3417 

2938 

71 
3245 

731 
2312 

2426 

380 
2310 

2830 

3829 

3684 

171 
627 
1490 

61 

1056 

1522 

1853 

111 
1895 

1186 

1851 

1269 

901 
1472 

1568 

1018 

1355 

1925 

920 
615 
552 
190 
695 
1143 

266 
224 
520 
1239 

217 
1520 

1827 

1808 

543 
1323 

1828 

1741 

1270 

1851 

478 
635 
775 
513 
445 
514 
1261 

1123 

81 



45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

422 
2698 
2372 
177 
3084 
1213 

3 
1782 
3896 
1829 
1286 
3017 
2132 
2000 
3317 
1729 
2408 
3292 
193 
782 
2503 
1697 
3821 
3370 
3162 
3938 
2741 
2330 
3918 
1794 
2929 
3453 
896 
399 
2614 
2800 
2630 
563 
1090 
2009 
3876 
3084 
1526 

542 
1221 
127 
1390 
748 
910 
1817 
995 
742 
812 
550 
108 
1432 
1110 
1966 
1498 
1747 
152 
1210 
1462 
352 
1924 
147 
791 
367 
516 
1583 
741 
1088 
1589 
485 
1998 
705 
850 
195 
653 
20 

1513 
1652 
1163 
1165 
774 
1612 



88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

1612 
1423 
3058 
3782 
347 
3904 
2191 
3220 
468 
3611 
3114 
3515 
3060 

328 
1322 
1276 
1865 
252 
1444 
1579 
1454 
319 
1968 
1629 
1892 
155 

EOF 

KroB150 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1357 
2650 
1774 
1307 
3806 
2687 
43 

3092 
185 
834 
40 

1183 
2048 
1097 
1838 
234 
3314 
737 
779 
2312 
2576 
3078 
2781 
705 
3409 
323 
1660 

1905 
802 
107 
964 
746 
1353 
1957 
1668 
1542 
629 
462 
1391 
1628 
643 
1732 
1118 
1881 
1285 
777 
1949 
189 
1541 
478 
1812 
1917 
1714 
1556 



28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

3729 
693 
2361 
2433 
554 
913 
3586 
2636 
1000 
482 
3704 
3635 
1362 
2049 
2552 
3939 
219 
812 
901 
2513 
242 
826 
3278 
86 
14 

1327 
2773 
2469 
3835 
1031 
3853 
1868 
1544 
457 
3174 
192 
2318 
2232 
396 
2365 
2499 
1410 
2990 

1188 
1383 
640 
1538 
1825 
317 
1909 
727 
457 
1337 
1082 
1174 
1526 
417 
1909 
640 
898 
351 
1552 
1572 
584 
1226 
799 
1065 
454 
1893 
1286 
1838 
963 
428 
1712 
197 
863 
1607 
1064 
1004 
1925 
1374 
828 
1649 
658 
307 
214 



71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 

3646 
3394 
1779 
1058 
2933 
3099 
2178 
138 
2082 
2302 
805 
22 

3213 
99 

1533 
3564 
29 

3808 
2221 
3499 
3124 
781 
1027 
3249 
3297 
213 
721 
3736 
868 
960 
3825 
2779 
201 
2502 
765 
3105 
1937 
3364 
3702 
2164 
3019 
3098 
3239 

1018 
1028 
90 
372 
1459 
173 
978 
1610 
1753 
1127 
272 
1617 
1085 
536 
1780 
676 
6 

1375 
291 
1885 
408 
671 
1041 
378 
491 
220 
186 
1542 
731 
303 
1101 
435 
693 
1274 
833 
1823 
1400 
1498 
1624 
1874 
189 
1594 
1376 



114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

3359 
2081 
1398 
618 
1878 
3803 
397 
3035 
2502 
3230 
3479 
958 
3423 
78 
96 

3431 
2053 
3048 
571 
3393 
2835 
144 
923 
989 
3061 
2977 
1668 
878 
678 
1086 
640 
3551 
106 
2243 
3796 
2643 
48 

1693 
1011 
1100 
1953 
59 
886 
1217 
152 
146 
380 
1023 
1670 
1241 
1066 
691 
78 

1461 
1 

1711 
782 
1472 
1185 
108 
1997 
1211 
39 
658 
715 
1599 
868 
110 
1673 
1267 
1332 
1401 
1320 
267 

EOF 

Kro200 
1 3140 1401 
2 556 1056 
3 3675 1522 



4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

1182 
3595 
962 
2030 
3507 
2642 
3438 
3858 
2937 
376 
839 
706 
749 
298 
694 
387 
2801 
3133 
1517 
1538 
844 
2639 
3123 
2489 
3834 
3417 
2938 
71 

3245 
731 
2312 
2426 
380 
2310 
2830 
3829 
3684 
171 
627 
1490 
61 
422 
2698 

