
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Spring 2011

A Hybrid Lehmer Code Genetic Algorithm and Its Application on A Hybrid Lehmer Code Genetic Algorithm and Its Application on

Traveling Salesman Problems Traveling Salesman Problems

Jun Zhang
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Operational Research Commons, and the Systems Engineering Commons

Recommended Citation Recommended Citation
Zhang, Jun. "A Hybrid Lehmer Code Genetic Algorithm and Its Application on Traveling Salesman
Problems" (2011). Doctor of Philosophy (PhD), Dissertation, Engineering Management & Systems
Engineering, Old Dominion University, DOI: 10.25777/hw0b-3z55
https://digitalcommons.odu.edu/emse_etds/140

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_etds%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/140?utm_source=digitalcommons.odu.edu%2Femse_etds%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A HYBRID LEHMER CODE GENETIC ALGORITHM AND ITS

APPLICATION ON TRAVELING SALESMAN PROBLEMS

by

Jun Zhang
M.E. July 2007, Nanchang University, China

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
May 2011

Approved by:

Shannon Bowling (Director

Resit Unal (Member)

Leonardo Bedoya-Valencia
(Member)

ABSTRACT

A HYBRID LEHMER CODE GENETIC ALGORITHM AND ITS APLICATION ON
TRAVELING SALESMAN PROBLEMS

Jun Zhang
Old Dominion University, 2011

Director: Dr. Shannon R. Bowling

Traveling Salesman Problems (TSP) is a widely studied combinatorial

optimization problem. The goal of the TSP is to find a tour which begins in a specific city,

visits each of the remaining cities once and returns to the initial cities such that the

objective functions are optimized, typically involving minimizing functions like total

distance traveled, total time used or total cost.

Genetic algorithms were first proposed by John Holland (1975). It uses an

iterative procedure to find the optimal solutions to optimization problems.

This research proposed a hybrid Lehmer code Genetic Algorithm. To compensate

for the weaknesses of traditional genetic algorithms in exploitation while not hampering

its ability in exploration, this new genetic algorithm will combine genetic algorithm with

2-opt and non-sequential 3-opt heuristics. By using Lehmer code representation, the

solutions created by crossover parent solutions are always feasible.

The new algorithm was used to solve single objective and multi-objectives

Traveling Salesman Problems. A non Pareto-based technique will be used to solve multi-

objective TSPs. Specifically we will use the Target Vector Approach. In this research, we

used the weighted Tchebycheff function with the ideal points as the reference points as

the objective function to evaluate solutions, while the local search heuristics, the 2-opt

and non-sequential 3-opt heuristics, were guided by a weighted sum function.

IV

This dissertation is dedicated to my parents, my wife and my kids: Leo and Aaron.

V

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Dr. Shannon Bowling, for your

guidance and support in the three and half years of my PhD studies. Our numerous

academic meetings and discussions helped me develop the ideas in this dissertation.

Without your help and encouragement the completion of my dissertation would not have

been possible. In addition to being my mentor, you are also a good friend. Your

friendship has made my PhD experience at Old Dominion University a very pleasant

journey. I enjoyed those warm moments when we exchanged our views on life and found

that we shared a lot in our values. You will definitely continue to be my mentor and good

friend for the rest of my life.

I would also like to thank Dr. Ariel Pinto for your assistance in my PhD research

and for the trouble you took in writing those reference letters for me. The time and effort

you spent reviewing my initial proposal, your constructive comments on it and all the

other help you gave me are highly appreciated.

I am very grateful to Dr. Resit Unal, too, for agreeing to be one of my committee

members, after Dr. Kady, who was on my dissertation committee, left. As one of your

students, I learned a lot from your courses, "Robust Engineering Design" and "Reliability

and Maintainability", and I really appreciate the time and effort you put into reviewing

my dissertation.

I would also like to thank Dr. Leonardo Bedoya-Valencia for your comments on

my initial proposal and for the papers you sent me. These papers were really helpful for

my research. And I appreciate the time and effort you spent reviewing my proposal and

dissertation.

vi

I am grateful to my friends, Mahmoud T. Khasawneh, Elkin Rodriguez and

Nevan Shearer, for your friendship and support. I really enjoyed the days we spent on

course study, projects and attending conferences. I value our friendship and hope it will

be a lifetime one.

Finally, my thanks go to my wife, Hong, and my two children, Leo and Aaron.

Hong, you are a great wife. You devoted all of your time to our family and supported me

unconditionally during my PhD studies. Leo and Aaron, you are the best kids I could

have. You have brought so much love and fun to my life. You made my PhD experience

so much more enjoyable. Hong, Leo and Aaron, I love you with all my heart.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES ix

1. INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 6
1.3 Contributions 13

2. REVIEW OF LITERATURE 14
2.1 Traveling Salesman Problem 14
2.2 Multi-objective Traveling Salesman Problem 15
2.3 Meta-heuristics 19

2.3.1 Genetic Algorithms 19
2.3.2 Random Keys Genetic Algorithms 23
2.3.3 Simulated Annealing 26
2.3.4 Tabu Search 29
2.3.5 Ant Colony Optimization 31
2.3.6 Particle Swarm Optimization 35
2.3.7 Harmony Search 37

2.4 Hybrid Meta-heuristics 40
2.5 Lehmer Code 44

3. Methodology 46
3.1 Research Problems 47
3.2 Procedure and Pseudo Code 52

4. IMPLEMENTATION ON SINGLE OBJECTIVE TSPS 58
4.1 Introduction 58
4.2 Implementation 58
4.3 Experiments and Results 63
4.4 Conclusion 69

5. IMPLEMENTATION ON MULTI-OBJECTIVE TSPS 73
5.1 Introduction 74
5.2 Implementation 77
5.3 Experiments and Results 84
5.4 Conclusion 88

6. FUTURE WORK AND CONCLUSION 92

Vlll

6.1 Contributions of the Dissertation 92

6.2 Limitation and Future Work 93

REFERENCES 97

APPENDIXE
COORDINATE OF CITIES FOR TSPS 105

VITA 134

ix

LIST OF TABLES

Table Page

1. Advantages and Disadvantages of Simulated Annealing 29

2. The Coordinates of Cities (ATT 48) 64

3. Results for Att48 65

4. Experiment Results for TSPs with 100 Cities 66

5. Another Experiment on TSPs with 100 Cities 66

6. Samanlioglu's Results for Single TSPs (Samanlioglu, 2006) 67

7. Results for Single TSPs with 150 and 200 Cites 69

8. Solutions Obtained by Hansen's Method and the Proposed Method 85

9. Results on Multi-objective TSPs (N=25, G=125) 86

10. Results on Multi-objective TSPs (N=50, G=62) 86

11. Comparison of Results from This research and Samanlioglu's Research 86

X

LIST OF FIGURES

Figure Page

1. Classification of Hybrid Metaheuristics 4

2. 2-opt Move 6

3. Traditional Single Point Crossover (Infeasible Solution) 9

4. Single Point Crossover 22

5. A Single Point Mutation 23

6. Single Point Crossover in Traditional Genetic Algorithms 24

7. One Point Crossover for Random Keys Genetic Algorithms 25

8. The Pseudo Code for Ant Colony Optimization 34

9. Lehmer Code One Point Crossover 45

10. Generation Transition 56

11. Pseudo Code for the New Hybrid Lehmer Code Genetic Algorithm 57

12. Pseudo Code for 3-opt Heuristic 59

13. Non Sequential 3-opt Heuristics Move 60

14. One Point Mutation Procedure 61

15. Pseudo Code for 2-opt Heuristics 62

16. Process of the Hybrid Lehmer Code Genetic Algorithm 63

17. Comparison of Numbers of Optimal Solutions on TSPs with 100 Cities 68

18. One point Crossover of Lehmer Code GA (Keep Parent Information) 70

19. One Point Mutation 71

20. Multi-objective TSPs Process of the Hybrid Lehmer Code Genetic Algorithm 78

21. Matlab Code for Lehmer Presentation and Decoding Process 81

xi

22. Comparison of ARE (N=25, G=125) 87

23. Comparison of ARE (N=50, G=62) 88

xii

1

CHAPTER 1

INTRODUCTION

Morse and Kimball (1951) defined Operations Research (OR) as "a scientific

method of providing executive departments with a quantitative basis for decisions

regarding the operations under their control." OR uses methods to get optimal or near

optimal solutions to complex problems. These methods include mathematical modeling,

statistics and algorithms, etc. Hillier and Lieberman (2005) summarized the usual phases

of an operation research study as the following:

1. Define the problem and collect the data.

2. Formulate mathematic model to represent the problem.

3. Develop a procedure to find the solutions to the problem from the model.

4. Test and refine the model.

5. Prepare for the application of the model.

6. Implement the application.

1.1 Background

Searching for optimal or near optimal solutions to optimization problems is the

subject matter of much research in the field of operations research. There are several

reasons that make it difficult to solve real-world optimization problems; these include:

• The search space is too large to perform an exhaustive search.

• The problems are so complicated that we need to use simplified models. But the

results from simplified models are essentially useless.

• The evaluation functions are noisy or time dependent. This requires finding not

just a single solution but a series of solutions.

2

• The possible solutions are so heavily constrained that it is difficult to construct

even one feasible answer, let alone an optimal solution.

When attacking hard complex optimization problems, especially combinatorial

optimization problems, classical optimization methods may fail to be effective and

efficient. From the 1970s a number of metaheuristics have been proposed for solving

these kinds of problems, among which are genetic algorithm (Holland, 1975), simulated

annealing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989), ant colony

algorithms (Colorni, Dorigo & Maniezzo, 1991) and particle swan optimization

(Kennedy & Eberhart, 1995).

Combinatorial optimization is defined as the mathematical study of finding an

optimal arrangement, grouping, ordering, or selection of discrete objects usually finite in

numbers (Osman and Laporte, 1996). For many combinatorial optimization problems it is

computationally impossible to find the optimal solution. Usually what can practically be

produced are near-optimal solutions.

The term metaheuristic was first introduced by Glover (1986). It derives from the

composition of two Greek words: heuristic, which means "to find" and the suffix Meta,

which means "beyond, in an upper level." A metaheuristic is a heuristic method to solve

optimization problems. Much of the development of metaheuristics comes from

observing nature and implementing simple rules to solve complex problems. It can be

defined as a high-level framework or method which is specialized to solve optimization

problems, or a high-level strategy that helps other optimization methods in the process of

searching for feasible solutions. Osman and Laporte (1996) defined a metaheuristic as

" an iterative generation process which guides a subordinate heuristic by combining

3

intelligently different concepts for exploring and exploiting the search space, learning

strategies are used to structure information in order to find efficiently near-optimal

solutions."

Exploration and exploitation of the solution spaces are the two competing goals

which direct the design of a metaheuristic. The success of a metaheuristic depends on the

good balance between exploration and exploitation. Exploration is needed to make sure

that the solution space is searched enough to make a reliable estimate to the global

optimal. Exploitation is also important because the improvement of the current solution

often produces a better solution (Talbi, 2002). Generally, a metaheuristic is applied to

complex problems which no specific general algorithms or methods can solve. The most

common problems that metaheuristics solve are combinational optimization problems.

Although in theory metaheuristics can solve any optimization problem, especially

complex problems which no general algorithm can solve, according to the "no free

lunch" theorems (Wolpert & Macready, 1997), there is no optimization method that is

perfect enough to solve all optimization problems efficiently. The performance of any

algorithm over one class of problems is offset by its performance over another class. This

is one of the reasons that a number of metaheuristics which focus on solving certain kinds

of optimization problems are proposed, such as genetic algorithm (Holland, 1975),

simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989),

ant colony (Colorni, Dorigo & Maniezzo, 1991), particle swarm optimization (Kennedy

and Eberhart, 1995), etc., and variants for metaheuristics which introduce some changes

to the original algorithm to improve its performance were also proposed (Grefenstette,

1986; see also Chiang & Russell, 1997; Li & Li, 2008; Wang & Wang, 2008).

4

Over the years, research on hybrid metaheuristics has risen considerably in

combinatorial optimization. This research attempts to combine the best features from

different metaheuristics to develop more powerful hybrid implementations than the

original metaheuristics. One of the most common formats of the hybrid metaheuristics is:

the population-based metaheuristics, like genetic algorithm, ant colony, particle swarm

etc., which are powerful in exploring the solution space, were combined with local search

metaheuristics, like hill climbing, simulated annealing, tabu search etc., which are more

powerful in terms of exploitation to develop more powerful hybrid metaheuristics (Suh &

Van Gucht, 1987; see also Fleurent & Ferland, 1994; Kim, Hayashi & Nara, 1995; Chen

& Flann, 1994; Chen et al., 1995).

Talbi (2002) categorized all hybrid metaheuristics into four hierarchy categories:

Low-level relay hybrid, low-level teamwork hybrid, high-level relay hybrid and high-

level teamwork hybrid. He also categorized all hybrid metaheuristics using flat

classification: homogeneous versus heterogeneous, global versus partial, specialist versus

general. Figure 1.1 shows the hierarchical and flat classification of hybrid metaheuristics

(Talbi, 2002).

Hybrid Metaheuristics

Homogeneous Heterogeneous Global Partial General Specialist

Figure 1. Classification of Hybrid Metaheuristic (Talbi, 2002)

Traveling Salesman Problems (TSP) is a widely studied combinatorial

optimization problem. The goal of the Traveling Salesman Problems is to find a tour

5

which begins in a specific city, visits each of the remaining cities once and returns to the

initial cities such that the objective functions are optimized, typically involving

minimizing functions like total distance traveled, total time used or total cost. The

simplest TSP involves finding a shortest path that visits n cities and returns to the initial

point and the distances between cities are symmetric while in multi-objective TSP, the

goal is to simultaneously optimize distances, cost, times or other objectives.

TSP is NP-hard even with only a single objective. For multi-objective TSP, it has

the difficulty of the TSP itself and the difficulty of multiple objectives (Ehrgott, 2000).

Therefore, heuristics which provide sub-optimal solutions are widely used to tackle

multi-objective TSP, such as tabu search (Hansen, 2000), genetic algorithm (Jaszkiewicz,

2002), particle swarm (Shi, 2007), evolutionary algorithm (Jozefowiez, 2008), etc.

As a population based algorithm, GA deals with multiple solutions in one single

simulation run. Because of this, GA can maintain a diverse set of solutions. This makes

GA promising in dealing with multi-objective TSP. Many variant GAs were proposed to

attack TSP and multi-objective TSP (Fonseca & Fleming, 1993; see also Chatterjec,

Carrera & Lynch, 1996; Merz & Freisleben, 2002; Deb et al., 2002; Jaszkiewicz, 2002;

Samanlioglu, Ferrell & Kurz, 2008). The performance of GAs on TSP depends very

much on the encoding methods and the genetic operators, crossover and mutation. To

overcome the problem of infeasible solutions coming from the crossover that uses the

natural representation, repairing methods were proposed, such as partially mapped

crossover (Goldberg & Lingle, 1985; Oliver, Smith & Holland, 1987), edge

recombination crossover (Whitley et al., 1989), etc. Another way to solve the creating

infeasible solutions problem is to change the encoding method. For example, random

6

keys (Bean, 1994; Samanlioglu, Ferrell & Kurz, 2008), and Lehmer code (Mantaci &

Rakotondrajao, 2001; Martin, 1990) were used to code the solutions for TSP.

2-opt heuristic was first introduced by Croes (1958). It involves in breaking the

route by deleting two edges and reconnecting the broken paths in the other possible way.

If the 2-opt heuristic results in an improved tour, this change will be kept. Otherwise, the

tour would not change. Figure 2 shows how 2-opt heuristic works. Please note that this

picture is a schematic. If the distances were as shown in the figure, the tour will not

change because the 2-opt will not result in a shorter tour. The Genetic Algorithms

incorporated with 2-opt heuristic has been used to optimize TSP and Multi-objective TSP

(Merz & Freisleben, 2002; see also Deb et al., 2002; Jaszkiewicz, 2002; Nilsson, 2003;

Ghoseiri & Sarhadi, 2007; Samanlioglu, Ferrell & Kurz, 2008).

c D C D

Figure 2. 2-opt Move (Original Tour Left, Resulting Tour Right)

3-opt heuristics involves in breaking the solution route by deleting three edges

and reconnecting the broken paths in the other possible ways. Solutions that are 3-opt are

also 2-opt.

1.2 Problem Statement

A meta-heuristics can be a high-level framework or method which is specialized

to solve optimization problems, or a high-level strategy that helps other optimization

7

methods in the process of searching for feasible solutions. But according to the "no free

lunch" theorems (Wolpert & Macready, 1997), the performance of any optimization

method over one class of problems is offset by its performance over another class. Hybrid

meta-heuristics combine different meta-heuristics to produce more powerful

implementations than the original ones.

Over the past decades, genetic algorithm attracted a lot of attention as a global

optimization technique for complex optimization problems. Genetic algorithms were first

proposed by John Holland (1975). They use an iterative procedure to find the optimal

solutions to optimization problems and are categorized as a global search method.

Genetic algorithms have been applied to solving optimization problems like numerical

function optimization, scheduling, cognitive modeling, transportation problems, travel

salesman problems, graph coloring problems, database query optimization, etc. (Bennett,

Ferris & Ioannidis, 1991; see also De Jong, 1985; Goldberg, 1989; Vignaux &

Michalewicz, 1991).

Genetic algorithm took clues from nature: genetic inheritance and fitness survival.

As a population based optimization method, genetic algorithm is powerful in exploration

but weak in exploitation. The hybrid genetic algorithm which combined genetic

algorithm and local search meta-heuristics, such as hill climbing, simulated annealing,

tabu search, etc. can be more efficient and effective than the original genetic algorithm

and local search meta-heuristics. One of the weaknesses with genetic algorithm is that

sometimes it converges towards local optimal.

In (Rugolph, 1994), the convergence properties of canonical genetic algorithm

with mutation and crossover operators, proportional reproduction applied to static

8

optimization problems were analyzed. It concluded that "a canonical genetic algorithm

will never converge to the global optimal regardless of the initialization, operators and

objective function. But the variants of canonical genetic algorithm that always maintain

the best solution in the population are shown to converge to the global optimal due to the

irreducibility of the underlying original non-convergent canonical genetic algorithm"

(Rugolph, 1994).

This research proposes a Lehmer code Genetic Algorithm to solve single

objective and multi-objective TSPs. To compensate for the weakness of traditional

Genetic Algorithms in exploitation while not hampering its ability in exploration, local

search heuristic—2-opt heuristic and non-sequential 3-opt heuristic was incorporated into

the new Genetic Algorithms. Whenever a new solution was produced, no matter if it is

produced by crossover or mutation, 2-opt heuristic and/or non-sequential 3-opt heuristic

will be used to improve it until a local optimal solution is obtained. This Genetic

Algorithm will benefit from using the local search heuristics, 2-opt and non-sequential 3-

opt heuristics because they are powerful in exploitation. Therefore, these Genetic

Algorithms will have both good exploration and exploitation ability. The algorithms will

converge towards a solution quicker. Ideally, this solution will be a global optimal

solution or near optimal solution.

Traditional Genetic Algorithms use direct representation of the solutions. That is,

for the Traveling Salesman Problem, the solution was directly coded by the numerical

representation of the cities. This makes it difficult for the traditional Genetic Algorithms

to maintain feasibility from parents to offspring when solving many optimization

problems, like multiple machine scheduling, traveling salesman problems, etc. Crossover

9

is a genetic operator used to vary the programming of chromosomes from the two

individuals of the fittest to form the next generation. Traditional Genetic Algorithm uses

one point crossover (Holland, 1975). Suppose we have a traveling salesman problem that

has 6 cities. A candidate for this problem is a permutation of these 6 cities. Two such

permutations are 1—• 3 —•2—>4—>5—•6—>1 and 6—> 4 —>2—>3—>1—>5—>6. In traditional

Genetic Algorithm, the genetic representation of these two sequences are the

permutations x = [1,3,2,4,5.6,1 i and* = ' 6,4,2,3,1,5,6) A one-point crossover will divide

each permutation at the crossover point and exchange certain segments of the two

permutations. Suppose the crossover point is the fourth place of the permutation. From

the Figure 1, we can see that the resulting sequences are 1—>• 3 —>2—»4—>1—>5—>6 and

6—> 4 —>2—>3—>5—>6—>1. Both of them are infeasible. So the crossing over of two

feasible solutions does not result in feasible solutions.

crossover point

After crossover 1 3 2 - 4 1 5 6 6 4 2 3 5 6 1

Figure 3. Traditional Single Point Crossover (Infeasible Solution)

To overcome the difficulty in maintaining feasibility from parent to offspring,

Bean (1994) proposed the Random Keys Genetic Algorithm. Not like traditional Genetic

Algorithm using direct chromosomal representation of the candidate solution, the

Random Keys Genetic Algorithm uses chromosomal representation in a soft manner. It

encodes the candidate solution with random numbers. The values of these random

10

numbers range from 0 to 1. The random numbers are used as the sort keys to encode the

candidate solutions. This encoding technique will eliminate the feasibility problem.

