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ABSTRACT

COMPUTATIONAL DYNAMICS FOR THE FLEXIBLE MULTI-
BODY SYSTEM

Yu Liu
Old Dominion University, 2013
Director: Dr. Gene J. W. Hou

Research in computational dynamics has tremendously developed in the recent
years because of the demand for analysis and simulation of various multi-body systems in
the growing bio-medical, mechanical and aerospace industries. These multi-body systems
are made of individual bodies that are interconnected via mechanical joints.
Mathematically, these joints that connect the bodies can be described as constraint
equations imposed upon the motions of the involved free bodies. This process will result
in an equation of motion expressed in the form of a differential-algebraic equation (DAE).
This is one of the main difficulties when dealing with the multi-body system because
these constraints must be satisfied all the time.

The main objective of this dissertation is to develop an efficient and accurate
solution algorithm to solve the DAE resulting from flexible multi-body dynamics. The
principle of virtual work and D’Alembert’s principle are used in this dissertation to
formulate the equation of motion for a general three dimensional (3D) multi-body
dynamic system that involves rigid as well as flexible bodies. The elastic mode shapes
and modal coordinates are used to convert the time-variant integrals associated with
elastic deformations in the mass matrix into time-invariant ones. In addition, the transient
stress distribution is obtained directly in terms of the linear combination of the modal
element stress and corresponding modal coordinates solved from DAE. Euler parameters
and the matrix exponential method are used to calculate the time-dependent
transformation matrix for a general 3D problem. The projection method with constraints

correction is proposed in this dissertation to solve the DAE modeling the motion of a
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constrained multi-body dynamic system. The mixed order technique with the additional
Euler parameters method is proposed to solve a general 3D flexible multi-body system.
Two examples are studied in this dissertation: a planar slider-crank mechanism and a 3D
flexible moving craft in irregular waves.

The planar slider-crank mechanism is used in this dissertation to demonstrate the
application of the integrals calculated as time-invariants and the proposed projection
method with displacement and velocity constraints correction. The flexibility of the
connecting rod of the slider-crank mechanism is included in the formulation. The
numerical results obtained by the projection method will be compared with those by the
commonly used coordinate partitioning method. The results show the validation and
efficiency of the proposed constraints correction method.

For the 3D flexible craft dynamics, the pressure distribution reconstruction
algorithm is carried out to construct the hydrodynamics pressure on the wetted surface
based upon the test pressure data. Then the nodal pressure loads are converted to the
equivalent nodal force as the external loads for the flexible craft. Both Euler parameters
and angular velocities are treated as the generalized coordinates in the equation of motion
to model the rotation motion of the craft. Hence, the second order of Euler parameters is
not incorporated in the equation of motion. It means that only constraints on first order
time derivation of Euler parameter are needed. The results from the proposed Euler
parameter methods are compared with the matrix exponential based Newmark method. It
shows that the proposed Euler parameter method is non-sensitive to the time steps and
has good accuracy. Finally, the least square error optimization method is used to find the
Von Mises stress at each node. Thus, the time history nodal stress can be obtained
directly from the modal element stress and modal coordinates solved from DAE. Hence,
it doesn’t need to rerun the dynamic analysis under the nodal displacement to obtain the

node stress.
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ABBREVIATIONS AND NOTATION

DAE: Differential and Algebraic Equation
EOM: Equation of Motion

CG: Center of Gravity

ABS: American Bureau of Shipping

LR: Lloyd’s Register

3D: Three Dimensional

IFFT: Inverse Fast Fourier Transform
PSD: Power Spectra Density

r : Position vector in global coordinate

e : Elastic deformation

ODE: Ordinary Differential Equation
DOF: Degree of Freedom

LCG: Longitudinal Center of Gravity
DNV: Det Norske Vertas

2D: Two Dimensional

FFT: Fast Fourier Transform

DFT: Discrete Fourier Transform

r': Position vector in local coordinate

r, : Total Position Vector in local coordinate

R : Position Vector of the Origin of Local Coordinate in Global Coordinate

IT' : Angular Vector of the Origin of Local Coordinate

A : Transformation matrix

o' : Skew matrix of local angular velocity
q, : Elastic displacement at all nodes

¥ : Mode shape matrix

q : Generalized system coordinates

U : The strain energy

oyt Stress

M: Generalized mass matrix

q: Generalized system coordinate
7, : The stress tensor
I, : Integral of elastic deformation
I.: Linear moment of inertia

T . . .
c= (c , €, ¢ 3) :The unit rotation axis
¢, : Independent coordinates

P: The projection matrix

o' : Local angular velocity
N : Shape function matrix

L: Linear operator
a : Modal coordinate
6 : Delta operator

A : Lame constant, or Lagrange multiplier

Ky : The global stiffness matrix

[ Generalized force term

C, : The constraint Jacobian matrix
¢;: The strain tensor
I : Integral of local vector
T
p=1{e, e e, e} :Eulerparameter
X : An angular displacement

4, : Dependent coordinates

Aq : The change of system coordinates
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vii
T, Starting time at transducer T, : Corresponding time at 1* transducer

T, : Corresponding time at 2" transducer S: Distance along transverse section

S,,: Bonds of 1* transducer S,,: Bonds of 2" transducer

&,n,¢ : Area coordinates for triangular
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CHAPTER 1

INTRODUCTION

1.1 Background

A flexible multi-body system is composed of a series of flexible and rigid bodies
connecting with each other through different joints or force elements to fulfill the
specified function. Many engineering systems such as vehicles, robots, and space
structures are made up of multi-bodies. The functional performance of these systems
depends highly on the design and the characteristics of the bodies involved and the joint
conditions between them. In order to determine the performance of the system accurately,
one has two choices: the first is to formulate the mathematical model in as much detail as
possible; the second is to improve the reliability and efficiency of the method utilized to
solve the governing equation of motion that describes the physical system.

Strictly speaking, all bodies that constitute a multi-body system are elastic. In
most applications, the flexible bodies are considered rigid for computational simplicity.
However, considering the ever-increasing demand for higher operating speeds and lighter
structures, the rigid body assumption is no longer accurate enough to describe the
performance of a system. Therefore, the elastic deformation of the body must be taken
into account in order to accurately evaluate the system performance.

The governing equation of motion of a flexible multi-body system is usually
formulated as a differential algebraic equation (DAE) due to the kinematic constraints.
The DAEs can’t be directly solved by the classical solution procedure for an ordinary
differential equation (ODE). In the last few years, a significant amount of research in
multi-body dynamics has aimed to increase either the application sophistication or the
computational efficiency. This dissertation investigates two areas in order to improve the
computational efficiency in solving such DAEs. One is to look at the numerical
integration of elasticity-dependent inertia terms in the mass matrix. The other is the
numerical method that deals with the constraints correction and 3D rotation description.

Two examples are studied here to illustrate and validate the proposed methods: a
two dimensional (2D) slider-crank mechanism and a three dimensional (3D) flexible

marine craft under wave-induced hydrodynamic pressure.
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1.2 Literature Survey on the Flexible Multi-body Dynamics

The flexible multi-body dynamics emerged as a new research field in the early
1970s [1-6] as the result of the need to simulate the mechanical systems more accurately
by taking elastic deformation into account. In contrast to the rigid multi-body dynamics,
the flexible multi-body dynamics describes the dynamic deformation of a flexible body.
One reason is that the number of coordinates required to describe the flexible body can be
very large compared to a rigid body; the latter requires only six coordinates, even in the
3D space. Another reason is that the elastic deformation may cause a strong nonlinear
coupling between the rigid and the flexible deformations.

Comprehensive reviews of the past, current, and future for the flexible multi-body
dynamics were done by Schiehlen, Shabana and Wasfy. Schiehlen [7] summarized the
development of flexible multi-body dynamics, such as historical remarks, textbooks and
proceedings, dynamic analysis software, and future concerns. Shabana [8] reviewed the
kinematic approaches used to describe the motion of the flexible body, the analytical
methods for formulating the governing equation of motion of the flexible multi-body
system, different numerical methods, and interesting research topics for the flexible
multi-body dynamics. Wasfy [9] reviewed 877 references about different aspects of the
flexible multi-body dynamics. He gave an entire picture of the flexible multi-body
dynamics: modeling of the flexible components and constraints, solution techniques,
control strategies, coupled problems, design and experimental studies.

In the flexible multi-body dynamics, it is critical to determine the coordinate
system or frame in describing the kinematic configurations of the system that may
undergo large translation and rotation. Many different frames have been used in the past:
floating frame [10-12], co-rotational frame [13, 14], convected coordinate system [15],
and absolute nodal coordinate [16]. One widely used method is the floating frame based
on the assumption that the elastic deformation is small. In the floating frame methods, the
total motion of the flexible body can be viewed as a combination of the rigid body motion
and the relatively elastic deformation. The rigid motions, including translation and
orientation, are represented in the global coordinate by the motion of the origin of the
floating frame. The elastic deformation is described in the body-fixed coordinate in terms

of the nodal displacement. Then, the elastic deformation is expressed in the global
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coordinates through the transformation matrix from the body-fixed coordinate to the
global coordinate. It can be noted that this kinematic configuration description is identical
to that of a rigid body system when the elastic deformation is equal to zero.

Although the floating frame method is straightforward, it has its own issue to deal
with [17]. One of the critical issues is the selection of the body-fixed coordinate. It should
be mentioned that the dynamic responses are independent of the selection of the body-
fixed coordinate. The purpose of selecting a body-fixed coordinate is to simplify the
computation. In the rigid body dynamics, the body-fixed coordinate can be placed at the
center of gravity of the body in order to decouple the rigid translation and the orientation
motion. However, for the flexible body, this coupling cannot be eliminated even though
the body-fixed coordinate is located at the center of gravity due to the elastic deformation.
Many attempts [18-23] have been made in the past forty years in order to select a proper
body-fixed coordinate system to weaken the coupling between the reference motion and
the elastic deformation. Some of these [20-21] are the body-fixed frames, in which the
floating frame is attached to a fixed point in the body. The others [22, 23] are floating
frames moving with respect to the elastic body, in which the floating frame satisfies the
condition that the relative kinetic energy with respect to the body is minimal.

In the flexible multi-body dynamics, the first problem encountered is how to
express the elastic deformation, because theoretically infinite coordinates are needed to
describe the position of any arbitrary point in a flexible body. This issue can be resolved
by using approximation techniques, such as the Rayleigh-Ritz method or the finite
element method to reduce the infinite coordinates to an acceptable set of coordinates. In
the Rayleigh-Ritz method, the elastic deformation can be approximated using a finite set
of known trial functions that satisfy the boundary conditions. One of the main problems
associated with the Rayleigh-Ritz method is the difficulty in finding these trial functions
for a complex structure. The finite element method can overcome such a difficulty. In the
finite element method, the flexile bodies are discretized into small regions called
elements that are connected at points called nodes. The displacement at the nodes can be
obtained from the finite element analysis. On the other hand, the displacement at any
location besides these nodes within an element can be interpolated using the shape

functions, which are usually polynomials. Moreover, the mode superposition technique
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[24, 25] can be used to approximate the elastic deformation in terms of a linear
combination of the mode shapes. The mode shapes and natural frequencies used in the
mode superposition technique can be obtained either from modal analysis or from the
modal identification technique based upon experiment. By so doing, the numbers of the
system generalized coordinates for the flexible body will be considerably reduced from
the infinite to the numbers of the mode shapes. However, the accuracy of the elastic
deformation is heavily dependent on the selection of a set of suitable mode shapes. It is
neither necessary nor realistic to select all the mode shapes because some mode shapes
have a negligible effect on the elastic deformation. In addition, the high frequency mode
shapes, which carry only a small amount of energy, are not necessary for global
deformation, but they are needed for the local deformation effect. Some researchers [26-
28] have attempted to select the proper mode shapes to approximate not only the elastic
global deformations but also the local elastic deformation due to the applied loads and the
kinematic joints.

The second problem is how to calculate the inertia integrals in the mass matrix
and the generalized force vector of the governing equation of motion because they are
time variants in terms of the elastic deformations and the local angular velocities. The
solution of the final ordinary differential equations (ODEs) requires substantial
computational resources because these integrals are calculated every time the ODE solver
is called. Fortunately, these integrals can be calculated in advance using the mode
superposition technique with the help of the shape functions. In other words, these
integrals can be calculated as constants based upon shape functions, mode shapes and
geometry information provided by a finite element code. Hence, the governing equation
of motion that describes the system is totally independent of the finite element code used
to compute the mode shapes of the flexible body. The main idea for this method is to
move the modal coordinates from these integrals explicitly. In this way, substantial
reductions in computational cost will be achieved. Chapter 3 introduces this technique in
detail for the various types of finite elements.

The inertia integrals can be obtained in advance using a lumped or consistent
mass approach. Yoo and Haug [29, 30] used a lumped mass method to calculate the

inertia integrals as time-invariants for the articulated structures dynamics. Pan and Haug
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[31] presented a lumped inertia matrix approach that can optimize the calculation of the
flexible multi-body dynamics. Pan [32] incorporated the nodal rotary inertias in flexible
multi-body dynamics to consider the stress-stiffening effects. Cardona and Geradin [23]
used a co-rotational technique to calculate the inertia integrals for the super-elements.
Thus, the dynamic analysis and the finite element analysis are fully uncoupled.

The kinematic configurations of the flexible multi-body system can be described
either by the system generalized coordinates or by the degrees of freedom of the system
[33]. The system generalized coordinates are not independent due to the constraints
between different bodies. However, the degrees of freedom are totally independent of
each other. Hence, the governing equation of motion for the flexible multi-body system
can be obtained based upon these two different descriptions with the help of the principle
of virtual work or the Lagrange method. In the first case, the equation of motion is
formulated by using a set of Cartesian coordinates that describe the locations and
orientations of the bodies in the global coordinate system and a set of modal coordinates
that describe the elastic deformations. The kinematic constraints between different bodies
can be represented by a set of nonlinear algebraic equations. These kinematic constraints
can be incorporated into the equation of motion with the help of Lagrange multipliers.
The governing equation of motion for the flexible multi-body system is a set of highly
nonlinear DAEs. The derivation of this method is general and straightforward, in which
the additional bodies and constraints can be added easily without destroying the format of
the governing equation of the existing system. In the second case, relative or joint
coordinates are used to formulate the equations of motion in terms of the system degrees
of freedom. This method is more desirable in a tree topology system as it employs a
minimum number of coordinates to describe the system. The basic difference between
these two methods is how to deal with the constraints.

Once the governing equations of motion describing the flexible multi-body system
have been established, a proper numerical algorithm is needed. These highly nonlinear
DAESs cannot be directly solved by classical integrator schemes. The solution strategy in
the flexible multi-body dynamics used in the early days was the linear theory of
elastodynamics [8, 29], in which the rigid body motion and the elastic deformation are

not solved simultaneously. It has been based upon the pervasive assumption that the
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elastic deformations have a negligible effect on the rigid body motion. Thus, the solution
is divided into two steps; the first step is to solve the equation related to the rigid
coordinates by eliminating the elastic deformations. The second step is to solve the
equation related to the elastic coordinates by imposing the coupling terms calculated
based upon the results from the first step. However, the accuracy and stability is not
guaranteed, especially for the system under the high speed and light weight circumstance.
Hence, it is critical to find a proper numerical algorithm for the flexible multi-body
dynamics to obtain accurate results. The widely used numerical algorithms are the
augmented methods [34], the recursive methods [35-38], and other methods based upon
these two methods [39-42]. In the augmented method, the system generalized coordinates
and Lagrange multipliers in the DAEs are solved simultaneously, e.g., the projection
method [43, 44] introduced in Chapter 3. However, for the recursive method, the
Lagrange multipliers are eliminated first by introducing independent and dependent
coordinates through the constraint equations. The resultant ODEs will be in terms of the
system degrees of freedom only. In other words, a minimum set of coordinates is only
needed in the recursive method. The coordinate partitioning method [45], which divided
the system coordinates into dependent and independent, is be introduced in Chapter 3.

At the same time, an implicit and an explicit solution can be used in integration
marching for both the augmented and the recursive methods. In the implicit solution, the
system generalized coordinates that simultaneously satisfy the governing equation of
motion and the constraints equations are sought based upon the information obtained in
the previous and current steps in order to minimize error. It should be noted that the
Newton-Raphson method will be used to solve the nonlinear constraints equation in order
to satisfy the prescribed error tolerance. One of the advantages of the implicit solution is
that the time step can be larger compared to the explicit solution because it is
unconditionally stable. In the explicit solution, the system coordinates that
simultaneously satisfy the governing equation of motion and the constraints equations are
sought only based upon the information in the previous step. Hence, it is easier to solve
the final equations in the explicit solution. However, one issue for the explicit solution is

how to determine the size of time step to achieve a stable and convergent solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Literature Survey on Pressure Loads Prediction on the Craft Hull Surface

One of the challenges that designers face in the early design phase for a craft is to
determine the hydrodynamic pressure loads. These hydrodynamic pressure loads between
the hull and the water have a negative effect on the overall performance of the craft
including ride quality, personnel comfort, habitability and safety, equipment reliability, as
well as the craft itself. In addition, these hydrodynamic pressure loads are related to the
sea-state, craft speed, and the geometry of the craft itself. Generally, designers have to
make a compromise between the strength and the weight to ensure performance of a craft.

Three approaches are currently available for predicting the pressure loads. The
first approach is the standard specified by classification societies such as the American
Bureau of Shipping (ABS) [46], Det Norske Veritas (DNV) [47] or Lloyd’s Register (LR)
[48]. The advantages of this approach are that it is simple and less time-consuming.
However, the shortcoming is its emphasis on safety, which leads to a suboptimal design
in terms of weight. The second approach is a semi-empirical method, in which the design
pressure loads on the hull surface are calculated using the acceleration information from
either model or full-scale tests. These semi-empirical methods are both simple and easy
to implement; however, they are less accurate. The main assumption of the semi-
empirical methods is that the pressure loads are static and uniform; therefore, these
methods are not appropriate for time domain simulations. The standards of the
classification societies are based upon these semi-empirical methods with some
improvements. The third approach is the model or full-scale test. This is the most
insightful option for the designer. However, it can be extremely expensive, and the
pressure is measured, and thus is known, only at specific points.

The prediction of the lifting and the resistant pressure loads for the high speed
craft design has received considerable attention by many researchers. The lifting load is
the main source that causes structural damage. The resistant load is the main reason to
determine the characteristics of the propulsor. The hull-water impact has been studied
using experimental methods. In 1960, Heller and Jasper [49] did pioneering work on load
prediction for the craft structural design. Prior to this, the structural design of craft under
100 ft had merely relied on the designer’s experience. They first attempted to calculate

the hydrodynamic pressure loads on the hull surface directly using a semi-empirical
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algorithm based upon the vertical acceleration at the longitudinal center of gravity from
the full-scale test data obtained at high speeds in rough water.

In 1964, Savitsky [50] formulated a semi-empirical iterative method for
predicting the lift, trim angle, resistance and porpoising stability for a prismatic planing
craft in calm water based upon a large amount of test data combined with a theoretical
method. In 1976, Savitsky and Brown [51] extended this method to incorporate the
statistical measures of vertical acceleration and the resistance for a planing craft in
regular and irregular waves based on the model tests done by Fridsma [52, 53]. Savitsky
has made a great contribution towards better understanding and prediction of the
hydrodynamic loads for planing craft design. In 1993, Savitsky and Koelbel [54] gave a
comprehensive review of seakeeping analysis and load prediction for a planing craft,
including a description of design features that result in good seakeeping performance. In
2007, Savitsky et al. [55] quantified the drag resistance force caused by the whisker spray
in an analytical procedure and identified the area, flow direction, and location of whisker
spray in terms of the hull geometry and the operating conditions.

In 1975, Spencer [56] proposed a methodology to predict the impact pressure on
the hull surface for the structural design of the aluminum crewboats based upon the work
done by several researchers. He used the work done by Savitsky for determining the
craft’s running trim angle, the method developed by Fridsma for predicting vertical
accelerations at the LCG, and the technique from Heller and Jasper for calculating the
impact pressure distributions on the hull. In the methodology, impact pressure load is a
function of dimension, proportion, displacement (weight) and speed of the craft. In 1980,
Spencer and Henrickson [57] simplified Spencer’s original methodology to compile a
“cookbook” method to predict impact pressure that was intended primarily for the use by
the U.S. Coast Guard.

In 1978, Allen and Jones [58] developed a method for predicting the impact
pressure loads on the hull of a craft based upon the test data of a 65 ft crewboat and a 75
ft slender planning hull done by the U.S. Navy. They stated that the impact pressure loads
are non-uniform across the hull surface. The highest pressures are usually located at the

first quarter point aft of the bow. However, the lower pressures are over a greater portion
of the hull.
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In 1998, Grimsley [59] summarized seven semi-empirical/theoretical methods,
including Heller and Jasper, Spencer, Danahy, Angeli, Henrickson and Spencer, Koelbel
and Allen and Jones, and three classification society rules: ABS, DNR and LR, for the
pressure design load predicting. Grimsley also compared the results of these methods
with full-scale test data for seven monohulls ranging in length from 20 to 100 ft with
speeds of 20 to 46 knots.

