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We say that a subset G of Cy(T, R¥) is rotation-invariant if {0g:g€G} =G for
any k x k orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional
subspace of Cy(7, R¥) on a connected, locally compact, metric space T. We prove
that G is a generalized Haar subspace if and only if Pgs(f) is strongly unique of
order 2 whenever P;(f) is a singleton.  © 1998 Academic Press

1. INTRODUCTION

Let T be a locally compact Hausdorff space and G a finite-dimensional
subspace of Cy(T, R¥), the space of vector-valued functions f on T which
vanish at infinity, i.e., the set {zre T": || f(7)],>¢} is compact for every & > 0.
Here |[|y|,:=(X*_,|y,1*)"* denotes the 2-norm on the k-dimensional
Euclidean space R* (of column vectors). For fin C,(T, R), the norm of
fis defined as

LA :=sup | f(2)]].

teT
The metric projection P from Cy(T, R¥) to G is given by

Po(f)={geG:|f—gl=dist(£. G)}, for feCyT,R"),

* The research of this author is partially supported by the AFOSR under Grant F49620-
95-1-0045 and the NASA/Langley Research Center under Grant NCC-1-68 Supplement-16.
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where

dist(f, G) =inf { | f— gll: g€ G}.

A subspace G of C,(T, R¥) is said to be a Chebyshev subspace if Ps(f) is
a singleton for every fe Cy(T, R*). In the Banach space of real-valued
continuous functions Cy(T)= Cy(T, R'), it is well-known that G is an
n-dimensional Chebyshev subspace of Cy(T) if and only if G satisfies the
Haar condition (i.e., every nonzero g in G has at most (n—1) zeros).
The Haar condition not only provides an intrinsic characterization of
Chebyshev subspaces of C,(7), but also ensures strong unicity and
Lipschitz continuity of the metric projection P, as shown in the following
theorem.

THEOREM 1. Suppose that G is an n-dimensional subspace of Cy(T).
Then the following are equivalent:

(i)
(ii) G is a Chebyshev subspace of Cy(T);
)

(ii1) for every fin Co(T), Ps(f) is strongly unique, i.e., there exists a
constant y(f) >0 such that

G satisfies the Haar condition;

I/ =gl =dist(f, G)+y(f)-llg=Ps()l.  for geG;

(iv) for every fin Cy(T), Ps(f) is a singleton and P is Lipschitz
continuous at f, i.e., there exists a constant A(f)>0 such that

1PG(f)=Ps(WI <AS)-ILf=hl,  for heCyT).

Furthermore, if T=1[a, b] is a closed subinterval of R, then all the above are
equivalent to the following statement:

(v)  Pg(f) is strongly unique whenever Ps(f) is a singleton.

The equivalence of (i) and (ii) is due to Haar [ 6]. Newman and Shapiro
[11] proved that (i) implies (iii). Lipschitz continuity of P, was proved by
Freud in [5] and the equivalence condition (v) was given by McLaughlin
and Sommers [10]. See [8] for more details. The above theorem
summarizes the implications of the Haar condition in Cy(7). One natural
question is what are the implications of the Haar condition for a finite-
dimensional subspace of the Banach space, C(7T, C), of all complex-valued
continuous functions on 7 that vanish at infinity. Newman and Shapiro
[11] proved thatif G :={37_, ¢;g:(x): ¢; € C} is an n-dimensional subspace
of Cy(T, C) and satisfies the Haar condition, then G is a Chebyshev subspace
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of Cy(T, C) and, for every f(x) e Cy(T, C), there exists a constant p(f)>0
such that

If—gll>=dist(f, G)*+y(f)-lg—Ps(/)?  for geG. (1)

The inequality (1) is also referred to as strong unicity of order 2 and is
equivalent to the following original form given by Newman and Shapiro:

If— gl =dist(f; G)+ B(f) - llg — Pa(S)II
for geG with |g—Pg(f)<]1,

where f(f) is some positive constant. Moreover, the Haar condition is also
necessary for a finite-dimensional Chebyshev subspace of Cy(7, C). In fact,
an analog of (i)—(iv) of Theorem 1 holds for finite-dimensional Chebyshev
subspaces of Cy(T, R¥), due to the following intrinsic characterization,
which we call the generalized Haar condition, of finite-dimensional
Chebyshev subspaces of C,(T, R*) given by Zukhovitskii and Stechkin

[13].