Although the random key genetic algorithm can solve the infeasible solutions

problem, it has its own difficulties. First, when implemented on a large problem, the

sorting process to determine the ranks is expensive. Moreover, the encoding process does

not preserve the adjacency of cities in a given tour when crossover with random keys

(Chatterjee, Carrera & Lynch, 1996).

This research will use Lehmer code to encode the permutation of a candidate

solution. Lehmer code can code each permutation Tln of n numbers with a function

LC(YI) :{l,...,n} —>{l,...,n-l} to a special sequence of n-1 numbers (Kromer, Platos

and Snasel, 2009). Lehmer code of a permutation can be expressed by using an inversion

table. Consider a sequence of n numbers x = (x-[x2...xn) . An inversion is a pair

(jc;,x;)such that i < j and*, > x}. Fori e {l,...,n}, let dtcount the number of inversions

with i as the smaller index. Then the sequence (d^d2..Jn)is called inversion table of

permutation x. 0 < dl <n-i fori = l,...,n .

The evolutionary multi-objective optimization methods can be classified into two

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell

& Kurz, 2008). In the Pareto-based techniques, the selection is directed by the Pareto

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by

Fonseca and Fleming (Fonseca & Fleming, 1993), the niched Pareto genetic algorithm

(Horn, Nafpliotis & Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler,

Laumanns & Thiele, 2001), etc., belong to this type of technique.

11

In the non Pareto-base techniques, the selection does not directly rely on the

Pareto dominance and Pareto ranking, such as vector evaluated genetic algorithm

(Schaffer, 1984), target vector approach (Coello, 2001), memetic random key genetic

algorithm (Samanlioglu, Ferrell & Kurz, 2008), etc.

According to (Samanlioglu, Ferrell and Kurz, 2008), the main advantage of

Pareto-based techniques is that these methods don't need to normalize objective functions,

set reference points and specify weighting coefficients for each objective function

according to its importance. But the Pareto-based techniques also have some

disadvantages. First, the Pareto ranking does not work for hybrid meta-heuristics with

local search because many local moves do not influence the rank of a solution. In some

cases, change of a rank of a solution may need to change the objective function value a

lot. But this may not be achieved by local move. And for solutions which have been

already ranked 1, local improvement is not possible (Jaszkiewicz, 2002). Another

problem with the Pareto-based techniques is with the comparability of the solutions.

According to (Knowles and Corne, 2004), the Pareto-based techniques may be suited for

problems with only two or three objective functions. When working on the multi-

objective optimization problems with four or more objective functions, the Pareto-based

technique may cause many problems because many solutions will be incomparable.

This research presents a hybrid Lehmer code genetic algorithm, which combines

genetic algorithm with 2-opt heuristics and non sequential 3-opt heuristics. And this

algorithm will be used to solve single objective Traveling Salesman Problems and multi-

objective Traveling Salesman Problems that have up to four or more objective functions.

And this research will use a non Pareto-based technique. Specifically we will use the

12

Target Vector Approach that was also used in (Coello, 2001), (Samanlioglu, Ferrell and

Kurz, 2008), etc. In Target Vector Approach, the goal is to minimize the distance

between the generated solution and the target vector. In this research, we use the

weighted Tchebycheff function with the ideal points as the reference points.

The format of this dissertation is as follows; there will be nine chapters in the

dissertation, including:

The first chapter is the introduction. In this chapter, background is given and the

problem statement will be discussed.

The second chapter is a literature review. Literature on related topics will be

summarized in this chapter.

The third chapter is methodology. This is the main part of the dissertation. This

chapter will discuss how to develop and implement the hybrid Lehmer code genetic

algorithm and how it is applied on a multi-objective Traveling Salesman Problem.

Chapter four will test the performance of the new algorithm proposed in chapter

three. In this chapter, I will use the method proposed in chapter three to solve some bench

mark TSPs and compare the performance of the new genetic algorithms with the

performances of other meta-heuristics.

Chapter five will summarize the results for chapter four. We can get a good

understanding about how the Lehmer code can be used in genetic algorithms to solve

multi-objective TSPs. And we will summarize the advantages and disadvantages of the

proposed genetic algorithms on solving multi-objective meta-heuristics.

Chapter six will discuss future work. This chapter will discuss the potentials of

the other techniques that can be used to improve the performance of the hybrid Lehmer

13

code genetic algorithms on solving multi-objective TSPs and the potential to use this new

genetic algorithm to solve other combinatorial optimization problems.

1.3 Contributions

In this research, after investigating metaheuristics, especially Genetic Algorithms

and Random Keys Genetic Algorithms and their applications on the Traveling Salesman

Problem, a new Hybrid Lehmer Code Genetic Algorithm was proposed. This new

Genetic Algorithm used Lehmer code to represent the potential solutions to solve the

infeasible solutions problem associated with traditional Genetic Algorithms when solving

discrete optimization problems. And 2-opt and non-sequential 3-opt heuristics were

embedded into the new algorithm to conduct a local search. This provided an alternative

way to use Genetic Algorithm to solve discrete optimization problems.

This new Genetic Algorithm was implemented by using Matlab, and experiments

were conducted to test its performance on single objective and multi-objective TSPs. The

results showed that the new Genetic Algorithm had some advantages on some bench

mark single-objective TSPs over the newly proposed methods, more specifically Hansen

and Samanlioglu's methods (Hansen, 2000; Samanlioglu, Ferrell & Kurz, 2008) even

with small population size and fewer generations. And the results of this new Genetic

Algorithm on multi-objective TSPs were comparable with those from the methods

proposed in the new literatures.

Another advantage of the new Genetic Algorithm over traditional Genetic

Algorithms and Random Keys Genetic Algorithms is easy implementation. No fixing

procedure is required as in traditional Genetic Algorithms when solving discrete

optimization problems.

14

CHAPTER 2

REVIEW OF LITERATURE

Traveling Salesman Problem (TSP) is a well studied combinatorial optimization

problem. Many exact and approximate heuristics and meta-heuristics were proposed to

solve this problem. It has also served as the bench mark problem to test the efficiency of

the newly proposed heuristics and meta-heuristics.

2.1 Traveling Salesman Problem

The Traveling Salesman Problem is a well studied and important combinatorial

optimization problem. The idea of the Traveling Salesman Problem is to find the shortest

tour that visits each city exactly once and returns to the start city, given a list of cities.

The origin of the Traveling Salesman Problem was not clear. But the Traveling Salesman

Problem was first formulated as a mathematical problem in 1930 by Karl Menger.

Mathematically, the TSP can be defined as the following:

In the graph G = (V, C) , V is the set of nodes, or cities, C is the "cost matrix",

where c represents the cost of going from city i to j , i, j e V . The goal is to find the

permutation (i^,i2,...,in) of the integers from 1 to n such that the total cost

c,, +C,, +... + c,, is minimized.

The traveling salesman problem is a NP-complete problem. There is no

polynomial-time algorithm that is capable of solving it exactly (Karp, 1977). Homaifar

(1992) states "one approach which would certainly find the optimal solution of any TSP

is the application of exhaustive enumeration and evaluation." But in most situations,

conducting exhaustive enumeration and evaluation will take a long time. And obviously

15

we need to find an algorithm that gives us a solution in a short time. This means that we

probably need to sacrifice optimality to get a good solution in a shorter time.

The algorithms for solving the traveling salesman problem can be classified into

two classes: exact algorithm and approximate algorithms (Helsgaun, 2000). The most

direct method would be the method that tries all permutations and finds the shortest path.

The running time for this approach is within a polynomial factor ofO(n!). Various

branch-and-bound algorithms belong to the exact algorithms. These algorithms are

inefficient concerning the running time, especially when solving the traveling salesman

problem with a large number of cities.

So many approximate heuristics were proposed to solve the travel salesman

problem. Ghosh et al. (2007) introduced tolerance-based greedy algorithms to solve

traveling salesman problem. The nearest neighbor algorithm is one of the first algorithms

used to find a solution for the traveling salesman problem (Karp, 1977; Gutin, Yeo &

Zverovich, 2002). Several genetic-based algorithms were proposed to solve the traveling

salesman problem (Grefenstette, Gopal & Rosmaita, 1985; see also Jog, Suh & Gucht,

1989; Oliver, Smith & Holland, 1987; Seniw, 1991). Dorigo and Gambardella (1997)

proposed an artificial ant colony algorithm that is capable of solving the traveling

salesman problem. Shi, Zhou, Wang, Wang and Liang (2007) presented a discrete

particle swarm optimization algorithm for traveling salesman problem. Ghoseiri and

Sahadi (2008) present a memetic algorithm to solve the symmetric traveling salesman

problem.

2.2 Multi-objective Traveling Salesman Problem

The multi-objective optimization (MOP) problem can be defined as the following:

16

min f(x) = {/,(*), f2(x),..., fk (x)}

S.t. X G 5

where k > 2, jc = (x1,x2,...,jcn)is the decision variable vector, Sis the feasible solution

space, f(x) is the objective vector.

A MOP solution is a set of the non-dominated solutions called the Pareto Set (PS).

Definition 1 A solution (x* e S) dominates a solution (x e S,x * x*), x* > x if and only

if V/e{l,2,...,n} /,(x) </,(**) and3ie{l,2,...,«} / , (*)</ , (**)•

Definition 2 A solution (x* e S) is efficient if there do not exist a solution (x e S) that

dominates it.

Definition 3 A solution x* e S is weakly efficient if there does not exist a solution

(x e S,x?t x*) such that/,(x) < / ,(x*).

Weighted Lp norms are defined as the following (Hansen and Jaszkiewicz, 1998):

Lp(z\z2,A) = (fjA]\z)-z2
J\y

ip pe{L2,...} (2)

where A = [A1,A2,...,A,],AJ > 0, is a weight vector.

For a multi-objective TSP, the general weighted Lp norm is defined as

min d> , i / , - * i Pyip (3)
;=1 V ^

s.t. x e 5

where /l ; > 0, j = 1,2,..., J,^Aj =l,z*is the reference point.

If we set the reference point as the global optimal solution for / ; , when p = <x>, we

get the weighted Tchebycheff metric

17

min m a x ^ C / j - z *) }

s.£. x e 5

When p = 1, we get the weighted sum function

min SOW"* '))
S.i. X 6 o / C \

Multi-objective TSPs belong to the class of NP-complete problems even with

only two objectives (Hansen, 2000). It has the difficulties of both the TSPs and the multi-

objectives (Ehrgott, 2000). And even a single objective TSP belongs to the class of NP-

hard problems.

There are many heuristics and meta-heuristics proposed to attack on multi-

objective combinatorial optimization problems. Among these, Jaszkiewicz (Jaszkiewicz

and Czyzak, 1998) proposed a Pareto simulated annealing algorithm to solve multi-

objective combinatorial optimization problems. Jaszkiewicz (2002) presented a new

genetic local search algorithm to solve multi-objective TSP. And he concluded that a

local search guided by weighted linear function gave a better solution than guided by

weighted Tchebycheff function. Hansen (2000) proposed a tabu search with a local

search heuristic to solve multi-objective TSPs. He suggested that the heuristic gives

better solution when using a substitute scalarizing function instead of the Tchebycheff

function to guide the local search heuristic. Samanlioglu et al. (Samanlioglu, Ferrell &

Kurz, 2008) present a memetic random key genetic algorithm embedded with a 2-opt

heuristic to solve multi-objective TSP. In his research, the local search is guided

randomly by either a weighted Tchebycheff function or a weighted sum function.

18

The evolutionary multi-objective optimization methods can be classified into two

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell

and Kurz, 2008). For the Pareto-based techniques, the selection is directed by the Pareto

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by

Fonseca and Fleming (1993), the niched Pareto genetic algorithm (Horn, Nafpliotis &

Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler, Laumanns & Thiele,

2001), etc. belong to this type of technique.

In the non Pareto-base techniques, the selection does not directly rely on the

Pareto dominance and Pareto ranking, like vector evaluated genetic algorithm (Schaffer,

1984), target vector approach (Coello, 2001), memetic random key genetic algorithm

(Samanlioglu, Ferrell & Kurz, 2008), etc.

According to (Samanlioglu, Ferrell & Kurz, 2008), the main advantage of Pareto-

based techniques is that these methods don't need to normalize objective functions, set

reference points and specify weighting coefficients for each objective function according

to its importance. But the Pareto-based techniques also have some disadvantages. First,

the Pareto ranking does not work for hybrid meta-heuristics with local search because

many local moves do not influence the rank of a solution. In some cases, change of a rank

of a solution may need to change the objective function value a lot. But this may not be

achieved by local move. And for solutions which have been already ranked 1, local

improvement is not possible (Jaszkiewicz, 2002). Another problem with the Pareto-based

techniques is with the comparability of the solutions. According to (Knowles and Corne,

2004), the Pareto-based techniques may be suited for problems with only two or three

objective functions. When working on the multi-objective optimization problems with

19

four or more objective functions, the Pareto-based technique may cause many problems

because many solutions will be incomparable.

2.3 Meta-heuristics

Meta-heuristic is an active field of research with more and more new methods and

the applications to specific problems being proposed. Some well-known metaheuristics

are: evolution programming, genetic algorithm, simulated annealing, tabu search,

artificial intelligence, ant colony algorithms, particle swan optimization and so on.

Wolpert and Macready (Wolpert and Macready, 1997) explored the relationship between

effective optimization algorithm and the problems they solve. They presented a number

of "no free lunch" theorems which state that "for any algorithm, any elevated

performance over one class of problems is offset by performance over another class." So

no optimization method is perfect enough to solve all optimization problems efficiently.

2.3.1 Genetic Algorithm

A genetic algorithm is an iterative procedure used to find exact or approximate

solutions to optimization problems. It is categorized as a global search method. Genetic

algorithm was first used by John Holland (1975). Genetic algorithm took clues from

nature: genetic inheritance and Darwinian strife for survival. One distinguished character

of genetic algorithm is the separation of the representation of the problem from the

variables in which it was originally formulated.

Five general components are required in a genetic algorithm for a particular

problem (Michalewicz, 1996):

> a genetic representation of the solution

> a way to create initial solutions

20

> a fitness function to evaluate the solution

> genetic operators to create offspring

> values for parameters (population size, probability of applying genetic

operators, etc.)

In a genetic algorithm the representations (chromosomes or genotype) of

candidate solutions (phenotypes) to an optimization problem evolve toward better

solutions. Traditional genetic algorithm uses binary strings as a chromosome to

represent real values of the decision variables (Holland, 1975). Suppose that the

decision variable x takes values from a domain (^ = iaJc\ —&) and eight decimal

places for the variable's value is required. Obviously, the domain should be cut into

I c — aj -10 eqUai s i z e range to achieve such precision. A representation having the

variable coded as a binary string of length n satisfies the precision requirement, if n is

the smallest integer which satisfies1-c ~ a< " 1 0 — 2 - 1 . And the following function

shows how to convert a binary string C&î s ™ bn}s into a real number x:

c — a
x = aL + (hxb2 - J?.n)s • 2 „ _ 1

(6)

Genetic algorithm starts from a population of randomly selected individuals. In

each generation, the fitness of every individual is evaluated, certain individuals are

selected from the current population and modified (through the process of recombination

and mutation) to form a new population of the next generation. Theoretically a genetic

algorithm can run forever because it is a stochastic research method. In practice, the

method stops when a certain termination criterion is reached. The criteria are: a satisfied

21

solution is found, a fixed number of generations are reached, the allocated budget is

reached, and better solutions are no longer produced.

Pseudo codes for a genetic algorithm are:

1. Randomly generate a population of individuals.

2. Compute and save the fitness for each individual in the current population.

3. Repeat until a stopping criteria is met

• Select best ranked individuals to reproduce

• Breed new generation through recombination and mutation

• Evaluate the fitness of the offspring

• Replace the worst ranked individuals with the offspring

4. Get the individuals with the highest global objective fitness.

Selection is the process in which the fittest individuals of the current generation

are used to form the next generation. In (Michalewicz, 1996), a roulette wheel with slots

sized according to fitness of each solution is proposed as follows:

> Calculate the total fitness of the population

F = y evalivj)
(7)

> Calculate the probability of selection P: for each solution vi

evaUv, i
Pi — " F (8)

> Calculate the cumulative probability <?; for each solution

22

Then we spin the roulette wheel n (n is the population size) times. Each time we

select a solution for the next generation as follows:

> Generate a random number T from the range L0» *1J

> Ifr<(fi, select the first solution vi; otherwise, select the l -th

solution vi if <?f-i <r<q{

There are two genetic operators in genetic algorithm: crossover and mutation.

Crossover (or recombination) is a genetic operator used to vary the programming of

chromosomes from the two individuals of the fittest to form the next generation.

Traditional genetic algorithm applies single point crossover. It involves the following

steps (Beasley, Bull & Martin, 1993):

> Select two individuals that will exchange certain bits of their binary string with

each other.

> Get the randomly selected crossover point and cut both of two individuals into

two parts according to the crossover point.

> Swap over the two individuals to produce new binary strings (see figure 2.1).

Crossover Point Crossover Point

Parents 1 0 1 1 <T 1 0 1 1 1 1 0 1 0 0 0 TO 0 0 0 I 1 1

Oflspnng 1 0 0 0 1 1 0 1 1 110 1 0 1 1 0 0 0 0 0 1 1 1

Figure 4. Single Point Crossover

Mutation is a genetic operator used to maintain genetic diversity from one

generation to the next generation. Mutation provides a small amount of random search

23

and ensures that no point in the search space has a zero probability to be searched

(Beasley, Bull & Martin, 1993), thus improving the genetic algorithm's exploring ability.

It involves a probability that an arbitrary bit in a genetic sequence changes from its

original state. The normal procedure for a traditional genetic algorithm is: generate a

random number from the range [°- • *] for each bit of each solution; if this number is less

than a predetermined number called mutation rate, the bit will change from 0 to 1, or

from 1 to 0 (see figure 2.2).

Mutation Point

1
1 0 0 0 1 0 0 0 0 1 1 1

A f t e r m u t a t i o n 1 0 0 0 1 1 0 0 0 1 1 1

Figure 5. A Single Point Mutation

The strengths of the genetic algorithm are: the ability to evaluate many possible

solutions simultaneously, easy implementation, good performance over a large number of

problems (robust), good performance on NP-complete problems and the ability to be

implemented on parallel processing (Choy, Lam & Lau, 1997-98).

The weakness of the genetic algorithm: sometimes converges towards local

optima, has difficulty operating on dynamic data sets, cannot effectively solve problems

with only single right/wrong measure fitness function, raises differences of opinion

concerning the importance of crossover versus mutation and for specific problems, and

other optimization algorithms may find better solutions than genetic algorithms.

24

2.3.2 Random Keys Genetic Algorithm

It is difficult for traditional Genetic Algorithm to maintain feasibility from parents

to offspring when solving many optimization problems, like multiple machine scheduling,

quadratic problem, traveling salesman problem, etc. (Bean, 1994). For example,

Crossover (or recombination) is a genetic operator used to vary the programming of

chromosomes from the two individuals of the fittest to form the next generation.

Traditional Genetic Algorithm uses one point crossover (Holland, 1975). Suppose we

have a traveling salesman problem that has 6 cities. A candidate for this problem is a

permutation of these 6 cities. Two such permutations are 1—• 3 —>2—>4—»5—»6 and 6—> 4

—»2—>3—>1—>5. In traditional Genetic Algorithm, the genetic representation of these two

sequences are the permutations x = (1,3,2,4,5,6) and x = (6,4,2,3,1,5) . A one point

crossover will divide each permutation at the crossover point and exchange certain

segments of the two permutations. Suppose the crossover point is the fourth place of the

permutation. From the Figure 1, we can see that the resulting sequences are 1—*• 3

—>2—>4—>1—>5 and 6—»• 4 —>2—»3—>5—>6. Both of them are infeasible. So the crossing

over of two feasible solutions does not result in feasible solutions.

crossover point

After crossover 1 3 2 4 1 5 6 4 2 3 5 6

Figure 6. Single Point Crossover in Traditional Genetic Algorithms

25

To overcome the difficulty in maintaining feasibility from parent to offspring,

Bean (1994) proposed the Random Keys Genetic Algorithm. Not like traditional Genetic

Algorithm using direct chromosomal representation of the candidate solution, the

Random Keys Genetic Algorithm uses chromosomal representation in a soft manner. It

encodes the candidate solution with random numbers. The values of these random

numbers range from 0 to 1. The random numbers are used as the sort keys to encode the

candidate solutions. This encoding technique will eliminate the feasibility problem. For

example, suppose that there is a single machine 6-jobs scheduling problem. The

chromosome (0.45, 0.32, 0.58, 0.74, 0.65, 0.17) would represent the sequence 6—• 2

—>1—>3—>5—>4. In Random Keys Genetic Algorithm, the crossovers are executed on the

chromosomes while not the sequence. Suppose that we have another chromosome (0.87,

0.66, 0.25, 0.14, 0.49, 0.94) that would represent the sequence 4-* 3->5-»2-»l->6. And

we suppose the crossover point is after the fourth gene. By using the traditional single

point crossover, we get the two offspring (see Figure 2): (0.45, 0.32, 0.58, 0.74, 0.49,

0.94) that represents the sequence 2 ->l-»5->3->4-> 6 and (0.87, 0.66, 0.25, 0.14, 0.65,

0.17) that represents the sequence 4—»6—>3—>5—>2—»1. Both of the offspring are feasible

solutions.

