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We say that a subset G of C0(T, Rk) is rotation-invariant if [Qg : g # G]=G for
any k_k orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional
subspace of C0(T, Rk) on a connected, locally compact, metric space T. We prove
that G is a generalized Haar subspace if and only if PG( f ) is strongly unique of
order 2 whenever PG( f ) is a singleton. � 1998 Academic Press

1. INTRODUCTION

Let T be a locally compact Hausdorff space and G a finite-dimensional
subspace of C0(T, Rk), the space of vector-valued functions f on T which
vanish at infinity, i.e., the set [t # T : & f (t)&2�=] is compact for every =>0.
Here &y&2 :=(�k

i=1 | yi |
2)1�2 denotes the 2-norm on the k-dimensional

Euclidean space Rk (of column vectors). For f in C0(T, Rk), the norm of
f is defined as

& f & :=sup
t # T

& f (t)&2 .

The metric projection PG from C0(T, Rk) to G is given by

PG( f )=[g # G : & f& g&=dist( f, G)], for f # C0(T, Rk),
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where

dist( f, G)=inf [& f& g& : g # G].

A subspace G of C0(T, Rk) is said to be a Chebyshev subspace if PG( f ) is
a singleton for every f # C0(T, Rk). In the Banach space of real-valued
continuous functions C0(T )#C0(T, R1), it is well-known that G is an
n-dimensional Chebyshev subspace of C0(T ) if and only if G satisfies the
Haar condition (i.e., every nonzero g in G has at most (n&1) zeros).
The Haar condition not only provides an intrinsic characterization of
Chebyshev subspaces of C0(T ), but also ensures strong unicity and
Lipschitz continuity of the metric projection PG , as shown in the following
theorem.

Theorem 1. Suppose that G is an n-dimensional subspace of C0(T ).
Then the following are equivalent:

(i) G satisfies the Haar condition;

(ii) G is a Chebyshev subspace of C0(T );

(iii) for every f in C0(T ), PG( f ) is strongly unique, i.e., there exists a
constant #( f )>0 such that

& f& g&�dist( f, G)+#( f ) } &g&PG( f )&, for g # G;

(iv) for every f in C0(T ), PG( f ) is a singleton and PG is Lipschitz
continuous at f, i.e., there exists a constant *( f )>0 such that

&PG( f )&PG(h)&�*( f ) } & f&h&, for h # C0(T ).

Furthermore, if T=[a, b] is a closed subinterval of R, then all the above are
equivalent to the following statement:

(v) PG( f ) is strongly unique whenever PG( f ) is a singleton.

The equivalence of (i) and (ii) is due to Haar [6]. Newman and Shapiro
[11] proved that (i) implies (iii). Lipschitz continuity of PG was proved by
Freud in [5] and the equivalence condition (v) was given by McLaughlin
and Sommers [10]. See [8] for more details. The above theorem
summarizes the implications of the Haar condition in C0(T ). One natural
question is what are the implications of the Haar condition for a finite-
dimensional subspace of the Banach space, C0(T, C), of all complex-valued
continuous functions on T that vanish at infinity. Newman and Shapiro
[11] proved that if G :=[�n

i=1 ci gi (x) : ci # C] is an n-dimensional subspace
of C0(T, C) and satisfies the Haar condition, then G is a Chebyshev subspace
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of C0(T, C) and, for every f (x) # C0(T, C), there exists a constant #( f )>0
such that

& f& g&2�dist( f, G)2+#( f ) } &g&PG( f )&2, for g # G. (1)

The inequality (1) is also referred to as strong unicity of order 2 and is
equivalent to the following original form given by Newman and Shapiro:

& f& g&�dist( f, G)+;( f ) } &g&PG( f )&2,

for g # G with &g&PG( f )&�1,

where ;( f ) is some positive constant. Moreover, the Haar condition is also
necessary for a finite-dimensional Chebyshev subspace of C0(T, C). In fact,
an analog of (i)�(iv) of Theorem 1 holds for finite-dimensional Chebyshev
subspaces of C0(T, Rk), due to the following intrinsic characterization,
which we call the generalized Haar condition, of finite-dimensional
Chebyshev subspaces of C0(T, Rk) given by Zukhovitskii and Stechkin
[13].