DEFINITION 2. Let G be an n-dimensional subspace of Co( T, R¥) and let
m be the maximum integer less than n/k (i.e., mk<n<(m+1) k). Then G
is called a generalized Haar space if

(i) every nonzero g in G has at most m zeros;
(ii) for any m distinct points ¢, in 7" and any m vectors {x,, .., X,,}

in RX, there is a vector-valued function p in G such that p(t,)=x, for
I<i<m.

The following analog in Co(T, R¥) for parts (i)-(iv) of Theorem 1 was
given in [ 1]. The equivalence (i) < (ii) in the following theorem belongs to
Zukhovitskii and Stechkin [13].

THEOREM 3. Let G be a finite-dimensional subspace of Co(T, R*). Then
the following are equivalent:
(1) G is a generalized Haar subspace.
(ii) G is a Chebyshev subspace of Cy(T, R¥).
(ili) Pg is strongly unique of order 2 at each fin Cy(T, R¥).
(iv) for every fin Co(T, R¥), Po(f) is a singleton and P satisfies a
Hélder continuity condition of order 1.

Here the Holder condition is the analog in Cy(7, R*) for Lipschitz
continuity in Theorem 1. The metric projection P is said to satisfy a
Holder continuity condition of order 3 at f'if P;(¢) is a singleton for every
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¢ in Cy(T, R¥) and there exists a positive number A=A(f) such that
IPa(f) = Po(h)| <A | f—hI"> (14 f+A])"> for all  in Co(T, R¥).

The main goal of this paper is to present an analog of part (v) of
Theorem 1 for finite-dimensional subspaces in C,(7, R*). However, we can
only do so under the assumption that G is rotation invariant.

DEFINITION 4. A subspace G of C,(T, R*) is said to be rotation-
invariant if {Qg: g€ G} =G for any k xk orthogonal matrix Q.

Note that Cy(T, C) = Co(T, R?), since
feo+in=(100).

Here i=./—1. An n-dimensional subspace of Cy(7, C) can be identified
with a (2n)-dimensional subspace of C,(7, R?). In fact, one can prove that
any rotation invariant finite-dimensional subspace in C,(7, R*) can be
identified with a finite-dimensional subspace in Cy(7, C) (cf. Lemma 9). In
fact, we consider rotation-invariant subspaces of C,(7, R¥) as the natural
generalization of complex-valued function subspaces. Now we state the
main theorem and present its proof in the next section.

THEOREM 5. Let G be a rotation-invariant finite-dimensional subspace of
Co(T, R¥), where T is a connected and locally compact metric space. If
Pg(f) is strongly unique with order 2 whenever Ps(f) is a singleton, then G
is a generalized Haar subspace.

Remark. Theorem 5 holds for any space 7 which is connected, locally
compact, first countable, and Hausdorff because these are the only properties
of T used in the proof.

In Lemma 9, we will show that G is rotation-invariant if and only if G
is the tensor product of k-copies of a subspace G, of Cy(T), ie,
G=G,; X --- xG,. Thus, G is a rotation-invariant Chebyshev subspace of
Co(T, R¥) if and only if G is the tensor product of k-copies of a Haar
subspace G, of Cy(T).

Note that for k=1 the result of McLaughlin and Sommers [ 10] follows
from Theorem 5 and, in fact, Theorem 5 gives the following stronger result
than that of McLaughlin and Sommers, since the strong unicity of Pg(f)
implies the strong unicity of order 2.

COROLLARY 6. Suppose that G is an n-dimensional subspace of Co(T) and
T is a connected and locally compact metric space. Then G is a Haar subspace
if Pg(f) is strongly unique of order 2 whenever Pg(f') is a singleton.
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2. PROOF OF THE MAIN THEOREM

The proof of Theorem 5 will follow after five lemmas are given. We use
{x,yy:=>"_,x;y; to denote the dot product of vectors x and y
in RY, supp(c):={teT:0o(t)#0} for any mapping o: T— R¥, Z(g):=
{teT:g(t)=0} for any function g in Co(7, R*), and Z(K) := N, x Z(g)
for any subset K of Cy(T, R¥). For any subset K of T, G|, denotes the
restriction of G on K as a subspace of C(K, R*). The boundary and closure
of K are denoted by bd(K) and cl(K), respectively. For a finite subset T,
of T, let card(T,) be the cardinality of T (i.e., card(T,) is the number of
points in T,). A mapping ¢ from T to R* is called an annihilator of G if