In 2000 and 2001, Koelbel [60, 61] gave a comprehensive and critical review of
the semi-empirical methods for predicting pressure loads. He stated that these semi-
empirical methods yielded large variations between the different formulas for predicting
the design acceleration, even for the same dimensional craft. These semi-empirical
methods involve uncertainties and ambiguities for designer in predicting the seakeeping
characteristics and the design loads. Another serious issue in these methods is that the
value of the predicted pressure load is constant and uniform, which is the extreme load
that the craft may encounter during its lifetime. Although the non-uniform pressure loads
are considered in the Allen and Jones method, they are just static constant and time-
independent. However, the hydrodynamic pressure loads of a craft are transient in the
time and space domain. When a uniform pressure load is applied to the structure design
for a craft, it will lead to the use of large safety factors. Hence, it will result in an over-
designed craft.

In 2003, the American Bureau of Shipping (ABS) [62] recognized that time
domain predicting hull pressure loads is an effective way to structure analysis of a high
speed craft. Direct time-domain simulation involving short-term predictions based upon
the time domain pressure loads is recommended as a minimum requirement for strength
assessment on the monohull craft in order to get a detailed analysis.

In 2004, Rosen [63] systematically summarized the load and response of a craft in
waves, widely used design methods, experimental analysis and theoretical analysis for
the hull-water impact in his PhD thesis. He and his colleagues presented a direct
approach for calculating the impact pressure loads based upon large amounts of the
model and full scale tests for the craft in different sea states. Hydrodynamic pressure

loads between hull and water are calculated using a non-linear time-domain strip method.
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In 2007 and 2009, Chiu et al. [64, 65] carried out a series of model tests in regular
and irregular head waves in the towing tank to capture the motion, acceleration at LCG,
wave-induced loads for the high-speed patrol ship, and found frequency response
functions of pressure loads using third order and fifth-order Volterra models for regular
and irregular waves respectively. They also conducted the statistical analysis of the
response data and concluded that the response data follows the Rayleigh distribution.

Besides the above experimental and semi-empirical studies of the hydrodynamic
loads on a craft, numerical simulation techniques for predicting the hydrodynamic loads
in order to estimate the performance are another efficient way, which have been studied
by many researchers. Three widely used numerical methods are: the vortex lattice method
(VLM) [66, 67] first utilized for lifting wings in aerodynamics, the boundary element
method [68-71], and the finite element method [72, 73].

During the period between 2008 and 2010, Ghassemi et al. [74-78] published
several papers that presented the investigation of a combined method for determining the
hydrodynamic characteristics of different hull forms in calm water, in which the induced
pressure resistance is integrated using the boundary element method (BEM), the frictional
resistance calculation is based upon the boundary layer theory, and the spray resistance is
determined using Savitsky’s method. It should be noted that the work done by Ghassemi
is for calm water conditions; thus, the nonlinear characteristics of the pressure loads are
neglected.

Recently, Faltinsen and Sun [79-81] investigated the performance of a craft in
regular incident waves in head seas numerically. A 2D+t nonlinear theory is presented to
perform the time domain simulations of the porpoising and the wave-induced motions and
the acceleration of a prismatic planing boat in incident waves. A boundary element
method is employed to solve the initial boundary value problems in 2D cross-planes.

Based upon the aforementioned methodologies, the assumptions for the pressure
distribution algorithm proposed by Rosen are used in this dissertation to determine the
pressure loads at each transverse section. The pressure loads are converted into the
equivalent nodal force in order to simplify the dynamic analysis. The dynamic response
of a flexible craft under reconstructed pressure loads is conducted to obtain more detailed

stress information compared to rigid dynamics.
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1.4 Motivation

A craft experiences wave-induced hydrodynamic impact when it operates in a
complex sea-state at high speed. These wave-induced hydrodynamic pressure loads are
known to cause structural damage. Hence, the proper understanding and the accurate
prediction of the wave-induced hydrodynamic pressure loads on the craft are critical in
order to achieve a design with good seakeeping and habitability characteristics.

As already mentioned, semi-empirical methods are not appropriate for a time
domain analysis because they assume that the pressure load is static and uniform. Hence,
a better method for predicting the impact pressure loads is necessary for the design of a
high-speed craft. In this dissertation, a pressure distribution reconstruction algorithm is
developed based upon the output of pressure transducers in order to predict the time-
dependent hydrodynamic pressure at any point on the wetted surface of the craft.

Generally, the simulation of the flexible planing craft dynamics under the
hydrodynamic pressure loads is carried out in the explicit finite element software, such as
LS _DYNA, or CFD. In LS_DYNA, the instantaneous fluid structure interaction between
the hull surface and water is modeled using the contact parameters [82]. However, the
values of the contact parameters should be determined by the users themselves. Hence,
the analysis results are dependent on the user’s experience. On the other hand, the explicit
finite element analysis is computationally intensive. Hence, computational efficiency in
flexible multi-body dynamics is one of the critical concerns in this dissertation.

In this dissertation, the final DAEs describing the motions of a flexible craft are
solved in Matlab using two numerical algorithms: Newmark's method and the mixed
order technique with the additional Euler parameters. In this work, the commercial finite
element code is utilized only as a pre-processor to provide the geometry information and
the mode shapes. The inertia integrals that represent the dynamic coupling between the
rigid motion and elastic deformation in the DAESs can be calculated in terms of the mode
shapes right at the beginning of the solution process. This process results in significant
savings regarding the computational cost because the integrals are constants and need to

be calculated only once regardless of the number of times the ODE solver is called.
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1.5 Study Plan

This dissertation focuses on the derivation and the solution procedure for the
flexible multi-body dynamics. A 2D slider-crank mechanism and a 3D moving craft are
used as examples to facilitate the discussion. The main research tasks are as follows.

The first task is to determine how to calculate the time-dependent elastic inertia
integrals. Mode superposition technique is used to approximate the elastic deformation in
terms of a linear combination of the modes shapes. Hence, the integrals can be obtained
in advance as constants with the help of shape functions by moving the modal
coordinates out of the integration explicitly.

The second task is how to determine the hydrodynamic pressure loads between
the hull surface and the water for the high speed craft in irregular waves. The linear
pressure distribution reconstruction algorithm is used to obtain the momentary pressure
loads at any arbitrary location using the filtered data measured at the limited number of
transducers. Thus, the equivalent nodal force in time domain is calculated as the
externally applied forces for the 3D flexible craft based upon the node pressures.

The third task is to determine how to solve the differential algebraic equations
efficiently. For the planar slider-crank mechanism, the coordinates partitioning method
and the projection method with constraints correction will be used. For the 3D moving
craft, Newmark's method based on the matrix exponential function and the mixed order
techniques with the additional Euler parameters is used to obtain the motion of the craft
subjected to the large rotation.

The flow chart of the research method for the flexible craft dynamics is shown in
Fig. 1.1. It can be easily observed that the whole process is divided into three parts.

The first part is the test data processing and pressure distribution reconstruction.
The raw pressure test data is filtered by eliminating the noise at high frequency without
changing the trend of the data. Fast Fourier Transform (FFT), low-pass Butterworth filter
and demeaning method are used for the raw test data filtering. Thus, the maximum
pressure peaks are found based upon all the filtering test data so as to determine when
and how the impact event occurred. As a result, the starting points and wave velocities

along each transverse section can be determined. Finally, the momentary pressure

distributions at any arbitrary point (x, y,z) can be obtained using the pressure
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reconstruction algorithm, in which 3D coordinate (x, y,z) is converted to 2D coordinate
(x,S)based on the assumption that the shape of the hull surface is U or V type.

The second part is to conduct the modal analysis using a commercial finite
element code, such as MSC/Nastran. One can then calculate the time-invariant inertia
integrals and time-dependent equivalent external loads based on the geometry
information and modal shapes provided by the modal analysis. It should be noted that the
commercial finite element code is utilized only as a pre-processor.

The third part is to solve the final DAEs representing the flexible multi-body
system mathematically and display the results. One can get the kinematic motion and the

strain and stress distribution on the craft for future design consideration.

Measured
Pressure Data

'

Filtering:
FFT, Low-pass

v

Pressure Pulse:
Starting Point

v

Pressure Pulse:
Particle Velocity

|

2D Pressure
Reconstruction

v

3D Pressure
Mapping

!
Time Domain | E Bound
Nodal Force 'y ouncary
¥ Conditions
I
DAEs 1y
7 ¥ ‘
Mod l:Sh ! i Dynamic
odal Shapes | |1 Analvsi
Modal Stress : E s
Integrals ¥ v
L}
A ' E Modal Coordinates
: — 11| System Coordinates
Modal Analysis | 1| t
¥ v
A 'l : : :
: Ly Kinematic Motion
Finite Element | ! : Stress
Model ! : Strain
U
¥ ¥ v
Geometry ¥ Design
Information ! Considerations
Yy
I

Pre-Processor Finite Element Analysis Post-Processor

Figure 1.1 Flow chart of research method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

1.6 Scope of the Study

The subsequent chapters of the dissertation are organized as follows.

In Chapter 2, the generalized governing equation of motion for a flexible multi-
body system is derived based on the principle of virtual work and D’ Alembert’s principle
in terms of the absolute Cartesian coordinates. The nonlinear constraints between
different bodies are introduced into the equation of motion with the help of Lagrange
Multipliers. The floating frame is used to describe the kinematic configurations of the
flexible multi-body system, in which the elastic deformations are approximated in terms
of the linear combination of mode shapes obtained from the finite element modal analysis.

In Chapter 3, three numerical issues related to the computational efficiency in
solving the flexible multi-body system are discussed in detail. The integrals of coupling
terms in the mass matrix, the transformation matrix and the methods of solving DAEs are
discussed. The integral terms that represent the dynamic coupling between the rigid
motion and elastic deformation are calculated as constants in advance by expressing in
the explicit format of the modal coordinates. The transformation matrix 4 can be
calculated in five different methods based upon available information of the input data:
direction cosines, Euler angles, Rodriguez parameters, Euler parameters and matrix
exponential function. The relationships between these different methods are also derived.
The Euler parameters method is widely used because it never encounters singularity as
the three-parameter Euler angles method does. Two different numerical methods: the
coordinate partitioning method and the projection method are used to solve the DAEs.

In Chapter 4, a 2D planar slide-crank mechanism with rigid/ flexible connecting
rod is studied in detail to verify the two numerical methods introduced in Chapter 3,
namely, the numerical integrals in the mass matrix and the DAEs solution procedure. For
the rigid case, the direct method is set as the benchmark to check the coordinate
partitioning method and the projection method with constraints correction. It validates the
projection method with constraints correction. Two different locations are selected as the
origin of the body-fixed coordinate. The results show that it is computationally efficient if
the origin of the connecting rod is located at the center of gravity. The results are also
compared with the flexible crank-slide mechanisms in terms of solution accuracy and

efficiency.
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In Chapter 5, a numerical method is presented to reconstruct the pressure
distribution over the wetted surface of the craft based upon the data measured by several
pressure transducers. The high frequency noise in the measured data is first filtered out by
using the FFT and a low-pass filter. The pressure distribution reconstruction algorithm
proposed by Rosen for a planar domain is carried out based on the filtered pressure data.
The pressure reconstruction for the 3D finite element model of the craft is then calculated

by converting the 3D coordinate (x, y,z) to 2D coordinate (x,S)based on the assumption

that the given hull surface is either a U or a V type.

In Chapter 6, the dynamic response of a flexible craft subject to the reconstructed
pressure load is simulated based on the derivations and the methods discussed in Chapter
2 and 3. In particular, the 3D pressure distribution generated in Chapter 5 is first
converted into equivalent nodal force for dynamic analysis. Furthermore, a mixed order
technique with additional Euler parameters is proposed in this chapter in order to handle
the large angular rotation incurred in the 3D craft motion. The results from the proposed
algorithm are compared to that from the Newmark method, in which the transformation
matrix is calculated using the matrix exponential function. At last, the dynamic element
stress distribution is calculated based upon the modal element stress using the least mean
square error technique.

In Chapter 7, research conclusions and suggestions for future investigations are

provided.
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CHAPTER 2
EQUATION OF MOTION FOR A FLEXIBLE MULTI-BODY

SYSTEM

Mechanical systems can be considered as a collection of bodies or components,
connecting with each other through various joints to fulfill a specific function.
Mechanical systems have been widely used for different purposes in modern society.
Some are comparatively simple, such as slider—crank mechanisms, while others are much
more complex, such as vehicles. Both, however, can be denoted as the collection of four
basic elements: body, the component in the system,; joint, the constraint between bodies;
Jforce element, the spring and actuator counting for interactions between bodies; external
excitation, the force or the moment.

In this chapter, the governing differential equation of motion pertaining to a
mechanical system is derived in detail. To this end, many methods can be used, including
the Newton-Euler method and the Newton-Lagrange method. It is, however, the principle
of virtual work that is used in this study.

The organization of this chapter is in following order.

The equation of motion for a single flexible body is first derived in detail in
Section 2.1. The result will be easily extended to a flexible multi-body system in Section
2.2 because the flexible multi-body system is made of many flexible bodies connected
with joints. The kinematic constraints that describe the joints between flexible bodies are
included in the equation of motion through the use of Lagrange multipliers. For the
computational simplicity, the modal coordinates are introduced in Section 2.3 to
approximate the elastic deformation in the equation of motion. Finally, the equation of
motion for a rigid multi-body system is obtained directly in Section 2.4, which is

considered as a special case for the flexible multi-body system.
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2.1 Equation of Motion for a Single Flexible Body

The schematic diagram for a single flexible body is shown in Fig. 2.1. The body
occupies the domain, Q. The frame x — y —z is the global coordinate system with the
origin at O. The frame x' -y’ —2z" is the body-fixed coordinate system with the origin
fixed at O'. The position vector r’and the linear elastic deformation e of any point in the
body can be conveniently defined with respect to the body-fixed coordinate system. The
body force f, is distributed throughout the body. The traction forces T are applied over

part of the boundary, S; while the prescribed displacement filed is over part of boundary,
So.

z Figure 2.1 A Single Flexible Body

The configuration of a multi-body system is identified by a set of variables called
the system generalized coordinates that completely define the location and orientation of
each body in the system. The least of those generalized coordinates is called the Degrees
of Freedom (DOFs). Once this set of generalized coordinates is identified, they can be
used to describe the global position of an arbitrary point on the body.

The movement of any arbitrary point in a single flexible body can be viewed as a
combination of the rigid body motion and the relative elastic deformation. The rigid-body
motion is measured by the relative motion between the body-fixed coordinate system and

the global coordinate system, whereas the elastic deformation is measured by the motion
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of the point with respect to the body-fixed coordinate system. Thus, the position vector r

of any point p, in the body can be defined in the global coordinate system as:

r(®) =R+ AWr.(1) (2.1
where R(?) is the time-dependent position vector of the origin of the body-fixed
coordinate described in global coordinate system, and 4 (¢} is the transformation matrix
from the body-fixed coordinate system to the global coordinate system. The
transformation matrix 4 can be described in terms of cosine directions, Euler angles,
Euler parameters, Rodriguez parameters, or the Matrix exponential function depending

on the information available. Calculation of the transformation matrix based upon

different methods will be discussed in detail in Chapter 3.

The vector r,(t) is the summation of rigid position vector r'and the elastic

deformation e of the point in the body-fixed coordinate system, which can be written as

follows:
x' u(t)
ri)=r'+e(t)y=<y }+3v(t) (2.2)
z' w(t)

where r'is the position vector of point p,, whereas e is the translational elastic

deformation of the same point. The position vector r’does not change with time.

To obtain the velocity of point p, in the global coordinate system, one can

differentiate Eq. 2.1 with respect to time. Thus, the first order derivation of r relative to
time is as follows:
F=R+Ar + AF = R+ A@'r’ + Aé = R— AF'0' + Aé
R
=[1 47 ANReo't=Lq
q.

2.3)

where ¢, is the elastic deformation vector, @’ the vector of the local angular velocity of

!

T ~r . . . .
z} ,and @'is a skew matrix, which is

the flexible body, is given by @' = {w; 0, o

defined as:
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0 -0 o
o= o 0 -o (2.4)
-0, o 0

Note that, for the convenience of derivation, the elastic displacement e is approximated
by interpolation as

e=Ng,,
where N is a 3x n, matrix shape function of position with »,being the number of the
elastic deformation coordinates. In other words, #, is the dimension of g, . Since N is

known as it is selected by the user, this interpolation helps to reduce the degrees of
freedom of the elastic displacement from infinite to finite.

The velocity derivative in Eq. 2.3 produces a virtual displacement as follows:

OR
&r=[I —AF ANROM'}=Loy (2.5)
&,
where ¢ is the delta operator, which represents a small arbitrary change in variable. or is

called virtual displacement and IT'is the local angular displacement,
oq = {bR ar' &, }T. The virtual displacement [83] is defined as an infinitesimal

change in the configuration that does not violate any of the kinematic constraints imposed
on the motion of the system. The virtual displacement is imposed while the time is held
fixed.

Similarly, one can differentiate Eq. 2.3 to obtain the second order derivation of the

position vector r relative to time as follows:

R R
P=Lj+ig=[l -7 NRa't+lo -sa7 -4 aoN]o
q. q.
) 2.6)
R
=1 —4F ANY @'} -(4@F + 48 ' + AGNG, = Lij + AB'G'r, + 2 4is'e
q,

. . . o\
where the angular acceleration a’ = {w; w, w;} .

With the help of D’ Alembert principle, the inertia force can be equally considered
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as the external force acting on the flexible body. Thus, the virtual work done by all the

forces for a single flexible body is given as follows [84]:
W = [ [/~ OF Grdv+ §f, 77 (8%dA @.7)
It is noted that &; = 0 on S, where the displacement is known. The surface integral in Eq.
2.7 can then be extended to cover the entire surface of the flexible body S = S, U S,,
W = [ [f ()= () )y + f T ()64 (2.8)

With the help of Cauchy’s Stress Formula [84], the surface traction force can be written

as follows:
v _
T = T;V; (2.9
where 7,18 the stress tensor, v ; 1s the unit vector outward normal to the surface of the

body in terms of the local coordinate system. i, j=1, 2, 3. Based upon Gauss’ Divergence

Theorem [84], the surface integral can be converted to the volume domain as follows:
[ 7y =§f 7,vd (2.10)
Substituting Egs. 2.9 and 2.10 into the right hand side of Eq. 2.8, one has
) - -

ff.105dd = §f r,v,da= | (c,8,) @

= IQ (Tfj,j&f )d" + J.Q 7,(6,) v = IQ (Tif./&i )d" + jg 7,0, ,dv
Then Eq. 2.8 can be written as:

W = [ [fu)- )] Srdv+ [ (5,00 Jav+ [ 7,8, v

@.11)
= [l + 70— 9 0] o+ 7,5, v

The last term 7,6, ; can be spanned in terms of displacement, based upon the small

strain assumption, as follows:

70 =T, -5[%(1'” +rj_,.)+%(ri,j —rj,i):’ =7, (&U +5a),j) (2.12)

i

1 ) ) 1 ) .
where £; == (ri 47, ) is the strain tensor and @, = — (r, =F. ) is the rotation tensor.
2 5] I i 2 »J I

Since the product of the skew of the rotation tensor w; and the stress tensor 7, is

zero, Eq. 2.12 becomes:
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70 = T,;06 (2.13)

i

Substituting Eq. 2.13 into Eq. 2.11, one has:
=i Okradv+ §f TOSda= [ [z, + £,00- pi: Oy +[_z, 8 ,dv(2.14)
It is noted that the balance of forces at any arbitrary point in a body satisfies the condition

7, + /5, () — o, (t) = 0[84]. Hence, the first integral on the right-hand side of Eq. 2.14 is

dropped out. As a result, one has the principle of virtual work for a single flexible body as

follows:
[ - piolrav+ff T08da= | 7,6 v (2.15)

The left hand side of the above equation can be considered as the external virtual work
done by the generalized external force and the right hand side as the internal virtual work
due to the elastic deformation. Based upon Eq. 2.15, one can formulate the equation of
motion for a single flexible body. The calculation of each term in Eq. 2.15 is discussed in

detail in the following subsections.

2.1.1 Strain Energy, 6U =_[Q 7,06 ;dv

The right hand side of Eq. 2.15, IQ 7,06,dv=0U , is the strain energy stored in the

body due to the elastic deformation. Since the distance between any two arbitrary points
in a rigid body remains constant, it is known that the strain energy is equal to zero for a
rigid body. However, the strain energy is time dependent for a flexible body.

In order to calculate the strain energy, the stress 7 and strain & should be obtained
first. The strain can be calculated based upon the strain-displacement relationship [85],

once the elastic displacement is obtained. The relationship is as follows:
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a )T,
Ox ox
(& & o 2 o
c oy oy
6” %’3 0 0 53 u
a=<y;>=<@j@?= , 2 é vi=[ole (2.16)
y o oz oz oy |V
- ?lv_+_8_11 _a_ 0 i
V| ox 0z oz Ox
ov ou o 0
—t+— — — 0
[ Ox Oy ] | Oy Ox ]

where [0]is defined here as the operator matrix.