Definition 2. Let G be an n-dimensional subspace of C0(T, Rk) and let
m be the maximum integer less than n�k (i.e., mk<n�(m+1) k). Then G
is called a generalized Haar space if

(i) every nonzero g in G has at most m zeros;

(ii) for any m distinct points ti in T and any m vectors [x1 , ..., xm]
in Rk, there is a vector-valued function p in G such that p(ti)=xi for
1�i�m.

The following analog in C0(T, Rk) for parts (i)�(iv) of Theorem 1 was
given in [1]. The equivalence (i) � (ii) in the following theorem belongs to
Zukhovitskii and Stechkin [13].

Theorem 3. Let G be a finite-dimensional subspace of C0(T, Rk). Then
the following are equivalent:

(i) G is a generalized Haar subspace.

(ii) G is a Chebyshev subspace of C0(T, Rk).

(iii) PG is strongly unique of order 2 at each f in C0(T, Rk).

(iv) for every f in C0(T, Rk), PG( f ) is a singleton and PG satisfies a
Ho� lder continuity condition of order 1

2 .

Here the Ho� lder condition is the analog in C0(T, Rk) for Lipschitz
continuity in Theorem 1. The metric projection PG is said to satisfy a
Ho� lder continuity condition of order 1

2 at f if PG(,) is a singleton for every
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, in C0(T, Rk) and there exists a positive number *=*( f ) such that
&PG( f )&PG(h)&�* & f&h&1�2 (1+& f+h&)1�2 for all h in C0(T, Rk).

The main goal of this paper is to present an analog of part (v) of
Theorem 1 for finite-dimensional subspaces in C0(T, Rk). However, we can
only do so under the assumption that G is rotation invariant.

Definition 4. A subspace G of C0(T, Rk) is said to be rotation-
invariant if [Qg : g # G]=G for any k_k orthogonal matrix Q.

Note that C0(T, C)#C0(T, R2), since

f1(x)+i f2(x)#\ f1(x)
f2(x)+ .

Here i=- &1. An n-dimensional subspace of C0(T, C) can be identified
with a (2n)-dimensional subspace of C0(T, R2). In fact, one can prove that
any rotation invariant finite-dimensional subspace in C0(T, R2) can be
identified with a finite-dimensional subspace in C0(T, C) (cf. Lemma 9). In
fact, we consider rotation-invariant subspaces of C0(T, Rk) as the natural
generalization of complex-valued function subspaces. Now we state the
main theorem and present its proof in the next section.

Theorem 5. Let G be a rotation-invariant finite-dimensional subspace of
C0(T, Rk), where T is a connected and locally compact metric space. If
PG( f ) is strongly unique with order 2 whenever PG( f ) is a singleton, then G
is a generalized Haar subspace.

Remark. Theorem 5 holds for any space T which is connected, locally
compact, first countable, and Hausdorff because these are the only properties
of T used in the proof.

In Lemma 9, we will show that G is rotation-invariant if and only if G
is the tensor product of k-copies of a subspace G1 of C0(T ), i.e.,
G=G1_ } } } _G1 . Thus, G is a rotation-invariant Chebyshev subspace of
C0(T, Rk) if and only if G is the tensor product of k-copies of a Haar
subspace G1 of C0(T ).

Note that for k=1 the result of McLaughlin and Sommers [10] follows
from Theorem 5 and, in fact, Theorem 5 gives the following stronger result
than that of McLaughlin and Sommers, since the strong unicity of PG( f )
implies the strong unicity of order 2.