Y. <o), g())=0  for geG.

t € supp(o)

LeMMA 7. Suppose that G #{0} is a finite-dimensional subspace of
Co(T, R¥). Then there exists a mapping o from T to R* that has the following
properties:

a) supp(o) is a finite subset of T;
b) <a(t), g(t)> =0 whenever {o(t), g(t)> =0 for t e supp(c);

(c) G,:={geG:supp(o)c=Z(g)} satisfies the generalized Haar con-
dition on T\Z(G,).

(d) dimG,>1.

(a)
(b)

Proof. We prove the lemma by induction. If dim(G)=1, then G does
satisfy the generalized Haar condition on T\Z(G) and o(7) =0 satisfies the
conditions (a)—(d). Suppose that the lemma holds for subspaces of
C,o(T, R*) with dimension <7 and dim G=n. Let (m + 1) be the smallest
integer that is greater or equal to n/k. If G satisfies the generalized Haar
condition on T\Z(G), let o(¢) =0. Then G, = G and we are done. If G does
not satisfy the generalized Haar condition on T\Z(G), then either there
exist m points ¢, ..., ¢,, in T\Z(G) such that dim Gly,,. ...,y <km or there
exists a nonzero function ge G such that Z(g) contains (m+ 1) points
L1y s Es Ly 1- I either case, there exists a finite subset T, of T\Z(G) and
a nonzero function gy(¢) such that dim G|, <kcard(7,) and T, = Z(go)-
Since in the Banach space C(T,, R¥) dim G| 1, <kcard(T,), there exists an
annihilator 7 of G|z, with supp(7) =T,, so 7 annihilates G also. Since
supp(t) = T\Z(G), dim G, <dim G. Since g, € G,, dim G, > 1. Consider G,
as a subspace defined on T\Z(G,). By the induction assumption, there
exists a mapping u from T\Z(G,) to R* such that the conditions (a)—(d)
hold for c=p and G=G. |7\ zc,)-
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Let o(¢) :=1(t) for tesupp(r) and o(t) =u(t) for ¢ ¢ supp(z). Then it is
easy to verify that the conditions (a)-(d) hold for . |

LemMa 8. Let K be a subset of G, tyebd Z(K), ti e T\Z(K) such
that t), —ty, as i— oo, and T is a continuous mapping defined on
{to,th:i=1,2,..}. Then there exists a function g€ K and an index i such
that {t(t}), g(t})> =0 for i >i whenever

tlin; sup |L<‘([( ;),) (?r(t);>|3|,/2< 1, (2)

where we define 0/0 :=0.

Proof. Let (t,K) :={<1(1), g(t)): ge K}. Since dimspan{z, Kp [y,
is a nonincreasing function of j and has finitely many values, there exists
i such that dim span{r, K>|{’S~’6“~---} = dim span<, K>|{t{),z{)'*‘,...} for j>1i.
That is, if j>7 and {z(z}), g(t})> =0 for i>j, then <{z(¢), g(z)> =0 on
To:i={tytisy, .}

Let g, be a nonzero function in K. (If K={0}, then the lemma is
trivially true.) If g, can not be used as g, then there exists a function g, in
K such that

. 1<x(2h), gx(8)>]
1 A - <l
e A E TAN T ANEE

but {z(t}), g,(25)» #0 for infinitely many i’s. By the choice of g,, for all
i sufficiently large, we have

[<2(25), ga(10) 2] <2 [<x(t5), ga(15)> 72 (3)

We claim that g, and g, are linearly independent. Let ¢, g, +¢,g,=0.
Then for all i sufficiently large

= [c1<2(tp), &1(15)> + e2{T(t5), ga(t5) )|

= [e1<2(ty), g1(1o) Y| —lea2(tp), g2(16) )

> [, (t(p), g1(16) )| =2 [ex{a(2), g1(26) > P?