According to the general form of Hooke’s law [84], the constitute equation for the

stress-strain relationship is given as follows:

7, =A5,&, +2Gg, (2.17)
Ev E . .
where A = -——————and G = ——— are the so-called Lame constants, in which E
(1+v)1-2v) 2(1+v)
: : . : 0 i#j .
is the Young’s modulus, v is the poisson’s ratio, and o, = .. is the Kronecker
i=j

delta symbol. i, j=1, 2, 3. Specifically, Eq. 2.17 gives the stress-strain relationship as:

(0.] [(A+2G)e, +e +4e_,)
o, |A.+(A+2G)e, +e,
o.| |Ae.+de, +(A+2G)e,
o =X > = < >
T, 2Gy,,
T 2Gy .
Ty 2Gy,,
[(A+2G) 1 ! 0 0 0]fe.
1 (A+26) 1 0 0 |le,
|1 I (A+2G) 0 o0 o0 181 _ p, 2.18)
0 0 0 2G 0 0 ||y,
0 0 0 0 2G 0 ||r.
0 0 0 0 0 2G|,

where D is the stress-strain matrix.
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The strain energy can be conveniently calculated based upon the finite element
method; the elastic displacement can be approximated as a product of the shape functions

and the nodal vector,
e={u v wf =Ng, (2.19)
where N is the shape function matrix and g, is the nodal displacement vector. Substituting
Eq. 2.19 into Eq. 2.16, one has:
e=[0JN-q,)=Bq, (2:20)
where B is the strain-displacement matrix. Substituting Egs. 2.18 and 2.20 into the elastic

energy term, one has the strain energy stored in one element as:

iy i il i il i
J‘Qi O'ITC%‘dV = IQI (Dgi )T &zdv :.[Q, (Dqu ) beedv = qe J.QIBTDTde&e = qe Ke&e (2’21)
where K, = IQB "D Bdv is the element stiffness matrix, in which Q. is the volume of the

i" element, and ¢’ is the nodal displacement vector evaluated at the i element.

The strain energy due to the elastic deformation for the whole domain can then be

obtained by summing up the energy stored in each element as follows:
NE
T _ T T
[o7 Gecv = 21: jg‘ (De, )\ Se,dv=q7K , &, (2.22)

where Kjy is the global stiffness matrix, which is dependent on the element types and the

element connections. NE is the total number of the elements, and ¢, is the total elastic

displacement vector of all nodes. Eq. 2.22 can be expressed in terms of the system

generalized coordinate of a flexible body as follows:

00 0
[o7dav=[R" 2" q7l0 0 0 \G=q'k%
00 K,

2.1.2 Virtual Work Done by the Body Force, L f.[orav

Gravity is the only body force considered in this study. Its magnitude is the

product of the density of the material p and the gravitational acceleration g . The

direction of the body force is dependent on the global coordinate system. The body force
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is normally assumed to be constant in multi-body dynamics. Hence, one has:
[ fordv=[ f7-Logav={ fII -dF ANlsgav

v,
=Ty - fTad 1) p fTAL Py =|U+IDAT S, I p| &
I;Arfb/p

where f, is the body force, ¥ is the volume of a single flexible body, 7. = L prdv and

T

(2.23)

I =I pedy are linear moment for the original configuration of the body and the elastic
€ [o]

deformation, respectively, and/,, = IQ pPNdv , the moment of the shape function.

It should be noted that the transformation matrix A4 is space-independent, so it can be

placed outside of the integration.

2.1.3 Virtual Work Done by the Inertia Force, L P’ ordv [86]

Substituting the virtual displacement, Eq. 2.5, and the acceleration terms, Eq. 2.6,

into the virtual work done by the inertia force term, one has:
jﬂ o Srdv = §7 jQ pLT Lavég + jQ p(A@'@&'r! + 240'é) Ldvoy (2.24)

The first integration on the right hand side of Eq. 2.24 can be calculated as:

T

R 1
i pLLavsg= My [ pl (- 4R ) I - a7, aNldvoq
g, (any
ml ~A(I. +1.) Al, |[R
=G+ L) g + 1 + 1+ 1) (L + L )R | 8 (2.25a)
41, ] [T+ Tan )] Iy ]4e

where m is the mass of the body and the rest are integrals that are defined as:

I+ 1 + 1+ 15 =Iﬂp??’dv+_[ﬂpr“’e”dv+!gpe~?dv+jﬂp@?dv,
Iy + Loy = [ pF'Nev+ [ peNev and 1, ={ pN™ Nev.

The second integration on the right hand side of Eq. 2.24 can be calculated as:
[ plad'ar, +248¢) Lavsg = [ plaa@r +24aef [I —4r aNldvq
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Ao'a'(I, +1,)+240'1,

=\~ + I + I + L )0 =201, + 1) 0| & (2.25b)
(1*~N+Iew\’) w +21;N

where [, = _[Qpéd\), I +1, =_“Qp27dv+jﬂ;;(?dv,
Loy +Logy = [ P& Nav+ [ @' Nav and I, = péNav.

Itisnotedthat @ =—-a7, @Ga=0, a"h =—b"a and @b = ba —ab” + ba” are used in

Eq.2.25b.
Finally, the total virtual work done by the inertia force is summarized as follows:
T .
f o o=
ml ~ALL+1,) A, |[R (L+1faad -20" a4
AL (ot Ly + 1+ 1) (g + L R 40 (T + Ly + 1 + 1) - 2m”(1~ +1_ )| &(2.26)
[A‘IAY [(IF’N + IFN )] INTN qe _m’T([va + ]?wh )+ 20),?1;1\'

2.1.4 Virtual Work Done by the External Force, ﬁs T 8r.dA

A moving body may not often be subjected to any surface traction. However, it is
common for it to be subjected to point loads. Moreover, the surface load can be converted
equivalently to a point load by distributing the total surface traction to the corresponding
node points enclosed by the surface of concern. Hence, without loss of generality, the
external forces can be taken as point forces and moments.

The work done by the point load, F;, and the point moment, 7, acting on the

body at point i can be calculated as follows:

o = 3 (F, + 1,7 it
i=]

Z
N

N

=Y [F7 (R - a7 o1 + ade) + ;"8I |= Y [F/ &R - (F] A7, - 1,7 a1 + F A3y,

i1

-~
1
~
-~

T

N, N, N, F
— __Z(ETAFE; _TifT ’+ZETA'&L, E[FT TrT W'Th = Tr @ (2.27)
i=1 i=1 i=1 W,
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where F; is defined in the global coordinate system and 7, the body-fixed coordinate

system, and N, is the total number of nodes where the external forces and moments are

NP
applied. Furthermore, the following notations are in order: F = Z(F, )is the total force
i=1

N N

acting on the body, T' = Z(FTAT F + T,.') andW'= Z[ATE] are equivalent external

er
i=] i=]

moment and force, respectively, in the body-fixed coordinate system.

2.1.5 Equation of Motion for a Single Flexible Body

In the preceding subsections, the virtual work done by the internal elastic force,
the body force, the inertia force, and the external force has been derived in detail. The
corresponding terms defined by Egs. 2.22~ 27 can be substituted into Eq. 2.15. One can

then obtain the equation to represent the total virtual work of the system as

T

ml ~Al.+1,) A, || R (I, +1)o'a4" -20Ta'4"
Iy 4Ly 4 L 4 1) (L 4 Ly )R 4 @ (L + 1 4 L + 1 )6 =207 (1 + 1, )| | &
sym. Loy |ld. ~0" (Topy + L )+ 20" I,
, ' F
~\ U+ 1)A flp| G+q' K&~ T' | G4=0 (2.28)
LA f,1p w’

The above equation can be written as follows:

(M~ 1) 8q=0 (2.29)
where
ml Al +1,) Al
M=|=[Al + L) (e + L + 1 + 1) (T + 1) (2.30)
[AIN]T [(IF’N + 15y )] Iy

Vf, - A&@'@' (I, +1,)~24&'I, + F
[ =3 +I)A £, 1 p+ @ (L +Ip + Ly + L )" + 2(L;. + I2,) @' +T'¢ (2.31)
-Kq, +(AIN)be/p+(]7¢T)’N +1§5,N)Tw'—ZI§Nw'+W'

Since the virtual displacement is arbitrary, Eq. 2.29 yields the equation of motion for a

single flexible body as follows:
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Mg—f=0 (2.32)
The mass matrix and the generalized force vector in the equation of motion for a
single flexible body, Eq. 2.32 can be symbolically expressed in the function of the elastic

displacement q, , the elastic velocity ¢, , angular velocity @’ and the transformation matrix
P q. Y4q.,ang y

A as follows:

My MRG(qe’A) MRq(A) R fR(qe’qe’w,’A)
Mau(a..4)  Mgla,) Mg(a.)[y 0 =114, 4.,0,4) (2.33)
MqR(A) Mq&( e) qu qe fq(qe’ée’w”A)

where M ,, =ml;, which is a constant diagonal matrix related to the translate motion, in
which m is the mass of the body and 7, is a 3x 3 identify matrix.
M,,(q,,4)=—A(I. +1,) is the coupling term between the translation and the rotation. If

the origin of the body-fixed coordinate is located at the Center of Gravity of the body, the

term /. will vanish, though the elastic term 7, will stay. Therefore, it implies that the

translation and the rotation are always coupled for a flexible body in motion.

My, (4)= 41, is the coupling term between the translation and the elastic deformation.
M,(q,)=~(I;s + I, +I.. +1;) can be taken equivalently as the rotation “mass” of the
deformable body. M, (g.)= Iy + I, is the coupling term between the rotation and the
elastic deformation. M_, =1 , can be taken equivalently as the “mass” corresponding to

the elastic deformation, which is constant and related to the shape functions.

fe(q.,4.,0',A)=Vf, — A@'@'(I +1,)—- 2A@'I, + F is the translational generalized

NP
external force, where F = Z(F,) is the equivalent total force acting on the body whereas

i=1
S804, A= +IA 1 p+ &' L + Iy + L + I Y0 + 201 + 1) @ + T
N
is the generalized moment related to the rotation, where T’ = E(F;:AT F + T}'T).
i=]

S @t 4) =K, + (AL T £y 94 ([ + gy Y '~ 21Ty + " isthe

Nl’
generalized elastic force, where W' = Z[(AN )TF,]

i=1
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A flexible multi-body system is composed of a series of interconnected bodies.

These bodies can be either flexible or rigid. They are connected through joints, such as

the prismatic joint and the revolute joint. The equation of motion for any single

flexible body in the flexible multi-body system can be expressed by Eq.3.20 as follows:

(Mi‘-l-i _fi)T&Ii )

(2.34)

where i =1,2,---,n,, n, is the number of bodies, M is the mass matrix for the i body in

the flexible multi-body system, ¢’ = {R,.T

fx
=31
A

is the generalized force term.

mr

i

T, . .
qf,} is the generalized coordinates, and

These equations can be combined into a single matrix equation as follows:

Ml

which can be collectively written as:

M2

] rql f] ]
0 §’ f?
A ,f,‘ >—-4 :i
q S
M”o— \"I'"b \f"h
(M- f) &g=0

whereq={R,T n; qf, R} m; 4

-
&2
F oy (2.35)
@l
(5™ )
(2.36)

T,
R,,T‘s m’ q:,b} is the system

generalized coordinate, the mass matrix M and the generalized force f are given as

M]

M2

M"™

,and f =<

L (2.37)

:
fr
\ Py

Since the bodies in a flexible multi-body system are connected by joints or force elements,

they cannot move freely due to the constraints. The kinematic constraint conditions that
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describe the mechanical joint and the prescribed motion trajectories can be defined as a
set of m algebraic relationships in terms of the system coordinates and time as follows:
Clt,q)=0 (2.38)
Note that Eq. 2.38 defines the holonomic constraints, which are the ones that will be
considered in this study. For the workless constraints, the virtual work done by the

constraints is as follows:
C,(t.q)0g=0 (2.39)

where C . is the constraint Jacobian matrix, defined as

[oC,  oc, . o ]
dq, 0q, aq,
oc |9 9C - oG
“ToT|w A o
8C, oC,  oC,
| 0q, oq, oq, S

The number of rows of the constraint Jacobian matrix in Eq. 2.40 is equal to that of the
constraint equations m, and the number of columns is equal to that of the generalized
system coordinates #.

With the help of Lagrange Multiplier vector, 4, one can add Eq. 2.38 into the total

virtual equation Eq. 2.36 to form a single equation as follows:

(M- f) sq+2"C,0q=0 (2.41)
Rewriting the above equation, one has:
(v 1Y sg+ (a7, T [ sg= (- + €72 -0 (242)

Since dq is an arbitrary admissible displacement vector, one has:
Mj—f+Cji=0 (2.43)
The constraints on the velocity vectors due to joint conditions can also obtained by
differentiating the displacement constraints with respect to time as:
Cq+C,=0 (2.44)
After differentiating it with respect to time once more and rearranging the terms, one has

a second order differential equation as:
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Cq,q'+(qu)'qq+quj+ C, +C,qq =0 (2.45)
Since C,, =C,, one has:
qu = '(qu),,, q-2 Cq'q'cﬂ = qu (2.46)
which can be written as:
ql
[C C - C § =C (2.47)
¢ 7 qm - Yyqq .
g™
Combining Eqs. 2.43 and 2.47 to form a matrix equation:
BYZ To-.,q (¢!
M 02 0 qu, q' f
0 M e 0 qu qz fZ
: i : : Co=< b (2.48)
0 0 Mn,, C:;.,, qm, fnb
c, C, C. 0 |4 C
L ¢ q -~ A 94

which can be simplified as:

M C] (¢ |

which is subjected to the displacement constraint C (t, q)=0 and velocity constraint

C,q + C, =0, where M and fare defined in Eq. 2.37.

The above equations are a combination of differential as well as algebraic
equations, which are called Differential Algebraic Equations (DAEs). The analytical
solutions of DAE:s are difficult to obtain because they are highly nonlinear. Furthermore,
DAEs cannot be integrated directly like the ordinary differential equation (ODEs) due to
the presence of the Lagrange multipliers. Hence, it is necessary to find a numerical
method which is suitable to solve the highly nonlinear DAEs accurately and efficiently.
Chapter 3 introduces a few available numerical algorithms to solve these DAEs in detail.
In addition, the projection method with the constraints correction is proposed to deal with

the constraint violation.
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2.3 Equation of Motion for a Flexible Multi-body System Using Modal Coordinates
One challenge in the flexible multi-body dynamics is the numerical representation
of the elastic deformation. Modal synthesis method has been widely used for structural
dynamics. In this case, the elastic deformation can be represented by the linear
combination of finite number of mode [31]. Generally speaking, the number of unknowns

in the elastic nodal vector, ¢, , can be very large for a complex structure. To simplify the

computation, the g, is often spanned in terms of the given mode shapes as
Nm
g, =VYa=>) Ya, (2.50)
i=1
where ¥ the modal matrix, is made of the given mode shapes. a is the amplitude
coefficients of those mode shapes. The latter is called the modal coordinates. The modal
coordinates measure the contribution of the corresponding mode shape to the total elastic

deformation. It can be seen from Eq. 2.50 that the DOFs of the elastic nodal vector, ¢, are
equal to the number of mode shapes.
The velocity and the acceleration of the elastic deformation are then obtained as
q, =Ya 2.51)
g, =Ya (2.52)
Thus, the degrees of freedom of a single flexible body can be written in terms of modal

coordinates as:

(R R
q=<IT'}=1,sI't =1,q, (2.53)
4. a
I 0 0 R
where I, ={0 [ 01, q,=<I'}.
00 ¥ a |

The virtual work equation (Eq. 2.36), (Aﬁ] -f )Té‘q =0, can then be recast as:

(ML, - Y 180, =15 (M1, - 1) &g, = M1 d, - 151 81, =0 @254)
The above equation yields a simplified equation of motion as follows:

My q, = fy (2.55)
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where
My, =1, M,
My, My, MquP M e MRG(a’A) MRa(A) (2.56)
=| Mgy My, My Y =|My(a,4) M,(a) M,(a)
Y'M, Y'M, Y M, ¥ M,(4) M,a) M,
and

Jr Sr (a’d’w” A)
fo=Ivf=3 f, 1=%f,laaw0,A) (2.57)
\Prf, f(a 4,0, 4)
Specifically, one can calculate the components of the mass matrix and the force vector

based on Egs. 2.30 and 2.31. They are as follows:

ml — Al +1;) ALY
My, = o + 1y + I + 1) Liy¥ + L, ¥ (2.58)
sym \IITINTN\P

and
Vf, - A®'®' (I, +1,)-24&'1, +F
So =3 Un+IDA [,/ p+@ (L + g + I + I o' +2(1 + 1) @0+ T' 1(2.59)
~VTKPP+ (ALY £,/ p+ Ly ¥ + Ly ¥ o' =20 IL o'+ W'
where F, T', W'are defined in Eq. 2.27.

Notice that if the eigenvectors are selected to form ¥ from the results of modal
analysis of the finite element method, the term ¥ 7 K¥, becomes a diagonal matrix made
of the corresponding eigenvalues, i.e., " K¥ = A. As a result, the stiffness matrix X is
not required to be explicitly known in dynamic analysis, as soon as the eigenvalues
become available to form A . This simplification can certainly improve the computational
efficiency. However, the major advantage of the modal synthesis method stems from the
fact that it can alleviate the cumbersome computation of the many integrals present in the
mass matrix and in the force vector. The corresponding integration process is introduced

in detail in Chapter 3.
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2.4 Equation of Motion for a Rigid Multi-body System

A rigid body in a multi-body system can translate and rotate, but it cannot change
its shape, 1.€., the distance between any two arbitrary points in a rigid body is assumed
unchanged during its motion. This assumption is an approximation to reality since no
component is perfectly rigid. However, for a vast number of applications, this is a
sufficient assumption that simplifies the modeling of mechanical systems. A rigid multi-
body system can be treated as a special case of a flexible multi-body system. In this case,
the elastic deformation is set to be zero in the equation of motion for a flexible body.
Similarly, the equation of motion for a constrained rigid multi-body system can be

obtained directly by eliminating the elastic displacement in the equation of motion for a

flexible multi-body system. Therefore, Eq. 2.49 is reduced to:

(-
c, 0|4 C .
where ¢ = {R,T m’ R, oy - R, I }Tis the system generalized

coordinates, which are not totally independent because of the constraints in Eq. 2.38. In

this case, the mass matrix and the force vector are given by

M0 0 0 f!
0 2 2
M= M _0 0 ,and f = f
0 0 0 :
0 0 0 M™ f"

Specifically, each of the mass sub-matrix, M’, and the force vector, f i can be spanned,

respectively, as

oo M e S

i=1,2,--,n,,the pointload F = Z(F) and point moment 7T’ = Z( A"F, +T')

i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

CHAPTER 3
NUMERICAL METHODS FOR DYNAMIC ANALYSIS OF

A FLEXIBLE MULTI-BODY SYSTEM

It was shown in Chapter 2 that the equation of motion for a flexible multi-body
system can be formed as a set of second order differential algebraic equations (DAEs).
This set of DAEs is normally highly nonlinear and time dependent. Their analytical
solutions are difficult to obtain. Hence, it is critical to find a proper numerical algorithm
to solve the DAESs accurately and efficiently. Special attention needs to be placed on the
transformation matrix and the integrals in the generalized mass matrix and the
generalized force vector in DAEs. These terms are functions of the system generalized
coordinates and, as a result, are time-dependent. Computing these terms efficiently
presents a challenge in solving the DAEs pertaining to the multi-body dynamic system.
This chapter will discuss some numerical strategies for the flexible multi-body dynamics.

The procedure to compute the integrals in the generalized mass matrix and the
generalized force vector is first discussed in Section 3.1. Two different ways to deal with
the integrals in this dissertation are called In-Loop calculation and Pre-ODE calculation.
Then, the transformation matrix is discussed in Section 3.2. Five approaches are
considered including Direction Cosines, Euler angles, Rodriguez parameters, Euler
parameters and Matrix Exponential function. The relationships between these different
approaches are derived in Section 3.3. Two commonly used numerical algorithms, the
coordinate partitioning method and the projection method, are introduced in Sections 3.4
and 3.5, respectively. The optimization algorithm is proposed in the projection method to
make sure the displacement and velocity constraints are satisfied. These two methods
convert the DAEs pertaining to multi-body dynamics into ODEs for numerical
integration. The coordinate partitioning method will identify the independent coordinates
based upon the constraint equations, and only those independent coordinates will be kept
in the final form of the ODEs. On the other hand, the projection method will keep the

entire set of the system generalized coordinates in its final form of ODEs.
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3.1 Integrals in Mass Matrix and Force Vector

The inertia integrals in the generalized mass matrix and the generalized force
vector in the equation of motion involve the elastic displacement field, e, angular velocity,
@', and the position vector, r’'. Those terms are described in reference to the body-fixed
coordinate. Since e and @' are time dependents and unknowns before the DAEs are solved,
the update of the values of these integrals at every time instant becomes very
cumbersome in a time-marching scheme. This section investigates two different
approaches on computing these integrals. The first is called “In-Loop” method, in which
these integrals are treated as time-dependent and evaluated at each time step called by the
ODE solver. The second is called “Pre-ODE” method. This method uses the mode
superposition technique to describe the elastic displacement in terms of the modal
coordinate explicitly. Hence, the spatial integrals become time-invariant and to be
integrated before the ODE solver calls. It implies that the integrals can be calculated
only once as constants.