C r o s s o v e r ?o tn t

(Z +5.„ C.32, 0.5S. C.~-J0.65. C 1"; iO.S". Q.SS. ? 25. 0 1~\ C.-iS. 0.S4

fC - 5 0 52. C 5S. C~- G.49 C.S-; (C.S~. C oS 0 25. C 1~. D.S5. C I " ;

Figure 7. One Point Crossover for Random Keys Genetic Algorithms

Bean (1994) used the Random Keys Genetic Algorithm to solve the multiple

machine scheduling problems, the resource allocation problem and the quadratic

26

assignment problem to test its effectiveness. Chatterjee, Carrera and Lynch (1996) solved

traveling salesman problems by using Random keys Genetic Algorithm. Snyder and

Daskin (2006) presented a Random Keys Genetic Algorithm to solve generalized

Traveling Salesman Problems. Samanlioglu et al. (Samanlioglu, Ferrell & Kurz, 2008)

proposed a random-key genetic algorithm to solve the multi-objective traveling salesman

problem.

While random key genetic algorithm can overcome the difficulty of maintaining

feasibility from parents to offspring, there are two main difficulties with it (Chatterjee,

Carrera & Lynch, 1996). First, when implemented on large problem, the sorting process

to determine the ranks is expensive. Moreover, the encoding process does not preserve

the adjacency of cities in a given tour when crossover with random keys. This makes the

random key genetic algorithm very slow and inefficient.

2.3.3 Simulated Annealing

Simulated annealing is a generic probabilistic metaheuristic for the global

optimization problem. It was derived from the annealing process of metals in which the

crystalline configurations are dependent on the rate of the cooling process. A common

use of simulated annealing is to find near globally minimum cost solutions to large

optimization problems. Kirkpatrick, Gelatt and Vecchi (Kirkpatrick, Gelatt and Vecchi,

1983) were the first to come up and demonstrate applications of simulation techniques in

a wide range of fields, from statistical physics to problems of combinatorial optimization.

At each step of the simulation algorithm a new state is constructed from the

current state by giving random displacement to a randomly selected particle. If the energy

of the new state is lower than that of the current state, then the displacement was accepted,

27

therefore, the new state became the current state. However, if the energy of the new state

was higher by m joules it became the current state with probability

e X p(S).
(10)

This basic step can be mentioned indefinitely. The procedure was called

metropolis loop. The generation of current states by applying this method led to a states

distribution in which the probability of a given state with energy e; to the be the current

state was

exP(" e'Ar) (11)

This is called the Boltzmann distribution, where k is Boltzmann's constant and T is

the temperature.

Each iteration of the search process of simulated annealing moves from the current

trial solution to an immediate neighbor. The selection of that immediate neighbor

(candidate to be next trial solution) depends on certain rules, which represent the

fundamentals of the simulated annealing search process. Those fundamentals are:

Zc = objective function value for the current trial solution

Zn = objective function value for current candidate to be the next trial solution

T = Temperature, a parameter that measures the tendency to accept the current

candidate to be the next trial solution if this candidate is not an improvement on the

current trial solution.

Now we will discuss the rule in which we apply those fundamental concepts for the

selection of one of the immediate neighbors. Assuming the objective is minimization; the

28

simulated annealing search process accepts or rejects a candidate solution to be the next

trial solution as follows:

If Zn < Zc always accept this candidate

If Zn > Zc accept the candidate with the following probability:

Probability (Acceptance) = exp ((Zc - Zn) / Ti)

In the case of having a worse solution (Zn > Zc in case of minimization), a

probability of acceptance is introduced. This probability is compared to a random number

(between 0 and 1) to determine if the current candidate solution will become the next trial

solution.

If random number < Probability (Acceptance), accept the current candidate

solution. Otherwise, reject.

The application of simulated annealing to optimization problems requires some

preliminary steps:

1. Identify the analogues of the physics concepts in the optimization problem at hand.

• Energy function becomes objective functions.

• Particles configurations become parameter values configurations

• Finding a low-energy configuration becomes looking for a near-optimal

solution.

• Temperature becomes the control parameter for the process.

2. Select an annealing schedule that consists of lowering a set of temperatures

together with the amount of time that should be spent at each temperature.

3. Develop a way of generating and selecting new configurations.

29

Any optimization technique has strengths and weaknesses. Simulated annealing is

no exception to that. The relative straightforwardness and the ability to solve many

combinatorial solutions is an important strength of simulated annealing, however, there is

always a need for long computer processing times. Table 2.1 lists some strengths and

weaknesses of simulated annealing presented by research done in Antwerp University,

Belgium.

Strengths

1. Can deal with arbitrary systems and cost

functions.

2. Statistically guarantees finding an

optimal solution.

3. Is relatively easy to code, even for

complex problems.

4. Generally gives a good solution.

Weaknesses

1. Repeatedly annealing with a schedule is

very slow, especially if the cost function is

expensive to compute.

2. For problems where the energy

landscape is smooth, or there are few local

minimum values, SA is overkill - simpler,

faster methods will work better.

3. Heuristic methods, which are problem-

specific or take advantage of extra

information about the system, will often be

better than general methods. But simulated

annealing will often be comparable to

heuristics.

4. Simulated annealing cannot tell whether

it has found an optimal solution.

Table 1. Advantages and Disadvantages of Simulated Annealing

30

2.3.4 Tabu Search

Tabu search is a metaheuristic which belongs to the class of local search

techniques. Fred Glover (1989) is regarded as the one who created the method.

According to Webster's dictionary, tabu is defined as "forbidden to profane use or

contact because of what are held to be dangerous or supernatural powers" or "banned on

grounds of morality or taste" or "banned as constituting a risk."

By using tabu, the method guides a local heuristic search procedure to explore

the solution space beyond local optimality, thus improving the performance of the

procedure. Glover and Laguna (1997) mentioned that "distinguished feature of Tabu

Search is embodied in its exploitation of adaptive forms of memory, which equips it to

penetrate complexities that often confound alternative approaches." They thought

adaptive memory and responsive exploration are the general tenets of Tabu Search. Hertz,

Taillard and Werra (1997) defined the Tabu Search procedure:

1. Choose an initial solution i in S. Set i*=i and k=0.

2. Set k = k + 1 and generate a subset V* of solution in N(i,k) such that either one

of the tabu conditions tr(i,m)eTr is violated (r=l,...,t) or at least one of the

aspiration conditions ar(i,m) eAr(i,m) holds (r=l,...,a).

3. Choose a best j=i©m in V* (with respect to f or to the function f+) and set i=j.

4. If f(i) < f(i*) then set i* = i.

5. Update tabu and aspiration conditions.

6. Stop if a stopping condition is met. Else go to Step 2.

They also defined the stopping criteria as:

31

1. The next iteration does not yield any solutions in the new neighborhood,

N(i,k+1) = 0 .

2. Perform a set number of iterations, k.

3. The objective reaches a pre-specified threshold value.

4. Evidence can be given that a global optimum has been reached.

And because the aspiration criteria can allow a move that would be otherwise

forbidden, it can affect the performance of Tabu Search. Glover and Laguna (1997) gave

a basic aspiration criteria "consisting of removing a tabu classification from a trial move

when the move yields solution better than the best obtained so far."

The strengths of Tabu Search:

1. Allows a move to an inferior solution to escape local optimums

2. Steers away from unpromising inferior solutions

3. Can be applied to both discrete and continuous optimization problems

The weaknesses of Tabu Search (Hertz, Taillard & Werra, 1997):

1. Overwhelmed by the number of parameters to be defined

2. Overwhelmed by the number of iterations

3. The performance depends on the settings of the various parameters.

4. The objective function is hard to evaluate or may not provide enough

information to effectively drive the search to a more interesting area of the

search space.

32

2.3.5 Ant Colony Optimization

Ant colony optimization is a metaheuristic technique for solving hard

combinatorial optimization problems, like the Traveling Sales Problem. Macro Dorigo

(1992) originally proposed it in his PhD thesis in 1992. The inspiration came from the

ants which took shortest path through the communication among the ants by laying and

following the pheromone. The ant colony optimization is based on the communication

among a colony of agents, called ants, mediated by pheromone trails.

Dorigo (Dorigo, 1992; Dorigo & Caro, 1999) defined the framework of the Ant

Colony Algorithm.

• A finite set C = K - cv- • CA'j

• " I C J S T J I i> 11 y ~ c is a finite set of possible connection

among the elements of c , where c is a subset of the Cartesian product

CxC

. fcic}=I\lcic/t) is a connection cost function associated with each

fi = £1{C, L, t) j s a finite set of constraints assigned over the elements of C

and L.

• s ~ ^ci'€y •••'ck> - Ms a sequence over the elements of C. A sequence S is

also called a state of the problem. If S is the set of all possible sequences,

the set s of all the sequences that are feasible with respect to the

33

constraint litC.L.t)^ is a subset of S. The elements in 5 define the

problem's feasible states.

A neighborhood structure is defined as follows: Given two states si and 5 ? ,

if both si and ss are in S, and the state ss can be reached from s% in one

logical step, ^s is said to be a neighbor of ^ i . The neighbor of a state s is

denoted by Ns ,

ill is a solution if it is an element of s and satisfies all the problem's

requirements.

>$"' ' t• is a cost associated to each solution lp.

Ants of the colony have the following properties:

• An ant searches for minimum cost feasible solutions ?$> = minfJ^] L,t1 _

• An ant k has a memory of M that is used to store information on the path it

followed so far. Memory is used to build a feasible solution, to evaluate the

solution and to retrace the path backward.

34

• An ant k in state •*> - (Sr-i* 0 can move to any node j which is in its feasible

neighborhood ™? . The move is selected through a probabilistic decision rule

which is the function of the values stored in a node local date structure that is

obtained by a functional composition of node locally available pheromone trails

and heuristic values, the ant's memory and the problem constraints.

• An ant k can be assigned a start state ss and one or more termination conditions

e . Ants start from the start state and move to a feasible neighbor state until at

least one of the termination conditions is satisfied to build the solution in an

incremental way.

• When ants move from node i to neighbor node j , they update the pheromone trail

Tu on the arcCM). This is called online step-by-step pheromone update.

• Once a solution is built, the ant can retrace the same path backward and update

the pheromone trails on the traversed arcs. This is called online delayed

pheromone update.

• Once it has built a solution and it has retraced the path back to the source node,

the ant dies and frees all the allocated resources.

Besides ants' activities, an ant colony optimization algorithm includes two

additional procedures: pheromone trail evaporation and daemon actions. Pheromone

evaporation is the process through which the pheromone deposited by previous ants

decreases over time. It can avoid a too-rapid convergence to a suboptimal region.

Daemon actions can be used to implement centralized actions which can not be

performed by a single ant. The daemon can observe the path formed by each ant in

the colony and choose to deposit extra pheromone on the components used by the ant

35

that built the best solution. The pseudo code (Glover & Kochenberger, 2002) for ant

colony optimization is in Figure 3.

Procedure ACO metaheuristic

If not termination

AntsActivity ()

PheromoneUpdate ()

DameonActions ()

End if

End Procedure

Figure 8. The Pseudo Code for Ant Colony Optimization

When the ant k is at the city i at time t, the probability that it will move to the city

j i s

k * I n lI } e " I
PiJ11' = 1 S, .M f c[TU(t)]o[r7B i (tHP

vO otherwise

(12)

Where

Ti i is the amount of pheromone on edge@« /) .

a is a parameter which controls the influence of^1'-./).

^J is the desirability of edgefei). In traveling sales problem, ' / " u , "-u is the

distance between i and j .

P is a parameter which controls the influence of *kj.

In this way, we will favor the choice of edges which are short and have a greater

amount of pheromone. The pheromone update is done by the following function:

36

m.
TyCt + 1) = <1 - f) • Ty (f) + Y AT§(t)

k^i (13)

Where 0 — P ^ 1 is the pheromone trail evaporation rate, m is the number of

ants. The parameter P is used to avoid unlimited accumulation of the pheromone trails

and let the algorithm forget the previous bad solution.

,fe tf.\ _
1

if edge {Uj^isused by ant k Ar*(t) = lik(t)
k 0 otherwise (14)

where £*(0 is the length of the & th ant's tour.

Ant colony optimization can be applied to a wide range of combinatorial

optimization problems. It is mainly used in these two fields: NP-hard problems and

shortest path problems in which the properties of the problems' graph representation

change over time. The ant colony optimization has an advantage over simulated

annealing and genetic algorithm when the graph may change dynamically. It can be run

continuously and adapt to changes in real time.

The first problem with ant colony optimization is difficult in definition. It is not

easy to give a precise definition of what algorithm is or is not ant colony because the

definition may change according to the authors and uses. Another weakness is the search

may fall into a local optimum.

2.3.6 Particle Swarm Optimization

Particle swarm optimization is a population-based evolutionary computation

algorithm for solving optimization problems. It was developed by Kennedy and Eberhart

(Kennedy and Eberhart, 1995). It is derived from the research and simulation of the social

behavior of a bird flock. Particle swarm optimization is similar to genetic algorithm in

37

that it is also initialized with a population of random solutions. The difference between

them is that in particle swarm optimization, each particle is also assigned a randomized

velocity so it flows through the problem space (Eberhart and Shi, 2001).

Each particle keeps track of its coordinates in the problem space. The coordinates

are associated with the best solution it has achieved so far. This value is called pbest.

Another best value tracked is the overall best value and its location obtained by any

particle in the population so far. It is called gbest.

Eberhart and Shi (2001) defined the process for implementing the global version

of particle swarm optimization in the following:

1. Initialize a population of particles with random position and velocity in the

problem space.

2. Evaluate each particle's desired optimization fitness function.

3. Update each particle's pbest and its location. If current value is better than

pbest, set pbest value equal to the current value and its location equal to the

current location.

4. Update gbest. If current value is better than gbest, then set gbest to the current

value.

5. Change the velocity and position of each particle according to :

i. Vz(t + l} = wVl{t)^C1rand1()(xl-xl)-hC.rand~{)(3-x,) (15)

ii. JTi(r + 1) = Xitt) +FS(t + 1) (16)

where w is inertia weight, £1 and C* are acceleration constants, rflftwfi ()

and rand.() a r e two different random function range from 0 to 1. ~xi is the

38

location of each particle's local best value (pbest), 8 is the location of

global best value (gbest).

6. Loop to step 2 until a criterion is met. The criterion is usually a sufficiently

good fitness or a maximum number of iterations.

Particle swarm optimization has been used in a wide range of applications. Like

other evolutionary optimization methods, particle swarm optimization can be applied to

solve most optimization problems.

One of the reasons that particle swarm optimization is attractive is that there are

very few parameters to adjust and it is easy to implement. Wang, Zhang, Zhou and Yin

(2008) summarized that the advantages of particle swarm optimization are: simple

structure, immediate accessibility for practical application, ease to implementation, quick

convergence and robustness. But there are still problems with it. First its applications in

solving global combinatorial optimization are limited and not as effective as in global

continuous optimization. And on the other hand, the search in particle swarm

optimization is mainly based on the local information. It is based on each particle's own

best position information and the best global position information so far; therefore, the

particle swarm optimization has no mechanism to get and use global information about

the search space.

2.3.7 Harmony Search

Harmony search is a new heuristic algorithm which mimics the improvisation

process of music player. Geem and Kim (2001) first discussed this new metaheuristic

algorithm. Musical performers seek to find harmony, which is determined by an aesthetic

standard, just as the optimization process seeks to find an optimal solution which is

39

determined by an objective function. And still the pitch of each musical instrument

determines the aesthetic quality; just as each decision variable determines the value of the

objective function. In the algorithm, the harmony is analogous to the optimization

solution and the improvisations are analogous to local and global search schemes (Lee &

Geem, 2005). When a musician improvises one pitch, he usually chooses one of three

options: 1) playing any one pitch from his memory; 2) playing an adjacent pitch of one

pitch from his memory; 3) playing a totally random pitch from the possible sound range.

Similarly, in a harmony search algorithm, each decision variable follows one of three

rules to choose one value: 1) choosing any one value from the harmony search memory, 2)

choosing an adjacent value of one value from the harmony search memory, 3) choosing

totally random from the possible value range.

Lee and Geem (2005) defined the process of harmony search optimization as

follows:

1. Initialize the optimization problem and parameters.

2. Initialize the harmony memory (HM) by randomly generating solution vectors

and sorting by the values of the objective function. x l• x2, - • ••. x* '' (HM5 [s

the number of solution vectors in harmony memory.).

3. Improvise a new harmony from the HM. The new harmony vector,

x = (xi'Xs>-",xN) is generated based on memory considerations, pitch

adjustments and randomization.

(xz- € [xl. xf, •••. xf*MS\ with probability HMCR

(x'. G Xi with probability (1 — HMCR)

(17)

40

The HMCR is the probability of choosing one value from the historic values

stored in the HM, while ' * ~ HMCR) [s the probability of randomly selecting one

feasible value not limited to those stored in the HM. Each component of the new

harmony vector, x = (*i.-*s*'" >xx), is examined to determine if it should be pitch-

adjusted.

(Yes with probability PAR
Pitch adjusting decision for * l *~ I No with PTob ability i 1 - PARj

(18)

The pitch adjusting is only performed after a value is chosen from the HM.

ajj — xl ± bw - rand{ 0,11 ng\

^w is the distance bandwidth, the amount of maximum change for pitch

adjustment.

The value {1 — PAR) sets the rate of doing nothing.

4. Update the HM. If the harmony vector is better than the worst harmony in the

HM in terms of the objective function value, the harmony replaces the worst

harmony to be put into HM.

5. Repeat steps 3 and 4 until the termination criterion is satisfied.

Harmony search is a global search algorithm which can be easily applied to

various optimization problems. The advantages of the harmony search are: when making

a new vector, it considers all existing vectors rather than only two parents like the genetic

41

algorithm. And harmony search does not require setting initial values for the decision

variables. These advantages may help it in escaping local optima and finding better

solutions. Harmony search gets into trouble when performing a local search for numerical

application (Mahdavi, Fesanghary & Damangir, 2007).

2.4 Hybrid Meta-heuristics

Over the years, research on hybrid metaheuristics has risen considerably in

combinatorial optimization. This research attempted to combine the best features from

different metaheuristics to develop more powerful hybrid implementations than the

original metaheuristics. The most common format of the hybrid metaheuristics is: the

population-based metaheuristics, like genetic algorithm, ant colony, particle swarm etc.,

which are powerful in exploring the solution space were combined with local search

metaheuristics, like hill climbing, simulated annealing, tabu search etc., which are more

powerful in terms of exploitation to develop more powerful hybrid metaheuristics (Suh &

Van Gucht, 1987; see also Fleurent & Ferland, 1994; Kim, Hayashi & Nara, 1995; Chen

& Flann, 1994; Chen et al., 1995; Javadi and Tan, 2005; Li and Li, 2008).

According to (Raidl, 2006), the motivation behind hybrid metaheuristics is to

obtain better performance metaheuristics that exploit and unite advantages of the

individual pure metaheuristics.

Talbi (2002) categorized all hybrid metaheuristics into four hierarchy categories:

Low-level relay hybrid metaheuristic, low-level teamwork hybrid, high-level relay

hybrid and high-level teamwork hybrid.

42

In low-level relay hybrid metaheuristics, a metaheuristic is embedded into a single

solution metaheuristic. For example, simulated annealing was combined with local search

to solve the traveling salesman problem (Martin, Otto & Felten, 1992).

A metaheuristic embedded into a population-based metaheuristic forms low-level

teamwork hybrid metaheuristic. For example, local search metaheuristics, like tabu

search, simulated annealing, etc., had been embedded into genetic algorithm to form this

kind of hybrid metaheuristics (Fleurent & Ferland, 1994; see also Thiel & Voss, 1994;

Kim, Hayashi & Nara, 1995; Davis, 1985; Chen & Flann, 1994; Chen, Wang, Kao,

Ouhyang & Chen 1995).

