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ABSTRACT 
An isotropic metric for a black hole and a better vacuum condition V2 V0 = 0 are 
presented which yield distinct terms for the energy densities of ordinary matter 
and gravitational fields in the Einstein tensor (G44 = -g2(2V2V0 +(VV0 )2)). This 
model resolves an inconsistency between electromagnetism and gravity in the 
calculation of field energy. Resolution of this inconsistency suggests a slight 
modification of the Einstein equation to gGµv = 8rcGT1v. 

INTRODUCTION 
One can calculate the energy in the electric field of a shell of charge two different 

ways, which give the same result: One can integrate the square of the electric field 
over all space around the shell of charge, or one can integrate the work done in moving 
the charges to the shell. For electromagnetism, like charges repel. So one does 
positive work to assemble a sphere of charge, like compressing a spring. Thus an 
electric field has positive energy and positive mass. For gravity, like charges attract. 
So one does negative work to assemble a spherical shell of mass. Therefore, 
gravitational fields should have negative energy and negative mass. The vector or 
tensor nature of the field has no significance in this calculation since the energy stored 
is force through distance. 

Analogies between gravitational and electromagnetic fields are usually explored in 
the linear approximation for gravitational fields. (See, for example, Chapter 3 of the 
text by Ohanian and Ruffini 1994) Such expositions may recognize that in the linear 
approximation, the laplacian of the field should be zero in the absence of matter, and 
that a gravitational field should contribute a term to the energy density which has a 
form of the square of the gradient of the gravitational potential. (e.g. ff. p.147-148.) 
However, when the full equations are developed, the curvature tensor Rµv is assumed 
to be zero in the absence of matter. As a result the Einstein tensor Gµv is also zero, 
implying that gravitational fields have no energy density. This assumption goes back 
a long way. 

Almost all papers on gravitational fields over the last ninety years assume that mass 
density is always nonnegative. For example, the Einstein tensor for the Schwarzschild 
metric is zero, making its fields massless. The only papers that have admitted the 
concept ofnegative mass (e.g. Cattoen and Visser, 2005; Hochberg and Visser, 1998, 
and Morris and Thome, 1988) have done so as a purely theoretical tool to explore the 
concept of wormholes, although weaknesses in this assumption have been identified 
(Barcelo and Visser, 2002). This assumption of nonnegative mass is the energy 
conditions used for all metrics in common use. Therefore, those metrics may be 
incorrect. 

An isotropic metric for a black hole is presented here for which Gµv has distinct 
terms for ordinary matter and gravitational fields. This Gµv is derived in the usual way 
from the metric tensor gµv· When gµv is isotropic, one can define a gravitational 
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potential, and then Gµv derived from it takes the form of a difference between the 
laplacian and the square of the gradient of the potential. The Einstein Tensor is a 
purely geometric quantity. Instead of attributing the entire Gµv to ordinary matter, only 
the laplacian of the gravitational potential is attributed to ordinary matter. The 
remainder, which has the form of an energy density of a field is attributed to the 
contribution of gravitational fields. It should not be surprising that each term of Gµv 
transforms properly under a lorentz transformation, because it is incidental whether 
each term is locally zero. An isotropic metric has the additional feature that world lines 
do not cross event horizons, thus avoiding interactions with regions where physical 
models break down. 

METRIC AND EINSTEIN TENSOR 
For an isotropic metric with gravitational distortion g, in the rest frame of the 

source of the gravitational field, 

ds 2 = -(gr)2(dx2 + dy 2 + dz 2
) + dt 2 /(g1 )

2 (1) 

Justification will be shown later for gr = gt = g. This metric differs from simply 
isotropic coordinates in that a sphere ofradius r has a surface area of 4ng2r2 instead of 
4nr2. Because the speed of light slows by a factor of g2, the metric is not conformally 
flat, as will be shown later with the geodesics (Eq. 13). 