= [<a(1h), g1 (1) 1(ley [ =2 |ea|<alt), 1(25)> 7). (4)
Since |c,{z(1h). g(1h)>]"> =0 as i~ oo, it follows from (3) and (4) using

those i for which {z(#), g-(z5)> # 0 that ¢, =0. Since g, is a nonzero function,
¢, g, =0 implies ¢, =0. Hence, g, and g, are linearly independent.
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If g, can not be used as g, then there exists a function g5 in K such that
{(z(t]), gs(th)» #0 for infinitely many i (possibly different from where

t(tp), ga(15)> #0) and

i sup Bk D]

- - <lI. 5
SUP TCe(ih), galth) ] ®)

By (2) and (5), for all i sufficiently large, we have

[<2(t5), gx(16)>1 <2 [<(ty), &x(15)> 72 <4 [<(t), gi(15)> 7% (6)

Now suppose that ¢, g, + ¢, g, + c383=0. By (4) and (6), we get that, for
all i sufficiently large,

0= ley<t(tg), g1(15)) +eada(tp), ga(t5)) + e3T(tp), g3(15)) |
> [<t(t5), g1(t) ) 1(er | =2 lea | I<T(25), g1(2) > 12
—4]es] [<a(tg), ga(tp) > 177).

Using those 7 for which {z({), g,(#;)) # 0 as above we obtain ¢, =0. Then
from ¢, g, + ¢y 25=0 we obtain as above

0= lex{t(tp), ga(15)) + e(tp), g5(15)) |

> [{2(t), g2(16) ) 1(lea] =2 les |- [<(1p), gx(15) > 1"?)
and using those i for which <z(#}), g,(¢})> #0 we obtain ¢,=0. Since
g3y #0 and ¢;¢2,=0, we have ¢;=0. Therefore, g,, g,, g; are linearly
independent.
If no function in K can be used as g then continuing in this manner we

can construct infinitely many linearly independent functions g,, g,, ... in K.
Since G is finite-dimensional, this is impossible. |

LemmaA 9. Suppose that G is a rotation-invariant finite dimensional
subspace of Cy(T, R*). Then m:=n/k is an integer and G is the tensor
product of k-copies of an m-dimensional subspace G, of Cy(T), ie.,

k
G:{Z gieiigieGlforlgigk},

i=1

where e, is the ith canonical basis vector for R* (i.e., all components of e, are
zero except that the ith component is 1).

Proof. If g is in G, then g=Y*_| g,e; where g,e Co(T, R"). Let
G:={g:g=%)_,ge€G} for i=1,.,k Then it is obvious that
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GeG,x - xG (={XF_, g;e;: g,€G,}). For a fixed i, let O, be the k x k
orthogonal matrix whose jth column is e; for j#i and —e, for j=i. For
any g; € G,, there exists g, € G, for j#i such that g: —Zf:, g;e;€G. Then
Q.g€G and g,e;=%(g— 0, g)eG Thus, G, X...x G, =G, which implies
G=G, x --- xG,.

Now we show that G, = G, for 1 <i<k. Let B, be the orthogonal matrix
that as e, has its first column, e, as its ith column, ¢; as its jth column for
j#1 or i. For any g, € G, and g, €G;, we have g,e;=B;(g;¢;)€G and
ge;=B;(g,e;)eG. Hence, g,€G, and g, €G,. So G,=G,= --- =G, and
G={>%_,ge:g,€G for 1<i<k}. 1

LemMma 10.  Suppose that G is a generalized Haar subspace of C(T, R¥)
and dim G =mk. Then, for any given m distinct points t,, ..., t,, in T and m
vectors x,, ..., x,, in R*, there exists a function g in G such that g(t,) = x, for
i=1,.,m

Proof. We show that dim G|, , ,=dim G. If not then there exists a
g#0 in G such that g(¢,) =0, i=1, ..., m. But this contradicts the fact that
G is a generalized Haar set and therefore any function in G has at most
(m—1) zeroes. Since dim G=mk and dim C({t,, .., t,,}, R*)=mk the
result follows. |

Proof of Theorem 5. By Lemma 7, there exists a mapping ¢ from 7T into
R* such that the conditions (a)~(d) in Lemma 7 hold. It follows that
if G is not a generalized Haar subspace, then Z(G,)# J. Since Z(G,) is
closed and T is connected, bd Z(G,) contains at least one point, say ¢,.
Let {t5};2, be a sequence of distinct points in 7\Z(G,) such that
lim,_, , th=t,.