High-level relay hybrid metaheuristics involve several metaheuristics executed in

a sequence. For example, in (Javadi & Tan, 2005), a hybrid intelligent genetic algorithm

based on the combination of neural network and the genetic algorithm was proposed. In

this algorithm, a neural network is used to improve the convergence of the genetic

algorithm.

In high-level teamwork hybrid metaheuristics, several metaheuristics conduct a

search in parallel. For example, some searches proposed distributed genetic algorithms in

which a fixed number of subpopulations evolve competing solutions. Each one of the

subpopulations is processed independently by a genetic algorithm. An extra operator,

called migration, is proposed to produce exchange between the subpopulations (Tanese,

1989; see also Whitley & Starkweather, 1990; Sun & Wan, 1995; Herrera, Lozano &

Moraga, 1999).

As a population based optimization method, genetic algorithm is powerful in

exploring the solution space while weak in the exploitation of the solutions found. So

43

genetic algorithms have been combined with local search heuristics that are powerful in

exploitation to create more powerful hybrid metaheuristics.

There are several types of hybrid metaheuristics concerning genetic algorithms.

Some hybrid metaheuristics are this type: a local search metaheuristic is embedded into

genetic algorithm. The genetic algorithm is used as a global optimizer while its

recombination operators (mutation and crossover) are augmented with the ability to

perform a local search. Not like classical genetic algorithm using blind operators

regardless of fitness of the original individual and the operated one, the hybrid genetic

algorithms use heuristics as operator which consider an individual as the origin of its

search, apply itself to the individual and replace the original individual with the enhanced

one. The local search heuristics here can be hill climbing (Suh & Van Gucht, 1987; Jog,

Suh & Van Gucht, 1989) , tabu search (Fleurent & Ferland, 1994; see also Thiel & Voss,

1994; Kim, Hayashi & Nara, 1995), greedy heuristics (Davis, 1985), simulated annealing

(Chen & Flann, 1994; Chen, Wang, Kao, Ouhyang and Chen 1995).

Another type of hybrid genetic algorithm is: genetic algorithm and other

metaheuristics are executed in a sequence. As a population based optimization method,

genetic algorithm is powerful in exploring the solution space. This means that genetic

algorithm can quickly locate the high performance regions of the solution spaces. Once

these high performance regions are located, it will be useful to use a local search

metaheuristic to exploit these regions.

According to Talbi (2002), after a certain amount of time, the population of

genetic algorithm is quite uniform. Thus, the process fell into a basin of attraction from

which it has a low probability to escape. It will improve the performance of the

44

metaheuristic to exploit the basin to get the optimal solution in the basin as efficient as

possible. Because genetic algorithm is not good in exploitation, it will be efficient to use

a local search metaheuristic, like hill climbing, tabu search, simulated annealing, etc.

Mahfound and Goldberg (1995) used simulated annealing as local search metaheuristic to

improve the population obtained by a genetic algorithm to get a more powerful hybrid

metaheuristic. Nissen (1994) introduced hill climbing as a local search heuristic to

improve the results obtained by genetic algorithm. In (Javadi & Tan, 2005), a hybrid

intelligent genetic algorithm based on the combination of neural network and the genetic

algorithm was proposed. In this algorithm, a neural network is used to improve the

convergence of the genetic algorithm.

Another direction is using other metaheuristics, like greedy search, simulated

annealing, etc., to generate initial population for genetic algorithm. For example, Lin,

Kao and Hsu (1991) proposed a hybrid genetic algorithm which incorporated genetic

algorithm into simulated annealing. This hybrid genetic algorithm started with simulated

annealing and used genetic algorithm to augment the solution founded by simulated

annealing.

Still another type of hybrid genetic algorithm is: several genetic algorithms

perform a search in parallel. Potter and De Jong (1994) proposed a cooperative co-

evolutionary genetic algorithm. In this algorithm, there are multiple interacting species

and each species represents a subcomponent of a potential solution. And the evolution of

each species is handled by a standard GA.

Some searches proposed distributed genetic algorithms in which a fixed number

of subpopulations evolve competing solutions. Each one of the subpopulations is

45

processed independently by a genetic algorithm. An extra operator, called migration, is

proposed to produce exchange between the subpopulations (Tanese, 1989; see also

Whitley & Starkweather, 1990; Sun & Wan, 1995; Herrera, Lozano & Moraga, 1999). In

(Li & Li, 2008), Li and Li proposed a dual species genetic algorithm in which two

subpopulations with the same size individuals have different characteristics, such as

crossover rate and mutation operator. One subpopulation has a higher crossover rate

while the other has a higher mutation rate. So the new hybrid genetic algorithm has both

good exploration and exploitation ability.

2.5 Lehmer Code

Lehmer code can effectively represent a permutation. It was proposed by Lehmer

(1960).

Lehmer code can code each permutation ITn of n numbers with a function

LC(Y1) : {l,...,n} -» {l,...,n -1} to a special sequence of n-1 numbers (Kromer, Platos &

Snasel, 2009). Lehmer code of a permutation can be expressed by using an inversion

table. Consider a sequence of n numbers x = (x1x2...xn) . An inversion is a pair

(x,,jc;)such that i < j andx, > xr Fori e {l,...,n}, let d, count the number of inversions

with i as the smaller index. Then the sequence (d1d2..dn)is called an inversion table of

permutation x. Q<dl < n-i fori=l,...,n.

For example, the permutation (3 4 5 2 6 1) can be coded into (2 2 2 1 1 0) by

Lehmer code. When the genetic algorithm uses Lehmer code to encode the solutions, the

offspring created by crossover of the parent solutions are always feasible. Moreover, it

can preserve some edge information from the parent solutions to the offspring.

46

In (Kromer, Platos & Snasel, 2009), Kromer et al. presented a Lehmer code

genetic algorithm and compared it with the other encoding methods. Pesko (2006)

proposed a differential evolution algorithm with Lehmer code encoding the candidate

solutions to solve the Traveling Salesman Problem.

By using Lehmer code representation, the difficulty for traditional Genetic

Algorithms to maintain feasibility from crossover parent solutions to offspring solution

will be solved automatically. The solutions getting from crossover will be always feasible.

The following figure shows how Lehmer code representation crossover works.

After crossover- 13 2 415 6 4 2 3 6 5 After crossover o 1 0 0|o"o 5 3 llTTo

Traditional GA Me pomt crossover Decode J [_

1 3 2 4 5 6 6 4 2 3 5 1

Figure 9. Lehmer Code One Point Crossover

From this figure, we can see that neither solution is feasible in the one point

crossover of traditional GA. While in Lehmer code GA, both solutions getting from

crossover of parent solutions which are the same with those in traditional GA are feasible.

And we can see that with the Lehmer code representation, a certain part of the parent

solutions information can be transferred to the offspring solutions. This means that a

certain part of the schematic information can be reserved. As we know, this is one of the

advantages that Genetic Algorithms has, while random keys Genetic Algorithms can't

47

keep any edge information to transfer to the offspring. This can be one of the

disadvantages of random keys Genetic Algorithms.

48

CHAPTER 3

METHODOLOGY

This research proposes developing a hybrid meta-heuristic consisting of

combining genetic algorithms and local search heuristics, 2-opt heuristics and non

sequential 3-opt heuristics. This method compensates for the weakness of a traditional

genetic algorithm in exploitation while not hampering its ability in exploration. The new

genetic algorithm will have both good exploration and exploitation ability because as a

population based meta-heuristic, genetic algorithm is powerful in exploring the solution

space and as local search heuristics, 2-opt heuristics and non sequential 3-opt heuristics

are powerful in exploitation.

Lehmer code will be used to encode the candidate solutions to solve the infeasible

solution problems for traditional Genetic algorithms brought by crossover when solving

discrete optimization problems. By using Lehmer code representation, the solutions

coming from crossover of parent solutions are always feasible solutions.

In this research, whenever a new solution was produced, no matter if it was

produced by crossover of two solutions from the last generation or by mutation, 2-opt

heuristics and/or non sequential 3-opt heuristics were used to improve this solution until a

local optimal solution was obtained. The 2-opt heuristics and non sequential 3-opt

heuristics were guided by a weighted sum of the objectives. The evaluation function was

a weighted Tchebycheff metric with an ideal point.

The programming language, MATLAB, will be used to implement this new

hybrid genetic algorithm.

49

3.1 Research Problems

There are several research problems that need to be addressed when creating the

hybrid genetic algorithm. These include:

1. How to use the Lehmer code to encode the candidate solution?

2. What kind of local search heuristics will be used to perform a local search?

3. How to combine genetic algorithm and 2-opt heuristic?

4. How to evaluate the solutions?

5. How to test the performance of the new hybrid algorithm?

An approach to each of these research questions is given below.

How to use the Lehmer code to encode the candidate solution?

To overcome the difficulty in maintaining feasibility from parents to offspring for

traditional genetic algorithms that use direct representation, Bean (1994) proposed

random key genetic algorithms. But this encoding technique also has some disadvantages.

For example, the sorting process to determine the ranks of the cities is time-consuming;

the information about the adjacency cannot be preserved, this means that no schematics

can be transferred from this generation to the next one.

In this research, I will use the Lehmer code to encode the solutions. For the initial

solutions, I can definitely use Lehmer code to create the random permutations of n (n is

the number of cities) to represent the initial solutions. But after the initial solutions are

created, these solutions need to be evaluated, improved until local optimal solutions are

obtained and sorted. So these solutions should be decoded to represent the path. Then

these solutions need to be encoded by Lehmer code so the crossover and mutation

operators will create feasible solution. And these coding and encoding processes will be

50

expensive and time consuming. To make these processes simpler, this research will create

the random permutations of n to represent the initial solutions directly using the natural

representation. After these solutions are evaluated, improved and sorted, they will be

encoded by Lehmer code to prepare for the crossover and mutation.

And as stated above, Lehmer code representation can not only guarantee the

feasibility of the solutions getting from crossover of parent solutions, but also keep some

parts of edge information. This makes it a better representation than random keys.

Another possible advantage with Lehmer code representation in Genetic Algorithms will

be the easy implementation of the genetic operator, mutation. This research will

implement one point mutation.

To implement this mutation, first randomly select a number in [0, n-5] (n is the

number of the cities). This number will indicate the position of the city that will mutate.

For example, the number is j , the Lehmer code for this city is temp(j). Then create

another random number in [0, 1]. This number will determine that the Lehmer code for

selected city will be increased by 3 or be decreased by 3. If the random number is less

than 0.5 and temp(j)-3>0 or temp(j)+3>n-j, the Lehmer code of the city will be changed

to temp(j)-3. Or else, the Lehmer code for the selected city will be temp(j)+3.

What kind of local search heuristics will be used to perform local search?

There are many local search algorithms and their variants that we can select from.

Therefore, we need to determine what kind of local search heuristics will be used in the

new hybrid genetic algorithm. The idea is that we will use a local search algorithm to find

local optimal solutions, a non-exhaustive list of local search techniques includes: nearest

neighbor, greedy, 2-opt, 3-opt, k-opt, L-K, etc.

51

The 2-opt heuristic involves in deleting two edges from a tour and reconnecting

the two paths created. Only if the resulting tour is shorter than the previous one will we

make this change. Otherwise, we will keep the initial tour. This procedure will be

continued until no improvement can be made. At this point, we can say a 2-opt local

optimal solution is obtained.

According to (Joson & Mcgeoch, 1995), the 2-opt heuristic will often result in a

tour with a length less than 5% above the Held-Karp bound. The 2-opt heuristic considers

the pair-wise exchange. It involves selecting an edge (Cj,c2) and searching for another

edge (c3,c4) , if distance{cx,c2) + distance(c3,c4)> distance(c},c3) + distance(c2,c4) ,

the change will be accepted. This new solution will be served as the candidate solution to

find another better solution until no better solution can be found. In the worst situation,

each edge will be compared with the rest n-2 edges. Therefore, a simple implementation

of 2-opt heuristic runs ino(n2). Although the other heuristics, like 3-opt, L-K opt, etc.,

can find better solutions than 2-opt, they are more complex than 2-opt. For example, a

simple 3-opt runs in o(n3).

To take advantage of the exploitation ability of 3-opt heuristics and not increase

CPU time too much, this research will also use non sequential 3-opt heuristics. We only

picked up one of four possible 3-opt exchanges. After balancing the effectiveness and

efficiency of all these local search heuristics, this research decides to choose 2-opt

heuristics and non sequential 3-opt heuristics as the local search heuristic.

How to combine genetic algorithm and 2-opt heuristics, non sequential 3-opt

heuristics?

52

As discussed above, there are many types of hybrid genetic algorithms, like

embedding other local search meta-heuristic into genetic algorithm to augment the

genetic operators of genetic algorithms, executing other meta-heuristics and genetic

algorithm in a sequence, having distributed genetic algorithms, etc. In this research, 2-opt

heuristics and non sequential 3-opt heuristics were embedded into genetic algorithms.

Whenever a solution was gotten, 2-opt heuristics or non sequential 3-opt heuristics were

used on this solution until a local optimal solution was obtained. For single objective

TSPs, the 2-opt heuristics and non sequential 3-opt heuristics are guided by the objective

values of the solutions. For multi-objective TSPs, 2-opt heuristics and non sequential 3-

opt heuristics are directed by the weighted sum function.

How to evaluate the solutions?

In traditional genetic algorithm, solutions are evaluated according to the fitness

values of the solutions. For single objective Traveling Salesman Problem, solutions are

evaluated by the objective values of the solutions. For multi-objective TSP, each solution

has multiple objective values. The goal is to find a set of the non-dominated solutions

called the Pareto Set (PS). The evolutionary multi-objective optimization methods can be

classified into two types: the Pareto-based technique and non Pareto-based technique.

This research will use non Pareto-based technique, Target Vector Approach, for

multi-objective Traveling Salesman Problems. In Target Vector Approach, the goal is to

minimize the distance between the generated solution and the target vector. And in this

research, solution will be evaluated by the weighted Tchebycheff function with the ideal

points as the reference points. The ideal points here are the optimal solutions for each

objective function. And this research considers only fixed weight vector. To be more

53

specific, the vector for each objective function is the same. For example, for a 4

objectives TSP, the weight for each objective function is 1/4.

How to test the performance of the new genetic algorithm?

To test the performance of the algorithm proposed by this research, first, the

newly created algorithm will be used to work on some bench mark single objective TSPs.

The bench mark single objective TSPs can be available at TSPIB (Reinelt, 1995). To be

more specific, I will use this hybrid Lehmer code Genetic Algorithms to solve the TSPs:

att48, kroA 100, kroB 100, kroC 100, kroD 100, kroE 100, kroA150, KroB150, KroA 200

and KroB 200. These problems have cities from 48, 100, 150 and 200. And their optimal

solutions are known. All these make them good bench mark problems to test the

performance of the heuristics and meta-heuristics like our algorithm.

And the performance of the new Genetic Algorithms will also be tested on

solving multi-objective TSPs. I will compare the performance of my method on multi-

objective TSPs with the methods proposed by Hansen (2002) and Samanlioglu et al.

(Samanlioglu, Ferrell & Kurz, 2008). To make a good comparison, this research will test

the performance of the algorithm proposed on the same Traveling Salesman problems as

those used in (Hansen, 2000) and (Samanlioglu, Ferrell & Kurz, 2008). More specifically,

I will use the set of Krolak instances with 100 cities from TSPLIB (Reinelt, 1995). The

Krolak instances include 5 instances, kroA 100, kroB 100, ..., kroE 100. For the multi-

objective TSP problem of this research, each instance correspond to the cost matrix of

one objective function, for example, for a three objective TSP problem, kroA 100

corresponds to the cost matrix of objective function 1, kroB 100 corresponds to that of

objective function 2, kroC 100 to that of objective function 3. There are two main

54

advantages by doing this. First, the tours will be within the same scale of range for the

different objectives. This makes the range scaling unnecessary. Furthermore, the optimal

value to each problem is known. So we get the exact ideal point for each objective

function. This makes the implementation of the weighted Tchebycheff function very easy.

Moreover, to make the comparison between the method of this research and the

methods proposed by Hansen (2002) and Samanlioglu, Ferrell and Kurz (2008) valid, the

method proposed by this research will work on TSP problems that have two objectives to

up to five objectives and each problem will be run for 30 times.

3.2 Procedure and Pseudo Code

As mentioned above, the hybrid genetic algorithm will combine genetic algorithm

and 2-opt heuristics and non sequential 3-opt heuristics.

The procedure for the new genetic algorithm:

1. Representation

This research will use the Lehmer code to represent the chromosome. Traditional

genetic algorithm uses binary strings as a chromosome to represent real values of the

decision variables (Holland, 1975). Michalewicz (1996) described the representation of a

chromosome in traditional genetic algorithm.

Suppose we need to maximize a function of n variables,/^*i*-Ts» ••• * -TP : R ~* R ,

and each variable xi takes values from a domain ®i ~ lai>®z] E R . We also suppose six

decimal places for the variables' values are desirable. Obviously, each domain should be

cut into ' h< ~ at' ' 1° equal size range to achieve such precision. A representation

having the variable coded as a binary string of length ni satisfies the precision

55

requirement, if nt is the smallest integer which satisfies^ h ~ ai ' • 10 < 2 '= - 1 Thus,

k

totally we need 1=1 binary bits to represent each chromosome (potential solution).

But it is difficult for traditional Genetic Algorithm to maintain feasibility from

parents to offspring when solving many optimization problems, especially discrete

optimization problems like TSP. For example, Crossover (or recombination) is a genetic

operator used to vary the programming of chromosomes from the two individuals of the

fittest to form the next generation. Traditional Genetic Algorithm uses one point

crossover (Holland, 1975). Suppose we have a traveling salesman problem that has 6

cities. A candidate for this problem is a permutation of these 6 cities. Two such

permutations are 1—>• 3 —>2—»4—»5—»6—>1 and 6—> 4 —>2—>3 —>1—>5 —>6. In traditional

Genetic Algorithm, the genetic representation of these two sequences are the

permutations x = (1,3,2,4,5,6,1) and x = (6,4,2,3,1,5,6). A one point crossover will

divide each permutation at the crossover point and exchange certain segments of the two

permutations. Suppose the crossover point is the fourth place of the permutation. From

Figure 1, we can see that the resulting sequences are 1—• 3 —>2—>4—»1—>5—>6 and 6—>• 4

—»2—»3—>5—>6—>1. Both of them are infeasible.

In this research, we will use the Lehmer code to represent the candidate solution.

But doing this, all solutions creating by crossover two parent solutions will be feasible.

To do this, we first randomly generate a population of permutation of n (n is the number

of the cities) vi .

where i = l.»2,». ,n (n is the number of solutions in the population)

56

Then we use the inversion table to change this initial solution to Lehmer code

representation.

2. Use 2-opt heuristic to improve these initial solutions until all solutions obtained

are local optimal solutions. This 2-opt heuristic will be guided by both a weighted

sum function. Then these initial solutions will be sorted according to their

evaluation values which are obtained by evaluating these solutions by using a

Tchebycheff function.

3. Repeat the following step until a stopping criterion is met.

• Copying the best p% of solutions from the current generation to the next

generation. To avoid the early convergence of the solutions, these

solutions are different from each other. To do this, before a solution is

selected, it needs to be compared with the solutions that have already been

selected to see if there is a solution that is the same as this one. Only the

solution that is different from the solutions that have already been selected

will be selected and kept into next generation.

• Crossover using the classical crossover to form c% of the solutions for the

next generation.

First, pick up two solutions from the current generation to serve as

the parent. To make the algorithm converge to good solutions, we only

select the 50% best solutions to crossover with each other. This means that

only good solutions can be crossed over with each other. This can be done

by picking up two different random numbers from 1 to 0.5 *n (n is the

population size).

57

In this research, the classic one point crossover will be use. And as

we discussed above, the Lehmer code representation can keep edge

information from the parents to the offspring. To keep enough edge

information from the parents to the offspring while not hampering the

exploration ability of the algorithm, we set the crossover point with 70%

and 90% of the number of the cities.

For example, the first two random numbers are 1 and 3. This

means that solution 1 that is - r i = ,-xliix±2 '" xim) will exchange

certain bits with solution 3 that i s - y s = I ^_si>xa2* " ' * x2m J. Then pick

up another random number from 0.7*m to 0.9*m (m is the number of the

cities), and this number will serve as the crossover point. For example, the

number is 75. The solutions 1 and 3 exchange the bits after the 75th bit

with each other. Thus the new solutions are

lvr
x = (x~21xlsxu — x 3 7 6 ...x3m) and

> a = i X_2i X„ X33 ••• X176 -Xlm) .