Corollary 6. Suppose that G is an n-dimensional subspace of C0(T ) and
T is a connected and locally compact metric space. Then G is a Haar subspace
if PG( f ) is strongly unique of order 2 whenever PG( f ) is a singleton.
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2. PROOF OF THE MAIN THEOREM

The proof of Theorem 5 will follow after five lemmas are given. We use
(x, y) :=�n

i=1 xi yi to denote the dot product of vectors x and y
in Rk, supp(_) :=[t # T : _(t){0] for any mapping _ : T � Rk, Z(g) :=
[t # T : g(t)=0] for any function g in C0(T, Rk), and Z(K) :=�g # K Z(g)
for any subset K of C0(T, Rk). For any subset K of T, G|K denotes the
restriction of G on K as a subspace of C(K, Rk). The boundary and closure
of K are denoted by bd(K) and cl(K), respectively. For a finite subset T0

of T, let card(T0) be the cardinality of T0 (i.e., card(T0) is the number of
points in T0). A mapping _ from T to Rk is called an annihilator of G if

:
t # supp(_)

(_(t), g(t)) =0 for g # G.

Lemma 7. Suppose that G{[0] is a finite-dimensional subspace of
C0(T, Rk). Then there exists a mapping _ from T to Rk that has the following
properties:

(a) supp(_) is a finite subset of T;

(b) (_(t), g(t)) #0 whenever (_(t), g(t))�0 for t # supp(_);

(c) G_ :=[g # G : supp(_)/Z(g)] satisfies the generalized Haar con-
dition on T"Z(G_).

(d) dim G_�1.

Proof. We prove the lemma by induction. If dim(G)=1, then G does
satisfy the generalized Haar condition on T"Z(G) and _(t)#0 satisfies the
conditions (a)�(d). Suppose that the lemma holds for subspaces of
C0(T, Rk) with dimension <n and dim G=n. Let (m+1) be the smallest
integer that is greater or equal to n�k. If G satisfies the generalized Haar
condition on T"Z(G), let _(t)#0. Then G_=G and we are done. If G does
not satisfy the generalized Haar condition on T"Z(G), then either there
exist m points t1 , ..., tm in T"Z(G) such that dim G| [t1, ..., tm]<km or there
exists a nonzero function g # G such that Z(g) contains (m+1) points
t1 , ..., tm , tm+1. In either case, there exists a finite subset T0 of T"Z(G) and
a nonzero function g0(t) such that dim G|T0

<kcard(T0) and T0 /Z(g0).
Since in the Banach space C(T0 , Rk) dim G|T0

<kcard(T0), there exists an
annihilator { of G|T0

with supp({)/T0 , so { annihilates G also. Since
supp({)/T"Z(G), dim G{<dim G. Since g0 # G{ , dim G{�1. Consider G{

as a subspace defined on T"Z(G{). By the induction assumption, there
exists a mapping + from T"Z(G{) to Rk such that the conditions (a)�(d)
hold for _#+ and G#G{ |T"Z(G{) .
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Let _(t) :={(t) for t # supp({) and _(t)=+(t) for t � supp({). Then it is
easy to verify that the conditions (a)�(d) hold for _. K

Lemma 8. Let K be a subset of G, t0 # bd Z(K), ti
0 # T"Z(K) such

that ti
0 � t0 as i � �, and { is a continuous mapping defined on

[t0 , t i
0 : i=1, 2, ...]. Then there exists a function g� # K and an index @� such

that ({(ti
0), g(t i

0))=0 for i�@� whenever

lim
t � �

sup
|({(ti

0), g(t i
0)) |

|({(t i
0), g� (ti

0)) | 3�2�1, (2)

where we define 0�0 :=0.

Proof. Let ({, K) :=[({(t), g(t)) : g # K]. Since dim span({, K) |[t j
0
t

0
j+1, ...]

is a nonincreasing function of j and has finitely many values, there exists
@� such that dim span({, K) | [t @�

0
, t

0
@� +1 , ...]=dim span({, K) | [t j

0
, t

0
j+1, ...] for j�@� .

That is, if j�@� and ({(ti
0), g(t i

0))=0 for i� j, then ({(t), g(t)) =0 on
T0 :=[t@� , t@� +1, ...] .