Since G is rotation-invariant, it is easy to verify that G, is rotation-
invariant and hence dim G, =km for some integer m. Choose m distinct
points {ty,..1,} in T\({to,t,,i=1,..} UZ(G,)). Notice then that
{t,, .., t,,} nsupp(c)=J. Then by Lemma 10, for any vectors x, ..., X,, in
R*, there exists a function g in G, such that g( t;)=x;, for j=1, ..., m. Since,
for fixed i, dim G, [, ;. .., <k(m+ 1), there exists an annihilator 7, of G,
such that supp(z;) = {t{, t,, ... ¢,,}. By the interpolation property of G, on
any m points of T\Z(G,), supp( ;) must have (m+ 1) points. Thus,

Supp( ) {toa tls ) Zm}'

Without loss of generality, we may assume that there exist unit vectors in
R*, t(to), ©(ty), ..., 7(2,,), such that

lim sgn(z,(15)) =7(1,)

i— oo



GENERALIZED HAAR SPACES 109
and

lim sgn(z,;(2;)) =t(¢)), for j=1,...,m

i— oo

If ¢, is in supp(o), we may assume that sgn(o(z,)) =1(¢,). Otherwise, we
can replace 7, by Qrt;, where Q is an orthogonal matrix such that
01(t,) =sgn(o(t,)). (Here the rotation-invariance of G is used.)

Let 7(#}) =sgn(z,;(z})). Then 7 is a continuous function on the closed set

A={ty, 1h:i=1,2,.}. (7)

Let K={g in G,:g#0 and, for 1<;<m either gt ) 0 or {gl(t),
7(1;)> > 0}. Since G, is a generalized Haar set on T\Z(G,), it follows thdt
K# ¢ and if g is in K then for at least one j, g(¢;) #0. Let g in K be the
function given by Lemma 8.

Now follows a lengthy construction of a function f'in Cy(7, R*). First let
fe(supp(o) v {1y, .., t,,})\{to}. Then, for ¢ in a sufficiently small
nelghborhood of each such 7, define

sgn(a(f))(1—llg(f)]>)  if Zesupp(a)\{t,}
S(0) = =(D)(1—[g(0)]>) if i=telt), .. 1,} g(t)=0
7(7) if i=te{t),..1,}, &(t,)#0.

Then, for ¢ >0 small enough and ¢ near 7 in supp(o),
1/(1) = eg(2)ll, = I(1 — | &(0)]2) sgn a(i) — &)l
<T— gl +ellglr)]. <1,
and, similarly, | f(z) —eg(1)| <1 for ¢ near ¢, in {¢,, .., t,,} if g(¢,)=0. If

g(1;) #0, then {g(¢)), =(¢;)> = {g(1)), f(t ) >0 and, by the contlnulty of g,
<g(t),(t;)) >6>0 for ¢ near ¢;. Thus, for t near ¢,

1 /(1) —eg(0)]13 = lle(2,) > — 2e< &(1)), 7(2,)> + &> |g(0)]1 3
<1—-20e+8 gl <1,

if ¢ >0 is small enough. Therefore, for a sufficiently small neighborhood W,
of [(supp(a) w {ty, ..., 1,,} )\{t}, f is continuous and

1£(1) —eg(n) <1, (8)

if te W, and ¢ >0 is small enough.
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Let f(¢) and A(¢) be defined on the closed set 4 (cf. (7)) by

h(t) =sgn(z,(1)) = (1),
and

Sy =h()(1 = [<h(2), g(0)>*P),

where =1, t;, for i=1,2, ... Now we show that there exists an index i,
such that </A(z}), g(¢5)> #0 for i >i,. First observe that since g is in G,
7, annihilates G, and supp(z,) = {t{, t,, ..., 1,,}, We get

0=<1,(tp), &(10)> + X <71, &(1,)). )