The gravitational distortion affects momentum and energy as well as distance and 
time. For example, one could use a photon with a frequency matched to that of a clock 
in a gravitational well to carry information about the clock out of the well. Then, the 
gravitational distortion should affect energy the same as frequency. As a photon of 
energy My climbs out of the gravitational potential, g·d(My Va) = -d(g MY ), which 
yields g = exp(-Va). Then the Einstein tensor, in spherical coordinates, derived from 
the isotropic metric of the length differential (Eq. 1) is: 

(vvalg)2 0 0 0 

Gµv=I 
0 -(VValrg)2 0 o I (2) 

0 0 -(vvG I rgsin0)2 0 

0 0 0 G44 

where G44 = -g2(2V2 Vc +(VVc)2
). From Einstein's equation, G44=8nGT44

, where T44 is 
the mass density. Because Va< 0, -g2V2Vc > 0. This term represents mass density of 
ordinary matter. The term -g2(VVc)2 < 0 represents the mass density of 
gravitational fields. Both the gradient and laplacian are calculated with the metric 
scaling the coordinates in the usual manner. 

If one admits azimuthal as well as radial variation for g, then G44 still retains the 
same form. When expanded, 
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(t4 + g; + 
4
~, -( g; )} :2 [ 2 gt+ 2 g; cote-( g;0 n (3) 

A comma indicates partial derivatives with respect to the coordinates that follow 
it. The squared terms are the square of the gradient of the potential. All other terms 
are the laplacian of the potential. 

MASS RECONCILIATION 
The negative mass of the gravitational fields inferred by analogy with 

electromagnetic fields should be quantified. Suppose one attempts such a calculation, 
to determine the form for the gravitational distortion g in this model. In a vacuum, 
'\72 VG= 0, which is 

2 g,rr + 4g,r == 0 
g rg 

With g = I and Ve= -GM!r for larger, the solution to this equation is 

g == I+ GM 
r 

(4) 

(5) 

where Mis the mass of the shell of matter. The remaining term in G44 is the mass of 
the gravitational fields. With spherical symmetry, 

G44 = -g2(vvo)2 = -( g; r (6) 

Total mass of the gravitational fields 

oo G
44 

41rr
2 

dr = __!_ J00 G44 r 2 dr. 
M = 2 f ~ G r=ro G r=~ 81,v (7) 
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of mass M, then Ma= MVa = -M lng, in analogy with assembling a shell of electric 
charge. When one equates these two calculations of the mass, 

- GMlng = - f
00 (g'rJ

2 

r 2dr. 
Jr=ro g 

-GMdr 
r2 

dg 

g 
GM== Ing== -Va· 

r 

(8) 

(9) 

This result does not satisfy the vacuum condition V2Va = 0. Apparently, the problem 
is over defined. 

To solve this paradox, one might allow the distortion for the time coordinate, gt, to 
differ from that for the space coordinate, gp and apply the vacuum condition only to gr. 
With this substitution, G44 retains the desired form, G44 = -g/(2V2 Va + (VVa)2), and g1 

appears only as a scaling factor, and not in the operators on V0 . If one admits further 
anisotropy, then V2 Va and (VVa)2 no longer appear as distinct terms in any components 
of Gµv. As shown above, gr= 1 +G Mir to satisfy the vacuum condition. Then equating 
the two ways of calculating mass results in g/ = g/. It is reasonable to conclude that 
instead of Gµv =81tGJliV, the Einstein Equation should be 

gGµv = 8n GTµv. (10) 

The left side of this equation retains its tensor properties because g is a scalar. This 
modification conforms with the scaling of energy by the distortion. As a bonus, 
because mass reconciliation then yields gt = gr, both g1 and gr satisfy the vacuum 
condition. For the rest of this paper, g1 =gr= g. 

GEOMETRY NEAR A BLACK HOLE 
As one descends into this black hole with isotropic gravitational distortion 

g =l+GM!r, it becomes increasingly self similar, since both Mand r scale the same 
way with the gravitational distortion. Locally, the circumference asymptotically 
approaches 21t GM, and the remaining distance to the event horizon asymptotically 
approaches GM. 