Let g1 be a nonzero function in K. (If K=[0], then the lemma is
trivially true.) If g1 can not be used as g� , then there exists a function g2 in
K such that

lim
i � �

sup
|({(t i

0), g2(ti
0)) |

|({(t i
0), g1(t i

0)) | 3�2�1,

but ({(ti
0), g2(t i

0)) {0 for infinitely many i 's. By the choice of g2 , for all
i sufficiently large, we have

|({(ti
0), g2(t i

0)) |�2 |({(t i
0), g1(ti

0)) | 3�2. (3)

We claim that g1 and g2 are linearly independent. Let c1 g1+c2 g2=0.
Then for all i sufficiently large

0=|c1({(ti
0), g1(ti

0))+c2({(t i
0), g2(ti

0)) |

�|c1({(ti
0), g1(ti

0)) |&|c2({(t i
0), g2(ti

0)) |

�|c1({(ti
0), g1(ti

0)) |&2 |c2({(t i
0), g1(ti

0)) | 3�2

=|({(t i
0), g1(t i

0)) |( |c1 |&2 |c2 |({(ti
0), g1(ti

0)) 1�2). (4)

Since |c2({(t i
0), g1(ti

0)) | 1�2 � 0 as i � �, it follows from (3) and (4) using
those i for which ({(ti

0), g2(ti
0)){0 that c1=0. Since g2 is a nonzero function,

c2 g2=0 implies c2=0. Hence, g1 and g2 are linearly independent.
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If g2 can not be used as g� , then there exists a function g3 in K such that
({(t i

0), g3(ti
0)){0 for infinitely many i (possibly different from where

({(t i
0), g2(ti

0)){0) and

lim sup
i � �

|({(t i
0), g3(ti

0)) |
|({(ti

0), g2(ti
0)) | 3�2�1. (5)

By (2) and (5), for all i sufficiently large, we have

|({(ti
0), g3(t i

0)) |�2 |({(t i
0), g2(ti

0)) | 3�2�4 |({(ti
0), g1(t i

0)) | 9�4. (6)

Now suppose that c1 g1+c2 g2+c3 g3=0. By (4) and (6), we get that, for
all i sufficiently large,

0=|c1({(ti
0), g1(ti

0)) +c2({(t i
0), g2(ti

0))+c3({(t i
0), g3(ti

0)) |

�|({(ti
0), g1(ti

0)) |( |c1 |&2 |c2 | |({(t i
0), g1(ti

0)) | 1�2

&4 |c3 | |({(t i
0), g1(ti

0)) | 5�4).

Using those i for which ({(ti
0), g1(ti

0)) {0 as above we obtain c1=0. Then
from c2 g2+c3 g3=0 we obtain as above

0=|c2({(t i
0), g2(ti

0))+c3({(t i
0), g3(ti

0)) |

�|({(ti
0), g2(ti

0)) |( |c2 |&2 |c3 | } |({(t i
0), g2(ti

0)) | 1�2)

and using those i for which ({(ti
0), g2(t i

0)) {0 we obtain c2=0. Since
g3 {0 and c3 g3=0, we have c3=0. Therefore, g1 , g2 , g3 are linearly
independent.

If no function in K can be used as g� then continuing in this manner we
can construct infinitely many linearly independent functions g1 , g2 , ... in K.
Since G is finite-dimensional, this is impossible. K

Lemma 9. Suppose that G is a rotation-invariant finite dimensional
subspace of C0(T, Rk). Then m :=n�k is an integer and G is the tensor
product of k-copies of an m-dimensional subspace G1 of C0(T ), i.e.,

G={ :
k

i=1

giei : gi # G1 for 1�i�k= ,

where ei is the ith canonical basis vector for Rk (i.e., all components of ei are
zero except that the ith component is 1).