The integral term /,, relating to the elastic displacement, is be used as an example

in this subsection to demonstrate the use of the “In-Loop” and the “Pre-ODE” methods
for the integration. All integrals appearing in the equation of motion can be found in the
Appendices. Particularly, Appendices 1 and 2 pertain to the beam elements and Appendix

3 to the spatial triangular element.

3.1.1 In-Loop Integrals Calculation
In the framework of finite element analysis, the flexible displacement e; defined in

each element is approximated as:
e, =Ng, 3.D
where N is the matrix of shape functions, which is a space-dependent, though time-

independent variable. The vector g,; contains the nodal values of the elastic displacement.

For an arbitrary element, one has:
I, = -[Q.v pe;dv = J‘Q' PNq,dv= Jlni pNdw, =1,4q,.

Summing up all the elements, one has:
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Ne Ng
L=§Q=;L

where N¢ is the total number of elements. It should be noted that the formulation of 7 N, 1S

Ng
pedv=>1.4, (3.2)
j=1

i

the same for the same type of element.
In the above equation, the elastic nodal displacements g,; are calculated based on

the coefficients of the mode shapes,

qei = Wia °
At each time step, the modal coordinates a are unknown until the ODEs have been

solved. Therefore, the integrals, such as /, must be placed in the loop of the ODE

subroutine.

3.1.2 Pre-ODE Integrals Calculation
This section will present a process that can move the modal coordinates out of the
integration route. As a result, the spatial integrals can be integrated prior to the time

marching procedure. The detailed process is discussed below.

The integral term 1, in Eq. 3.2 is a linear function of the elastic displacement, g, ,

due to /,, is the constant for the same type of element. However, the summation of the

term, / N, qﬁ , has to be done at any time step over N, the total number of elements. An

alternative is to approximate the nodal displacement vector in terms of the linear

combination of the mode shapes y as:

Nm N,,,
4. =ya= y,a, =Y aNy, (3.3)
k=1 k=1

where N, is the number of mode shapes used for the approximation, i is the mode shape
matrix, and a, is the corresponding modal coordinate. By doing so, for an arbitrary

element i, one has:

N, N,
L#%W=Z%LN%m=Z%hw (3.4)
) k=1 i k=1

where v, is the ¥ mode shape, evaluated at the corresponding i element.
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Consequently, the integral /, of concern can be calculated as follows:

Ng Ne N, N, N N,
I.= Iopedv - ;L, pe;dv = ZzakIN'//ik = Z;ak 'glN‘//ik = éak 'INW (3.5)

i=] k=1

Ng
where [, = ZI ~¥ i 1s a matrix, which dimension is 3 by N,,. The mode shapes can be

i=]
obtained from any commercial finite element code prior to the dynamic analysis. Thus,

I, ,a matrix can be evaluated and stored as an input data set, ready for dynamic analysis.

Ny
Multiplication and addition of 3x N, times is required by Eq. 3.5, which is much less

than that of 27 x N . Thus, it is expected that numerically the “Pre-ODE” integration will
be faster than the “In-the-Loop” integration. Furthermore, the “Pre-ODE” integrated

matrix, /,,, , can be used repeatedly to compute other integrals. For example, the term /,

can be conveniently computed as
NE NE Nm Nm NE Nm
I, = Lpedv = ZJ.Q pe;dv = szkINWik = de Z[NWik = del,w (3.6)
=t i=l k=l k=1 i=] k=1
This matter represents another aspect of time-saving comparing to the “In-the-Loop”
integration in dynamic analysis. Furthermore, due to the nature of a skew matrix, the
integral I, can be directly evaluated from /,. After careful examination, only 6 out of 19
integrals appearing in the equation of motion for a flexible body required “Pre-ODE”

integration. The six integrals required by the “Pre-ODE” integration and their extension

are shown in Table 3.1. The corresponding integrals required by “In-Loop” integration
are also shown in the same table for comparison. It should be noted that /,, and 7. in
Table 3.1 become zero when the origin of the body-fixed coordinate system is located at
the center of gravity (CG) of the body. However, it is not true for the elastic term /, even
though the local origin is placed at CG.

The planar slider-crank mechanism is used to demonstrate the accuracy and
efficiency of “Pre-ODE” method by comparing to “In-Loop” method. For the craft
dynamics, only “Pre-ODE” method is used.

The detail integral calculation can be found in the Appendices.
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Table 3.1 “In-Loop” and “Pre-ODE” Integrals Calculation

“In-the-Loop” of
ODE Integration “Pre-ODE” Integration
Terms | Dimension | Terms | Dimension Direct Extension
K Naos XNaos | w" Ky | NmXNm Eigenvalues, A
1, 3 X Nor Iy, 3xNpy 1,,1,1;
1,1, |3x1,3x3 | I, 3x1,3x3 | L
I 3x3 I 3x3
I3 Ix3 I 3% N Ly Inps Tigny > Loy,
I 3x3 Iy, NinX Ny I, Tz,
I, 3% Nyor IENW 3xN,,
. Naor X Naof I«//TNTNu/ Ny x Ny, Identity matrix /
1,1, 3x1,3x3 | See I,
1, 3x1 1 Ny
I, Irp | 3%3 I Ny
I, 3x3
Ligy | 3%Naoy
Laaw 3% Nao
L., 3% Nyor
Lon 3% Naof

3.2 Transformation Matrix

The configuration of a body can be described by translation and rotation. The

38

translational degrees of freedom (DOFs) can be expressed as a vector. However, it can’t

be extended to rotation. Consequently, the angular displacement can’t be directly
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integrated from the angular velocity. This poses a great challenge with respect to the
computation of the transformation matrix for dynamic analysis of a body in space.

Many sets of parameters have been discussed in the literature [33,87] to describe
the configuration change of a body subjected to rotary motion. They include direction
cosines, Euler angles, Euler-Rodriguez parameters, Euler parameters and matrix
exponential. The latter three are based upon the Euler theorem. All of these parameters
can be used to describe the transformation matrix. These sets of parameters and the

associated transformation matrix are discussed one-by-one in the following subsections.

3.2.1 Direction Cosines
The relationship between the components of the same vector projected onto

different coordinate systems is used to define the transformation matrix 4 in this

approach. Let two coordinate systems, (¢, &, &)and (€] &, &) share the same
origin as shown in Fig. 3.1. The same vector, #, is projected onto these two coordinate
systems with different components. The coordinate system (¢, &, &,) can be viewed
as the reference coordinate system, while (&' €, ;) the body-fixed coordinate system.
The vector in the body-fixed coordinate system can be expressed as:

uU=ue +u,e, +u.e, 3.7
The same vector can be expressed with respect to the reference coordinate system as:

U=ueé +u,e, +u,e, (3.8)

P
X
\

Ve,
-~

Figure 3.1 Rotations of the Coordinate Systems

Since it is the same vector viewed from different coordinate systems, the following

relation is true:
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U8, +u,8, +u,8; =ueé +u,e, +u,e, (3.9
Taking the inner product of the above equation with respect to€, , one has an equation for
u, in terms ofu,, u, and u; as:
u, =u;(é,'-é'1)+u;(éz'-é’,)+u;(é3'-é‘,) (3.10a)
Similarly, one can obtain the rest of the equations as:
u, =u;(&)-2,)+u(€; &) +u;(e; - 2,) (3.10b)
uy =u(€]-8,)+u3(e}-e)+ui(e; -¢,) (3.10c)
In short, the equations can be expressed in a matrix format
u=Au (3.11)
where the transformation matrix, 4 is defined in terms of the direction cosine:

a,, 4, 4
d=[a,]=|ay, ay a, (3.12)

Q3 dy3 Ay

——.’ > —
Whereaij =g € -cost9,.j,

6’,./. is the angle between the axes €/ and ¢ ;shj=1,2,3
Therefore, in order to compute the transformation matrix 4 in the form of Eq.
3.12, one needs to know the angles between the axes or the relative directions of the

body-fixed and the reference coordinate systems.

3.2.2 Euler Angles

The direction cosines are rarely used in describing the rotary motion of a body in
space due to the difficulty in finding the angles between axes of the reference and the
body-fixed coordinate systems. As an alternative, Euler angles describe the rotary motion

of a body as a result of three successive rotations about known axes. Specifically, the
body is first rotated by ¢ with respect to the &, axis, then by & with respect to the new &/
axis, and finally, by y with respect to the new & axis. The rotation scheme is shown in

Fig. 3.2. It should be noted that the sequence of rotations is critical because the rotation is

not commutative in 3D space.
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1* rotation 2™ rotation 3" rotation

Figure 3.2 Rotations by Euler Angles in Sequence

After three successive rotations, the position vector in the body-fixed coordinate
is now projected to the original reference coordinate system as, based upon Eq. 3.12,
r=A'A4r = Ar (3.13)
cos¢g —sing O 1 0 0 cosy -—-siny 0
where 4' =|sing cosep 0[,4°=|{0 cosf -sin@|,4’ =|siny cosy O
0 0 1 0 sinf cosé 0 0 1

The transformation matrix 4 can be calculated as follows:
cosg —sing O cosy —siny 0
A=A'A*4* =|sing cosg 0| cos@siny cosfcosy —sinb
0 0 1| |sinf@siny sinfcosy cosé
cosgcosy —singcosdsiny —cosg@siny —singcosGcosy  singsin b (3.14)
=|singcosy +cosgcosfcosy —singsiny +cos@cosfcosy —sinbcos @
sin @siny sin @ cosy cosf

The transformation matrix 4 can now be evaluated in terms of @, 8, y , which are called

the Euler angles.

3.2.3 Rodriguez Parameters

The Euler theorem states that a body’s rotation is a result of a rotation with
respect to a certain axis. Therefore, the new position of a fixed body vector can be traced
if the axis of the rotation and the amount of the angular displacement are known. The set

of Rodriguez Parameters is one that follows the Euler Theorem.
Let a body be rotated about the unit rotation axis, ¢ = (¢, ¢, c; )T with an

angular displacement y . A vector which is fixed on the body is then rotated along with
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the body. The vector is initially viewed from the ground or the reference coordinate
system as 4’ = (u; u), u}) . After rotation, it is viewed as u = (, u , u,) from the

reference coordinate system. See Fig. 3.3.

Figure 3.3 Rotation with respect to a Fixed Vector

After the rotation, the relationship between the initial and current vectors is given as:
u=u'+¥, =u'+r, +7, (3.15)
The vector, 7,,is perpendicular to the rotation axis ¢ and the vector #’; hence, its unit

direction is €u'/|Cu’| and its magnitude is|F,,|sin ¥ =|F.,,

sin y =|cu'|sin , so the vector
can be written as:
7, =|Cu|sin y - Cu'/|cu’| = sin you' (3.16)

The vector, 7, is perpendicular to both the rotation axis c and the vector 7,,. Hence, its

unit direction is €(¢u’)/|cu| and its magnitude is |7, |- |F.,|cos x =|[¢u|(I—cos ¥). As a
result, the vector, 7, , can be written as:
P =|cu|(1-cos x)-¢(cu')/|cu| = (1-cos y e (cu’) (3.17)
Substituting Egs. 3.16 and 3.17 into Eq. 3.15, one has:
u=u'+{1—cos y )¢ (Cu')+sin yeu' = [I +(I-cos x )¢ +sin 5 Ju’ (3.18)
The above equation yields a relation
u=Au' (3.19)
where A4 is defined as:
A=1+(1-cos 7)€ +sin 3¢ (3.20)
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In detail, one has:
cos y+(I-cosy)e;  (I-cos y),c, —sinyc, (I—cos y)e,c, +sin XC,
A=|(I~cos y)e,c, +sinyc,  cos y+{I—cos y)? (1-cos y)e,c, —sin yc, (3.21)
(1-cos x)e,c, —sinye, (I-cos y)c,c, +sinyc,  cos y+(I—cos y)?
It is not difficult to show that 4 is an orthogonal matrix. The above equation is

called the Rodriguez formula. Let the vector of Rodriguez parameters be defined as:

y=ctan(y/2)={c,tan(y/2) c,tan(y/2) c,tan(x/2)} ={y, v, 7.}

2tan(y/2)  2tan(y/2)

iny=2sin{y/2 /2)=2t /2)cos’(x/2)= = )
sin y = 2sin(y / 2)cos(y / 2) = 2tan(y / 2)cos’ (x / 2) (/2 Temn'(7/2)

2tan(y/2)

Sincey”y =c"ctan’(y/2)=tan’(y/2)=y’, siny = R
+y

2 2
I+tan’(y/2) 1+y?

Eq. 3.20 can be rewritten as:

2tan2(1/2)55+2tan()(/2)

A=1+(I—cos y)c¢ +sin )¢ =1+ - :
I+y I+y

¢ (3.22)

Since y =ctan(y/2), one has 5 =¢ tan(y/ 2). Therefore, the transformation matrix can

be simplified as:

2

A=1+ +
I1+y’ v 1+y°

7 (3.23)

In detail, one has the transformation matrix in terms of Rodriguez parameters as:

]+7f“7§“732 277,73 2y,¥5+7,)
2.ty I+rvi=vi=vs  20n75-7) (3.24)
2(7,75-7,) 2y 7:+7)) 1+732—712_722

A=

1+;/2

3.2.4 Euler Parameters
In the proceeding section, the transformation matrix A4 is determined by the unit
rotation axis, ¢ and the angular displacement y . The resultant matrix 4 is given
A=1+(I1-cos y)¢ +sin 3¢ =cosz[+(1-cos;g)(cc’)+sinz§
= (ZCosz(;(/Z)— I)I +2sin’(y/ 2)ee” + 2sin(y/ 2)cos(y/2)¢
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Lete, =cos(y/2),e=csin(y/2)={e, e, e,},one has:
A=(2cos?(y/2)- 1) + 2sin(y / 2)cos(z / 2) + 2sin?(y / 2)ec”
= (Ze,f - 1)1 +2e,e + 2ee’
Qe +2el—1 —2eje,+2ee, lee,+2ege,
2eje,+2ee, 2e;+2ei—-1 —2eje, +2e,e, (3.25)
—2e,e,+2ee;, e, +2ee, e +2e;~1
The above four parameterse,, e,, e,, e, are called Euler parameters. They can be written
in a vector form:
p=le, ¢ e ef (3.26)
The four Euler parameters are not independent. It is easy to get the following relationship
between them:

p'p=e +el +el+el =1 (3.27)

3.2.5 Matrix Exponential Function

According to the Rodriguez formula described in Section 3.2.3, the
transformation matrix can be expressed as 4 = I + (1 —cos y J¢¢ +sin 4& in which sin y

and cos y can be expanded by Taylor series as:

siny=y—x2 3+ 7[5t — (= 1) " J2n+ D).
cos y=1- 720+ y* [#—- (= 1) y*" 2n.
The transformation matrix 4 then becomes

A=I+ [;/ [2= 3t [t =) /zn!]Ez+ 2=2 13+ 7 8=+ (1) ™ J(2n+ 1)IE (3.28)

It can be proved that (¢ )"~ = (—1)""'¢ inductively. Hence, one has:

" Y
A o A O o I
One may consider a finite rotation through angle 6 about the axis is a summation
of an infinite number of small successive rotations. Assuming that a body is rotated about
a unit vector @ with an infinitely small angle A8, one has the first order change of the

transformation matrix, A4 due to such a small rotation is given by:
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Ad=1+(I-cosAf)aa +sin Ada ~ [ + A =exp(ALa) (3.30)

If the vector a is expressed in the body-fixed coordinate system, the new transformation
matrix after such a small rotation becomes:

A, =4 -A (3.31a)
On the other hand, if the vector @ is expressed in the reference coordinate system, the
relation becomes:

A, =A4-A, (3.31b)
Approximating A as 6/N where N is a large number, a rotation of 6 about the axis may

be represented as:
N
A= (1 + 117‘9) ~ e?? (3.32)

It can be seen that Euler's theorem essentially states that all rotations may be represented

in this form.

3.3 Relationships between Different Expressions of Transformation Matrix

In the preceding section, it was shown that the orthogonal transformation matrix
can be defined by different forms: direction cosines, Eq. 3.12, Euler angles, Eq. 3.14,
Rodriguez formula, Eq. 3.21, Rodriguez parameters, Eq. 3.24, Euler parameters, Eq. 3.25
and an Exponential matrix, Eq. 3.29. However, these parameters are related to each other
through the transformation matrix. The following subsections discuss the relationships

between the different expressions.

3.3.1 Euler Angles from Transformation Matrix
Based upon the definition given in Eq. 3.14, the Euler angles can be obtained

through the last row and the last column of the transformation matrix as
0=cos™'(a,;,), p=cos'(~a,,/sinb), w=cos”(a,,/sinB).
It can be seen that the relation can become singular when 6 = n . Thus, the Euler angles

may not be uniquely determined from the known transformation matrix.
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3.3.2 Rodriguez Formula from Transformation Matrix

Equation 3.21 can find the angle of rotation y and unit vector ¢ in the Rodriguez
formula in terms of the transformation matrix. These relations
x=cos”!((trd—1)/ 2), wheretrA = a,, + a,, + a,,, is the trace of the transformation
matrix 4. andc, = (a,, ~a,,)/(2sin y).c, =(a,; —a,,)/(2sin y)c, =(a,, -a,,)/(2sin y)

It can also be seen that the relation can become singular, if y = nx.

3.3.3 Rodriguez Parameters from Transformation Matrix

To find the Rodriguez parameters in Eq. 3.24, one has
Vi = "(‘132 - a23)/4trA’ V2= ——(a13 - a31)/4’rA973 = “(azl - a,z)/4trA.

It can be seen that Rodriguez parameters can always be found uniquely from the given

transformation matrix under any circumstance.

3.3.4 Euler Parameters from Transformation Matrix

To find the Euler parameters in Eq. 3.25, one can add the diagonal term together
and apply Eq. 3.27 to find ¢, as:
el =(rd+1)/4.
Using the off-diagonal term, one find the other three as follows:
e, =(a,,—a,,)/ 4e,,e, = (a,; —a3,)/4ea,e3 =(a,, ~a,,)/ 4e,.
Note that e, = 0, for y = nxrin the above equations, cannot be used to calculate the Euler

parameters. However, Euler parameters can be uniquely determined according to the

diagonal term as:
e, =0,el =(1+a,) 2,el =(1+a,,)/ 2,¢l =(1+a,,)/ 2.
The sign of e,, e, and e, can be determined as either negative or positive at the same

time.
It can be seen that Euler parameters can be uniquely determined in any situation. Hence,

the Euler parameters will be used in this study to avoid singularity.
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3.4 The Coordinate Partitioning Method

The derivation of the equation of motion for a flexible multi-body system has
been given in Chapter 2 in detail. The resultant equation is a combination of differential
and algebraic equations (DAEs). The equations of motion for a flexible multi-body

system can be symbolically represented as:

M c]ifq | f
I:Cq 0 :H)'}—{Clﬂ} (3.33)

where M is the generalized mass matrix, f is the general force vector, A is the Lagrange
multipliers and q is the system generalized coordinates. The components of ¢ are not
independent of each other, due to the kinematic constraints, C(f,g)=0. The velocities

and the accelerations of the system generalized coordinates should satisfy C g +C, =0
and C,, = -(qu)qu -2C,q - C, , respectively. The constraint Jacobian matrix, C_, is the

constraint Jacobian matrix, whose dimension is mx r, where m is the number of total
constraints, and » is the number of the system generalized coordinates.

These DAESs cannot be solved directly using the integration scheme suitable for
the ordinary differential equation (ODE). The coordinate partitioning method [45, 87] is
widely used by dividing the system generalized coordinates ¢ into two parts: independent

coordinates ¢, , which equals the system degrees of freedom, and the dependent ones, ¢, .

In other words, the system generalized coordinates ¢ can be written as:

q= {q“} (3.34)
q:

Let the nonlinear kinematic constraints be independent of each other, and their

number is m. Thus, the Jacobian matrix, C . has a full row rank, which can be rearranged
in the following form:

C, =|c

q 44

c, | (3.35)
Selection of g, is to ensure that C, = 0C/dq, is a mxmnon-singular square matrix.
The matrix C, = 0C/dq, ismx(n—m), rectangular.

The first order time derivative of the constraint equations can be spanned as:
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: q . :
0=c,4+C, =lc, c, ]{q" } +C,=C, 4, +C, 4, +C,  (3.36)
I
Then, the velocities of the dependent coordinates can be calculated using the velocities of

the independent coordinates as follows:

4,=-C;C,q,-C,C, (3.37)
Consequently, the entire set of the velocity vector, can be spanned in a matrix form as:
.| [-c’'c ~ci’c) ...
g=191_|~C.C, g, +{ vl pj ta (3.38)
q, I 0
where
~C;'C
D= [ fa i } (3.39)
I
and
~-C7'c
2= { C(«; , (3.40)

Similarly, one can decompose the acceleration vector based upon the second row of the

equation of motion, Eq. 3.33 as follows:

q . .
[qu Cq, L;}“Cw chaqd +quq1 —qu =0 (3.41)
I

Thus, one can obtain the acceleration of the independent coordinates as:
4, =-C,'C,§,+C.C, (3.42)

Thus, the system acceleration vector can be written in terms of §, as:

g c'c
ij=[;"}=D«j,+{0"" "”}ED(']',—Hr (3.43)
1

-1
wherey = {C"‘OC""} .