• Using 2-opt heuristics and non 3-opt heuristics on the newly created

solutions

The solutions created by crossover will be served as initial solution and

put into 2-opt heuristic to find local optimal solutions. Again, the 2-opt

heuristic will be guided by a weighted sum function. And 20% best

solutions created by crossover will be further improved by using non

sequential 3-opt heuristics. This non sequential 3-opt heuristics will also

be directed by a weighted sum function.

58

• Mutation to form another p% solutions for the next generation

In this research, mutation will be worked on the p% best solutions

of the current generation to form the p% solutions for the next generation.

Thus solutions for the next generation will be completely generated

(p%+c%+p%=l).

We noticed that if the Lehmer code of a city in a route is changed

by 3, there will be 4 cities changed in this route. In this research, to

implement mutation operator, we first select the p% best solutions from

the population of the current generation. For each selected solution, pick

up a random number j between 1 and n-5 (n is the number of the cities).

This number indicates the position of the city that will be changed. Then

pick up a random number in [0,1]. This number tells us the selected

Lehmer code will be increased or decreased by 3. Finally, use non

sequential 3-opt heuristic to find the local optimal solution for the new

solution created by mutation. Again, here the non sequential 3-opt

heuristics is guided by a weighted sum function.

Current population Next generation

Improve best solutions

Crossover

Mutation

p%

c%

p%

Figure 10. Generation Transition

59

• Evaluate the solutions using the weighted Tchebycheff function with ideal

points.

• Sort the solutions according to the evaluation values getting from the

above step.

4. Get the solution with best evaluation value.

This solution will be the optimal solution gotten by the new hybrid genetic

algorithm.

The pseudo code for the hybrid genetic algorithm is in the following:

Begin /* hybrid genetic algorithm*

Generate initial population of solutions

Use Lehmer code encode the initial solutions

Find local optimal solutions by using 2-opt heuristic

Evaluate these local optimal solutions and sort them according to the fitness value.

While not finished Do

Copy certain part of solutions to form one part solutions for the next generation.

Breed new individuals through crossover and mutation

Find local optimal solutions for the newly generated solutions by using 2-opt
heuristic and/or non sequential 3-opt heuristics

Evaluate these local optimal solutions and sort all the solutions for the next
generation.

end

Get the best solution (this solution will be right on the first row of the solutions of
last generation)

end
Figure 11. Pseudo code for the new Hybrid Lehmer code Genetic Algorithm

60

CHAPTER 4

IMPLEMENTATION ON SINGLE OBJECTIVE TSPS

4.1 Introduction

To test the performance of the new hybrid Lehmer code Genetic Algorithms, this

Genetic Algorithms will be used on solving some single objective bench mark TSPs.

These TSPs will be att48, kroA 100, kroB 100, kroC 100, kroD 100, kroA 150, kroB 150,

kroA 200 and kroB 200. These TSPs were served as bench mark problems to test

performance of many newly proposed heuristics and meta-heuristics on solving

combinatorial problems. And their global optimal solutions are known. All these make

them good bench mark problems in this research. They are available at TSPLIB (Reinelt,

1995).

For each bench mark problem, the algorithm will be run for 5 times to test the

robustness of the algorithm so we can compare the results from this research with the

results from Samanlioglu's (2006) research. The criteria used here will be the number of

the optimal solutions obtained by using the new algorithm and the average relative excess.

4.2 Implementation

Since all these TSP problems are single objective, the solutions will be evaluated

and sorted according to their objective values directly. And the fitness value will also

guide the search of the local search algorithms, 2-opt and non sequential 3-opt.

In this research, the new genetic algorithm will use Lehmer code represent the

candidate solutions. By using Lehmer code, the solutions getting from the crossover of

61

the parent solutions will be always feasible.

Except for the genetic operators, crossover and mutation, that were used in

traditional Genetic Algorithms, we add another operator that is called elite. To implement

this operator, the 20 percent best solutions from last generation are selected to keep it to

the next generation. And to avoid the early converge to the local optimal solutions, these

20 percent best solutions are non repeatable. This means that no solution can be selected

twice in each generation.

In this research, non sequential 3-opt heuristic will be used in this research. As we

know, local optimal solutions getting from 3-opt heuristic are also 2-opt optimal. The

following figure show the pseudo code for the 3-opt heuristic used in this research.

3-opt

for k=l:m (m is the number of cities)
for j=l:m-4

for l=l:m-2-j
prior_change=summation of distances between z(k)and z(k+l), z(k+j) and z(k+j+l), z(k+j+l) and
z(k+j+l+l);
post_change=summation of distances between z(k) and z(k+j+l), z(k+l) and z(k+j+l), z(k+j) and
z(k+j+l+l)

if post_change-prior_change<0
make the change and update the fitness value

end
end

end
end

Figure 12. Pseudo Code for 3-opt Heuristic

The non sequential 3-opt heuristic will work the following way:

1. Randomly pick up 3 points from the selected path.

2. Compute the distances between each point and its successive point and sum up

these distances. The summation is defined as pre-distance.

3. Recombine these 3 points and their successive points and get the summation of

the distances of the newly created lines. The summation is defined as post-

62

distance.

4. Define the change of distance as: the post-distance - the pre-distance. If the

change of the distance is less than 0, change the sequence of the selected path as

the new created path and the fitness value as the fitness value plus change of the

distance.

5. Repeat the step 2-4, until no improvement can be made.

The following figure shows how the 3-opt works.

C C

Figure 13. Non Sequential 3-opt Heuristics Move

By cutting a route into 3 parts, there will have 8 combinations for these 3 parts

and only 4 combinations within these 8 combinations involve in exchanging 3 edges,

AB'C, ACB', AC'B, A'BC (A' is the reverse of A). To make it simpler, we only take into

account one of these combinations AB'C. And we called this non sequential 3-opt

heuristic. In this research, solutions obtained by using non sequential 3-opt are also 2-opt

optimal.

As stated above, the new hybrid Lehmer code Genetic Algorithms will use the

Lehmer code to represent the permutation of the cities. By using Lehmer code

representation, the offspring solutions created by crossover the parent solutions are

63

always feasible. And the algorithm will also use traditional genetic operators: crossover

and mutation. The crossover used here is the traditional one point crossover. First,

randomly pick up two solutions. Then randomly pick up a number from 1 to n (n is the

number of the cities). This random number will be served as the crossover point.

Furthermore, switch certain parts of the two solutions according to the crossover point.

At last, use 2-opt heuristic to find the local optimal solutions for the newly created

offspring solutions.

For mutation, this research will use one point mutation. We noticed that if the

Lehmer code of a city in a route is changed by 3, there will have 4 cities changed in this

route. In this research, we first select the c% best solutions from the population of the

current generation. For each selected solution, pick up a random number j between 1 and

n-5 (n is the number of the cities). This number indicates the position of the city that will

be changed. Then pick up a random number in [0,1], this number tells us the selected

Lehmer code will be increased or decreased by 3. Finally, use non sequential 3-opt

heuristic to find the local optimal solution for the new solution created by mutation. The

following figure shows how one point mutation works.

Lelmiei code lepiesentation of solution Solution path

{ 4 , 3 , 0 , 2 , 0 . 1 , 0 , 0 } C Z Z Z ^ 5--4->2- 6- 1- "- 3- 8

Fus t create random numbei to indicate the
position of imitation, for example. 3

•—i Create a random numbei (0,1), to determine
! this selected code will be increased or deciease

, I by 3. Since here the selected numbei is 1, it
v can only be increased b y 3

New solution Solution path
{ 4 , 3 , 4 , 2 , 0 , 1 , 0 , 0) ^-—-—x^ 5_ 4- -7- -3. - i - -g-->- 8

Non sequential
3-opt heuristic

\7
Local optimal solution

64

Figure 14. One Point Mutation Procedure

Whenever a solution is created, no matter if it is created by mutation or crossover

of the parent solutions, 2-opt heuristic or non sequential 3-opt heuristic will work on it to

find a local optimal solution. In this way, the solutions that comprise the population of

each generation will be local optimal solutions. Thus, this new Genetic Algorithm will

converge early. The 2-opt heuristic involves randomly picking up two edges in the

current route and replacing them with another two edges that have same end points such

that the resulting route has shorter distance. The following figure shows how 2-opt works.

2-opt
for k=l:m (in is the numbei of cities)

forj=2:m-2
priorchange^swmnation of distances between z(k) and z(k+l), z(k+j) and z(k+j+l)
pQst_change=siininiation of distances between z(k) and z(k+j), z(k+l) and z(k+j+l)

if postcliange-prioichangr 0
make the change and update the fitness value

end
end

end

Figure 15. Pseudo Code for 2-opt Heuristics

In this chapter, the new algorithm will work on single objective TSP. So the

evaluation of each solution will use its objective value directly. And solutions will be

sorted according to their objective values. The 2-opt and 3-opt heuristics will be also

guided by the objective values to search for local optimal solutions.

The following diagram (Figure 10) shows how the new hybrid Lehmer code

Genetic Algorithms works on single objective TSP.

65

Start

V

Generate initial solutions and evaluate them

v

Use 2-opt heuristic to find local solutions for
these initial solutions

V

Sort these local optimal solutions according to
their evaluation values

No

w

For Generation =1: n

i '

Select p% best solutions

*
Create c% solutions of next generation by
crossover the solutions of current generation
and use 2-opt to find local optimal solutions
and for 20% best local optimal solutions use 3-
opt to improve them

1
Mutate p% best solutions and use Non
sequential 3-opt to find local optimal
solutions for them

^"^ nr A *>».

Yes

Get optimal solution

i '

End

Figure 16. Process of the Hybrid Lehmer Code Genetic Algorithm

4.3 Experiment and Results

The new hybrid genetic algorithm will work on TSPs with cities from 48, 100,150

to 200. The following table shows the coordinates of the cities in Att48 that has 48 cities.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

X

6734

2233

5530

401

3082

7608

7573

7265

6898

1112

5468

5989

4706

4612

6347

6107

7611

7462

7732

5900

4483

6101

5199

1633

y
1453

10

1424

841

1644

4458

3716

1268

1885

2049

2606

2873

2674

2035

2683

669

5184

3590

4723

3561

3369

1110

2182

2809

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

X

4307

675

7555

7541

3177

7352

7545

3245

6426

4608

23

7248

7762

7392

3484

6271

4985

1916

7280

7509

10

6807

5185

3023

y
2322

1006

4819

3981

756

4506

2801

3305

3173

1198

2216

3779

4595

2244

2829

2135

140

1569

4899

3239

2676

2993

3258

1942

Table 2. The Coordinates of Cities (ATT 48)

Att48 is a set of 48 cities (US state capitals) from TSPLIB. The distances between

cities are Euclidean distance. So the goal of att48 is to minimize the distances of the route

that visits each city once and return to the start point. The global optimal solution for this

problem is known with the shortest distance: 10628. And the tour for the global optimal

solution is: 1 - • 8 -> 38 -»• 31-* 44 -»• 18 -> 7 -»• 28 -* 6 - • 37 -»• 19 -» 27 -»17-+ 43

-»• 30 -»• 36 -»- 46 - • 33 - • 20 -> 47 -»• 21 -> 32 - • 39 -> 48 -»• 5 -> 42 - • 24

-> 10 -»• 45 - • 35 -> 4 -»• 26 -> 2 - • 29 -> 34 - • 41 -»• 16 -> 22 -> 3 -»• 23

-»• 14 -»• 25 -> 13 -»11 -^ 12 - • 15 -»• 40 -> 9 -»1.

67

To implement the algorithm here, the initial parameters are set as the following:

population size: 25 generations: 100, p% (percent of solutions being improved and

mutated): 20%, c% (crossover rate): 60%. Each bench mark problem was run for 30

times. And the experiments were conducted computer with CPU, Intel Core 2 6600, 2.40

GHz, and 2 GB of RAM. And the algorithm was implemented in Matlab.

The relative excess over the best known solution is defined as

, . evalutaticn valuegettingfromour method- the best known evaluationvalue
relativeexcess =

the best known evaluationvalue
The following table shows the results of the new genetic algorithm on Att48.

Att48

Opt

10628

Best
Solution

10628

Worst
Solution

10628

Average Relative
Excess

0

Number of Opt

30

Table 3. Results for Att48

From Table 2, we can see that the average relative excess is 0 and the number of

optimal solution is 30. The new Genetic Algorithms seems robust when dealing with

small single TSPs, like att48.

More experiments are executed on TSPs with the number of cities, 100, 150 and

200. These TSPs are the set of Krolak instances from TSP (Reinelt, 1995). They are

KroA 100, KroB 100, KroC 100 and KroD 100 with 100 cities and KroA 150, KroB

2150, KroA 200 and KroB 200 with 200 cities. All these problems are generated from

randomly placing cities in a rectangle measuring 4000 by 2000 and the using the rounded

2 dimensional Euclidean distance to generate the cost matrix (Hansen, 2000).

For all these TSPs, the same parameters will be used for the hybrid genetic

algorithms. The new Genetic Algorithms worked on all these TSPs 5 runs. And for each

run, the parameter was set to be the same, population size: 25, elite rate: 0.2, mutation

68

rate: 0.2, crossover rate: 0.60 and generations: 100. The following table shows the results

for TSPs with the 100 cities.

KroA 100

KroB 100

KroC 100

KroD 100

KroE 100

Opt

21282

22141

20749

21294

22068

Best
Solution

21282

22141

20749

21294

22068

Worst
Solution

21282

22197

20749

21294

22106

Average Relative Excess

0.00%

0.0524%

0.00%

0.00%

0.0335%

Number of
Opt (out of 5)

5

4

5

5

4

Table 4. Experiment Results for TSPs with 100 Cities

From the table, we can see that the new genetic algorithms proposed in this

research can almost always find optimal solutions for all the selected TSPs with 100

cities with 4 to 5 out 5 runs. And the average relative excess for each TSP is very close to

0%, less than 0.1%. The average CUP time for this new Genetic Algorithms on solving

single TSPs with 100 cities is around 398 second.

To make the new Genetic Algorithms more efficient, this means to make the new

Genetic Algorithms running faster on single objective TSPs, we made a change to the

algorithm. We only use 2-opt heuristics on the solutions created by mutation while not

using non sequential 3-opt heuristics. We still got good results while the average CPU

time was reduced to 152 seconds.

KroA 100

KroB 100

KroC 100

KroD 100

KroE 100

Opt

21282

22141

20749

21294

22068

Best
Solution

21282

22141

20749

21294

22068

Worst
Solution

21282

22141

20749

21310

22106

Average Relative Excess

0.00%

0.00%

0.00%

0.015%

0.0335%

Number of
Opt (out of 5)

5

5

5

4

4

Table 5. Another Experiment on TSPs with 100 Cities

Samanlioglu (2006) proposed a hybrid random key genetic algorithm to solve

single TSPs. The population size used in her research was 300, 400, 500 and 1000 with

69

generations 200 and 300, respectively. The following table shows the results from her

research (Table 6).

kroBlOO

k r a O O O

kroDlOO

kroFHOO

N

300

400

500

1000

300

400

500

1000

300

400

500

1000

300

400

500

1000

300

400

500

1000

X

200

300

_ _ 2 0 Q _ _

300

200

300

200

300

200

300

200
300
200
300

200

300

200
300

200

300

200

300

200

300

200
300

200
300
200
300

200

300

200

300
200

300

200

300

200

300

Average Relative
Excess

0

0

0

0

0

0

0

0

0

0.000867

0
0
0
0

0.000714

0

0
0

0

0

0

0

0

0

0.000282

0.000141
0.000282
0.000423
0.000282
0.000282

0.000141

0.000141

0.001133
0.001251
0.00029

0.00048

0.001251

0.00048

0

0

Average CPU
Time (s)

2.4842

S.1092

3.0814

4.2908

6.7092

5.372

6.7722

7.75

15.4158
16.9404

21.588
37.053

40.8218
25.5312

62.9218

60.0842

14.225
13.2596

18.05
14.3656
21.053
18.7996

36.9718

35.3532

21.472

19.047
23.4812
27.641
28.7062
31.5592

57.803

56.5436

24,5692
21.147

21.2564

22.8406

32.016

24.8406

48.3846

45.1778

Oat of Five
Replications

So

So

5o

5o

5o

So

5o

5o

5o
4 o l t

5o
So

So

5o

4 o l t

5o

5o
5o

5o
5o
5o

5o

So

So

3o2l

4 o h

3o2t
2o3t
3o2t
3o2s

4 o l t

4 o l t

3o2t

2o3t

4 o l t

4 o l t

2o3t
4 o l t

5o

5o

Table 6. Samanlioglu's Results for Single TSPs (2006)

Compared to the results from Samanlioglu's research, we can see that the results

getting from the method proposed in this research are better than Samanlioglu's method

70

even by using smaller population size and fewer generations. For example, for KroD 100,

this research got 5 out of 5 optimal solutions with population size 25 and generation, 100

while Samanlioglu's research got 3 out of 5 optimal solutions with population size 300

and generation 300.

• My method (N=25, G-300)

i

Samanlioglu's. results! N=300,
G=200) '•

!
i
!

100 KroE 100 1
!
i

Figure 17. Comparison of Numbers of Optimal Solutions on TSPs with 100 Cities

Since in this research we programmed the code by using Matlab on the VCL

(Virtual Computer Lab) computer with CPU, L5420, 2.50 GHz, and 2 GB of RAM while

Samanlioglu's coae was programmea by using C++ on a distributed computer system, we

can't compare the CPU time for both methods.

To demonstrate the performance of the new hybrid Genetic Algorithms, more

experiments were conducted on single objective TSPs with bigger sizes of cities. For

these TSPs, the parameters are the exactly same as those used for the experiments with

100 cities, that is, population size: 25, generation: 100, c% (percent of solutions being

improved and mutated): 20%, p% (crossover rate): 60%. And all these TSPs will be ran

for 5 times.

5

4

3

2

1

0

9 "

KroA 100 KroB 100 KroC 100 KroO

71

The following table shows the results for the new genetic algorithms on TSPs

with 150 cities and 200 cites. We can see that the new genetic algorithms can still find the

optimal solutions with probability. And the average relative excess for the TSPs with 150

and 200 cities is very low, less than 1% percent. This means that the performance of the

proposed new hybrid Lehmer code Genetic Algorithms on medium size TSPs, such as

TSPs with 150 cities and 200 cities, is also good. And it may need to use bigger

population size or run longer generation to obtain better performance for the proposed

method on bigger size TSPs.

KroA 150

KroB 150

KroA 200

KroB 200

Opt

26524

26130

29368

29437

Best
Solution

26524

26130

26431

29455

Worst
Solution

26598

26140

26590

29695

Average Relative

0.1108%

0.0115%

0.4358%

0.0591%

Excess
Number of

Opt (out of 5)

4

4

1

1

Table 7. Results for Single TSPs with 150 and 200 Cities

From the above table, we can see that the algorithm also work well when dealing

with bigger single TSPs with the same configuration. The average relative excess is less

than 1%. To get better solutions on TSPs with more cities, the population size and the

generation should be increased.

4.4 Conclusion

From the above experiments, we can see that the new hybrid Genetic Algorithm

can easily find the optimal solution for small size TSPs, for example, att48, kroA 100,

kroB 100, kroC 100 and kroD 100, and also the optimal solutions for medium size TSP,

such as, kroA 150, kroB 150, KroA 200 and KroB 200.

Compared with the other Genetic Algorithms and hybrid Genetic Algorithms, the

new hybrid Lehmer code Genetic Algorithms has some advantages on single TSP.

72

First, by using Lehmer code, the new hybrid Genetic Algorithms can easily

overcome the difficulty with traditional Genetic Algorithms in keeping feasibility when

crossover parent solutions create offspring. As we can see in the experiments, the

crossover operator directly work on the Lehmer code represented parent solutions and no

repairing process needed for the offspring solutions. All the solutions from crossover are

feasible.

Furthermore, although the random keys Genetic Algorithms can also solve this

difficulty, it loses the edge information at the same time when it solves the difficulty of

keeping feasible solutions. This means, the random keys Genetic Algorithms can keep

any schematic information from the parent solutions to the offspring. As we know, this

schematic information is very important feature of Genetic Algorithms. And it's one of

the reasons that makes Genetic Algorithms converge quicker. While by using Lehmer

code representation, at least certain part of the edge information can be transferred from

the parent solutions to the offspring. For example, the following figure shows how

Lehmer code representation one point crossover keeps part of parent information into the

offspring solutions.

ciossovei point

Figure 18. One Point Crossover of Lehmer Code GA (Keep Parent Information)

From the figure, we can see that the parent edge information, 1—> 3 —• 2 —• 4 and

6 —• 4 —• 2 —> 3 were kept from the parent solutions to the offspring respectively.