Proof. If g is in G, then g=�k
i=1 giei where gi # C0(T, R1). Let

Gi :=[gi : g=�k
j=1 gjej # G] for i=1, ..., k. Then it is obvious that
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G/G1_ } } } _Gk (#[�k
i=1 giei : gi # Gi]). For a fixed i, let Qi be the k_k

orthogonal matrix whose j th column is ej for j{i and &ei for j=i. For
any gi # Gi , there exists gj # Gj for j{i such that g :=�k

j=1 gjej # G. Then
Qi g # G and gi ei=

1
2 (g&Qi g) # G. Thus, G1_..._Gk /G, which implies

G=G1_ } } } _Gk .
Now we show that Gi #G1 for 1�i�k. Let Bi be the orthogonal matrix

that as ei has its first column, e1 as its i th column, ej as its j th column for
j{1 or i. For any g1 # G1 and gi # Gi , we have gi e1=Bi (giei) # G and
g1 ei=Bi (g1e1) # G. Hence, gi # G1 and g1 # Gi . So G1=G2= } } } =Gk and
G=[�k

i=1 gi ei : gi # G1 for 1�i�k]. K

Lemma 10. Suppose that G is a generalized Haar subspace of C0(T, Rk)
and dim G=mk. Then, for any given m distinct points t1 , ..., tm in T and m
vectors x1 , ..., xm in Rk, there exists a function g in G such that g(ti)=xi for
i=1, ..., m.

Proof. We show that dim G|[t1, ..., tm]=dim G. If not then there exists a
g� {0 in G such that g� (ti)=0, i=1, ..., m. But this contradicts the fact that
G is a generalized Haar set and therefore any function in G has at most
(m&1) zeroes. Since dim G=mk and dim C([t1 , ..., tm], Rk)=mk the
result follows. K

Proof of Theorem 5. By Lemma 7, there exists a mapping _ from T into
Rk such that the conditions (a)�(d) in Lemma 7 hold. It follows that
if G is not a generalized Haar subspace, then Z(G_){<. Since Z(G_) is
closed and T is connected, bd Z(G_) contains at least one point, say t0 .
Let [ti

0]�
i=1 be a sequence of distinct points in T"Z(G_) such that

limi � � ti
0=t0 .

Since G is rotation-invariant, it is easy to verify that G_ is rotation-
invariant and hence dim G_=km for some integer m. Choose m distinct
points [t1 , ..., tm] in T"([t0 , t i

0 , i=1, ...] _ Z(G_)). Notice then that
[t1 , ..., tm] & supp(_)=<. Then by Lemma 10, for any vectors x1 , ..., xm in
Rk, there exists a function g in G_ such that g(tj)=xj , for j=1, ..., m. Since,
for fixed i, dim G_ |[t i

1 , t1, ..., tm]<k(m+1), there exists an annihilator {i of G_

such that supp({i)/[ti
0 , t1 , ..., tm]. By the interpolation property of G_ on

any m points of T"Z(G_), supp({i) must have (m+1) points. Thus,

supp({i)=[ti
0 , t1 , ..., tm].

Without loss of generality, we may assume that there exist unit vectors in
Rk, {(t0), {(t1), ..., {(tm), such that

lim
i � �

sgn({i (ti
0))={(t0)

108 BARTELT AND LI
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and

lim
i � �

sgn({i (tj))={(tj), for j=1, ..., m.

If t0 is in supp(_), we may assume that sgn(_(t0))={(t0). Otherwise, we
can replace {i by Q{i , where Q is an orthogonal matrix such that
Q{(t0)=sgn(_(t0)). (Here the rotation-invariance of G is used.)

Let {(ti
0)=sgn({i (ti

0)). Then { is a continuous function on the closed set

A :=[t0 , t i
0 : i=1, 2, ...]. (7)

Let K=[g in G_ : g�0 and, for 1� j�m either g(tj)=0 or ( g(tj),
{(tj))>0]. Since G_ is a generalized Haar set on T"Z(G_), it follows that
K{< and if g is in K then for at least one j, g(tj){0. Let g� in K be the
function given by Lemma 8.

Now follows a lengthy construction of a function f in C0(T, Rk). First let
t� # (supp(_) _ [t1 , ..., tm])"[t0]. Then, for t in a sufficiently small
neighborhood of each such t� , define

sgn(_(t� ))(1&&g(t� )&2) if t� # supp(_)"[t0]

f� (t)={{(t� )(1&&g� (t)&2) if t� =tj # [t1 , ..., tm], g� (tj)=0

{(t� ) if t� =tj # [t1 , ..., tm], g� (tj){0.