Consequently, the first row of the equations of motion, Eq. 3.33, for a flexible multi-body

system can be rewritten in terms of the independent coordinates, ¢, , as:

M(Dj, +7)+Cla=f (3.44)
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Pre-multiplying the above equation by the matrix D7, one has:
D"M(Dg, +y)+D"CIi=D" f (3.45)

Using the definitions of matrices D and C, from Eqs. 3.39 and 3.35, one has:

_ T
p'ct =(c,p) = {{C% c, {— C"I'I Ce, D =(-c,cic, +c, 1} =0.

Consequently, the constraint forces C qT /4 can be eliminated from Eq. 3.45. This procedure

of eliminating the constraint forces is called the embedding technique [33]. Finally, Eq.
3.45 becomes an ordinary differential equation in terms of independent coordinates ¢, as:
D"MDg, = D" f - D" My (3.46)
The coordinate partitioning method has converted the DAEs in Eq.3.33 to the
second order ODEs in Eq. 3.46 in terms of independent coordinates ¢, . Consequently,
the commonly used numerical methods for solving the ODE can be used here to solve for

g, and ¢, . The specific steps are given below.

At time step #,, the values of the independent coordinates ¢ L, and the
corresponding velocities vectorg,, are assumed to be known. The dependent velocities
q,, and the accelerations ¢,, can be calculated accordingly based upon Eqs. 3.36 and
3.42. On the other hand, the dependent coordinates 4., > must be solved by using the

Newton-Raphson iterative method as the constraint equation C’(t, q)= 0 most likely

nonlinear. Once all of the system coordinates and velocities are known at time step t,, Eq.
3.46 can be used to solve for the acceleration vector §,, . One has:

X3 _1

q,., = (D’n TM'. D’. ) (Dt, Tft,, - Dt,, TM:,, 7, ) (3-47)

The acceleration vector for independent coordinates at #,.;, can be integrated to solve for

the velocity vector ¢,, and the position vector ¢ 14,., - One can then repeat the process to
find the dependent coordinatesq,, , the dependent velocities q,,,, and the dependent

acceleration ¢, ,at s,
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3.5 The Projection Method [43-44, 88]
The projection method has been used in various disciplines, including fluid
dynamics by Chorin [13], which solves the DAEs in two steps. Through LU

decomposition, the leading coefficient matrix of Eq. 3.33 can be rewritten as:

M C/| |M 0 I M7c;]
= T (3.47)
¢, 0| |C -CMIC o I

q

which spans Eq. 3.33 as

& TEHE el ERE] e
Cq 0 |4 Cq —CqM Cq 0 1 A qu

The above decomposition helps to set up a two-step solution procedure. The procedure

introduces two intermediate variables, §” and 4", which are the solutions of the following

M 0 g f
e —emefit e, o

{q} - [’ Moc ]{q} (3.50)
A 0 I A

The intermediate variables, §  can be obtained from the first row of Eq. 3.49 as

equation:

and

g =M"f (3.51)
The second row of Eq. 3.49 gives
C,4 -C,M'C]i =C, (3.52)

q

The combination of Egs. 3.51 and 3.52 gives the value of 1" as
Av=@cMIC])C,q -C,)=ccMCy )i C, M7 f-C,,) (3.53)
Equation 3.50 defines the relations between intermediate variables, § and A" and the true
ones,
§=4+M'Cl2 (3.54)
and

A=A (3.55)
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Substituting Eqgs. 3.51 and 3.53 into Eq. 3.54, one has ¢ as
i=i -M'cli=M"(pr+cT(c,M"CcTy"C,,) (3.56)
where the projection matrix, P, is given by
p=I-c](cMC)Hy'C M (3.57)
Notice that the projection matrix derived here satisfies the conditions:
PP=Pand PC, =0.

Eq. 3.56 is a set of ordinary differential equations (ODEs) which can be solved
numerically by standard ODE solvers. The set of ODEs derived by the project method are
described in terms of the system generalized coordinates. Comparing to the coordinates
partitioning method, the projection method obviates the need to divide the system
generalized coordinates into dependent and independents coordinates, though it produces
a larger size of ODEs.

The ODE:s derived by the projection method satisfy the constraints imposed on
the acceleration term § automatically, which can be integrated to obtain gand ¢.
However, these newly obtained displacement and the velocity terms may not satisfy the
constraints imposed upon them. This is corrected by introducing a minimization approach.

One can enforce the constraint C (t, q) = 0 by minimizing the error:

min
Agq

where ¢ 1s the initial value of the system coordinate, Aq is the correction needed to

f(aq)=C" (1,4 + Aq)-Clr.q + Aq)+ Aq"Waq (3.58)

improve the solution to satisfy the displacement constraints and W is a weighting
diagonal matrix. In this study, the weighting matrix is set as the identity matrix. It implies

that all the system coordinates have the same effect on the constraints. The last term,
Aq"WAq is added to ensure that the correction is achieved with a minimal change of ¢. To
further simplify the process, the 1* order approximation of the error term is derived as:
f(2ag)=CT(r.q+Aq)-Clt.q + Aq)+ Aq"WAq
= [c(.q,)+C Aq] -[cl.q,)+ C,Aq)+ AqTIAg (3.59)
=Clr.q,) -Clt.q,)+ A" CClt.q,)+Clt.q,) C ,Aq+Aq"CTC Aq+Aq"WAq

where C, = %g is evaluated atq, .
q L]
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The necessary condition of the above minimization problem yields:

a—if— =2CTC(t,q,)+2(W +CTC, )7 =0 (3.60)
q

which gives a simple relation to find the correction, Aq,

A=W +crc,)' cTcl,q,) (3.61)
One can then update ¢, as:
Gyew =4 +0q (3.62)
The above equation can be repeated to update the ¢ until the displacement constraints
satisfy|C (t,q] <&, where ¢ is a small value, such as 707°.
The velocity constraints equations € g =—C, can also be enforced in a similar

way. The velocity correction can be obtained through a minimization process:
Ad fad)=lc, - G+ad)+C.Jlc, (§+ad)+C ]+ 4g"wag  (3.63)

where ¢ is the initial value, Aq is the correction needed to improve the error, and Wis a

weighting diagonal matrix. The necessary condition of the above minimization problem

yields:

% =2CT-C,-(§+A4)+2C] -C, +2WAj=0 (3.64)
q

which gives the improvement Aq as:
aj=-cT-c,+w)'(cT-c4+CT-C,) (3.65)
Again, the update ¢, is obtained by:
Dyew =4+ 0 (3.66)
The above equation can be repeated until ¢,,, satisfies the velocity constraints
|C,q+C, [<¢.

The proposed optimization method on the displacement and velocity constraints is

demonstrated using slider-crank mechanisms in Chapter 4.
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CHAPTER 4
PLANAR SLIDER-CRANK MECHANISM: AMULTI-BODY

EXAMPLE

A simple planar slider-crank mechanism will serve as a multi-body example to
demonstrate the formulation and the solution algorithms introduced in previous chapters.
Several options exist for solution methods; location to place the body-fixed coordinate
system and the sequence of integral evaluation and ODE iteration are studied. Three
solution methods are considered: the direct method, the coordinate partitioning method
and the projection method. The left end and the center of the connecting rod are
considered in this study as two alternative locations to place the origin of the body-fixed
coordinate system. Finally, the geometrical integrals are evaluated prior to the ODE
iterations or evaluated on-the-fly within the ODE iteration. Various combinations of these
options are examined and compared for their numerical accuracy and computational
efficiency.

This chapter is divided into 9 sections. The problem parameters of the slider-crank
mechanism are introduced in Section 4.1. The equation of motion for a single pendulum,
which models the crank, is introduced in Section 4.2. The equation of motion for a free
flexible beam, which models the connecting rod, is given in Section 4.3.Constraints that
join the single pendulum with the connecting rod to form the slider-crank mechanism are
introduced in Section 4.4. The differential algebraic equation that represents the slider-
crank mechanism is derived in Section 4.5. The case when the connecting rod is modeled
as arigid link is considered in Section 4.6. Its solution methods and numerical results are
reported in Sections 4.7 and 4.8. The case when the connecting rod is modeled as a

flexible beam is shown in Section 4.9,
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4.1 Slider-crank Mechanism Problem Statement

A slider-crank mechanism is widely used in the industry due to its simplicity. The
problem is an extension of a double pendulum with a position constraint imposed at the
free end. The elasticity of the connecting rod is considered in the latter part of this study.

A slider-crank mechanism is usually considered to be made of four bodies: the
ground, the crank, the connecting rod and the slider. However, in this study, the slider is
taken as a massless point. The slider-crank mechanism studied in this chapter is shown in
Fig. 4.1. The left end of the rigid crank is pinned to the ground, at Point O and its right
end is connected to the flexible connecting rod by a revolute joint at Point 4. The right
end of the connecting rod is connected to the slider, Point B, which can only move along
the x axis. Thus, the y coordinate of Point B is maintained as a constant. The slider-crank
mechanism is subjected to a transient force at Point B. This distinguishes the current
study from most of the existing studies where the external torque is applied at Point O to

maintain a prescribed angular velocity of the crank.

Y2

n V7T 7T — o sin(z)
Y
4 SIS
Figure 4.1 The Slider-Crank Mechanism

The slider-crank mechanism studied here is limited to move only in the x-y plane.
Hence, the rigid crank and the rigid connecting rod move with three degrees of freedom
(DOFs) each: two translations along the x and the y axes respectively and one rotation
about the z axis. The pinned joints at Points O and 4 produce four constraints in total, two

each, while Point B yields one constraint. Thus, the slider-mechanism is subjected to five
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constraints in total. Therefore, a rigid slider-crank mechanism enjoys only one degree of

freedom.
The geometrical and the material properties of the crank and the connecting rod

that make the slider-crank mechanism are summarized in Table 4.1.

Table 4.1: The Geometry and Material Properties of the System

Parameters, Units Crank Connecting Rod
Length, mm L=300 P=500

Width b, mm b=50

Height d, mm a=10
Cross-Section Area px d, mm’ A=500

Height of Slider h, mm 46.5

Density, Ns*/mm* p=7.833%10"
Acceleration, mm/s’ g=98Ix10’°

Mass, Ns*/mm my=1.175x10" | ms=1.958x 10"
Moment Inertia / | = db’ / 12mm* | I, =4.1667 x 10’

Moment Inertia J_ = bd’ / 12mm* 1 =1.0417x10°

Young’s Modulus, MPa 2.06 x10°

4.2 Equation of Motion for the Rigid Crank

The global coordinate system (x, y)and the body fixed coordinate system (x, ' )
of the rigid crank are shown in Fig. 4.2. The rigid crank is a rectangular beam. The origin
of the body fixed coordinate is at Point O, which is the center of the left end face of the
rigid crank. The crank is pinned to the ground at Point O. The dimension of the crank is
L(length )x b(width)x d(thickness) . Hence, the ranges for the local coordinate are defined
as follows:

0<x;<L,-d/2<y,<d/2 and-b/2<z,<b/2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Figure 4.2 Rigid Crank

The general equation of motion for a constrained rigid body has been derived in

Chapter 2 and is written as:
22 2 T
MG —f +C,A=0 4.1

m, “(Alr)z:l |:Mfm Miw]

_(Alr)g “(I?F’)z MGZR Mlil)

I~ 2 2
the force vector f 2 = { (] A(:/? / ;:)(;Il r’;’li)rr )2} = {f R2 } ,
7 b 7

[

where the mass matrix, M* = [

the system generalized coordinates ¢° = {R; R; R; I; I; I }T , and the

constraint Jacobian matrix

oc?  aC? oc? |
oR! oR: 86!
ac?  ac? aC?
C;=|'or? orR? 67
oc? ac?  ac?
oR? 8R! 06’

The detailed derivation of each of the terms in Eq. 4.1 in terms of the problem
parameters given in Table 4.1 are in order.
Since the crank rotates respect to the z' axis, the transformation matrix 4 from

the body fixed coordinates to the global coordinates is as follows:
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cos@ -sinf 0
A=|sinf@ cos@ O].
0 0 1

The linear moment /. in the mass matrix, M? is calculated as follows:

L. =
0 0 0 0 | yav 00 0
jﬂp?”dv=p'fn 0 0 -x|dv=p 0 0 -jQx'dv =ém2L0 0 -1|
-y x 0 —Iﬂy'dv Lx’dv 0 0 1 0

Therefore, the coupling mass term, M7, , is given by

cosd —sinfd 0 ; 0 0 0 ; 0 0 sin@
M;,=-Al. =—sin@ cos@ O —-m, L0 0 —I1|=——m,L|0 0 -cos|
0 0 1 0 1 0 01 0

The mass moment /. is calculated as follows:

-y Xy 0 ; d 0 0
I =j‘Qpr~'F’dv=pJ‘Q Xy -x" 0 dv=-—-1—2-mz 4r’ 0
0 0 -x""-y” sym. 417 +d’

Substituting these terms into the mass matrix M, one has:

(12 0 0 0 0 —6Lsind]
12 0 0 0 6L cos@
2 m, —Al 1 12 0 -6L 0
M’ = =—m, , (42)
sym —1.. | 12 d 0 0
sym. 41} 0
i 4% +d* |

As for the generalized force term, one has:

fi=Vf,-Ad'@&'l . +F

. . (1 .
0 cosd -sinfd 0]0 -8 0|0 -6 0 EmzL } 6°Lcos @
=V,{-pgr-|sin@ cos@ 016 0 0)6 0 0f 0 =5m ~2g+60°Lsinf}.
0 0 0 1|0 0 oo o ol 0 0

fi=LAf,/lp+&l .0 +T7
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; 0 0 0| cos@ sin@ 0 0
=—m,L|0 0 —1}-sin@ cos@ OR-pg:/p
01 0 0 0 1| 0

5

0 -1 0)-d> 0 0 0 0
+7]3m292 1 0 0f 0 -4L 0 0 =§m2L 0
0 0 0f 0 0 —4L’'-d°||1 ~gcosf

Finally, one has the generalized force term as:

6°Lcos8
~2g+6°Lsind

2
f? ={ ’2}=~1-mz< 0 ’ (4.3)

~Lgcos@

The rigid crank is pinned at its left end and allowed to rotate respect to the z’
axis only. Therefore, the rigid crank is limited to one degree of freedom. Hence, the

constraints for the planar rigid crank are as follows:
C,=R;=0,C,=R;]=0,C; =R} =0,C,=II,=0,C; =11}, =0.

The corresponding constraint Jacobian matrix is then given as follows:

foc, ac, oc,] )

aRZ aRZ o 802 1 0 0 0 0 0
x y z

oc, ac, ac,| |0 10000

C,=|oR @R 267 |=0 0 1 0 0 :ol=[c, i c,] @4

ot i ooo 100

0, ¢ %1l lvooo1:o

R’ R’ 267 | - -

Using the coordinate partitioning method described in Chapter 3, one has the equation

of motion in terms of independent coordinates §, as:

D'MDjj, =D" f (4.5)

4

_ -
wheren{ C7Cq':|=[0 0000 1I,q,=6..

Substituting the calculated M, fand D into Eq. 4.5, one has:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

07" (12 0 0 0 0 -6Lsin6. 0]
0 120 0 0 6Lcosf, |0
0 12 0 -6L 0 0].. 2o d? .
DTMD: ._]_ 5 5 9- :M_ng”
0| 12 a0 0 0| 12 :
0 sym. 41’ 0 0
1] i 4L’ +d* | 1
and
0’ Lcosé,
~2g+6!Lsiné,
1 0 1
D'f=[0 0 0 0 0 1]-2~m2< ; == magleosd,.
0
—Lgcosé,

At last, the governing equation of motion for the rigid crank, pinned to the ground at its
left end is as follows:
47 +b° . 1
———m,0. =——m,gLcos b 4.6
12 2%z 2 Zg z ( )
Alternatively, the rigid crank may be viewed as a single pendulum subjected to its gravity

as shown in Fig. 4.3.

Figure 4.3 Force Diagram of Rigid Crank
The only external force applied on the rigid crank is its own weight. According to the

equation of equilibrium, the total moment with respect to Point O is zero. Hence, one

has:
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M,+J6. =0 4.7)
where M is the moment produced by the weight, M =m,gL/2cosé,.

J is the moment inertia of the rigid crank respect to point O:
1 1 1
J=| p\x’ +y’ Bv=—=pbdl’ +— pbLd’ =—m,(4L’ +d°).
_[Qp( y }Iv 3pb 12pb ]Zmz( )
Equation 4.7 yields the equation of motion of the crank as:
éngLcosQ, +ém2(4L2 +d* ). =0 (4.8)

which is identical to that in Eq. 4.6.

4.3 Equation of Motion for the Flexible Connecting Rod

The body fixed coordinate system can be defined in many different ways. It is
selected to place the origin of the body-fixed coordinate system at the left end of the
crank in the derivation given in Section 4.2. For the flexible connecting rod, the origin of
the body fixed coordinate system is placed at its center of gravity. This can simplify the
calculation of the linear moment inertia term in the equation of motion. Later, while
modeling the rigid connecting rod in Section 4.6, two cases are considered: one places the
origin of the body-fixed coordinate system at the left end of the rod, and the other places
it at the center. Results of both cases are compared to each other to investigate the effects

of the origin location on computational efficiency.

Figure 4.4 Body-fixed Coordinates for the Connecting Rod
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The equation of motion for a free flexible body derived in Chapter 2 is employed

here for the flexible connecting rod of concern,

(M§* 1) &q° =0 (4.9)
where
Mg, My, qu m;l, - A1 A1y
M’ = M, M, |= U + 1+ 1+ 1) (U, + 1)y |(4.10)
sym. M, sym (//TINTNl//

g’ = {I@ I, iz'}r = {R;‘ Ry R: Iy Iy @y iz'}r, where a is the
modal coordinates used to approximate the elastic displacement. The force vector
is given by
I V.f, - A,0,0,1, -24,0}1, + F
S = Lo =L A Sy p+ B + T, + 1 + )0 + 2, + 1) o) + T4 (4.11)
Job v Kya+ 1, AT £, 1 p+ Uy, + Tio, ) @) = 210 @) + W'
Since the only external force in this case is the force along x direction applied at point

B, one has:

F={F, 0 O}T,T'=i(?e;ATFi+T}T)=(?3'B+EB)A3’F,and

i=1
W= [anyE]=piar.
Therefore, the generalized force term for the flexible connecting rod is as follows:
Vif, - A0, - 24,500, + F
P =LA S p+ (L + L, + 1 +15)0) + 21, + 1) o) + (7 +@%) 4] F1(4.12)

—Q//TK!//a+1,C,,,A3Tf;,//3+(I?3’5;Nw +1;

T 1 T ' T 4T
zany ) @ "215~W“’3 +yg A, F

It should be Noted that Eqs. 4.10~4.12 define the generalized mass matrix and
the force term for a general 3D free flexible body. Since this study is a planar analysis,
the degrees of freedom R;, [T}", and IT}” can be eliminated from Eqgs. 4.10~12.

Consequently, the coefficients in the mass matrix, Eq. 4.10, can be simplified

individually as:
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Mfm =l:
0 0 3

cosg -—sing O O
—A;]; =—{sing cos¢g Of 0
0 0 1-1

e,

—cosgl, —singl,
—singl, +cosdl, |
= 0

Similarly, M;,, M ;:q , M],,and M ;q can be obtained by simplifying the related terms
in Eq. 4.10 as:

M- —cosgl, —singl,
Ko | —singl, +cosdl,

cos¢ —sing O] I;,W In,, - I,
ALy =|sing cosg 0 Iy, In,. - Iy,
0 0 1 0 0 0

1 : 1
cos@l y,, —singl, , cos¢INW, sm¢INW2
=|singly,, +cosgly,, singly,, +cosdly, , singl 3, +cos@l yo, |.

0 0 ya)

A4 \%4 v

Nm . Nm
cOos INW —smn INW

2
cos ¢1NW, sin ¢IW2

M- cosdly,, —singly, ,
sm¢1N l-l»c‘,osqz{,w2

®¢ "\ sin @l 1 + cos ¢1}W2

Nm
cos ¢1Nwl smﬂmjl

singl y, +cosdl 7,

Ill 1’!7 II}
- +1_~+I +I~~)— 1, 1.,

£16) T % 23

Ly 4, 1. .+21, .y+1;,€

Mgﬂ = I y? + 21X€ +)'e, ]e2+e2. = 1(x'+e PFalyee P °
0 -z y'+e, | Ny, Ny - Ny
(73'+E)Nt//= z' 0 -x-e | Ny, Ny - Ny)"
-y -e, Xx+e 0 0 o - 0
~z'Ny, —zZNy )"
= 2Ny, Z’Ny,"™
(c'+e Nyl (e Ny] o (e Ny = (v +e, Ny
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0
U+ =| 0 0
Xe Ny} “1)"e_,.Nw/ IX'EXNW?” _[}"e,.Nw,"""
M;‘l = [ x'e, Ny} [y'e_‘.Ny/l' o x'e Ny - [_y"e_,Nu/f\"'" J'

As a result, the generalized mass matrix in a planar problem is as follows:

M=
m; 0 —cos¢l, —singl, cosgly,, —singly,, - cosgzi[,’,}',,”r singl
0 m, —sin¢lev +cos¢1€x sm¢1NW,+cos¢1NW sm¢1M,,+cos¢1NW (4.13)
(x+e, Y +{y've, F IX'fo'//.5 B I}"e_va/ IX'e,NV/?'" T ye Ny
sym. w'l . W

Similarly, the detail expressions for the required terms in the generalized force vector are

summarized below as:

o =Vof, - A&, -24,5.1, + F

0 cosp —sing 00 -1 00 -1 0 1,
=V<{-pgi—|sing cosg O]I 01 04’31,
0 0 0 0 00 0 0

cosg —sing 0|0 -1 0
—2sing cosg O0\1 0 Ol o+
0 0 110 0 0

(cos g, ~singt, B+ 2{singl, +cosgl, )¢ +F
=q=msg +isngl, +cosdl, 47 — 2 cos@l, —sin¢1é,‘)a5 .
0

, [ lcosgl, —singr, Jp? + 2lsingl, +cosgl, Jp+F
Je = —m,g+lsingl, +cosgl, |’ —2|cosgl, —sin¢1év)¢3 '
[, =LAl f,,/p+a)3(lw +I~~+1 +I~~)a)3+2(1~ +I~) o, +(r}° +e®)AF.