73

Finally, the implementation of the new Genetic Algorithms is very easy compared

to the random keys Genetic Algorithms. For example, for the encoding and evaluation of

the solutions, the random keys Genetic Algorithms must sort all cities and get the ranks

of all cities first. This means that at least an extra sort process is needed. And you don't

know the neighbors for a specific city before you sort all cities. While in Lehmer code

Genetic Algorithms, the position of each code is the rank of the city represented by the

code. And the city represented by the code can be easily gotten from the list {1, 2, 3, ...,

n} (n is the total number of the cities) according to the code of the city. The neighbors of

this city are the cities right before and behind it.

Another advantage of this new Genetic Algorithm is in tuning up the solutions.

For example, in this research, I used an improvement operator in this new hybrid Genetic

Algorithms. The idea is to improve the solution by randomly changing the locations of 4

cities. This operator can be very simply implemented by randomly picking up a random

number and decreasing or increasing the code which is located in the position of the

random number by 3. The following figure shows how this works.

selected city

1 3 @ 4 6 5 R I O - 9 C = C ^ > - O l @ 0 1 O 1 2 O 0

dcode

13g2[508 1O-9 < ^ - Z J 0 1

Figure 19. One Point Mutation

From this figure, we can see that three cities change position by simple add 3 for

one of the cities' Lehmer code. While in random keys Genetic Algorithms, it is not so

easy to implement the similar operator. For example, in Samanlioglu's Random Keys

G *
3 0 1 0 1 2 0 0

74

Genetic Algorithms, 4 cities were randomly picked up and all the combinations of these

cities were taken into account. Then 2-opt heuristics worked on these possible solutions

and selected the best one. At last, repeated the above procedure for 10 times and selected

the one that had the best fitness value.

Based on the above experiments and discussion, we can reach the conclusion that

the new hybrid Lehmer code Genetic Algorithms is very robust when dealing with the

single small and medium size of single objective TSPs. And it's very easy to implement

this new hybrid Genetic Algorithms.

The future work will be to find ways to improve the performance of the

algorithms on medium and large size of single objective TSPs. As we can see the

algorithm performed not good even for medium size of single TSPs as it on small size

problems. Another direction is to improve the efficiency of the algorithms. Since we used

non sequential 3-opt heuristic as one of the local search heuristics and as we know, 3-opt

heuristic is time consuming compared to 2-opt heuristic, the time expense for this new

hybrid genetic algorithm is higher than Samanlioglu's random keys genetic algorithm

which used only 2-opt heuristic as the local search method. The main reason is that the

algorithm in this research was coded by using Matlab on the VCL computer with CPU,

L5420, 2.50 GHz, and 2 GB of RAM while Samanlioglu's code was programmed by

using C++ on a distributed computer system. So it leaves some room for us to improve

the efficiency of the algorithm in the future.

75

CHAPTER 5

IMPLEMENTATION ON MULTI-OBJECITVE TSPS

The single objective TSPs belong to the class of NP-hard problems. It's hard to

find a global optimal solution efficiently and effectively. While for multi-objective TSPs,

the difficulty of the TPS itself and the difficulty of multiple objectives make it a NP-

complete problem. It's much harder to find the global optimal solutions for multi-

objective TSPs. Many research used the methods that were used to solve the single

objective TSPs to solve multi-objective TSPs. But the performance was not as good as

solving the single objective TSPs. And the solutions for multi-objective TSPs are highly

depended on the preferences of the decision makers and the compromises between

different objectives.

Many heuristics and meta-heuristics were proposed to attack the multi-objective

TSPs. Within all these heuristics and meta-heuristics, the evolutionary meta-heuristics,

such as Genetic Algorithms and all its variants, etc., are very promising. These meta­

heuristics start from initial solutions and gradually improved to better solutions. Ideally,

an acceptable solution can be found within a certain timeline. And these techniques deal

with a population of solutions simultaneously. This makes them a good option to deal

with multiple objectives since a compromise between different objectives can be made

within a population of solutions.

The evolutionary multi-objective optimization methods can be classified into two

types: the Pareto-based technique and non Pareto-based technique (Samanlioglu, Ferrell

& Kurz, 2008). For the Pareto-based techniques, the selection is directed by the Pareto

dominance and Pareto ranking. The multi-objective genetic algorithm proposed by

76

Fonseca and Fleming (1993), the niched Pareto genetic algorithm (Horn, Nafpliotis &

Goldberg, 1994), NSGA II (Deb et al., 2002), SPEA II (Zitzler, Laumanns & Thiele,

2001), etc., belong to this type of technique.

In the non Pareto-base techniques, the selection does not directly rely on the

Pareto dominance and Pareto ranking, like vector evaluated genetic algorithm (Schaffer,

1984), target vector approach (Coello, 2001), memetic random key genetic algorithm

(Samanlioglu, Ferrell & Kurz, 2008), etc.

In this research, a new hybrid Lehmer code Genetic Algorithms will be proposed

to solve the multi-objective TSPs. A non Pareto-based technique will be used for this new

algorithm in solving multi-objective TSPs. More specifically, Target Vector Approach

will be used in this research. In this approach, the goal is to minimize the distance

between the generated solution and the target vector. This goal guides the new Genetic

Algorithms to find solutions for multi-objective TSPs. Here we will use the weighted

Tchebycheff function with the ideal points as the reference points. And the built-in local

search technique, 2-opt heuristic and the non-sequence 3-opt will be guided by a

weighted sum function.

5.1 Introduction

The main difference between single objective TSPs and multi-object TSPs is that

for single the evaluation of the solution is solely dependent on the single fitness value of

the solution while in multi-objective TSPs, the evaluation will depend on multiple fitness

values. Therefore, the difficulties to solve multi-objective TSPs come from both the

difficulty of TSPs itself and the difficulty of multiple objectives. As we know, even

77

single TSP is a NP-hard problem. The multiple objectives make multi-objective TSPs

NP-complete problems.

The multi-objective optimization problem (MOP) can be defined as the following:

min f(x) = {f,(x),f2(x),...,fk(x)}

s.t. xeS

Where k > 2, x = (xl,x2,...,xn)is the decision variable vector, S is the feasible

solution space, f(x) is the objective vector.

Weighted LP norms are defined as the following (Hansen and Jaszkiewicz, 1998):

Lp(z\z2,A) = (£A]\z)-z2
]\y"' pe{l,2,...} (21)

7=1

Where A = [Al,A2,...,Al],A] > 0 , is a weight vector.

For a multi-objective TSP, the general weighted Lp norm is defined as

(22)

Where A} >0, j =l,2,...,J,^iA] = 1 , z*is the reference point.
7=1

If we set the reference point the global optimal solution for / , when p - oo, we

get the weighted Tchebycheff metric

min max{^ (/ 7 - z*)}

s.t. xeS

When p = 1, we get the weighted sum function

min £(/l;(/,-z*))
7=1

S.t. X £ o (OA\

Many heuristics and meta-heuristics were proposed to solve single and multiple

J

J x

s.t. x e S

p

y/p

78

objectives TSPs, including Genetic Algorithms (Holland, 1975), Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983), Tabu Search (Glover, 1989), Ant Colony (Dorigo,

1992) and Particle Swarm (Kennedy & Eberhart, 1995), etc. Within all these techniques,

genetic algorithm is very promising in solving TSPs including single and multiple

objectives TSPs because of its ability to deal with a population of solutions

simultaneously and evolve to better solutions, especially when it is combined with

domain-specific local search heuristics, such as 2-opt, 3-opt, n-opt, etc. With its genetic

operators, such as mutation and crossover, genetic algorithms can have good exploration

and exploitation abilities. The mutation operator can keep diversity for genetic algorithm

while crossover together with the elite selection procedure can let genetic algorithms

converge to better solutions.

There are also many heuristics and meta-heuristic proposed to attack on multi-

objective combinatorial optimization problems. Among these, Jaszkiewicz and Czyzak

(1998) proposed a Pareto simulated annealing algorithm to solve multi-objective

combinatorial optimization problems. Jaszkiewicz (2002) presented a new genetic local

search algorithm to solve multi-objective TSP. And he concluded that local search guided

by weighted linear function gave better solution than guided by weighted Tchebycheff

function. Hansen (2000) proposed a Tabu Search with local search heuristic to solve

multi-objective TSP. He suggested that heuristic of the Tchebycheff function gives better

solution when using a substitute scalarizing function instead of the Tchebycheff function

to guide the local search heuristic. Samanlioglu, Ferrell and Kurz (2008) present a

memetic random key genetic algorithm embedded with a 2-opt heuristic to solve multi-

79

objective TSP. In her research, the local search is guided randomly by either a weighted

Tchebycheff function or a weighted sum function.

In this research, a new hybrid Lehmer code Genetic Algorithm which combined

Genetic Algorithm with local search techniques, 2-opt and non sequential 3-opt. We used

Lehmer code to represent the potential solutions for Genetic Algorithms. With the

exploration ability of Genetic algorithm and the exploitation ability of local search, this

new genetic algorithm is good in exploration and exploitation. And by using Lehmer

code, the solutions created by mutation and crossover operators are always feasible. So

an extra repairing step is not required in this new algorithm.

And to attack the multiple objectives difficulty associated with multi-objective

TSPs, we used non Pareto-based technique. To be more specific, the Target Vector

Approach will be used in this research. The goal of this technique is to minimize the

distance between the generated solution and the target vector. This goal guides the new

Genetic Algorithms to find good solutions for multi-objective TSPs.

In this research, 2-opt heuristics and non-sequence 3-opt heuristics were directed

by a weighted sum function to find local optimal solutions.

5.2 Implementation

The implementation of the new hybrid Lehmer code on multi-objective TSPs is

similar to the implementation of this algorithm on single objective TSPs. But since multi-

objective TSPs is more complicated than the single objective TSPs, it's much more

difficult to solve multi-objective TSPs than single objective TSPs. Additional procedures

are needed to solve multi-objective TSPs.

The following diagram (Figure 10) shows how the new hybrid Lehmer code

80

Genetic Algorithms works on multi-objective TSP.

Start

Generate initial solutions and evaluate them

Use 2-opt heuristic to find local solutions for
these initial solutions (guided by a weighted
sum function)

I
Sort these local optimal solutions according to
their evaluation values (Tchebycheff value)

For Generation =1: n

Select p% best solutions and keep it to
the next generation

T
Create c% solutions of next generation by crossover the solutions
of current generation and use 2-opt to find local optimal solution,
20% best solutions from these newly created solutions will be
improved by non sequential 3-opt

Mutate p% best solutions and use non
sequential 3-opt to find local optimal
solutions for them (guided by weighted sum)

No

End

Yes
'

Get optimal solution

i '

End

Figure 20. Multi-objective TSPs Process of the Hybrid Lehmer Code Genetic Algorithm

The procedure for the new genetic algorithm:

1. Initial solutions

81

To create initial solutions, we randomly created a population of permutations of n

cities (n is the total number of the cities). And in this research, 2-opt heuristic was used to

improve these initial solutions until local optimal solutions was obtained.

Unlike the 2-opt heuristic used in single objective TSPs, here the 2-opt heuristic

was guided by weighted sum function. The 2-opt heuristic in single objective TSPs is

solely guided by the single objective value. This means that change in the single

objective value will determine if the change in the solution will be accepted. While in

multi-objective TSPs, because of the existence of multiple objectives, whether a change

will be accepted or rejected can't be determined by only one objective value. In this

research, we used a weighted sum function to guide the 2-opt heuristics. This means that

a change will be accepted if it can lead to a lower value of the weighted sum function.

After the population of initial solutions was created, they were sorted according to

their evaluation values obtained by using the Tchebycheff function with an ideal point.

2. Representation

To prepare the initial solutions for the processing of genetic operators, these

solutions should be represented by a certain representation method. As discussed above,

it is difficult for traditional Genetic Algorithm to maintain feasibility from parents to

offspring when solving many optimization problems, especially discrete optimization

problems like TSP. The problem is with the representation of traditional Genetic

Algorithms. When solving TSPs, traditional Genetic Algorithms used the permutation of

the cities to represent the potential solutions. This will cause infeasible solutions problem

when crossing over the current solutions to created offspring solutions.

82

For example, we have a traveling salesman problem that has 6 cities. A candidate

for this problem is a permutation of these 6 cities. Two such permutations are 1—* 3

—»2—>4—»5—•6—>1 and 6—> 4 —»2—>3—> 1—>5—>6. These two permutations served as two

parent solutions. When we use one point crossover and set the third place as the crossover

point, the resulting sequences are 1—>3—>2—>3—>1—>5—»6 and 6—>4 —>2—>4—>5—>6—>1.

Neither of them is feasible. To solve this problem, the repairing procedure is need for

traditional Genetic Algorithms.

While by using the Lehmer code representation, these two parent solutions are

represented as (0, 1, 0, 0, 0, 0) and (5, 3, 1,1, 0, 0). When we use the one point crossover

and the same crossover point as in the traditional Genetic Algorithms, the resulting

solutions are (0, 1, 0, 1, 0, 0) and (5, 3, 1, 0, 0, 0). These two solutions represent the

sequence 1—>3—>2—»5—>4—>6—>1 and 6—>4—»2—>1—>3—»5—>1. Both solutions are feasible

solutions. Crossover solutions represented by using Lehmer code always create feasible

solutions and no repairing procedure is needed here.

And Lehmer code representation has an advantage over random key

representation. One of the important features for Genetic Algorithms is that Genetic

Algorithms can keep some parent information from the parents to the offspring.

Although random key representation can overcome the infeasible solutions difficulty, it

can't keep any edge information from the parent solutions to the offspring solutions.

While in Lehmer code representation, the edge information before the crossover point

can be preserved from the parent solution to the offspring solutions. For example, in the

above example, the first three cities in the offspring solutions are exactly the same as

83

those in the parent solutions while in random keys Genetic Algorithms, no any edge

information can be preserved from the parents to the offspring.

Lehmer code of a permutation can be expressed by using inversion table.

Consider a sequence of n numbersx = (x1x2...xn) . An inversion is a pair (xt,Xj) such that

i< j andxi >x}. For/e{l,.. . ,n}, let dt count the number of inversions with i as the

smaller index. Then the sequence {dxd2...dn)is called inversion table of permutation x.

0<di <n-ifori = l,...,n.

fiuic t ion m n n = c o d e (s o lu t ions)
i==size(s o l u t i o n s , 2) - 3 ;
m i i i i (l : i) = 0 ;

f o r j = l : i - l
o r d e r = 0 ;

f o r k = j + l :i
i f s o l u t i o n s (j) s o lu t ions (k)

o r d e r = o r d e r + l ;
e n d

e n d
inun<j)= or dei';

e n d
e n d

f n n c t ion I esnlr= d c o d e (c o d e d)
i = s i z e (c o d e d , 2) ;
r e s n l t (l : i) = 0 ;
list==[l:i];

f o r j = l : i
m = c o d e d (j) + l ;
resiilt(j)= l i s t(ni);
U s t (m) = [] ;

e n d
e n d

Figure 21. Matlab code for Lehmer Presentation and Decoding Process

3. Repeat the following step until a stopping criterion is met.

• Copying the best p% of solutions from the current generation to the next

generation and keep it to the next generation. And as discussed above in single

objective TSPs, these p% best solutions are different with each other.

84

• Crossover using the classical one point crossover to form c% of the solutions for

the next generation.

Randomly pick up two solutions from the current generation to serve as the parent

solutions. This can be done by picking up 2 different random numbers for 1 to 0.5 *k

(k is the population size). This is the same as in the single objective TSPs, only 50

percent best solutions can crossover with each other. In this research, the classic one

point crossover will be use. And since all solutions are local optimal solutions, to

keep more edge information while not hampering the exploration ability, the

crossover point is selected between 0.7m to 0.9m (m is the number of cities).

For example, the first two random numbers are 1 to 3. This means that solution 1

that is ^vl - i x 11X12 ""x*ia) will exchange certain bits with solution 3 that

is- v3 = (x_3i -x32 •"••s!m).Then pick up another random number from 0.7*m to

0.9*m (m is the number of the cities). This number will serve as the crossover point.

For example, the number is 75. Then the solutions 1 and 3 exchange the bits after the

75th cities. The new solution created will be -v i = l X . i i x i 2 x i 3 ""x576 — x3ai) and

_Vj = i x 3i X32 X33 • " x i 7 6 - s i m) . Use 2-opt heuristics on the newly created

solutions to get local optimal solutions. Then these two newly created solutions will

be compared with each other. The one with the better fitness value (evaluated by

Tchebycheff function with an ideal point) will be kept in next generation. At last, non

sequential 3-opt heuristics will work on 20% best solutions created by 2-opt heuristics.

Again, the 2-opt heuristics and non sequential 3-opt heuristics will be guided by the

weighted sum function.

• Mutation to form another c% solutions for the next generation

85

In this research, mutation will be worked on the p% best solutions of the current

generation to form the p% solutions for the next generation. The solutions created by

mutation will be put into non sequential 3-opt heuristic to find local optimal solutions.

Again the non-sequential 3-opt heuristic was guided by weighted sum function.

Thus solutions for the next generation will be completely generated

(p%+c%+p%=l).

To perform mutation, for each solution of the p% best solutions in the current

generation, first we generate a random number j between 1 and m-5 (m is the number of

cities). This number tells us the position of the number that will be mutated. Then pick

up a random number in [0,1], this number tells us the selected Lehmer code will be

increased or decreased by 3.

After new solutions were created by mutation, non-sequential 3-opt heuristic was

used to improve them until a local optimal solution was obtained for each solution. Again

this non sequential 3-opt heuristic was guided by a weighted sum function.

• Sort the solutions according to the evaluation values from the above step.

Newly created Solutions were sorted according to their evaluation values from the

weighted Tchebycheff function no matter if they were created by 2-opt heuristics and non

sequential 3-opt heuristics that are guided by the weighted sum function or they were

created by just copying p% best solutions of last generation.

4. Get the solution with the best evaluation value.

This best solution will be the optimal solution gotten by the new hybrid genetic

algorithm. It can be obtained by just simply picking up the first solution in the last

generation.

86

5.3 Experiment and Results

The new hybrid Lehmer code Genetic Algorithms will work on TSPs with 2 to 5

objectives TSP with the size of cities 100. To make an effective comparison, the

proposed algorithm will be used to solve the same multi-objective TSPs as those used in

(Hansen, 2000) and (Samanlioglu, Ferrell & Kurz, 2008). More specifically, I will use the

set of Krolak instances with 100 cities from TSPLIB (Reinelt, 1995). The Krolak

instances include 5 instances, kroA 100, kroB 100, ..., kroE 100. For the multi-objective

TSP problems of this research, each instance correspond to the cost matrix of one

objective function, for example, for a three objective TSP problem, kroA 100

corresponds to the cost matrix of objective function 1, kroB 100 corresponds to that of

objective function 2, kroC 100 to that of objective function 3.

There are two main advantages in doing this. First, the tours will be within the

same scale of range for the different objectives. This makes the range scaling unnecessary.

Furthermore, the optimal value to each problem is known. So we get the exact ideal point

for each objective function. This makes the implementation of the weighted Tchebycheff

function very easy.

Moreover, to make the comparison between the method of this research and the

methods proposed by Hansen (2002) and Samanlioglu et al. (2008) valid, the method

proposed by this research will work on TSP problems that have two objectives to up to

five objectives, and each problem will be run 30 times.

For all these multi-objective TSPs, the same parameters will be used for the

hybrid genetic algorithms. First, the new genetic algorithms will work on all these TSPs

87

30 runs. And for each run, the parameter will be the same, population size: 25, improve

rate: 0.2, mutation rate: 0.2, crossover rate: 0.60 and generations: 125.

And the experiments were conducted on the computer with CPU, Intel Core 2

6600, 2.40 GHz, and 2 GB of RAM. And the algorithm was implemented in Matlab.

The following table shows the best solution gotten from Hansen's method and the

best solution obtained by using the proposed method on 3 objects TSP with 100 cities.

From the table, we can see that the proposed method can find better solution than

Hansen's method.

Hansen Proposed Method

1-53-26-49-10-97-99-5921-
72-38-88-22-94-70-56-75-80-
65-79-47-67-40-85-68-30-
100-81-69-73-3-29-46-12-27-
35-86-62-20-55- 83-43-71-
39-5-95-76-91-28-8-90-98-25-
34-58-54-50-2-64-13-41-14-
33-82-78-48-96-44-51-63-16-
24-18-19-92-45-36-74-84-66-
4-89-31-42-6-15-17-23-77-60-

57-87-52-37-7-9-61-32-11-93

Cost in KroA 67274

Cost in KroB 68054

Cost in KroC 66751

W, w,=l/k (1/3,1/3,1/3)

Solution 15334

1-53-26-49-10-97-99-59-21-
70-94-22-88-72-38-56-75-80-
65-79-47-67-40-85-29-46-12- ,
27-35-86-62-20-55-83-43-71-
34-25-58-98-90-8-28-91-76-95-
5-39-68-30-3-73-69-81-100-37-
52-96-44-78-82-33-13-41-14-
48-51-63-16-24-18-19-92-45-
36-74-84-66-4-89-54-50-2-64-
42-31-6-15-17-23-77-60-57-87-
7-9-61-32-11-93

67202

68079

66553

(1/3,1/3,1/3)

15313

Table 8. Solutions Obtained by Hansen's Method and the Proposed Method

The following tables (Table 9, Table 10) shows the results of the new Genetic

88

Algorithms on multi-objective TSPs with N=25, G=125 and N=50, G=62, respectively

(N is the population size, G is the generations).