Then, for =>0 small enough and t near t� in supp(_),

& f� (t)&=g� (t)&2 =&(1&&g� (t)&2) sgn _(t� )&=g� (t)&2

�1&&g� (t)&2+= &g� (t)&2�1,

and, similarly, & f� (t)&=g� (t)&�1 for t near tj in [t1 , ..., tm] if g� (tj)=0. If
g� (tj){0, then ( g� (tj), {(tj)) =( g� (tj), f� (tj)) >0 and, by the continuity of g� ,
( g� (t), {(tj))>$>0 for t near tj . Thus, for t near tj ,

& f� (t)&=g� (t)&2
2 =&{(tj)&2&2=( g� (tj), {(tj))+=2 &g� (t)&2

2

�1&2 $=+=2 &g� &<1,

if =>0 is small enough. Therefore, for a sufficiently small neighborhood W1

of [(supp(_) _ [t1 , ..., tm])"[t0], f� is continuous and

& f� (t)&=g� (t)&2�1, (8)

if t # W1 and =>0 is small enough.
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Let f� (t) and h� (t) be defined on the closed set A (cf. (7)) by

h� (t)=sgn({i (t))#{(t),

and

f� (t)=h� (t)(1&|(h� (t), g� (t)) | 3�2),

where t=t0 , ti
0 for i=1, 2, .... Now we show that there exists an index i0

such that (h� (ti
0), g� (t i

0)){0 for i�i0 . First observe that since g� is in G_ ,
{i annihilates G_ , and supp({i)=[ti

0 , t1 , ..., tm], we get

0=({i (t i
0), g� (ti

0)) + :
m

j=1

({i (tj), g� (tj)) . (9)

Since g� is in K, by the definition, we have either g� (tj)=0 or

0<( g� (tj), {(tj))= lim
t � �

( g� (tj), {i (tj))

&{i (tj)&2

. (10)

However, (10) implies that ( g� (tj), {i (tj))>0 for i large enough whenever
g� (tj){0. Since there is at least one j with g� (tj){0, it follows from (9) that
({i (ti

0), g� (t i
0)) <0 (i.e., (h� (ti

0), g� (ti
0)) <0) for i large enough. Thus, for

i�i0 , & f� (ti
0)&2<1 and & f� (t0)&2=1. Since limi � � ti

0=t0 and T is locally
compact Hausdorff, there exist open sets W and V with compact closures
such that t0 # V, [(supp(_) _ [t1 , ..., tm])"[t0]]/W, and cl(W ) & cl(V )=
<. Choose i0 large enough such that t i

0 # V for i�i0 . Choose W/W1 so
that (8) holds for t # W and =>0 small enough. By relabeling of t i

0 , we may
assume without loss of generality that ti

0 # V for all i and

& f� (ti
0)&2<1, for i=1, 2, ... . (11)

Now h� can be extended from the closed set A (cf. (7)) to a continuous
function h(t) on the open set V with A�V and &h(t)&2 #1, t # V, by
Tietze's Extension Theorem for locally compact Hausdorff spaces [12,
p. 385] and the proof of Corollary 5.3 [4, p. 151]. Let f� (t)=h(t)
(1&|(h(t), g� (t)) | 3�2) for t in V. Since B=cl(V ) _ cl(W ) is compact, we
can extend f� from B to a function F on all of T with F in Cc(T, Rk) (the
collection of functions in C0(T, Rk) whose supports are compact) and
&F(t)&2�1. Let

D :=[t0] _ [t1 , ..., tm] _ supp(_) _ [ti
0: (h( i

0), g(t� i0)) {0].
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Then D is a G$ set, there exists [4, p. 148] a function , in Cc(T, R) with
0�,(t)�1 and ,&1(1)=D. Thus f =,F is an extension of f� from W _ V
to T which satisfies the following conditions:

f (t)={sgn(_(t))
sgn({(t))

for t in supp(_),
for t in [t1 , ..., tm],

(12)

& f (t)&2<1 if t{0 and t # V, and & f (t0)&2=1, (13)