0 -1 ofr, 1, o0lfo
Gy + L +I_+I )0 =1 0 0\, L, 0}0{¢ =0.
0 0 00 0 I,||I
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0 0 e, 0 0 y' +e
éF, +ee=| 0 0 -¢ 0 0 -x'-—e,
-é, e 0 |-y -e x'+e, 0
(y’+e,) (x +e) 0
+ey) x +e 0 .
0 0 -e (y +e ) é, x +e )
11 112 0 r 0 0
205 + 1) @) =2 IW Zo0 [{049=20 0 4.
o o 12|l e

0 0 I, | cosp sing O 0
fi=| 0 0 -1, |-sing cosg OK-pg:/p
1

-1, I, 0| 0 o0 0

0 0 0 ey cos¢ sing O|F 0
+2{ 0 Y9+ 0 0 -rii-e|-sing cosg O[O0+2 0 té
2 —e) ri+el 0 0 0 Ill0 I

= 6

(sin ¢l, —cosgl, )g + 2[;:.545 - F[eg cos ¢ + (r;; +ej )sin ¢] |

£} =lsingl, —cosgl, Jg+ 203 ¢ - Fley cos g+ (155 + e} Jsing)]
Therefore, the generalized force vector in a planar problem is as follows:
(cos ¢l, —singl, );[52 + Z(Sin #l, +cosgl, » +F
—-m,g+\singl, +cosgl, b’ —2lcos@l, —singl, )¢
f= . \ [ , TR (4.14)
sing/, —cos¢l, )g + 2]5?3;¢ - F[efg cos @ + (rﬂ, +e, )sm ¢]
~y Kya+y 1L, A S, 1 p+y U, + Lean) @) =20 1] 0} +y [ 4] F
Finally, the equation of motion for the flexible connecting rod on a 2D plane can be
recast as follows:
(Mg - f) 5q=0 (4.15)

where the mass matrix M, and the generalized force term fare defined in Egs. 4.13 and
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4.14 respectively. The vector, g = {R;‘ Ry ¢ a}Tis the system generalized
coordinates in a planar problem.

The integrals, such as I, , in the above equations are a function of unknowns, ¢ .
3%

These integrals can be calculated in two different ways: one is in the ODE-loop and the
other calculated prior to ODE iterations by using modal superposition method. The
details of these two methods have been discussed in Chapter 3. Appendix 1 gives the

expressions of these integrals pertaining to a rectangular beam.

4.4 Constraints in the Slider-Crank Mechanism
The connecting rod of concern is subjected to two types of constraints: a pin-joint
constraint connected to the rigid crank and a prismatic joint constraint connected to the
massless slider.
The rigid crank and the flexible connecting rod should have the same position
vector at all time at the connecting pin-joint 4. It can be mathematically expressed as:
C,=rf—rf =dr) R, - 4,(r}* +e*)=0 (4.16)
Differentiating the above equation with respect to time once, one has:
C,=A,0,r)" —R, — A,&,(r]"* +e"*) - 4,¢"
=—A,F 0, = R, + 4,(F" + ")} — A,y a = 0.
which yields a virtual variation of C; as
SC, =~OR, + A,(F* +e ")}, — A7 SII, — A Sa =0 (4.17)
Differentiating Eq. 4.16 twice with respect to time, one has:
C, = 4,@,@,r" + A,a,r)" — R, — A,@,&,(r)" +e")— A,d,(r}* +e*) - 24,@,¢" — 4,6,
In the matrix format, the last two equations can be recast as,

C,a=[-4F" -1 4,F +e") -4y o, R, &I, &) =0(4.18)

.. ~ —~ A~ C Y &
Cz,qqz[“AzrzA -1 A3(’3A+eA) _A3‘/’A]{a2 R, «a a}

~y ~y

(4.19)
=-A,d,a0,r" + A,0,0,(r;" +e*)+ 24,@5e" =C

149
Next, the slider and the flexible connecting rod are connected by the prismatic
joint. The slider can only move along the x direction at the joint. The constraint equation

for the prismatic joint can then be put together as
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C,=el(rf ~R,)=eT|R, + 4,(r}* +¢*)|-eTR, =0 (4.20)
Differentiating the above equation with respect to time once, one has:
C,=e IR, + 4,5,(r]" +e°)+ Ag’”]-efRB =0.
SinceR, =[x,(t) # 0] ,onehas &R, =[0 1 0]%,(r) 0 o] =o0.
Therefore, the equation for C,can be simplified as
C,=e[R,+ 4,3, ()" +e")+ 4,6"|=0 4.21)
Differentiating the above equation with respect to time once again, one has
C, =R, + 4,3,3,(r;" +€* )+ A, (" +e" )+ 24,06 + 4,6°|=0.
In a matrix format, the last two equations can be recast as
C,ou=l0 & - 4[F*+&") Tay,far, R, ST, &) =0 (422

Coi=l0 ¢ -e4,F" +&") Taw, o, R, o, af

T 4 1,18, B T 4 ~1:B (4.23)
=—ejA3a);w3’(r3' +e )-—-2ejA3a>;e' =C

249
Assembling the above two constraints, Egs. 4.16 and 4.20, together, one has the
constraint matrix for the slider-crank mechanism as follows:
A" —R, - Ar" + e
C=3; . 3,3 3(33 r) =0 (4.24)
e [R3 + A3(r3 +e )]—ej. R,

The first order variations of Eq. 4.24 yields
—Azyz'A -1 A3('~'3’A +ZA) Ay,

T T B, ~8B T
0 e; -ejAJ(rj +e ) e, Ly,

chfq:[ }{éﬂ; SR, OI, &} =0 (4.25)

and the second order time derivative of C gives

—AF 1 AF ey Ay, | . . Y
l:;z 3\U; 3A{a)R3a3a}

CH
q T T B ~B T
e; —ejA3(r3 +e ) e, Ay,

=C (4.26)

~t o A ~r>~rf{ 14 A ~1 A
[—Aza)za)zrz +A3a>3w3(r3 +e )+ 24;we }
99

T ~f o~y B B T ~1+B
—e, 4,0,0; (r; +e )— 2e; A,z
Eqgs 4.24 ~4.26 are the constraints on the displacement, the velocity and the acceleration

respectively for a general 3D slider-crank mechanism. However, for a planar analysis, the

degrees of freedom o1, 8115, 8R; , o1, and 1T} can be eliminated. The terms in Eq.
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4.24 can then be reduced in a 2D application as:
Art =R, - A,(r" +e?)=
cosd —-sin@ OfL| |Rj| |[cosg —sing O0]r;;+e
sin@ cosf O|0|-|R)|—|sing cosg 0 ey
0 0 110 0 0 0 1 0

rx x v
Lcosé’—Rj—(rL4 +eA)cos¢+e/‘,sm¢
; ¥ ! ; ¥ _
=| Lsin@ - R; —(r3j+ej)sm¢—e,,cos¢ =0.

0

0)"([R:] [cosg -sing 0 rzi+er] (X,
e;[R3+A3(r3’B+eB)]—e;RB== 1y || R] |+|sing cosg Of e |-{ h
0] || o 0 o 1| o 0

=R} +{rj; +e )sing+e} cosp—h=0.
As a result, the displacement constraints in a 2D plane are reduced to:
Lcos6—R} (]} +¢)cos g + ¢, sing
C=|Lsin0-R; -]} +¢ )sing—e’ cosg | =0 (4.27)
R} +(r3'§ +e;)sin¢+e§ cosg—nh

where the values of r;}, and r;, are dependent upon the origin of the selected body fixed

coordinates. If the origin of body-fixed coordinate is placed at the center of gravity, one
has ;3 =—P/2, r;p = P/2,while at the left end, #;; =0, r]; = P.

The Jacobian matrix C . in Eq. 4.25, can be repeated here as

C:[—Az?g‘ -1 A4F+E) -4y,

A~ ~ 2
‘ 0 e; —efA3(r3'B+eB) e Ay,

which can also be simplified for a 2D application as
cos@ —sinf 0)0 0 0 0 —Lsin@
-4,y ,=-sind cosé 0|0 0 -L|= Lcos@
0 0 10 L 0

cosg —sing Of 0 0 e,
A,(r], +¢€,)=|sing cosg Of 0 0 —r—e
0 0 ll-e; r+e; 0
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e, sing—(r;; +e;)cos ¢ |.

; $ ey cosg+(r;+ey)sing

£

_f}f rjAT_eA Y

cos¢g -—sing O, - ¥
~A,w, =-|sing cos¢ O|¥,, - ¥
0 0 1y 0 0 0
~-¥/ cosg+W), sing - —W¥' " cosg+¥," sing
=|-¥/ sing-¥/ cosgp - —F\"sing-¥)7 cosg|
0 ) 0
0" cos¢g —sing 0} O 0 ey
—e A7, =—1} |sing cos¢g Of 0 0 —r;—e;
0 0 0 Il —ey rp+ep 0
. NT v
sin ¢ 0 0 ey
=Jcosgt | 0 0  —ri-el|=10 0 -elsing+(ry +ef)cosg)
0 | |—e; rj+ep 0
(0] [cos¢p —sing 0¥, - ¥
el Ay, =41 |sing cosg 0¥, - ¥y
ojlo o 1o o o
0)"[W), cosg—W. sing - ¥ cosg— W) sing
=1} | W/ sing+¥),cosp -+ ¥ sing+\¥)y cosg
0 0 0 0

=W/ sing+¥),cosg - Wsing+ ¥ cosg)

Finally, the Jacobian matrix C, is obtained for the 2D slider-crank mechanism as:

C,=

~Lsind -1 0 ejcosg+(rj:+e)sing -¥, cosg+¥,,sing - -V "cosg+¥)rsing 428)
Leosd 0 -1 esing-(r) +e)cosgp ¥/ sing-¥) cosg -~ -¥'"sing-¥i"cosg|
0 0 1 -elsing+(r;+e))cosp ¥, sing+¥,,cos¢ - ¥sing+Wly cosd

The C, term given in Eq. 4.26 is repeated here
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~r ot A IndBondd IRV | A ~' . A

B - A,0,w,r, +A3w3w3(r3 +e )+2A3a)3e
9 T g ~r~1( 1B B T 4 ~1.8B
—ejA3a)3(o3(r3 +e )—Zel.Ajwje

b

which can be explicitly spelled out for the given connecting rod as follows:

cosd —-sin@ 0|0 -1 0|0 -1 0 L Lcos@
-A,@\ow  =-|sin@ cos® 0|1 0 01 0 09°{0r=4Lsin6}’.
0 0 1{o o oo o o| |0 0

cosg —sing 0|0 -1 00 -1 0| |r,+e;
A2, +e')=|sing cosg 0)1 0 o1 0 olFl &
0 o 1{o o oo o o 0

ey sing—(r;; +e,)cosgd

=J—e)cosg—(r: +e’)sing d’.

0
cosg —sing 00 -1 0 éf,\ —é,sing—é) cosg
24,0, =2|sing cosg 0|1 0 0|ple]r=23 é cosg—é’sing bg.
33 A A A
0 0 110 0 0f 10 0

J

0)'[cosg —sing 070 0
—eT 4,5,3(r" +e®)=—{1} |sing cosg 0|1 0 0|1 0 0] e
o | 0 0o 1lo o0 oo
=[riz +ez)sing + e} cos gl
0] [cosg —sing 00 -1 0] [é
—2el A,0%" =-2{1} |sing cosg 01 0 0|de; =2¢(é{,sin¢—é§cos¢)
o] | o0 o 1lo o o|lo

Finally, C,, for the 2D slider-crank mechanism is given by

Lcos 66’ + [ef,' sing — (r]; +e)cos ¢]¢2 - Z(e'j sin @ + &, cos ¢)¢5
C,, =1 Lsin60? —|e’ cos g+ (r}; + e )singJp + 2(6% cos - singJp ¢ (4.29)
[(r;;‘ +ej})sing + e} cos ¢]¢2 + Z(é,’; sing — éj cos ¢)¢3
The constraint equations derived here, along with the equations of motion for the

crank and the connecting rod, are used in Section 4.5 to form the equation of motion for

the slider-crank mechanism.
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4.5 Equation of Motion for the Planar Slider-Crank Mechanism with a Flexible
Connecting Rod
Collecting the equations of motion for the rigid crank, Eq. 4.6, the flexible
connecting rod, Eq.4.15, and system constraints, Eqs. 4.27 ~ 4.29, together, one forms the

equation of motion for a planar slider-crank mechanism as:

M crl§) [ f
I:Cq 0 H)} _{Cw} (430

where
M =
[ 4+ d’ ]
2 0 0 0 0 0 0
12 ' ,
my 0 -—cosgl, ~singl, cosgly, —singly,, - cosglyr, -singlyr,
my -singl, +cosgl, singly,, +cosdly,, - singlyr +cosglyr, | (431)
(x'+e,)"+(y'+e))2 Ix'e,.’v'wé —]y'e‘..-\iw,’ xXe Ny;™ ‘Iy’e}.lv’w,'v’"
I sym. w'l ¥ ]
. . . . . AT
i=6 R R 4 a (432)
—m,glL/2cos @
(cosgr, —singr, Jp? + 2lsingr, +cosgl, p+ F
f=1 ~m,g +\singl, +cos¢ley)¢52 ~ 2|cos @i, —s'm¢1év)¢5 L (4.33)
(sin¢lev —cos ¢l g+21§;,3¢3-F[ef cos¢+(x'B +ef)sin ¢]
~w Kya+y LA f I prwT Uy + gy @) = 20T I 0, +y AT F
LcosQ—R;—(r;;+ej)cos¢+ejsin¢
C=|Lsin@-R} ()} +¢% )sing—e’ cosg |= 0 (4.34)
R} +(ry +e})sing +e cosp—h
-Lsin® -1 0 ejcosg+(rj;+e)sing -V, cosg+¥l,sing - —¥¥cosg+ W sing
C,=| Leos® 0 -1 ejsing~(r;;+e)cosp —¥)sing—¥,,cosg - —¥i"sing— ¥V cosg (4.35)
0 0 1 -ejsing+(r;; +e;)cosp Wy sing+¥,,co8 -+ ¥i"sing + W) cos g
and

Leos06° +[esing— (113 +e)cos gJp* — (6% sing + &2 cos g
C,, =1{Lsin60° ~[¢} cos g+ (1] +e3)singlp? + (¢ cosp— & sing)p b (4.36)
[(r;,’,‘ +e;)sing + e} cos ¢]¢2 + Z(ég sing ~ ¢ cos ¢);5
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For the benefit of the coordinates partitioning method, the generalized system coordinates

are rearranged in the order of dependent and independent coordinates as
i={& R ¢ 6 af (4.37)

Accordingly, the constrained equation of motion is then given by

M C] 4 | f
& Gl

However, one has

M=
‘m, 0 -cosgl, —singl, 0 cosgly,, —singll,, - cosglam —singli", ]
my singl, +cosgl, 0 singly,, +cosdly,, - singly, +cosdl\y,
(x'+e, Y +lyve, 0 ! ;'e,Nw -1 yl'e}.,vw 1 X'Nw -1 ;-Z"‘.Nw (4.39)
2 2
m, L4 0 0 0
12
i sym. z//T]N,Nl// |
( (cos ¢l, —singl, »32 + Z(Sin ¢l +cosdl, }z} +F
-m,g+ (sin ¢l, +cosdl, )&2 - 2(cos ¢l, —singl, )¢
f=3 (ingt, —cosgl, Jg+ 217~ Fleg cosg +(riz + e )Jsing] +(4.40)
~m,gL/2cos@
k-x//TKa//a YT IVA Sy Py Uy + Ly @) = 297 1 0 +y/£AjTF)

The constraint equation, Eq.4.34, is rewritten as follows:
Lcos6—-R; ~—(r3’j +ée; )cos¢+e§ sing
C=|Lsin6—R! - (v} +e% )sing—e’ cos g |=0.
Ry + (r;; +ey )sin¢+e;; cos@—h

Adding the second row to the third row of the above equation to remove the unknown R},
one has:

Lsin@+(rj — 13 +ef —e3 Jsing— (e} —¢’, Joos g~ =0 (4.41)
Since rj; —r;, = P, where P is the length of the connecting rod, regardless where the
origin of the connecting rod is placed, Eq. 4.41 becomes:

Lsin6+(P+e —¢% Jsing—(e — e’ )cosgp—h=0.

Dividing by \/ (P +ep — ef,)z + (eg —-e )2 on the both sides of the above equation and
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using the trigonometric formula, one has:

sin(p+a)=(h-Lsin6) (P+e; —e: ] +(es -} (4.42)
where a = arctan[(eg —-e, )/ (P +e, —e) )]

Solving Eq. 4.42, one has

¢=arcsin((h—Lsin 6)/J(Prez—e:) +(es e} )——a (4.43)

Once ¢ is obtained, R;and R; can be solved easily based upon the constraint equation,
Eq.4.34 as R} = LcosO— (] +e Jcos +e’, sin g and

Ry = Lsin@—(r;j +ef,)sin¢—ej cosg.

Select R}, R as dependent variables and ¢ , @ as independent variables, the matrix given

by Eq. 4.35 can be divided as

¢ =lc, : c,l (4.44)
where
-1 0 e cosg+(r],+e,)sing 4.45
Ca=|0 -1 esing—(r;;+e;)cosg (4.45)
0 1 —eysing+(r;;+e;)cosg
and
~Lsin@ -W¥/ cosgp+¥!, sing -+ —¥) " cosg+¥)"sing
C,=| Lcosf -, sing-¥; cosg - —¥ "sing-¥)7" cosg (4.46)
0 Y, sing+W¥ cosg - Wsing+¥)rcosg

According to Egs. 3.37 and 3.42 in Chapter 3, one has the dependent velocity term and

the dependent acceleration term as follows:

& Ry 4f =—C;’Cq,{?} (4.47)

a

e [d)
&y R 4 =—qucq,{a}+cqjcw (4.48)

where C__is defined in Eq. 4.36.
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4.6 Equation of Motion for the Planar Slider-Crank Mechanism with a Rigid
Connecting Rod

Two sets of equations of motion for the rigid slider-crank mechanism are derived
in this section. In the first case, the origin of the body-fixed coordinate system of the
connecting rod is placed at its center. In the other, it is placed at its left end. The equation
of motion derived in the preceding section for the slider-crank mechanism with a flexible
connecting rod can be directly used here since the rigid slider-crank mechanism is its

special case.

4.6.1 Origin at the Center of Gravity
Eliminating the terms related to the elastic displacement and the mode shape in

Eq. 4.38, one has the equation of motion for the rigid slider-crank mechanism:

M C]|(g
C, 0 |4 C,.
If the origin of the body-fixed coordinate system is located at the center of the connecting

rod,r;; =—P/2andr;; = P/2. Substituting these values into Eqgs. 4.39, 4.40 and 4.34

and eliminating the flexible term, one has

_m3 0 0 ] my 0 0 0
m, 0 my 9 ) 0
M- Lo 0 | m 2 0 |@50
2 2
sym. m2 4L +d ” 4L2 +d2
L 12 1 2T T2
(cos¢1x. —sin ¢Iy,)¢32 +F F F
_J TmE +(Sin él. + COS¢1;")¢32 - —m;g _ —m;g (4.51)
(sin Iy,—cos¢1x,)g—Fr3';sin¢ —Frj, sing - FP/2sing
-m,gL/2cos@ -m,gL/2cosd —m,glL/2cos@

Lcos@—R; —r;cos¢g FLCOSQ—R;+P/ZCOS¢
C=|Lsinf—R] —r);sing |=| Lsin@—R] + P/2sing |=0 (4.52)
Ry +rysing—h Ry +P/2sing—h

Adding the second row to the third row in the above constraints equation, one has

Lsin@+ Psing—h=0 (4.53)
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From the above equation, one can obtain the value of sin ¢ when @is obtained from the
ODE solution. However, it is difficult to determine the sign of cos¢ .