Since g is in K, by the definition, we have either g(#;,) =0 or

0<<g(t), =(t,)> = lim M (10)
ime ()l

However, (10) implies that {g(t,), 7;,(¢;))> >0 for i large enough whenever

gt )75 0. Since there is at least one J w1th g(t;) #0, it follows from (9) that
<r( 0)s g(t )> <0 (ie <h(l ), 8(ty)> <0) for i large enough. Thus, for
i=iy, [|f(th)],<1 and | f(to)»=1. Since lim,_, . ti =1, and T is locally
compact Hausdorff, there exist open sets W and V' with compact closures
such that 7, € V, [(supp(a) U {1}, ..., 1,,} )\{to} 1= W, and cl(W)ncl(V) =
. Choose i, large enough such that ¢, € V for i >i,. Choose W< W, so
that (8) holds for 7€ W and ¢ >0 small enough. By relabeling of 7, we may
assume without loss of generality that ¢ € V for all i and

Hf <1, for i=1,2,... (11)

Now / can be extended from the closed set 4 (cf. (7)) to a continuous
function A(z) on the open set V with A<V and |Ah(?)|, =1, teV, by
Tietze’s Extension Theorem for locally compact Hausdorff spaces [ 12,
p. 385] and the proof of Corollary 5.3 [4, p. 151]. Let f(¢)=Ah(1)
(1 —1|<h(2), g(t)>|*?) for t in V. Since B=cl(V)ucl(W) is compact, we
can extend f from B to a function F on all of 7 with F in C(T, R¥) (the
collection of functions in Co(7, R*) whose supports are compact) and
IF(£)],<1. Let

D:={t,} u{ty,..t,} usupp(a)u {ty: Ch(}), g(iy)) #0}.
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Then D is a G set, there exists [4, p. 148] a function ¢ in C (7, R) with
0<¢(t)<1 and ¢ !(1)=D. Thus f = ¢F is an extension of f from Wu V
to T which satisfies the following conditions:

FO={oane)  Tor tin 1o o) 12

Hf(l)\|2<1 if t#0 and teV, and /)l =1, (13)
(o)l =1 = [<h(ty), g(25)» 172 if Ch(ty), g(f5)> #0, (14)
LA <A@y (1= [<h(), g(2)51°?)  for teV, (15)

A(2)], = if tisin V, (16)
h(ti)):T-(lB):T(lé), 21, (17)

and

If(t)—eg(t)|, <1 if e<e, and 1¢V, (18)

where &,>0 is a small positive number. Note that (18) was verified for f
and ¢ in W, now f(t) is replaced by ¢(¢) f(¢) for 0 <¢(¢) <1 and the same
calculation shows (18) still holds for ze W. However, sup {|f(?)|,: ¢
(VuW)} <1 since ¥V and W are open sets containing the only points
where f has norm 1. Thus, (18) holds for fand ¢ ¢ V.

We claim that P,(f)=0. First it is shown that if g is in P;(f) and g #0,
then g is in K and thus in G,. If g is in P;(f), it is easy to verify that since
|f—gl <1 it follows that <{g(¢),a(¢)> =0 for ¢ in supp(c). Thus, by
Lemma 7(b), {(g(t), a(¢)> =0 for ¢ in supp(c). Thus, for ¢ in supp(a), w
have (g(t), f(¢))=0, and

L=fIZ11/(0) = g 3= /I3 + lg@)I5=1+llg(0)]5.

As a result, g(¢#) =0 for ¢ in supp(c) and g is in G,. Similarly, one can show
that {g(¢;), 7(¢;))> =0 for j=1, .., m, and g(¢;) =0 whenever <{g(¢,), 7(¢,)>
=0. Hence if g #0, then g is in K.

Now we show that for any nonzero g in Pg(f),

lim sup [<(tp), &(t0))|
s [<a(ty), gtg) )12

>2. (19)

If not, then

i sup 1) 38016

- <1
ime o [<a(ty), &(t5) 5177
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Since g € K, it is easy to verify that 1ge K. By Lemma 8, {t(¢}), g(7})> =0,
for i>7. (We may assume that 7>i,.) Now 7, annihilates G,, g€ G,, and
SUppP(t;) = {24 L1, s L) - Thus,

0= Y <gt),t(0)) =<{x,(tp), gltg)y + ), {zi(1)), glt))>,
t e supp(z;) j=1
and by the definition of (),
Celth). g(th))

0=<x(ty), g(t5)) = Csgn(z,(ty), g(15))> = :
Iz:(zo)l

Hence, <T (), g(t)> =0. Since 7, is an annihilator of G,, ge K< G, and
supp(z;) = {1, t1, s ,,}, We obtain