& f (ti
0)&2=1&|(h(ti

0), g� (t i
0)) | 3�2 if (h(t i

0), g(t� i0)){0, (14)

& f (t)&2�&h(t)&2 (1&|(h(t), g� (t)) | 3�2) for t # V, (15)

&h(t)&2=1 if t is in V, (16)

h(t i
0)={i (t i

0)={(ti
0), i�i0 , (17)

and

& f (t)&=g� (t)&2�1 if =�=0 and t � V, (18)

where =0>0 is a small positive number. Note that (18) was verified for f�
and t in W, now f� (t) is replaced by ,(t) f� (t) for 0<,(t)�1 and the same
calculation shows (18) still holds for t # W. However, sup [& f (t)&2 : t �

(V _ W )]<1 since V and W are open sets containing the only points
where f has norm 1. Thus, (18) holds for f and t � V.

We claim that PG( f )=0. First it is shown that if g is in PG( f ) and g�0,
then g is in K and thus in G_ . If g is in PG( f ), it is easy to verify that since
& f& g&�1 it follows that ( g(t), _(t))�0 for t in supp(_). Thus, by
Lemma 7(b), ( g(t), _(t)) =0 for t in supp(_). Thus, for t in supp(_), we
have (g(t), f (t))=0, and

1=& f &�& f (t)& g(t)&2
2=& f (t)&2

2+&g(t)&2
2=1+&g(t)&2

2 .

As a result, g(t)=0 for t in supp(_) and g is in G_ . Similarly, one can show
that ( g(tj), {(tj))�0 for j=1, ..., m, and g(tj)=0 whenever ( g(tj), {(tj))
=0. Hence if g{0, then g is in K.

Now we show that for any nonzero g in PG( f ),

lim
i � �

sup
|({(t i

0), g(ti
0)) |

|({(t i
0), g� (ti

0)) | 3�2>2. (19)

If not, then

lim
i � �

sup
|({(t i

0), 1
2g(t i

0)) |
|({(t i

0), g� (ti
0)) | 3�2�1.
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Since g # K, it is easy to verify that 1
2 g # K. By Lemma 8, ({(ti

0), g(t i
0))=0,

for i�@� . (We may assume that @� �i0 .) Now {i annihilates G_ , g # G_ , and
supp({i)=[ti

0 , t1 , ..., tm]. Thus,

0= :
t # supp({i)

( g(t), {i (t)) =({i (ti
0), g(t i

0)) + :
m

j=1

({i (tj), g(tj)) ,

and by the definition of {(t),

0=({(ti
0), g(ti

0)) =(sgn({i (t i
0), g(ti

0))) =
({i (t i

0), g(ti
0))

&{i (ti
0)&

.

Hence, ({i (ti
0), g(ti

0)) =0. Since {i is an annihilator of G_ , g # K/G_ , and
supp({i)=[ti

0 , t1 , ..., tm], we obtain

:
m

j=1

({i (tj), g(tj)) = :
t # supp({i)

({i (t), g(t))=0. (20)

Since g is in K, g(tj)=0 or ( g(tj), {(tj)) >0 for j=1, ..., m. If ( g(tj),
{(tj))>0 then for i sufficiently large ({i (tj), g(tj))>0. Thus from (20) it
follows that g(tj)=0, j=1, ..., m. But then g#0 since G_ is a generalized
Haar set on G"Z(G_) and this contradicts the assumption that g�0, and
thus (19) holds.

Now with nonzero g in PG( f ) from (19) it follows that for infinitely
many indices i,

|({(ti
0), g(t i

0)) |>2 |({(ti
0), g� (ti

0)) | 3�2. (21)

Since {i is an annihilator of G_ , the above inequality implies that, for
infinitely many i 's

&{i (ti
0)&2 ({(t i

0), g(ti
0))=& :

m

j=1

({i (tj), g(tj))<0. (22)