Assuming that the crank rotates counter-clockwise for a complete cycle from 0 to
27 , one can determine the 8 key configurations of the slider-crank mechanism. These
key configurations are shown in Fig. 4.5, where Points O, 4 and B mark the pinned end
of the crank, the pinned joint between the crank and the connecting rod and the massless

slider, respectively. The angle ¢ is measured counter-clockwise from the positive global

x axis to the positive local x axis. The latter is pointing from point 4 to B.

50 50 50 300 =
*********** - B— Cased
40 40 40 Cased
530 30 30 200
8
o 20
o 20 20 -
10 10 10 I N B __
0 0 0 ob
0 500 1000 0 50q. 1000 0 500 1000 O 500 1000
X Position X Position X Position X Position
n —— 50 —— 50 =====— 100
B Caseb B w7 | | |memm—pm—————
40 Caseh 40 Case? 0 B Cases
830 30 0
2 -100
a. 20 20 50
S -
10 10 A -200
R A

(8] A
- 00
~1%00 0 1000- 19 0 500 1000
X Position 1%00 X Po(s)ition 1000 1%00 X pogmon 1000 X Position

Figure 4.5 Possible Configurations of the Crank-Slider Mechanism in a Full Cycle

The details of the figures are discussed as follows.
1).The rigid crank OA is aligned with the +x axis

Case 1 is the initial position in whichsin¢g = 0.093 or ¢ ~ 0.093radians. The force
starts to pull the slider to the right which causes the crank to rotate with respect to point O
counter-clockwise. As a result, the rotation angle, 8, of the rank will increase gradually,
while the rotation angle, ¢, will decrease.
2).Points O, 4, and B are in a line

Case 2 is the position when the rigid crank and the connecting rod are in a line, in
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whichsing = 0.05810r ¢ ~ 0.0581radians. In this case, Point B of the connecting rod

reaches the maximal distance measured from Point O. From Case 1 to 2; it can be seen

that Point B moves further from Point O, and the value of ¢ decreases. It means that
cos ¢ is always positive between Cases 1 and 2.
3).The connecting rod AB parallels the +x axis

The value of ¢ in this case decreases to zero. That is cos ¢ =1andtang = 0. From
Case 2 to 3, the value of ¢ is gradually reduced to zero. However, after this, Point 4 will
move vertically higher than Point B. In this case, the value of ¢ will further be reduced
from Qor2x.
4).The rigid crank O4 is aligned with the +y axis

The value of ¢ at Case 4 is 5.751 or -0.5317 radians. From Case 3 to Case 4,
Point B moves closer to Point O. Though the value of ¢ decreases, it still falls between
37/ 2and 27 . Thus, cos ¢ is always positive between Cases 3 and 4.
5).The connecting rod 4B parallels the x axis

In Case 5, ¢ becomes 27 . The value of ¢ is increased from Case 4 to Case S to
reach 27 . However, it falls between 37/2and 27 . After Case 5, Point 4 will move lower
than Point B. Thus, ¢ increases up from zero to become positive.
6).The rigid crank OA is aligned with the -x axis

It can be noted that the value of ¢ is increased from 0 radians in Case 5 to 0.093
radians in Case 6.
7). Points A, O and B are in a line

In Case 7, Point B of the connecting rod reaches the shortest distance to Point O.
The value of ¢ is increased from 0.093 radians in Case 6 to 0.235 radians in Case 7.
8).The rigid crank OA is aligned with the -y axis

The value of ¢ is increased from 0.235 in Case 7 to 0.766 radians in Case 8.
Finally, the crank will complete a cycle moving from Case 8 to Case 1, during which the
value of ¢ is reduced from 0.766 radians to 0.093 radians.

Based upon the dimensions of the mechanism given in this study, it can be

observed that, for the crank to complete a cycle counter-clockwise, the value of ¢ falls in
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—-m/2<¢<m/2;1i.e., in the first and the fourth quadrant. Hence, the value of ¢ can be
found by ¢ = arcsin[(h — Lsin 9)/ P]. Furthermore, one can compute the location of the
origin of the body-fixed coordinate based upon the constraint equations:
R; =Lcos@+P/2cos¢ and R; = Lsin@+ P/2sing.

The general formula for Jacobian matrices, C,, C,, and C,, given in Egs. 4.35,

4.45 and 4.46 can be found for the given mechanism as

-1 0 r;jsing -Lsin@| (-1 O —P/2sing —Lsin€
C. =0 -1 -rjjcos¢ Lcosf |=| 0 -1 P/2cos¢ Lcos@ (4.54)

q

0 I rjzcosé 0 0 1 P/2cosg 0

-1 0 r;;sing -1 0 -P/2sing
Cu=|0 ~1 -rijjcosg|=l0 -1 P/2cos¢ (4.55a)

0 1 ;5 COS @ 0 1 P/2cos¢

and
—Lsiné
C,=| Lcosb (4.55b)
0

The inverse of C_, can be explicitly found as follows:

; —Pcos¢g —P/2sing —P/2sing -1 —1/2tang -1/2tan¢
Cc'= 0 ~P/2cos¢  Pcosg |=| 0 -1/2 1
“  Pcosg
0 1 1 0 1/Pcos¢ 1/Pcos¢

Since cos¢ never becomes zero, C,,is always invertible during the motion for the

mechanism of concern. One may assure the non-singularity of C _, by examining the
constraint, Eq. 4.53 which yieldssin ¢ = (h — Lsin 8)/ P = +1when cos ¢ becomes zero.
Assuming thatsing =/, one obtainssin @ = (h— P)/ L = (46.5 - 500)/ 300, which is less

than -1. Thus, it is unattainable.

In the case whensing=—/, one has sin@ = (h+ P)/ L =(46.5 + 500)/ 300, which is

greater than 1. Again, it is unattainable.

It can be concluded that cos ¢ cannot be zero for the slider-crank given in this

study. It is also concluded that the matrix C qdis non-singular and, thus, invertible.

Therefore, the dependent coordinates (R;‘ , R}, ¢) can be expressed in terms of the
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independent coordinate 6. The dependent velocity terms can be expressed based upon Eq.

3.37 in Chapter 3 as:

& R ¢ =-cjic 6=

-1 —-1/2tang —1/2tang | —Lsin@ —Lsin@+ L/2tangcosb (4.56)
-lo  -1/2 1 Lcos® |9 ={L/2cosf 6
0 1/Pcos¢ 1/Pcos¢ 0 — Lcos 8 /(P cos @)

Based upon Eq. 3.42 in Chapter 3, the dependent acceleration terms can be expressed as:

& & 4 =-c/c,é+c;c,

—Lsin@+ L/2tangcos 6 -1 —1/2tang —1/2tang}|LcosO’ + P/2cos ¢’
=<L/2cosh 6+ 0  -1/2 ! LsinB9’ + P/ 2sin ¢’
— Lcos@/(Pcos )] 0 1/Pcos¢ 1/Pcos¢ P/2sin ¢g’

[—Lcos6’92 — P/ 2cos ¢p’

—Lsin@+L/2tangcosé 1/2tan g(Lsin 067 + Psi ¢¢52)]
. |- an ¢(L sin sin
=<L/2cos 6 6+ L (4.57)
— Lcos@/(Pcos @) _L/ZSI.HQB )
(Lsin 6’ + Psin g’ ) p cos @)
where C_, is given by
Lcos60° —r;: cosgp’ | [Lcos06? + P/ 2cos g’
C,, =< Lsin66’ —r;;singg’ + =< Lsin69 + P/ 2sin ¢¢° (4.58)

r1¥ sin g’ P/ 2sin ¢’

4.6.2 Origin at the Left End
If the origin of the body-fixed coordinate system is placed at the left end of

the rigid connecting rod, 7;; = 0andr;; = P. The body-fixed coordinate system
x; — yis assumed to make an angle ¢ with the global coordinate system, x -y, as

shown in Fig. 4.6.
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y
S S
Figure 4.6 The Origin of the Body-fixed Coordinates is at Left End Point 4

When the origin of the body fixed coordinate system is not at the center of gravity,

the linear moment is no longer zero. In this case, the linear moment is calculated as

follows:

X' 1 00 0
1=jpr'dv=j av=Lom Plob and 1 =LmPlo 0 -1
r Q pQ y 2 3 b v 2 3 .

0 0 0 1 0

The equation of motion for the rigid slider-crank mechanism is as follows:

M ocrlfa)_[f
& S

Since the linear moment cannot be eliminated, the mass matrix is no longer a diagonal

matrix. The terms in Eq. 4.59 can be simplified with #,; =0andr;; = P as

md, —A,lI. 0
M= L. 0
417 + d*
sym.  m, —————
L To12 ]
cos¢g —sing 00 0 0 0 0 sing

—A317=—-—§—m3P sing cos¢g OO0 0 -1 =—-§-m3 0 0 —cosg|.
0 0 1Mo 1 0 0 1 0

Therefore, one has,
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m;, 0 —-mP/2sing 0
m; m,P/2cos¢ 0
2 2
M- m AP+ . (4.60)
12
o ” L’ +d’
I ym. 2 2|

As for the generalized force term, one has

(cos il —sinﬂy.)qﬁz +F m,P/2cos¢p’ +F

_ —m3g+(sm¢1x,+cos¢1_v,)q5" —m,g +m,P/2singg’ (4.61)
(singl,. —cosgl, )g - Frizsing| |-m,gP/2cosg - FPsing
—m,gL/2cos @ ~m,gL/2cos@

Similarly, the constraints C, the Jacobian matrix C ,C gl C ,and C , can be found as

Based upon Eq. 4.64a, one has

_1_

f«  Pcos¢

Lcos@—R; —rj;cos¢ Lcos@—R;
C=|Lsin@—-Ry —r;ysing {=| Lsin@—-R] |=0 (4.62)
R} +rpsing—h R} +Psing—h
-1 0 rysing —Lsin@| [-1 0 0 —Lsiné
C,={ 0 =1 =—rjjcos¢ Lcost |=|0 -1 0 Lcos@ (4.63)
0 1 rjpcosg 0 | L0 1 Pcos¢ 0
-1 0 rsing | [-1 0 0
C.=|0 -1 -rjcosg|=|0 -1 0 (4.64a)
0 1 rjzcosg | Pcos¢
—Lsin&
q1= Lcos@ (4.64b)
and
Lcos 06’
C,, =4 Lsin66° —r}’ sin ¢¢’ Lsin 86° (4.65)
¥;p SIN ¢’ Psin ¢’

—Pcos¢g 0 0
0 —Pcos¢ 0 0 .
0 1/Pcos¢ 1/Pcos¢

L cos 66° - cos g }
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Again, based upon the discussion in Section 4.6.1, C_, is not singular and invertible

during the motion of the mechanism. Consequently, the velocity of the dependent

coordinates can be written in terms of the velocities of the independent coordinates as:

R’ R 4 =-Cj'c, 6=

-1 0 0 —Lsin@ —Lsing
-0 -1 0 Lcos@ |6 ={Lcos 6 (4.66)
0 1/Pcos¢ 1/Pcos¢ 0 — Lcos@/(Pcos )

Similarly, the accelerations of the dependent coordinates can be obtained in terms of & as
- . T _ . _
{R3 R; ¢} = _Cq,,l Cq, o+ Cqul Crm

—Lsind -1 0 0 Lcos 66°
=JLcosd 6+ 0 —1 0 Lsin 66°
— Lcos@/(Pcosg) 0 1/Pcos¢ 1/Pcos¢||Psingd’

—Lsiné — Lcos 69’
={Lcos6 6+ — Lsin 86° (4.67)
~ Lcos@/(Pcos¢) (Lsin66° + Psin gg’ ) (Pcos @)

By comparing the equation of motion derived in Sub-sections 4.6.1 and 4.6.2, it
can be seen that the mass matrix in Eq. 4.49 is diagonal but not in Eq. 4.59, and the force
matrix in Eq. 4.49 is simpler than that in Eq. 4.59. The formulation simplicity is the
advantage of the case which places the origin of the body-fixed coordinate system at the

center of gravity.

4.7 Direct Method for the Rigid Slider-Crank Mechanism

The direct method described here is the one that derives the equation of motion
explicitly in terms of the independent coordinates for the slider-crank mechanism of
concern. The constraint conditions are used in the derivation of the equation of motion to
substitute the dependent coordinates by the independent ones directly without relying on
the Lagrange multipliers. In this study, the direct method is used as the benchmark to
verify the numerical results obtained by the coordinate partitioning method and the
projection method. Again, the derivation discussed here allows the origin of the body-

fixed coordinate system of the connecting rod to be placed at its center or at its left end.
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4.7.1 Origin at the Center of Gravity
The constraint equations that define the relationship between the dependent
coordinates and the independent ones have been derived and given by Eq. 4. 52 for the
case when the origin is placed at the center of the gravity as:
Lcos@—R; +P/2cos ¢
C=|Lsin@—R] +P/2sing |=0.
R +P/2sing—h
Similarly, according to Eq. 4.56, the dependent velocities are related to the independent

ones are given by

R;| [-Lsin@+L/2tangcosd
R} t={L/2cos@ 6.
¢ — Lcos @ /(P cos @)

Hence, one has the virtual displacement as

OR; —Lsin@+ L/2tangcosd
Y L/2cos@
og =0 | |1 2008 6 = p&o (4.68)
& —Lcos@/(Pcos¢)
50 1

wher 7 = (= Lsin@+(L/2)tangcos® ~Lsin@+(L/2)tangcos® —Lcos@/(Pcosg) 1)

in which sing = {(h~ Lsin@)/Pand cos ¢ = /] —sin’ ¢ . The independent accelerations,

according to Eq. 4.57, can be written in terms of the independent ones as:

& & 4 -

—Lsin@+L/2tangcos @ —Lcos66” — P/ 2cos¢g’ — 1/ 2tang(Lsin 06° + Psin gg*)
L/2cos@ 0+ — L/ 2sin 66’
— Lcos@/(Pcos @)l (Lsin @8’ + Psin ¢¢*)/( p cos @)

Hence, the dependent and independent accelerations can be combined as:

RY| (-Lsin6+L/2tangcos6) [~ Lcos 6’ - P/2cos gg* ~ Ij2tang(Lsin 06" + Psin ¢g°)

- R‘j}_‘ L/2cos @ ia -1/2sin 66’

15 (71 LeostiPeosy) (Lsin 66° + Psin ¢¢°)( pcos¢) (4.69)
il 0

=ph+y
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~Lcos69” — P/ 2cos ¢’ — 1/ 2tang(Lsin 69 + Psin ¢g’)
—L/2sin66°

(Lsin 66’ + Psingp’)/( pcos @)

0

where n =

Substituting Eqs. 4.68 and 4.69 into the equation of virtual work, Eq. 4.9, one has

(Mg~ £ 5q=M(p6+n)- s} pso =0 (4.70)
Note that8is an independent variable, which is free from constraints. Hence, one has:
M(gé+4)- £l p=0 (4.71)
or
(B"MBY +n"Mp = 1" (4.72)
As aresult, one has
6=p"mp)" (r"p-n" Mp) @73)

where M, f, § and n are defined by Eqs. 4.50, 4.51, 4.68 and 4.69, respectively.

4.7.2 Origin at the Left End
In this case, the constraint equation is given by Eq. 4.62 as,
Lcos@—R;
C=| Lsinf@-R; |=0.
R} +Psing—h

The dependent velocity terms can be written in terms of the independent one as

2

according to Eq. 4.66,

R; —Lsiné
R} +=4{Lcos@ 0.
¢ ~Lcos@/(Pcosg)
Hence, one has

OR; —Lsin@

y Lcos@
&I — 6R3 - cos (% = ﬂ50 (474)
p —Lcos@/(Pcosg)
50 1
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where g7 ={-Lsin@ Lcos§ —Lcos@/Pcosg) 1} in which sing=(h~Lsind)/P

and cos ¢ = /1 —sin’ ¢ . Similarly, the dependent acceleration terms can be written in

terms of the independent acceleration based upon Eq. 4.67 as:

Ri| [-Lsin@ — Lcos 66’
R} y=4{Lcos@ 6+ — Lsin66°
é — Lcos8/(Pcos @) (Lsin66” + Psing@’ ) ( Pcos §)

Hence, the above equation can be extended to represent the entire system coordinates as

R.;\ —Lsin@ —LCOS@éz
R}| |Lcos@ . |~ Lsin 68’ .
gl JLeos g4 Lsmo | = B +1(4.75)
é —Lcos6/(Pcosg) (Lsin66’ + Psin g’ ) /(P cos @)
6 U 0
— Lcos 66
— Lsin 66
where 5 = ) . .
(Lsin66* + Psingg’) /(P cos ¢)
0

Finally, one arrives at a single equation to represent the equation of motion for the

rigid slider-crank, in which the origin of the connecting rod is placed at the left end as:

.. 1
&=(p"Mp)'(f"p~n" Mp) (4.76)
where M, f, # and n are defined in Eqs. 4.60, 4.61, 4.74 and 4.75, respectively.

4.8 Numerical Results for the Rigid Slider-Crank Mechanism

The numerical results obtained from the equation of motions derived by different
methods are summarized in this section. These methods include the coordinate
partitioning method and the projection method and the direct method. The details of the
coordinate partitioning method and the projection method are discussed in Chapter 3,
while the direct method is discussed in Section 4.7. Each method produces two equations
of motion based upon whether the location of the origin of the body fixed coordinate
system is at the center or at the left end of the connecting rod. Therefore, six sets of
results are presented in this section. These results are compared with each other based

upon computational accuracy and efficiency.
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4.8.1 Computational Accuracy

Two cases are considered here: one with a harmonic force F = 200sin(a¢) and the
other with F = 2000sin(m). Since the force takes two seconds to complete a cycle, the

analysis is run for three seconds so as to catch the key features of the response. The time
interval of analysis to report the result is set to be 0.025 seconds. In the direct and the
coordinate partitioning methods, the angular displacement of the crank, &, is the only

unknown, whose initial value and initial velocity are set to be:
6(0) = arcsin(h/L)=0.1556 and 6(0)=0, respectively. On the other hand, the projection

method is made of four generalized coordinates: the angular displacement of the crank, 8,

the angular displacement of the connecting rod, ¢, and the position of the connecting rod,

R and R at the origin of its coordinate system. The corresponding initial values are set
to be ¢(0) = ¢(0) = R} (0) = R} (0) = 0. In the case when the origin is placed at the center
of gravity, the initial position of the connecting rod are given by
R;(0)=Lcos@+P/2cos¢p=546.37 and R} (0)=Lsin@ + P/ 2sinp=46.5 .

In the case when the origin is placed at the left end of the connecting rod, one has:

R} (0)= Lcos(#)=296.3743 and R} (0) = Lsin(0)= 46.5.

Only the results of the angular displacement and the velocity of the crank and the
connecting rod are reported here. This is because the other parameters, such as the
position of CG of the connecting rod, can be computed based upon these four values.

The results obtained based upon the direct method, the coordinate partitioning
method and the projection method are summarized in Figs. 4.7 and 4.8.

Figs 4.7 and 4.8 indicate that these three methods yield almost identical results.
Thus, it can be concluded that the projection method has been validated, which can be a
useful alternative when it is difficult to determine the independent coordinates based
upon the constraint equations. The results also indicate that the location selection for the
origin of the local coordinate system bears no effect on accuracy. However, the origin of

the local coordinate system has effect on the computational efficiency. It will be

introduced in Sub-section 4.8.2.
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Next, Figs. 4.9 and 4.10 show the results pertaining to a larger force, 2000N.
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Figure 4.9 Angular Displacements of the Crank and the Rod under 2000N Force
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Figure 4.10 Angular Velocities of the Crank and the Rod under 2000N Force

Figs 4.9 and 4.10 indicate that the direct and the coordinate partitioning methods
yield identical results for the force of 2000N and the projection method exhibits deviation,
particularly after 2 seconds. One reason for this deviation could be the fact that the
projection method doesn’t provide an automatic mechanism to enforce the displacement
and the velocity constraints. An optimization method has been proposed in Chapter 3 to
aid the projection method to impose the displacement and the velocity constraint. The
proposed optimization method is then incorporated in the solution algorithm of the
projection method at every time step called by ODE. However, the displacement and the
velocity constrains in the projection method can be imposed externally through the
optimization method after solving the ODE at each time interval. The optimization
method has been discussed in detail in Chapter 3.

Figs 4.11~4.14 show the results obtained by the project methods with and without
the constraints correction. The results reported here are only for the case when the origin
is placed at the center of the connecting rod. The results are improved, though they still
deviate from those of the direct method. Nevertheless, the optimization method proposed

in Chapter 3 is valid for constraint correction.
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Figure 4.14 Velocity Comparisons at CG of the Rod under 2000N Force

The values of the displacement and the velocity constraints at Joint 4 and Joint B

with correction are compared with those without correction and shown in Figs. 4.15~4.20.

It can be seen that the displacement and the velocity constraints are satisfied after

constraint correction by the proposed optimization procedure.
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4.8.2 Computational Efficiency

The Matlab built-in function ode23s is used to solve the required ODE, which can
handle a stiff equation. The run time duration is set for 3 seconds, and the time interval
for reporting the results is 0.025 seconds. The absolute and relative tolerances are the
default values 10®. The code is run on a PC. The average value of three different runs is
taken as the CPU time because each run gives a different time. Detailed results are

summarized in Table 4.2.