1853 
111 
1895 
1186 
1851 
1269 
901 
1472 
1568 
1018 
1355 
1925 
920 
615 
552 
190 
695 
1143 
266 
224 
520 
1239 
217 
1520 
1827 
1808 
543 
1323 
1828 
1741 
1270 
1851 
478 
635 
775 
513 
445 
514 
1261 
1123 
81 
542 
1221 



47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

2372 
177 
3084 
1213 

3 
1782 
3896 
1829 
1286 
3017 
2132 
2000 
3317 
1729 
2408 
3292 
193 
782 
2503 
1697 
3821 
3370 
3162 
3938 
2741 
2330 
3918 
1794 
2929 
3453 
896 
399 
2614 
2800 
2630 
563 
1090 
2009 
3876 
3084 
1526 
1612 
1423 

127 
1390 
748 
910 
1817 
995 
742 
812 
550 
108 
1432 
1110 
1966 
1498 
1747 
152 
1210 
1462 
352 
1924 
147 
791 
367 
516 
1583 
741 
1088 
1589 
485 
1998 
705 
850 
195 
653 
20 

1513 
1652 
1163 
1165 
774 
1612 
328 
1322 



133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 

1646 
2993 
547 
3373 
460 
3060 
1828 
1021 
2347 
3535 
1529 
1203 
1787 
2740 
555 
47 

3935 
3062 
387 
2901 
931 
1766 
401 
149 
2214 
3805 
1179 
1017 
2834 
634 
1819 
1393 
1768 
3023 
3248 
1632 
2223 
3868 
1541 
2374 
1962 
3007 
3220 

1817 
624 
25 

1902 
267 
781 
456 
962 
388 
1112 
581 
385 
1902 
1101 
1753 
363 
540 
329 
199 
920 
512 
692 
980 
1629 
1977 
1619 
969 
333 
1512 
294 
814 
859 
1578 
871 
1906 
1742 
990 
697 
354 
1944 
389 
1524 
1945 



90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 

3058 
3782 
347 
3904 
2191 
3220 
468 
3611 
3114 
3515 
3060 
2995 
202 
981 
1346 
781 
1009 
2927 
2982 
555 
464 
3452 
571 
2656 
1623 
2067 
1725 
3600 
1109 
366 
778 
386 
3918 
3332 
2597 
811 
241 
2658 
394 
3786 
264 
2050 
3538 

1276 
1865 
252 
1444 
1579 
1454 
319 
1968 
1629 
1892 
155 
264 
233 
848 
408 
670 
1001 
1777 
949 
1121 
1302 
637 
1982 
128 
1723 
694 
927 
459 
1196 
339 
1282 
1616 
1217 
1049 
349 
1295 
1069 
360 
1944 
1862 
36 

1833 
125 



176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

2356 
1604 
2028 
2581 
2221 
2944 
1082 
997 
2334 
1264 
1699 
235 
2592 
3642 
3599 
1766 
240 
1272 
3503 
80 

1677 
3766 
3946 
1994 
278 

1568 
706 
1736 
121 
1578 
632 
1561 
942 
523 
1090 
1294 
1059 
248 
699 
514 
678 
619 
246 
301 
1533 
1238 
154 
459 
1852 
165 

EOF 

KroC 100 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1357 
2650 
1774 
1307 
3806 
2687 
43 

3092 
185 
834 
40 

1183 
2048 

1905 
802 
107 
964 
746 
1353 
1957 
1668 
1542 
629 
462 
1391 
1628 



14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

1097 
1838 
234 
3314 
737 
779 
2312 
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3409 
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1660 
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2433 
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913 
3586 
2636 
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482 
3704 
3635 
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2049 
2552 
3939 
219 
812 
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2513 
242 
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14 
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2469 
3835 
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1881 
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1383 
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1538 
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1868 
1544 
457 
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2318 
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2499 
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3646 
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2082 
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22 
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99 

1533 
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29 
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1649 
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272 
1617 
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6 
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378 
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220 
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1542 
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781 
1009 
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2982 
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464 
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778 
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3918 
3332 
2597 
811 
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3786 
264 
2050 
3538 
1646 
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3060 
1828 
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233 
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670 
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1777 
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1302 
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1982 
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339 
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1295 
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36 
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456 
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555 
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1768 
3023 
3248 
1632 
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2581 
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540 
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980 
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1906 
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1524 
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706 
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632 
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3599 
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2790 
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1931 
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1741 
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2753 
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3941 
3613 
1754 
2916 
2445 
3825 
2779 
201 
2502 
765 
3105 
1937 
3364 
3702 
2164 
3019 
3098 
3239 

1067 
237 
1846 
38 

1172 
41 

1850 
1999 
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872 
1223 
1404 
253 
872 
1242 
1758 
1029 
93 
371 
1214 
1835 
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220 
283 
1286 
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3479 
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3048 
571 
3393 
2835 
144 
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3061 
2977 
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878 
678 
1086 
640 
3551 
106 
2243 
3796 
2643 
48 
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1011 
1100 
1953 
59 
886 
1217 
152 
146 
380 
1023 
1670 
1241 
1066 
691 
78 
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1 

1711 
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39 
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1599 
868 
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