Thus,

& f (ti
0)& g(ti

0)&2
2=&({(t i

0), f (ti
0)& g(t i

0)) {(ti
0)&2

2

+& f (ti
0)& g(ti

0)&({(ti
0), f (ti

0)& g(ti
0)) {(ti

0)&2
2

=| & f (ti
0)&2&({(t i

0), g(t i
0)) | 2

+&g(ti
0)&({(t i

0), g(ti
0)) {(ti

0)&2
2 , (23)

where the first equality is an orthogonal decomposition of the error vector
and then we use the definition of f (t) to simplify the expression.
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We continue the estimate of & f (ti
0)& g(t i

0)&2
2 by using indices i for which

(21) and (22) hold. Then

& f (ti
0)& g(t i

0)&2
2 �(& f (ti

0)&2+|({(ti
0), g(ti

0)) | )2

�& f (ti
0)&2

2+2 & f (ti
0)&2 |({(t i

0), g(t i
0)) |. (24)

Note that ,(ti
0)=1 and f (t i

0)=h(ti
0)(1&|(h(ti

0), g� (ti
0)) | 3�2). Thus,

& f (ti
0)&2

2 =(1&|(h(ti
0), g� (ti

0)) | 3�2)2

=(1&|({(ti
0), g� (ti

0)) | 3�2)2

�1&2 |({(ti
0), g� (t i

0)) | 3�2. (25)

Since & f (ti
0)&2 � 1 and |({(ti

0), g� (ti
0)) | 1�2 � 0 as i � �, we have 2 & f (ti

0)&2

�1 for i sufficiently large. Then, by (24), (25), and (21), we get that for
infinitely many i 's,

& f (t i
0)& g(ti

0)&2
2�1&2 |({(ti

0), g� (ti
0)) | 3�2+|({(ti

0), g(ti
0)) |>1.

This is impossible, since g # PG( f ). The contradiction proves our claim that
PG( f )=[0].

Next we show that PG( f ) is not strongly unique of order 2 by estimating
& f&=g� &. By the definition of f (t), for =>0 small enough, & f (t)&=g� (t)&2

�1 if t � V (a neighborhood of t0) (cf. (18)). If PG( f ) is strongly unique
of order 2, then there exists a positive constant # such that

& f&=g� &2�dist( f, G)2+# dist(=g� , PG( f ))2,

i.e.,

& f&=g� &2�1+#=2 &g� &2. (26)

Let t= # V be such that

& f (t=)&=g� (t=)&2=& f&=g� &>1.

Since & f (t)&2<1 for t # V and t{t0 , it follows that t= � t0 as = � 0+. Note
that

& f (t=)&=g� (t=)&2
2

=& f (t=)&2
2&2=( f (t=), g� (t=))+=2&g� (t=)&2

2

�1&|(h(t=), g� (t=)) | 3�2&2=( f (t=), g� (t=)) +=2 &g� (t=)&2
2 .
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By the above equality, (26), and g� (t=) � 0 as = � 0, we obtain that, for =>0
small enough,

1+#=2 &g� &2�& f&=g� &2

�1&2=( f (t=), g� (t=))&|(h(t=), g� (t=)) | 3�2+ 1
2 #=2 &g� &2,

which implies that

&2=( f (t=), g� (t=))&|(h(t=), g� (t=)) | 3�2� 1
2#=2 &g� &2.

As a consequence, ( f (t=), g� (t=))<0 and

2= |( f (t=), g� (t=)) |�|(h(t=), g� (t=)) | 3�2+ 1
2 #=2 &g� &2.

Since f (t=)=:h(t=) for some 0�:�1, the above inequality implies

2= |(h(t=), g� (t=)) |�|(h(t=), g� (t=)) | 3�2+ 1
2 #=2 &g� &2. (27)

Since |(h(t=), g� (t=)) | 1�2 � 0, for =>0 small enough,

# &g� &2

2
|(h(t=), g� (t=)) |&1�2>1. (28)

By (27) and (28),

2= |(h(t=), g� (t=)) |>
2

# &g� &2 |(h(t=), g� (t=)) | 2+ 1
2#=2 &g� &2. (29)

Equivalently, we have

\� 2
# &g� &2 |(h(t=), g� (t=)) |&�# &g� &2

2
=+

2

<0,

which is impossible. Therefore, PG( f ) is not strongly unique of order 2.
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