KroABlOO

KroABClOO

KroABCD 100

KroABCE 100

KroACDE 100

KroABCDElOO

Table 9.

KroABlOO

KroABClOO

KroABCD 100

KroABCE 100

KroACDE 100

KroABCDElOO

Opt

14256

15313

14241

14292

14088

12888

Results

Opt

14256

15313

14241

14292

14088

12888

Best
Solution

14256

15313

14295

14292

14121

12936

Worst
Solution

14417

22197

14431

14564

14310

13111

on Multi-objective TSPs

Best
Solution

14256

15313

14295

14292

14121

12936

Worst
Solution

14417

22197

14431

14564

14310

13111

Average Relative
Excess

0.5346%

0.7715%

0.8357%

0.9328%

0.8327%

0.9846%

(N=25, G=125)

Average Relative
Excess

0.5752%

0.7580%

0.7651%

0.9118%

0.7427%

0.9539%

Number of Opt
(out of 30)

4

1

0

1

0

0

Number of Opt
(out of 30)

2

1

0

1

0

0

Table 10. Results on Multi-objective TSPs (N=50, G=62)

The following table shows the comparison of results of this research and

Samanlioglu on multi-objective TSPs with 2, 3, 4 and 5 objectives with population size

25, generation 125 and population size:50, generation 62, respectively.

N=25 G=125

KroABlOO

KroABClOO

KroABCDIOO

KroABCElOO

KroACDElOO

KroABCDElOO

Samanlioglu

ARE R

0.452

0.7138

0.6873

0.785

0.7394

0.9469

3

1

0

1

1

1

This resea

ARE

0.5346

0.7715

0.8357

0.9328

0.8327

0.9846

rch

R

4

1

0

1

0

0

N=50 G=62
Samanlioglu

ARE

0.4003

0.723

0.5597

0.646

0.5829

1.0027

R

2

0

0

0

1

0

This resea

ARE

0.5752

0.758

0.7651

0.9118

0.7427

0.9539

rch 1
R

2

1

0

1

0

0

Table 11. Comparison of Results from This Research and Samanlioglu's Research

The relative excess over the best known solution is defined as

, . evalutatiai valuegettingfromourmethod-thebestknownevaluationvalue
relativeexcess=

the best known evaluationvalue

From this table, we can see that the proposed Genetic Algorithm works well on

multi-objective TSPs with objectives from 2 to up to 5. For all these multi-objective TSPs,

the average relative excess is less than 1%. And the results getting from this research can

find comparable results with Samanlioglu's research. For example, for KroAB 100, the

proposed method found 4 out 30 optimal solutions while Samanlioglu's method 3. And

for kroABCDElOO, the average relative excess for this research is 0.9539% while

Samanlioglu's method is 1.0027%.

I i 2

D Samanlioglu

This research

Fi IE (N=25, G=125)

generation 125 We can se

sses are very

The figure shows average relative excess

similar re

90

above. The results for both methods are very close.

1 2

1

08

06

04

02

0 I I Samanlioglu

This research

^

^ ^
^

CX o ^ c ^
& cV cV

Figure 23. Comparison of ARE (N=50, G=62)

5.4 Conclusion

In this research, we proposed a hybrid Lehmer code Genetic Algorithm to solve

multi-objective TSPs. This algorithm provided an alternative way to use Genetic

Algorithms to solve discrete optimization problems. There are many researches using

Random Keys Genetic Algorithms to solve discrete optimization problems, but not that

many researches on Lehmer code Genetic Algorithms, especially using Lehmer code

solving multi-objective combinatorial optimization proolems.

The experiments showed that the proposed Lehmer code Genetic Algorithms

worked well on multi-objective TSPs. The average relative excesses for all examples are

less than 1%. And the results getting from the Lehmer code Genetic Algorithms are

comparable to the results from Samanlioglu's Random keys Genetic Algorithms.

The new hybrid Lehmer code Genetic Algorithms has some advantages over

Random keys Genetic Algorithms.

First, by using Lehmer code, the new hybrid Genetic Algorithms can easily

91

overcome the difficulty with traditional Genetic Algorithms in keeping feasibility when

crossover parent solutions to create offspring. As we can see in the experiments, the

crossover operator directly work on the Lehmer code represented parent solutions and no

repairing process needed for the offspring solutions. All the solutions obtained from

crossover are feasible.

Furthermore, although the random keys Genetic Algorithms can also solve this

difficulty, it loses the edge information at the same time when it solves the difficulty of

keeping feasible solutions. This means, the random keys Genetic Algorithms can keep

any schematic information from the parent solutions to the offspring. As we know, this

schematic information is very important feature of Genetic Algorithms. And it's one of

the reasons that makes Genetic Algorithms converge quicker. While by using Lehmer

code representation, at least certain part of the edge information can be transferred from

the parent solutions to the offspring. This is obvious in this research. In this new Genetic

Algorithms, we set the crossover point between 0.7m and 0.9m (m is the number of the

cities). This means that at least 70% of parent edge information will be kept from the

parents to the offspring. For example, the following figure shows how Lehmer code

representation one point crossover keeps part of parent information into the offspring

solutions.

p a t e n t s c i o w m o j w n i f

1 3 .2 -» 6 5 <5 -4 .2 .sl 1 *

O t f K p i i i a :

Figure 18. One Point Crossover of Lehmer Code GA (Keep Parent Information)

From the figure, we can see that the parent edge information, 1—> 3 —> 2 —• 4 and

92

6 —> 4 —> 2 —• 3 were kept from the parent solutions to the offspring, respectively.

Finally, the implementation of the new Genetic Algorithms is very easy compared

to the random keys Genetic Algorithms. For example, for the encoding and evaluation of

the solutions, the random keys Genetic Algorithms must sort all cities and get the ranks

of all cities first. This means that at least an extra sort process is needed. And you don't

know the neighbors for a specific city before you sort all cities. While in Lehmer code

Genetic Algorithms, the position of each code is the rank of the city represented by the

code. And the city represented by the code can be easily gotten from the list {1, 2, 3, ...,

n} (n is the total number of the cities) according to the code of the city. The neighbors of

this city are the cities right before and behind it.

Another advantage of this new Genetic Algorithm is in tuning up the solutions.

For example, in this research, I used an improvement operator in this new hybrid Genetic

Algorithm. The idea is to improve the solution by randomly changing the locations of 4

cities. This operator can be very simply implemented by randomly picking up a number

and decreasing or increasing the code which is located in the position of the random

number by 3. The following figure shows how this works.

selected citv
„ehmer code representation

i 3 0 4 6 5 8 1 0 7 9 l—C^~ 0 1 ^ 0 1 0 1 2 0 0

+3
dcode

13@g|508 1O7 9 < ^ Z = 3 O10O1G12OO

Figure 19. One Point Mutation

From this figure, we can see that three cities change position by simple adding 3

to one of the cities' Lehmer code. In random keys Genetic Algorithms, it is not so easy to

93

implement the similar operator. For example, in Samanlioglu's Random Keys Genetic

Algorithms, 4 cities were randomly picked up and all the combinations of these cities

were taken into account. Then 2-opt heuristics worked on these possible solutions and

selected the best one. Lastly, the above procedure was repeated 10 times and the one that

had the best fitness value was selected.

Based on the above experiments and discussion, we can get the conclusion that

the new hybrid Lehmer code Genetic Algorithms works well on multi-objective TSPs.

This research provided an alternative way to use Genetic Algorithms to solve multi-

objective combinatorial optimization problems. And it's very easy to implement this new

hybrid Genetic Algorithm.

94

CHAPTER 6

FUTURE WORK AND CONCLUSION

6.1 Contributions of the Dissertation

This research proposed a new hybrid Lehmer code Genetic Algorithm to solve

single objective and multi-objective TSPs. The major contributions of the dissertation are:

• After investigating the performance of traditional Genetic Algorithms and

Random Keys Genetic Algorithms on Traveling Salesman Problems, a new

Lehmer code Genetic Algorithms was proposed to solve both single objective and

multi-objective TSPs. This provided an alternative way to use Genetic Algorithms

to solve discrete optimization problems, especially Traveling Salesman Problems.

• Lehmer code was proposed to represent the potential solutions. By using Lehmer

code representation, solutions created by using genetic operators are always

feasible solutions. Another advantage by using Lehmer code representation is that

certain parts of edge information can be retained from the parent solutions to the

offspring.

• 2-opt and Non sequential 3-opt were proposed to conduct local search in this new

Genetic Algorithm. By doing this, the new Genetic Algorithm has good

exploitation ability while not increasing the computation time too much.

• The proposed Hybrid Lehmer code is very easy to implement compared to the

traditional Genetic Algorithms and Random Keys Genetic Algorithms when

solving discrete optimization problems. No additional fixing procedure is needed

as in traditional Genetic Algorithms. And only traditional genetic operators:

crossover and mutation were used.

95

• Matlab was used to implement this new hybrid Lehmer Code Genetic Algorithm.

• The new Genetic Algorithm was used to solve some bench mark single objective

TSPs with up to 200 cities from the TSPLIB (Reinelt, 1995) and multi-objective

TSPs with up to 5 objectives and 100 cities. The results getting from the proposed

method were compared with the results from the newly proposed methods in the

literature, more specifically; the results form Hansen and Samanlioglu's methods

(Hansen, 2000) (Samanlioglu, Ferrell & Kurz, 2008).

The experiments showed that this new algorithm worked well on both single

objective and multi-objective TSPs. Through the experiments and the comparison of the

results from the proposed method and the results form Hansen and Samanlioglu's

methods, we can see that the proposed method's performance on single objective TSPs is

better than Samanlioglu's method even using smaller population size and fewer

generations.

And for multi-objective TSPs, we can see that the proposed hybrid Genetic

Algorithms got comparable solutions with Samanlioglu's method. And compared to

Samanlioglu's method, the proposed algorithm is much easier for implementation.

6.2 Limitation and Future Work

But there is still some room to improve this new Genetic Algorithm:

• The results obtained from the new algorithm on multi-objective TSPs is

only comparable to the results from the Random keys Genetic Algorithms

while not much better than them.

• The performance of the new Genetic Algorithm on single objective TSPs

with large number of cities is not as good as on that with small number of

96

cities.

• 3-opt is more time consuming compared to 2-opt. Although we only used

non-sequential 3-opt in this new Genetic Algorithm, the efficiency of the

algorithm was influenced a little bit because of the using of the 3-opt. In

addition, we used to Matlab to implement the new Genetic Algorithm. As

we know, Matlab is not good in dealing with loops. The efficiency of the

algorithm was decreased further.

• Another limitation for this research is that we only used the new algorithm

solving several single objective TSPs from TSPLIB and multi-object TSPs

from Hansen and Samanlioglu's research. More experiments should be

conducted on more single objective TSPs, multi-objective TSPs and other

discrete optimization problems to test the robustness of the new Genetic

Algorithm on discrete optimization problems.

The future work will be to find ways to improve the performance of the algorithm

on multi- objective TSPs. As we discussed above, the Lehmer code Genetic Algorithms

has some advantages over Random Keys Genetic Algorithms, such as, keeping edge

information from parents to the offspring, easy implementation, etc.

One direction to improve the performance of this new algorithm is to add more

complexity to the algorithms. As we discussed above, one of advantages of this new

Genetic Algorithms is easy to implement. But this also means that there is some room for

us to improve the performance of the algorithm. For example, this new Genetic

Algorithms only use non sequential 3-opt heuristics. Maybe in the future, we can try to

implement 3-opt heuristics to see if this can improve the performance of the new Genetic

97

Algorithms. This means that we will take into account of all the possible combination of

the three parts of the router while not just taking into account of 1 of the 4 combinations.

But this will definitely increase the running time of the algorithm.

And this new algorithm uses one point mutation. To implement this mutation, this

algorithm only randomly changes 4 cities position and uses non sequential to improve it.

But in Samanlioglu's random keys Genetic Algorithms 4 cities were randomly selected

and all the combinations of these cities were improved by 2-opt. Then select the best one.

This procedure was repeated 10 times. And the best solution for this repetition was

selected as one of solutions in next generation. Maybe in the future, similar procedure can

be implemented in the Lehmer code Genetic Algorithms proposed by this research. At

least, we can repeat the one point mutation several times and select the best one to keep it

to the next generation.

Another direction is to do sensitive analysis. We had already tested the algorithms

by using different parameters. So far the parameters used in this research seem to have

the best performance. But we did not try all the combinations of the parameters to test the

performance of the algorithms because it takes time to run the model, especially if we

need to run the algorithm 30 times. In the future, if we can run this algorithm in a

distribute computer system, we may find a better combination of the parameters that can

improve the performance of the algorithm.

And in the future, we can try to use the new Genetic Algorithms to solve the other

optimization problems.

Lastly, we used Matlab to code the new Lehmer code Genetic Algorithms. As we

know, Matlab does not perform well when dealing with loops. While in this algorithm,

98

we need to use many loops for 2-opt and 3-opt heuristics. Maybe in the future, we can try

to code this algorithm by using objective-oriented programming package, such as C++,

Java, etc. This will greatly decrease the running time for this algorithm.

REFERENCES

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The Traveling

Salesman Problem: A Computational Study. Princeton, New Jersey: Princeton University

Press.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization.

ORSA Journal on Computing, 6(2), 154-160.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). An Overview of Genetic Algorithms:

Part 1, Fundamentals. University Computing, 15(2), 58-69.

Bennett, K., Ferris, M.C., & Ioannidis, Y.E. (1991). A Genetic Algorithm for Database

Query Optimization, in Proceedings of the Fourth International Conference on Genetic

Algorithms, 400-407.

Bryant, K. (2000). Genetic Algorithms and the Traveling Salesman Problem (master's

Thesis). Harvey Mudd College, Dept. of Mathematics.

Chiang, W. C , & Russell, R. A. (1997). A Reactive Tabu Search Meta-heuristic for the

Vehicle Routing Problem with Time Windows. INFORMS Journal on Computing, 9(4),

417-430.

Chen, C.-C, Wang, L.-H., Kao, C.-Y., Ouhyoung, M. & Chen, W.-C. (1995). Molecular

Binding: A Case Study of the Population-Based annealing Genetic Algorithms. In IEEE

International Conference on Evolutionary Computation ICEC'95. Perth, Australia, 50-55.

Choy, K. L., Lam, E. W., & Lau, K.H. (1997-98). Application of fuzzied genetic

algorithms in optimizing parameters in a manufacturing system for resource allocation.

Annual Journal of HE (HK), 11-16.

100

De Jong, K.A. (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems

(Doctoral dissertation). University of Michigan, Ann Arbor.

De Jong, K.A. (1985). Genetic Algorithms: A 10 Year Perspective. In Proceedings of the

First International Conference on Genetic Algorithms and Their Applications, 169-177.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms (Doctoral

dissertation). Politecnico di Milano, Italie.

Dorigo M., & Gambardella L. M. (1997). Ant Colonies for Traveling Salesman Problem.

BioSystems, 43, 73-81.

Dorigo, M., & Caro, G. D. (1999). Ant Colony Optimization: A New Meta-Heuristic.

Proceedings of the 1999 Congress on Evolutionary Computation, 2, 1470-1477.

Eberhart, R., & Shi, Y. (2001). Particle swarm optimization: Development, Applications

and Resources. Proc. IEEE CEC, 81-86.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective

optimization: formation, discussion and generation. In Proceedings of the Fifth

International Conference on Genetic Algorithms, Morgan Kauffman, 416-423.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, NY.

Geem, Z. W., & Kim, J. H. (2001). A New Heuristic Optimization Algorithm: Harmony

Search, Simulation, 76(2), 60-68.

Ghoseiri, K., & Sahadi, H. (2008). A memetic algorithm for symmetric traveling

salesman problem. International Journal of Management Science and Engineering

Management, 3(4), 275-283.

101

Ghosh, D., Goldengorin, B., Gutin, G., & Jager, G. (2007). Tolerance-based greedy

algorithms for the traveling salesman problem. Communications in DQM10, 52-70.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computer and Operations Research, 13, 533-549.

Glover, F., & Laguna, M. (1997). Tabu Search. Norwell, Massachusetts: Kluwer

Academic Publishers.

Glover, F., & Kochenberger, G. A. (2002). Handbook of Meta-heuristics. Norwell,

Massachusetts: Kluwer Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization and Machine

Learning. Boston, Massachusetts: Addison-Wesley Longman.

Goldberg, D. E., & Lingle, R. (1985). Alleles, Loci and the Traveling Salesman Problem.

Proceedings of First International Conference on Genetic Algorithms.

Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms.

IEEE Transactions on Systems, Man and Cybernetics, 16(1), 122-128.

Grefenstette, J. J., Gopal, R., Rosmaita, B. J., & Van Gucht, D. (1985). Genetic

Algorithms for the Traveling Salesman Problem. Proceedings of the First International

Conference on Genetic Algorithms, 160-165.

Gutin, G., Yeo, A., & Zverovich, A. (2002). Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics,

117,81-86.

Hansen, M. P., & Jaszkiewicz, A. (1998). Evaluation the quality of approximation to the

non-dominated set. IMM Technical Report IMM-REP-1998-7.

102

Hansen, M. P. (2000). Use of Substitute Scalarizing Functions to Guide a Local Search

Based Heuristic: The Case of mo TSP. Journal of Heuristics, 6, 419-431.

Hatta, K., Wakabayashi, S., & Koide, T. (2001). Adaptation of Genetic Operators and

Parameters of Genetic Algorithm Based on the Elite Degree of an Individual. Systems

and Computers in Japan, 31(1), 29-31.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling

salesman heuristic. European Journal of Operational Research, 126(2000), 106-130.

Herrera, F., Lozano, M., & Moraga, C. (1999). Hierarchical Distributed Genetic

Algorithms. International Journal of Intelligent Systems, 14(11), 1099-1121.

Hertz, A., Taillard, E., & Werra, D. (1997). Tabu Search. In E. Aarts and J. K. Lenstra,

(Eds.). Local Search in Combinatorial Optimization (pp.121-136). New York, NY: John

Wiley & Sons, Ltd.

Hillier, F. S., & Lieberman, G. J. (2005). Introduction to Operations Research (eighth

edition). New York, NY: McGraw-Hill.

Homaifar, A., Guan, S., & Liepins, E. G. (1992). Schema analysis of the traveling

salesman problem using genetic algorithms. Complex Systems, 6(2): 183-217.

Holland, J. H. (1975). Adaption in natural and artificial systems. Ann Arbor, Michigan:

U. of Michigan Press.

Javadi, A. A., & Tan, T. P. (2005). A hybrid intelligent genetic algorithm. Advanced

Engineering Informatics, 19(4), 266-262.

Horn, J., Nafpliotis, N., & Goldberg, D. (1993). A Niched Pareto Genetic Algorithm for

Multiobjective Optimization. In Proceedings of the First IEEE Conference on

103

Evolutionary Computation, IEEE World Congress on Computational Computation, 1, 82-

87.

Jog, P., Suh, J. Y., & van Gucht, D. (1989). The effects of population size, heuristic

crossover, and local improvement on a genetic algorithm for the traveling salesman

problem. In J. D. Schaffer (Eds.), Proceedings of the Third International Conference on

Genetic Algorithms (pp. 110-115), San Mateo, CA: Morgan Kaufmann.

Johnson, D. S., & Mcgeoch, L.A. (1997). The Traveling Salesman Problem: A Case

Study in Local Optimization. Local Search in Combinatorial Optimization. New York,

NY: Wiley.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE

International Conference on Neural Networks (pp. 1942-1948). NJ: Piscataway.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220(4589), 671-680.

Lehmer, H. (1960). Teaching combinatorial tricks to a computer, In Proceedings of

Symposia in Applied Mathematics, Combinatorial Analysis, 10,179-193.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous

engineering optimization: harmony search theory and practice. Computer Methods in

Applied Mechanics and Engineering, 194(36-38), 3902-3933.

Li, J. H., & Li, M. (2008). Genetic Algorithm with Dual Species, In Proceedings of the

IEEE International Conference on Automation and Logistics (pp. 2572-2575). Qingdao,

China.