To calculate the geodesics, one integrates the local time for a photon to travel 
between two points, factors out the constant g2c, and applies the Euler-Lagrange 
equations to the integrand. 
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l'iT= f~ =)cf g~((r,o)2 +r2)d0 (11) 

The resulting geodesics are given by: 

0 2 2 ( ) 2 3 g, r (( ) 2 2 ) 
2 

== r r, 00 - r r ,0 - r - g r, 0 + r . (12) 

For g=l+GM!r, 

2(r, 0 )2 GM (( )2 2 )
2 

r, 00 == + r - ( \ r, 0 + r 
r rr+GM• 

(13) 

The right most term distinguishes these geodesics from those for flat space. It 
deflects the path of light toward the gravitational potential. The time for a photon to 
reach the event horizon at the center is infinite whether measured by an outside 
observer: 

1 rr2 GM r2 !J.T = -
2
- J

1 

gds ~ -
2
-I0g-

g c r1 gc r1 

(14) 

or in a frame descending into the gravitational well: 

11T = _I_ ir2 2d _, GM( 1 I) 2 g s--- ---
g C 

r 2 • 
1 g c r r 2 1 

(15) 

A MASSLESS METRIC 
For purposes of comparison, the following gravitational distortion describes a 

distribution of matter contrived to exactly cancel the negative mass of gravitational 
fields everywhere outside the event horizon: 
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r I 
g - -- -

r-GM 1-GM/r (16) 

Although G44 = 0 for this metric, G11
, G22

, and G33 are all nonzero. So, this Gµ v is 
not the same as for flat space. 

An event horizon resides at r = GM Substitution of g into the equations for time 
of travel (Eq. 14, 15) shows that objects still do not cross the event horizon. At a 
radius 2GM, this metric has a waist, where the circumference is a minimum. 
Circumference le = 2rcrg = 2rcr2/(r-GM) which has a minimum value of 8rcGM The 
total distance between two points at different depths 

s = f-rd_r_ = frz (1 + _G_M_)dr = (r2 - r1) + log(-r2_-_GM_J 
r-GM r 1 r-GM r1 -GM 

(17) 

Putting r 1 = 2GM at the waist and r2 inside the waist shows that the circumference 
grows exponentially with depth: 

( r2 -1) s ~ log GM 

( 
2 GL£. 2s 

21rr2 ~ 2tr 1ne ~ 21rGMes . 
r -GM 2 

es -1 

(18) 

(19) 

Thus, the distribution of mass makes the space more expansive there than it would be 
if the matter were absent. One might interpret matter as an excess of volume within 
a surface area. 

CONCLUSIONS AND IMPLICATIONS 
Not only does an isotropic metric result in gravitational fields with negative mass, 

as one should expect, it offers a number of other advantages over the Schwarzschild 
metric. As shown above, an isotropic metric results in a very symmetric form for the 
Einstein tensor, with distinct terms for ordinary mass and gravitational fields. Objects 
do not cross event horizons. A large amount of free energy available to objects falling 
in the halo of a black hole might nucleate cosmoses. For example, the massless metric 
just shown illustrates how the presence of an energy density induces expansion. Since 
this metric is isotropic, it can accommodate the nucleation of isotropically expanding 
cosmoses in the halo of a black hole in a way that the Schwarzschild metric cannot. 
An isotropic metric also terminates electromagnetic field lines in a way that the 
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Schwarzschild metric and Kerr metrics cannot: Deep enough into the halo of the black 
hole, the circumference and surface area increase, thus causing electromagnetic field 
strengths decrease. Projected out, it appears that a charge density resides in the halo 
of a charged black hole. The termination of field lines provides cutoffs for fields, 
limits field energies, and might accommodate general relativistic models for the masses 
of the electron, muon, and tauon. 
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