Y <), gty = Y (1), gt)) =0. (20)
Jj=1 t e supp(z;)
Since g is in K, g(t;,)=0 or {g(t),t(¢;)> >0 for j=1,..,m. If {g(1)),
7(¢;)» >0 then for i sufﬁc1ently large <7,(1)), g(¢;)> >0. Thus from (20) it
follows that g(¢,) =0, j= , m. But then g=0 since G, is a generalized
Haar set on G\Z( G,) and this contradicts the assumption that g #0, and
thus (19) holds.
Now with nonzero g in Pg(f) from (19) it follows that for infinitely
many indices 7,

[<(tp), g(to) > >2 [<(t5), &(t5) 217> (21)

Since 7; is an annihilator of G,, the above inequality implies that, for
infinitely many i’s

Iz (to)l12 {2(25), g(ty)y = — _Z (ti(t)), g(t;)) <O. (22)
Thus,
I/(25) — g(zp)113 = [I[<x(z¢ )f( ) g(16)y =(tp) 3
+ 125 — (), f(25) — g(t5)> (253
=|1/(to)]>— (),g(16)>|2
+ llg(zh) — <x(tp), g(t)> w(£p)ll3, (23)

where the first equality is an orthogonal decomposition of the error vector
and then we use the definition of f(¢) to simplify the expression.
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We continue the estimate of | f(#5) — g(¢)||5 by using indices i for which
(21) and (22) hold. Then

/(25— &(td)13 = (L) + 1< x(eh), g(16)>])?
> SIZ+2 1) 1<), gl (24)
Note that ¢(r§) =1 and f(5) = h(t5)(1 — [Ch(th), g(1§)>17?). Thus,
I3 = (1= [Che), grh) 1)
= (1 [<lrh), &(th)> )
>1-2 <y, gth)) | (25)

Since | f(15)]> — 1 and [<z(¢;), &(15)>|"* — 0 as i — oo, we have 2 || f(;) ]
>1 for i suﬁimently large. Then, by (24), (25), and (21), we get that for
infinitely many i’s,

1/(26) = g(2o)l13 =1 =2 [<x(zg), g(26)> 172+ [{x(tp), g(26) > > 1.
This is impossible, since g € P;( f). The contradiction proves our claim that
/) =10}.
Next we show that Ps(f) is not strongly unique of order 2 by estimating
| f—egll. By the definition of f(¢), for ¢ >0 small enough, || f(¢)—e&g(¢)l,

<1 if ¢ V (a neighborhood of ¢,) (cf. (18)). If P,(f) is strongly unique
of order 2, then there exists a positive constant y such that

I/ —eg|*=>dist(f, G)* + dist(eg, P(f)),
1e.,
If—egll>=1+7e* 21> (26)
Let ¢, € V' be such that
I/(2,) —eg(z)ll =1 f—egl > 1.

Since || f(t)||, <1 for te V and t #1,, it follows that ¢, — ¢, as ¢ > 0". Note
that

1£(2,) —eg(z,)]13
= | f(t )13 =26 f(2,), &(1.)) + &l )H§
<1—[<h(2,), &(1,)) |3/2 26 f(1,), &(1.)> +& |g(t,)]3-
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By the above equality, (26), and g(z,) — 0 as ¢ — 0, we obtain that, for ¢ >0
small enough,

L4y g2 < | f—egl?
<1 =26 f(1,), &(1,)) — I<h(t,), &(t.) )12 +37¢% g%,
which implies that
—2e f(t,), &(1,)> — I<h(t,), &(1.)) 172 = 3pe? |g]>.
As a consequence, < f(¢,), g(¢,)> <0 and
26 [<f(2,), &(1.)0] = 1<h(t,), &(1,)) 172+ 3¢ g2

Since f(t,) =ah(t,) for some 0 <a <1, the above inequality implies
2¢ |<h(t,), &(1,) )| = I<h(t,), (2,172 + 37 |82 (27)

Since |<h(t,), g(¢,)>|"*— 0, for £ >0 small enough,

18T ) ey 12> 1 (28)

By (27) and (28),

2e [<h(t,), 8(1,) 0] > [<h(t,), g(t)) 17+ 37 1g]1> (29)

H 7 lgl?

Equivalently, we have

_ e ) .
(V= Khte gt - HE o) <o

which is impossible. Therefore, P(f) is not strongly unique of order 2.
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