104

Lin, F. T., Kao, C. Y., & Hsu, C. C. (1991). Incorporating Genetic Algorithms into

Simulated Annealing. In Proceedings of the Fourth International Symposium on

Artificial Intelligence (pp. 290-297).

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search

algorithm for solving optimization problems. Applied Mathematics and Computation,

188 (2), 1567-1579.

Mahfoud, S. W., & Goldberg, D. E. (1995). Parallel Recombinative Simulated Annealing:

A Genetic Algorithm. Parallel Computing, 21,1-28.

Martin, O. C , Otto, S. W., & Felten, E. W. (1992). Large-Step Markov Chains for the

TSP: Incorporating Local Search Heuristics. Operation Research Letters, 11, 219-224.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structure = Evolution Programs

(Third, Revised and Extended Edition). Berlin, Heidelberg, New York: Spring-Verlag.

Mishra, S. K. (2006). Particle Swarm Method on Some Difficult Test Problems of Global

Optimization. MPRA Paper 1742, University Library of Munich, Germany. Retrieved

from: http://ssrn.com/abstract=928538.

Morse, P. M., & Kimball, G.E. (1951). Methods of Operations Research. New York, NY:

John Wiley & Sons.

Nissen, V. (1994). Solving the Quadratic Assignment problem with Clues from Nature.

IEEE Transactions on Neural Networks, 5(1), 66-72.

Oliver, I. M., Smith, D. J., & Holland, J. R. C. (1987). A study of Permutation Crossover

Operators on Traveling Salesman Problem, Proceedings of Second International

Conference on Genetic Algorithms.

http://ssrn.com/abstract=928538

105

Osman, I. H., & Laporte, G. (1996). Meta-heuristics: A bibliography. Annals of

Operations Research, 63, 513-623.

Pesko, S. (2006). Differential Evolution for Small TSPs with Constraints, In Proceedings

of 4th International Scientific Conference "Challenges in Transport and Communication ".

Potter, M. A., & De Jong, K. A. (1994). A cooperative co-evolutionary approach to

function optimization. In Proceedings of the Third Parallel Problem Solving from Nature,

249-257. Jerusalem, Israel.

Rudolph, G. (1994). Convergence Analysis of Canonical Genetic Algorithms. IEEE

Transactions of Neural Networks, 5(1), 96-101.

Singh, S. K., & Borah, M. (2009). A comparative study of Repulsive Particle Swarm

Optimization and Simulated Annealing on some Numerical Bench Mark Problems.

International Journal of Computational Intelligence Research, 5, 75-82.

Talbi, E. G., & Muntean, T. (1993). Hill-climbing, simulated annealing and genetic

algorithms: a comparative study and application to mapping problems. Proceeding of

International Conference on System Science, 565-573.

Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the Third International

Conference on Genetic Algorithms, pp. 434-439.

Van den Bergh, F., & Engelbrecht, A. (2004). A Cooperative Approach to Particle

Swarm Optimization. IEEE Transactions on Evolutionary Computation, 8(3), 225-239.

Vignaux, G. A., & Michalewicz, Z. (1991). A Genetic Algorithm for the Linear

Transportation Problem, IEEE Transaction on System, Man and Cybernetics, 21(2), 445-

452.

106

Wang, J., Zhang, Y., Zhou, Y., & Yin, J. (2008). Discrete Quantum-Behaved Particle

Swarm Optimization Based on Estimated of Distribution for Combinatorial Optimization.

Proc. IEEE CEC, pp. 897-904.

Wang, D. Y., & Wang, G. (2008). Parameters Optimization of Fuzzy Controller Based on

Improved Particle Swarm Optimization, In IEEE International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, pp. 917-921.

Wang, H., Wang, D., & Yang, S. (2009). A memetic algorithm with adaptive hill

climbing strategy for dynamic optimization problems. Soft Computing, 13, 763-780.

Whitley, D., & Starkweather, T. (1990). Genitor II: a distributed genetic algorithm.

Journal of Experimental and Theoretical Artificial Intelligence, 2,189-214.

Wolpert, D. H., & Macready W. G. (1997). No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67-82.

Yildiz, A. L. (2009). An effective hybrid immune-hill climbing optimization approach for

solving design and manufacturing optimization problems in industry. Journal of Material

Processing Technology, 209, 2773-2780.

APPENDIX

COORDINATE FOR CITIES OF TSPS

KroAlOO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1380
2848
3510
457
3888
984
2721
1286
2716
738
1251
2728
3815
3683
1247
123
1234
252
611
2576
928
53

1807
274
2574
178
2678
1795
3384
3520
1256
1424
3913
3085
2573
463

939
96

1671
334
666
965
1482
525
1432
1325
1832
1698
169
1533
1945
862
1946
1240
673
1676
1700
857
1711
1420
946
24

1825
962
1498
1079
61

1728
192
1528
1969
1670

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

3875
298
3479
2542
3955
1323
3447
2936
1621
3373
1393
3874
938
3022
2482
3854
376
2519
2945
953
2628
2097
890
2139
2421
2290
1115
2588
327
241
1917
2991
2573
19

3911
872
2863
929
839
3893
2178
3822
378

598
1513
821
236
1743
280
1830
337
1830
1646
1368
1318
955
474
1183
923
825
135
1622
268
1479
981
1846
1806
1007
1810
1052
302
265
341
687
792
599
674
1673
1559
558
1766
620
102
1619
899
1048

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

1178
2599
3416
2961
611
3113
2597
2586
161
1429
742
1625
1187
1787
22

3640
3756
776
1724
198
3950

100
901
143
1605
1384
885
1830
1286
906
134
1025
1651
706
1009
987
43
882
392
1642
1810
1558

EOF

KroA150
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1380
2848
3510
457
3888
984
2721
1286
2716
738
1251
2728
3815
3683
1247
123
1234

939
96

1671
334
666
965
1482
525
1432
1325
1832
1698
169
1533
1945
862
1946

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

252
611
2576
928
53

1807
274
2574
178
2678
1795
3384
3520
1256
1424
3913
3085
2573
463
3875
298
3479
2542
3955
1323
3447
2936
1621
3373
1393
3874
938
3022
2482
3854
376
2519
2945
953
2628
2097
890
2139

1240
673
1676
1700
857
1711
1420
946
24

1825
962
1498
1079
61

1728
192
1528
1969
1670
598
1513
821
236
1743
280
1830
337
1830
1646
1368
1318
955
474
1183
923
825
135
1622
268
1479
981
1846
1806

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

2421
2290
1115
2588
327
241
1917
2991
2573
19

3911
872
2863
929
839
3893
2178
3822
378
1178
2599
3416
2961
611
3113
2597
2586
161
1429
742
1625
1187
1787
22

3640
3756
776
1724
198
3950
3477
91

3972

1007
1810
1052
302
265
341
687
792
599
674
1673
1559
558
1766
620
102
1619
899
1048
100
901
143
1605
1384
885
1830
1286
906
134
1025
1651
706
1009
987
43
882
392
1642
1810
1558
949
1732
329

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

198
1806
538
3430
2186
1513
2143
53

3404
1034
2823
3104
3232
2790
374
741
3083
3502
1280
3326
217
2503
3527
739
3548
48

1419
1689
3468
1628
382
3029
3646
285
1782
1067
2849
920
1741
876
2753
2609
3941

1632
733
1023
1088
766
1646
1611
1657
1307
1344
376
1931
324
1457

9
146
1938
1067
237
1846
38

1172
41

1850
1999
154
872
1223
1404
253
872
1242
1758
1029
93
371
1214
1835
712
220
283
1286
258

113

147
148
149
150

EOF

KroA
200

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

3613
1754
2916
2445

1357
2650
1774
1307
3806
2687
43
3092
185
834
40
1183
2048
1097
1838
234
3314
737
779
2312
2576
3078
2781
705
3409
323
1660
3729
693
2361
2433
554
913
3586

523
559
1724
1820

1905
802
107
964
746
1353
1957
1668
1542
629
462
1391
1628
643
1732
1118
1881
1285
777
1949
189
1541
478
1812
1917
1714
1556
1188
1383
640
1538
1825
317
1909

114

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

2636
1000
482
3704
3635
1362
2049
2552
3939
219
812
901
2513
242
826
3278
86
14
1327
2773
2469
3835
1031
3853
1868
1544
457
3174
192
2318
2232
396
2365
2499
1410
2990
3646
3394
1779
1058
2933
3099
2178

727
457
1337
1082
1174
1526
417
1909
640
898
351
1552
1572
584
1226
799
1065
454
1893
1286
1838
963
428
1712
197
863
1607
1064
1004
1925
1374
828
1649
658
307
214
1018
1028
90
372
1459
173
978

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

138
2082
2302
805
22
3213
99
1533
3564
29
3808
2221
3499
3124
781
1027
3249
3297
213
721
3736
868
960
1380
2848
3510
457
3888
984
2721
1286
2716
738
1251
2728
3815
3683
1247
123
1234
252
611
2576

1610
1753
1127
272
1617
1085
536
1780
676
6
1375
291
1885
408
671
1041
378
491
220
186
1542
731
303
939
96
1671
334
666
965
1482
525
1432
1325
1832
1698
169
1533
1945
862
1946
1240
673
1676

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

928
53
1807
274
2574
178
2678
1795
3384
3520
1256
1424
3913
3085
2573
463
3875
298
3479
2542
3955
1323
3447
2936
1621
3373
1393
3874
938
3022
2482
3854
376
2519
2945
953
2628
2097
890
2139
2421
2290
1115

1700
857
1711
1420
946
24
1825
962
1498
1079
61
1728
192
1528
1969
1670
598
1513
821
236
1743
280
1830
337
1830
1646
1368
1318
955
474
1183
923
825
135
1622
268
1479
981
1846
1806
1007
1810
1052

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
EOF

2588
327
241
1917
2991
2573
19
3911
872
2863
929
839
3893
2178
3822
378
1178
2599
3416
2961
611
3113
2597
2586
161
1429
742
1625
1187
1787
22
3640
3756
776
1724
198
3950

302
265
341
687
792
599
674
1673
1559
558
1766
620
102
1619
899
1048
100
901
143
1605
1384
885
1830
1286
906
134
1025
1651
706
1009
987
43
882
392
1642
1810
1558

KroBlOO
1 3140 1401

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

556
3675

1182

3595

962
2030

3507

2642

3438

3858

2937

376
839
706
749
298
694
387
2801

3133

1517

1538

844
2639

3123

2489

3834

3417

2938

71
3245

731
2312

2426

380
2310

2830

3829

3684

171
627
1490

61

1056

1522

1853

111
1895

1186

1851

1269

901
1472

1568

1018

1355

1925

920
615
552
190
695
1143

266
224
520
1239

217
1520

1827

1808

543
1323

1828

1741

1270

1851

478
635
775
513
445
514
1261

1123

81

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

422
2698
2372
177
3084
1213

3
1782
3896
1829
1286
3017
2132
2000
3317
1729
2408
3292
193
782
2503
1697
3821
3370
3162
3938
2741
2330
3918
1794
2929
3453
896
399
2614
2800
2630
563
1090
2009
3876
3084
1526

542
1221
127
1390
748
910
1817
995
742
812
550
108
1432
1110
1966
1498
1747
152
1210
1462
352
1924
147
791
367
516
1583
741
1088
1589
485
1998
705
850
195
653
20

1513
1652
1163
1165
774
1612

88
89
90
91
92
93
94
95
96
97
98
99
100

1612
1423
3058
3782
347
3904
2191
3220
468
3611
3114
3515
3060

328
1322
1276
1865
252
1444
1579
1454
319
1968
1629
1892
155

EOF

KroB150
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1357
2650
1774
1307
3806
2687
43

3092
185
834
40

1183
2048
1097
1838
234
3314
737
779
2312
2576
3078
2781
705
3409
323
1660

1905
802
107
964
746
1353
1957
1668
1542
629
462
1391
1628
643
1732
1118
1881
1285
777
1949
189
1541
478
1812
1917
1714
1556

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

3729
693
2361
2433
554
913
3586
2636
1000
482
3704
3635
1362
2049
2552
3939
219
812
901
2513
242
826
3278
86
14

1327
2773
2469
3835
1031
3853
1868
1544
457
3174
192
2318
2232
396
2365
2499
1410
2990

1188
1383
640
1538
1825
317
1909
727
457
1337
1082
1174
1526
417
1909
640
898
351
1552
1572
584
1226
799
1065
454
1893
1286
1838
963
428
1712
197
863
1607
1064
1004
1925
1374
828
1649
658
307
214

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

3646
3394
1779
1058
2933
3099
2178
138
2082
2302
805
22

3213
99

1533
3564
29

3808
2221
3499
3124
781
1027
3249
3297
213
721
3736
868
960
3825
2779
201
2502
765
3105
1937
3364
3702
2164
3019
3098
3239

1018
1028
90
372
1459
173
978
1610
1753
1127
272
1617
1085
536
1780
676
6

1375
291
1885
408
671
1041
378
491
220
186
1542
731
303
1101
435
693
1274
833
1823
1400
1498
1624
1874
189
1594
1376

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

3359
2081
1398
618
1878
3803
397
3035
2502
3230
3479
958
3423
78
96

3431
2053
3048
571
3393
2835
144
923
989
3061
2977
1668
878
678
1086
640
3551
106
2243
3796
2643
48

1693
1011
1100
1953
59
886
1217
152
146
380
1023
1670
1241
1066
691
78

1461
1

1711
782
1472
1185
108
1997
1211
39
658
715
1599
868
110
1673
1267
1332
1401
1320
267

EOF

Kro200
1 3140 1401
2 556 1056
3 3675 1522

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1182
3595
962
2030
3507
2642
3438
3858
2937
376
839
706
749
298
694
387
2801
3133
1517
1538
844
2639
3123
2489
3834
3417
2938
71

3245
731
2312
2426
380
2310
2830
3829
3684
171
627
1490
61
422
2698

1853
111
1895
1186
1851
1269
901
1472
1568
1018
1355
1925
920
615
552
190
695
1143
266
224
520
1239
217
1520
1827
1808
543
1323
1828
1741
1270
1851
478
635
775
513
445
514
1261
1123
81
542
1221

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

2372
177
3084
1213

3
1782
3896
1829
1286
3017
2132
2000
3317
1729
2408
3292
193
782
2503
1697
3821
3370
3162
3938
2741
2330
3918
1794
2929
3453
896
399
2614
2800
2630
563
1090
2009
3876
3084
1526
1612
1423

127
1390
748
910
1817
995
742
812
550
108
1432
1110
1966
1498
1747
152
1210
1462
352
1924
147
791
367
516
1583
741
1088
1589
485
1998
705
850
195
653
20

1513
1652
1163
1165
774
1612
328
1322

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

1646
2993
547
3373
460
3060
1828
1021
2347
3535
1529
1203
1787
2740
555
47

3935
3062
387
2901
931
1766
401
149
2214
3805
1179
1017
2834
634
1819
1393
1768
3023
3248
1632
2223
3868
1541
2374
1962
3007
3220

1817
624
25

1902
267
781
456
962
388
1112
581
385
1902
1101
1753
363
540
329
199
920
512
692
980
1629
1977
1619
969
333
1512
294
814
859
1578
871
1906
1742
990
697
354
1944
389
1524
1945

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

3058
3782
347
3904
2191
3220
468
3611
3114
3515
3060
2995
202
981
1346
781
1009
2927
2982
555
464
3452
571
2656
1623
2067
1725
3600
1109
366
778
386
3918
3332
2597
811
241
2658
394
3786
264
2050
3538

1276
1865
252
1444
1579
1454
319
1968
1629
1892
155
264
233
848
408
670
1001
1777
949
1121
1302
637
1982
128
1723
694
927
459
1196
339
1282
1616
1217
1049
349
1295
1069
360
1944
1862
36

1833
125

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

2356
1604
2028
2581
2221
2944
1082
997
2334
1264
1699
235
2592
3642
3599
1766
240
1272
3503
80

1677
3766
3946
1994
278

1568
706
1736
121
1578
632
1561
942
523
1090
1294
1059
248
699
514
678
619
246
301
1533
1238
154
459
1852
165

EOF

KroC 100

1
2
3
4
5
6
7
8
9
10
11
12
13

1357
2650
1774
1307
3806
2687
43

3092
185
834
40

1183
2048

1905
802
107
964
746
1353
1957
1668
1542
629
462
1391
1628

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

1097
1838
234
3314
737
779
2312
2576
3078
2781
705
3409
323
1660
3729
693
2361
2433
554
913
3586
2636
1000
482
3704
3635
1362
2049
2552
3939
219
812
901
2513
242
826
3278
86
14

1327
2773
2469
3835

643
1732
1118
1881
1285
777
1949
189
1541
478
1812
1917
1714
1556
1188
1383
640
1538
1825
317
1909
727
457
1337
1082
1174
1526
417
1909
640
898
351
1552
1572
584
1226
799
1065
454
1893
1286
1838
963

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

1031
3853
1868
1544
457
3174
192
2318
2232
396
2365
2499
1410
2990
3646
3394
1779
1058
2933
3099
2178
138
2082
2302
805
22

3213
99

1533
3564
29

3808
2221
3499
3124
781
1027
3249
3297
213
721
3736
868

428
1712
197
863
1607
1064
1004
1925
1374
828
1649
658
307
214
1018
1028
90
372
1459
173
978
1610
1753
1127
272
1617
1085
536
1780
676
6

1375
291
1885
408
671
1041
378
491
220
186
1542
731

100 960
EOF

303

KroDlOO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2995
202
981
1346
781
1009
2927
2982
555
464
3452
571
2656
1623
2067
1725
3600
1109
366
778
386
3918
3332
2597
811
241
2658
394
3786
264
2050
3538
1646
2993
547
3373
460
3060
1828

264
233
848
408
670
1001
1777
949
1121
1302
637
1982
128
1723
694
927
459
1196
339
1282
1616
1217
1049
349
1295
1069
360
1944
1862
36

1833
125
1817
624
25

1902
267
781
456

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

1021
2347
3535
1529
1203
1787
2740
555
47

3935
3062
387
2901
931
1766
401
149
2214
3805
1179
1017
2834
634
1819
1393
1768
3023
3248
1632
2223
3868
1541
2374
1962
3007
3220
2356
1604
2028
2581
2221
2944
1082

962
388
1112
581
385
1902
1101
1753
363
540
329
199
920
512
692
980
1629
1977
1619
969
333
1512
294
814
859
1578
871
1906
1742
990
697
354
1944
389
1524
1945
1568
706
1736
121
1578
632
1561

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

997
2334
1264
1699
235
2592
3642
3599
1766
240
1272
3503
80

1677
3766
3946
1994
278

942
523
1090
1294
1059
248
699
514
678
619
246
301
1533
1238
154
459
1852
165

EOF

KroElOO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

3477
91

3972
198
1806
538
3430
2186
1513
2143
53

3404
1034
2823
3104
3232
2790
374
741
3083

949
1732
329
1632
733
1023
1088
766
1646
1611
1657
1307
1344
376
1931
324
1457

9
146
1938

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

3502
1280
3326
217
2503
3527
739
3548
48

1419
1689
3468
1628
382
3029
3646
285
1782
1067
2849
920
1741
876
2753
2609
3941
3613
1754
2916
2445
3825
2779
201
2502
765
3105
1937
3364
3702
2164
3019
3098
3239

1067
237
1846
38

1172
41

1850
1999
154
872
1223
1404
253
872
1242
1758
1029
93
371
1214
1835
712
220
283
1286
258
523
559
1724
1820
1101
435
693
1274
833
1823
1400
1498
1624
1874
189
1594
1376

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

3359
2081
1398
618
1878
3803
397
3035
2502
3230
3479
958
3423
78
96

3431
2053
3048
571
3393
2835
144
923
989
3061
2977
1668
878
678
1086
640
3551
106
2243
3796
2643
48

1693
1011
1100
1953
59
886
1217
152
146
380
1023
1670
1241
1066
691
78

1461
1

1711
782
1472
1185
108
1997
1211
39
658
715
1599
868
110
1673
1267
1332
1401
1320
267

EOF

136

VITA

Jun Zhang was born in Jiujiang, Jiangxi, China, on January 3rd, 1972. He

graduated from the Physics department at Nanchang University, China in 1994. He

worked as an assistant engineer in China Petroleum & Chemical Corporation, Jiujiang

Branch, China from 1994 to 2004. In 2007, he got his master's degree in Management

Science and Engineering at Nanchang University, China. In the same year, he came to the

United States to study for his Ph.D. in Engineering Management at Old Dominion

University. He received his Ph.D. in Engineering Management at Old Dominion

University on May, 2011.

	A Hybrid Lehmer Code Genetic Algorithm and Its Application on Traveling Salesman Problems
	Recommended Citation

	ProQuest Dissertations