Table 4.2 Time Consumption of Different Methods for the Rigid Body
Method | Direct Method | Coord. Partition Projection Method
Origin CG Left CG Left CG Adjust | Left | Adjust
1% run 1.051s | 1.086s | 1.196s | 1.241s | 2.562s | 0.205s | 2.645s | 0.212s
2"run | 1.019s | 1.054s | 1.183s | 1.237s |2.461s | 0.180s | 2.524s | 0.218s
3" run 1.012s | 1.046s | 1.170s | 1.212s | 2.496s | 0.191s | 2.527s | 0.198s
Average | 1.027s | 1.062s | 1.183s | 1.230s | 2.506s | 0.192s | 2.565s | 0.209s

Table 4.2 reveals that, as expected, the direct method is faster than the coordinate
partitioning method and the projection method. The coordinate partitioning method
requires additional time to solve the nonlinear constraints on displacements and velocities,
while the projection method has to solve a larger set of equations. Table 4.2 also reveals
that placing the origin of the body-fixed coordinate at the center of the body is preferable
to placing it at the left end.

4.9 Numerical Results for the Flexible Slider-Crank Mechanism

The system generalized coordinates for the slider-crank mechanism with a
flexible connecting rod include the modal coordinate a . The latter is used to approximate
the elastic displacement, which complicates problem formulation and solution algorithm.
When the connecting rod is taken as flexible, the generalized mass matrix and the force

term are no longer time invariants. The applied force considered here has a magnitude of

2000N.
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4.9.1 Results Comparison between Rigid and Flexible Systems

In the flexible dynamics analysis, three cases are studied. In the first case, the
problem is solved by the coordinate partitioning method, in which the integrals are
calculated within the ODE iterations. In the second case, the problem is still solved by the
coordinate partitioning method; however, the integrals are calculated prior to the ODE
iterations. In the third case, the projection method is used in which the integrals are
calculated prior to the ODE iterations. In all these three cases, the origin of the body-
fixed coordinate system of the flexible connecting rod is placed at its center. The flexible
connecting rod is discretized into 12 beam elements. Nine eigen-vectors are selected for
analysis. Their frequencies are below 20,000 Hz. The mode shapes of the selected 9

modes are depicted in Fig. 4.21. All except mode 7 are bending modes.

Mode shapes1 Mode shapes2 Mode shapes3
200 200 200
0 \/ ° /\/ 0 /\/\
“2%5% 0 s00 %o 0 500 %00 0 500
Mode shapesé4 Mode shapes5 Mode shapes6
200 200 100
2956 0 s00 %00 0 s00 %00 0 500
Mode shapes? Mode shapes8 Mode shapes9
200 100 100
. \ 0 (4]
“2%56 0 500 %00 ) 500 %0 0 500

Figure 4.21 Mode Shapes of the Flexible Connecting Rod

The initial conditions used for the flexible dynamic analysis are set to be the same
as those of the rigid analysis. The initial value for the modal coordinate @ and its first
order derivation a are both set to be zeros.

The rigid results obtained by the direct method are set as the benchmark for
comparison. The comparisons between the results of the rigid body and the flexible body

dynamic analysis are reported in Figs. 4.22~4.25.
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Figure 4.25 Velocities at CG of Connecting Rod

It can be observed from Figs. 4.22 and 4.23 that the angular displacements and the
velocities of the rigid model match well those of the flexible model in the first second of
analysis time period. Afterwards, the angular displacement of the rigid model reached a
much higher value than the flexible model. The angular velocity of the rigid model is
running faster and larger than that of the flexible model. Similar trends can be observed
in Figs. 4.24 and 4.25 for the displacement and the velocity at the center of the flexible
connecting rod. This is to be expected since some of the kinetic energy is consumed by
the strain energy of the flexible connecting rod due to elastic deformation. The snap shots
of configurations of the rigid and the flexible models at seven different time instants
during motion are shown in Figs. 4.26 and 4.27, respectively. Two large jumps are

observed from 1.0 to 1.5s and 1.5 to 2.0s for both the rigid and the flexible models.
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Figure 4.27 Configurations of the Flexible System at Different Times

The elastic deformations are expressed in terms of linear combination of the mode
shapes based upon the mode superposition technique. The modal coordinates can be used
to measure the contributions of each mode shapes toward the total elastic deformation.
The time histories of the modal coordinates are shown in Fig. 4.28. It can be observed
that the dominant mode is the first mode, which is the first bending mode of the beam

indicated in Fig. 4.21.
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Figure 4.28 Time Histories of Modal Coordinates
For the projection method, the displacement and velocity constraints histories

after constraint correction are shown in Figs. 4.29~4.31. The constraints are satisfied well

through the optimization.
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4.9.2 Computational Time Comparison for Different Methods

Similarly as in analysis of the rigid slider-crank mechanism, the CPU time is also
obtained to check the efficiencies of the methods used for the flexible one. The average
value of three different runs is taken as the CPU time for each method, which is shown in

Table 4.3. .

Table 4.3 Time Consumption for the Flexible Dynamic Analysis

0-3s Rigid Flexible

dt=.025 | Coord. o Coord. Partition Projection

@CG Partition Projection In-Loop Prior Prior Correction
1* 1.196s 2.562s 3369.27s | 1504.51s | 2385.96s | 0.38s

2™ 1.183s 2.461s 3364.17s | 1507.19s | 2332.96s | 0.35s

3¢ 1.390s 2.496s 3361.21s | 1510.26s | 2343.87s | 0.32s

Avg 1.256s 2.506s 3364.89s | 1507.32s | 2354.26s | 0.35s
Time saving % 55.20 30.03 ----

It can be observed from Table 4.3 that the flexible dynamic analysis consumes
much more CPU time than the rigid one. This is because the elastic deformation greatly
increases the complexity of the system equation. The off-diagonal terms in the
generalized mass matrix are no longer zero for the flexible model regardless where the
origin of the body fixed coordinate is placed. Furthermore, the elastic deformations
complicate the integrals in the system equation and increase the number of the
independent variables. All of these complexities increase the demand for computational
time.

It should be noted that calculating the geometrical integrals prior to the ODE
iterations can greatly improve the computational efficiency for both the coordinate
partitioning method and the projection method.

Although the projection method takes more computational time compared with
the coordinate partitioning method, it has a distinct advantage as it does not require
identifying the dependent and the independent coordinates. The identification process can

encounter singularity which can be overcome though with additional solution complexity.
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CHAPTER 5
PRESSURE DISTRIBUTION RECONSTRUCTION FOR THE

CRAFT UNDER IMPACT

Planing craft is widely used in military, sport and recreational purposes due to its
fast speed and convenience. However, when operated at high speeds under a complex
environment, the hull surface may experience dynamic instability due to high magnitude,
repetitive pressure impact. This hydrodynamic impact between the hull and waves has an
adverse effect on the overall performance of the craft including ride quality, personnel
comfort, habitability and safety, equipment reliability, etc. Hence, understanding wave-
induced hydrodynamic pressure is essential to design a craft that can achieve proper
seakeeping and habitability characteristics.

One of the major challenges that designers face in the early craft design process is
the determination of the hydrodynamic pressure loads. Nowadays, designers typically
rely on classification societies or semi-empirical design methods to calculate design loads
on the hull surface by using the acceleration information from the model or full-scale test.
These empirical methods are straightforward and easy; however, they sacrifice accuracy.

The main topics in this chapter are presented in the following order: First, a
filtering process is introduced in Section 5.1 to eliminate the high-frequency noise
present in the raw pressure data collected from the pressure transducers. The filtering
process is made of FFT, low-pass Butterworth filter and the demeaning method.
Subsequently, in Section 5.2, the maximum pressure peak is sought among the filtered
data so as to investigate when and how the impact event occurred. As a result, the starting
point of an impact wave and its velocity along each transverse section on boat hull can be
determined. Next, in Section 5.3, the linear momentary pressure reconstruction algorithm
is employed to map the pressure distribution on the wet surface on the boat hull as a
function of a 2D coordinate (x, S ), where x is along the longitudinal direction of the boat
hull and § is along the transverse direction. Finally, in Section 5.4, the pressure

distribution is mapped from a 2D surface, (x,S) to the 3D finite element model of the

boat hull in terms of coordinates in (x, y,z) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

5.1 Test Data Processing

Noise can always be found in raw test data. It may come from the device itself,
from human operations, or even from the nearby environment. Noise in the test data can
obscure the key features, such as peaks of the test data and lead to the incorrect
conclusions. Hence, it is very important to process the raw test data to eliminate the noise
as much as possible before analyzing it.

In this study, the hull-water impact pressure data was acquired through the full-
scale tests of a craft conducted in irregular waves. 42 pressure transducers in total, noted
as PT, are placed over the hull surface to collect the pressure distribution information.
The time histories of the impact pressure test data are plotted in Fig. 5.1 at different

transverse hull sections which are arranged along the longitudinal (fore-aft) direction.

Pressure(psi)

900 800 700 600

500 e 1000
X coordinates 400 300 200

Figure 5.1 The Raw Test Impact Pressure Data for a Craft

It can be seen from Fig. 5.1 that the raw test data of impact pressure is not smooth
at all. It is full of suddenly sharp spikes and disturbances. Hence, the raw test data cannot
be used as it is to find the peaks and trends. Such spikes and disturbances can be observed
more clearly in Figs. 5.2 and 5.3, each of which displays the time histories of a pair of
pressure transducérs. Note that the time interval Azbetween a pair of consecutive indices

is 5x107s.
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Figure 5.3 The Raw Pressure Data at PT08/09

The fluctuations of small pressure peaks can be observed in Figs. 5.2 and 5.3.
Such disturbances call for the data filtering. Many sudden rising up and down in
pressures collected at PT 04/05 can be observed in Fig. 5.2. However, the pressure

collected at PT 08/09 rise up sharply at Time Index 2000 and then gradually drops to a

normal level in Fig. 5.3. This implies that the craft encounters a slamming wave impact.

The filtering of the raw test data is discussed in detail in the following section.
The data filtering process consists of two steps. In the first step, the Fast Fourier
Transform (FFT) is used to represent the raw data in the frequency domain. As a result,

the resultant Power Spectra Density (PSD), i.e., the energy distribution, of the pressure
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data can be clearly measured and plotted. The information of PSD helps determine the
cutoff frequency of the low pass Butterworth filter used as the second step for data
filtering. The selection of the cutoff frequency is critical in determining the goodness of
the filtering data. The cutoff frequency is selected in such a way that the remaining data
will see no disturbance and the trend of the original data is preserved.

The impact pressure test data collected at the pressure transducers, PT05 and 08,
are used to demonstrate the data filtering process. It is shown in the frequency domain in
Figs. 5.4 and 5.5 after the FFT process. The associated raw pressure data in the time

domain are shown in these figures as well.

14 T T

Tme Do 49t

121 -

¥

PSD

i sEnt
2 P I i Y
0.6+ RS o . i_ y ! SiHL
P 3 i

04} . ‘ ]

0.2b e —— g ]
QL&M‘M“‘ -----

1
0 50 Frquency [Hz) 100 150

Figure 5.4 Frequency Spectra for PT05
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Figure 5.5 Frequency Spectra for PT08
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The frequency spectra in Figs. 5.4 and 5.5 reveal that the PSD is mainly
distributed in low frequencies, especially at 0 Hz. The PSD is close to zero when
frequency is higher than 100Hz. The raw data is then processed with the cutoff frequency
of 100 Hz. The filtered results are shown in Figs. 5.6 and 5.7, along with those obtained
with other two cutoff frequencies, 20 and 50 Hz. The 100 Hz is shown to be the best
among these three cutoff frequencies. It removes sufficiently high frequency oscillations

while preserving the content of peak rigid body responses.

’ —~=Originsl Dsts |
Tirme Domain Plot ———20Hz cutoff

| | i v 5OHE cutof?
2+ | { L { | TTT100HzZ cutof
20 J | P L | | .
e IO . ' I l
el HnnEn I 20Hz | ;’
& 16§ | e | N Fig
§ Y | r! |50 Hz | ]
14 ! i ; : H i ] ili i
HUURHEREBHURUNRE 'J“m LU
125 ! | ! ! 2 ; { P I ! ! !
o R P ; dhl
10+ 100 Hz NHHRHHHL ! o -
8t \ I : -
6 - .
G Bl 65 63 " 'b'f: ) 0.5 Y3 67
Figure 5.6 Different Cutoff Frequencies for Pressure Data PT05
T ! K - Original Data
8 Time Dormain Plot 20Kz cuon
26l e 100HzZ_CLEOH
24 ‘ ‘})HZ
22 | i i -
R k[ ‘ Co . |
Bl IRNaR0Hz
Vil i i . . [ :
E i i i { .!‘ RERRR R I;\ H i I ’ 1 i i
184, : ! ; | i : ] | | ! !
14! C ‘5' P : e
12 | ERRAH IR R H R R U IR H RN
10 100 Hz N ; : i : i -
R ;
CE] 52 63 ; o>(a : 55 56 o7
tme [sec

Figure 5.7 Different Cutoff Frequencies for Pressure Data PT08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Though the filtered data matches well the raw pressure data as shown in Figs. 5.6
and 5.7, some discrepancies between them were found at the beginning of the pressure
profile. This can be observed in the zoomed-in figures in Figs. 5.8 and 5.9. A process
called demeaning is then applied to deal with this issue. The raw pressure data is first
deducted by its mean in the demeaning process. The processes of FFT and the low pass
filter are then applied to the demeaned data. The mean is added back to the filtered data
to complete the process. The filtered data with/without demeaning are compared in
Fig.5.8 for the pressure data at PTOS5 and in Fig.5.9 for PT08. These two figures

demonstrate the importance of the demeaning method in processing the pressure data.

o4
Tirme {sec)

Figure 5.8 The Filtered Data Comparisons with/without Demeaning for PT05
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Figure 5.9 The Filtered Data Comparisons with/without Demeaning for PT08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

In short, the steps of the pressure data processing procedure used in this research
are summarized below:
1. Demeaning: Subtracting the mean of the raw test data, and then adding back the
original mean to the filtered data.
2. FFT: Showing the frequency spectra of the demeaned data.
3. Cutoff frequency: Selecting the cutoff frequency based upon FFT results.
4. Low-pass filter: Applying the Butterworth low-pass filter with the selected cutoff
frequency based upon PSD data.
5. Filtering evaluation: Comparing the filtered data with the raw test data to make a
judgment whether accepting the filtered data.
The resulting pressure data at PT04/05 and PT08/09 are shown in Figs. 5.10 and
5.11, respectively. Compared with those in Figs. 5.2 and 5.3, the filtered data is smoother
and without any high frequency peaks. The slamming impact is clearly displayed in Fig
5.11. The time histories of the pressure profiles collected at all the pressure transducers in
about 0.8 seconds, after filtering, are shown in Fig. 5.12. A slamming impact pressure is

observed near the second quarter length of the boat from the bow.
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Figure 5.10 The Filtered Pressure Data for PT 04/05
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Figure 5.11 The Filtered Pressure Data for PT 08/09
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Figure 5.12 The Filtered Pressure Data at All Pressure Transducers

5.2 Linear Pressure Reconstruction

The number of the pressure transducers used in the full-scale test is often quite
limited. Therefore, the pressure data collected usually does not provide enough
information for the traditional curve-fitting method to produce a pressure distribution
with acceptable accuracy. Instead, the method proposed by Rosen [92, 93] is used in this
section to construct the pressure distribution. Subsection 5.2.1 introduces the layout of
the pressure transducers from which the pressure data is collected. Sub-section 5.2.2

provides details of Rosen’s method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

5.2.1 The Layout of the Pressure Transducers

The full-scale test for a craft was conducted in irregular waves to collect the time
histories of the hydrodynamic pressure at 42 different locations distributed over the hull
surface. The layout of the pressure transducers [64, 65, 91] is shown in Fig. 5.13. Based
upon the pressure characteristic along the hull surface, these 42 pressure transducers can
be classified into 3 groups. The first group includes 8 transducers, PT00 to 07 which are
in the bow zone. The second group includes 24 transducers, PTO8 to31 which cover most

of the impact area, called the impact zone. The final group includes 10 transducers, PT32

to41, which are in the stern zone
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Figure 5.13 Layout of the Pressure Transducers

The impact pressures collected at the transducers placed at the port and the
starboard sides in the bow zone are shown in Figs. 5.14 and 5.15. The pressure histories
collected at the transducers in this period of time indicate no sign of impact as they
remain fairly constant close to the air pressure. This is because the hull surface located at
the bow zone exposed to the air. Nevertheless, it can be observed that the pressures on the
starboard side are relatively higher than those on the port side. This non-symmetric

pressure distribution implies that the physical phenomena of the oblique wave coming
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from the starboard side to the port side.
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Figure 5.14 Filtered Pressure Data at the Port Side of the Bow Zone
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Figure 5.15 Filtered Pressure Data at the Starboard Side of the Bow Zone

The pressure histories of transducers placed in the impact zone of the port side
and of the starboard side are plotted in Figs. 5.16, and 5.17, respectively, for the period of
time indices from 1,500 to 4,000 and for duration of 0.125 seconds. The pressure
histories of the pair of the transducers placed on the same transverse section in the impact

zone are plotted in the same figure.
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Each transducer observed a pressure peak during the impact period of concern.
Furthermore, the pressure peak at the transducer closer to the keel appeared earlier than
that at the transducer closer to the chine. The rise and the fall of the pressure histories
shown in the figures clearly indicate that a wave impacts the boat hull surface. In addition,
the peak sequence implies that the wave propagates from the keel to the chine.

The pressures histories collected at the transducers placed in the stern zone are
shown in Fig. 5.18. It can be observed that the hydrodynamic pressure is close to uniform,
particularly at the beginning of the impact duration of concern. Most of the time, the stern

1s immersed in the water. Hence, it is assumed in this study that the pressure is symmetric

with respect to the keel in the stern zone.
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Figure 5.18 Filtered Pressure Data at the Stern Zone

5.2.2 Scheme of the Pressure Reconstruction

Hydrodynamic pressures captured by two pressure transducers, PT; and PT;
placed at location S; and S, along the same transverse section on the craft hull surface are
schematically illustrated in Fig.5.19. Rosen assumed in his pressure construction
procedure that the water particles move at a constant speed from the keel to the chine

along the same transverse section. The impact wave speed is perceived as the same as the
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water particle speed traveling from the keel to the chine along a transverse section.

Figure 5.19 Wave Traveling along a Transverse Section

In this study, the beginning of a wave profile at the location of a pressure
transducer is considered as the time of a minimum pressure right before the maximal
pressure peak. The wave impact starting time can be conveniently identified in the
pressure history of a transducer. For instance, the starting times for impact waves at the

pressure transducers PT09 and 08 are identified in Fig. 5.20 as T, and T,,, respectively.
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Figure 5.20 The Starting Times at PT09/08
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Thus, the pulse velocity along the transverse section, which is assumed to be

constant, can be determined through the following equation:

v =(8,-S)NT,,-T,) (5.
where §; and §, are the locations of the transducers along the same transverse section.
Note that S, > S, and T,, > T,, in this case. All fluid particles in this particular wave

impact will travel with the speed V" along the same transverse section. This assumption
helps to find the pressure, P(S, T), at any time and at any location along the transverse

direction where the corresponding pair of transducers has been placed.

5.2.3 Pressure Reconstruction along S Direction
Fig. 5.21 shows the pressure distribution, P(S, T), in the traveling distance S along

the transverse direction and the time space 7. The fluid particle that arives at S at time T

1s the one that starts the journey at the time, ]_:1 at the location of the Tranducer, S; and
arrived at the location of the second Transducer, S; at T, . The pressure P(S,T) is then

obtained by linear interpolation of the pressure data, P, (S /s 7-',) and P, (S T, ) Note that

the latter can be read from the pressure data histories recorded at the transducers.

Figure 5.21 Pressure Reconstruction Scheme along a Transverse Direction

The concept discussed above can be conveniently extended to the full-scale
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testing data collected in the impact zone. Fig. 5.22 shows a S-7 diagram of a typical
transverse section presented in Fig. 5.13. Two of the transducers are placed on the port

side and two on the starboard side. The goal here is to compute the pressures P(S 4> T),
P(S,,T) and P(S.,T) at points 4» S5, and S, which are physically aligned in the same
transverse direction with the locations, S, and §, . The inclined lines passing through S ,,
Szand S, in Fig. 5.22 indicate the trajectories of the fluid particles. These inclined lines
share the same slope in the (S , I ) plane, as the slope represents the traveling speed of the
fluid particles which is defined by Eq. 5.1. Note thatT,, and 7,, denote the starting times

of the impact wave recorded by the pressure transducers at S; and S>. They can be found

based upon the pressure histories collected at the transducers at S;and S,.

The inclined line can be used to find the pressure at any point in the (S T ) plane.
For example, the inclined line passes the point (S ol ) represents the trajectory of the
fluid particle that passes the pressure transducer S, at time T, and the pressure
transducer S, at timeT,,. The similarity between triangles helps to find the values of

times, 7, , i=1,2 as

T;,A =T+g;_‘?;(7;2_7:1)’ i=12 (5.2)
279

The pressure at point (S ,,7’) can then be obtained through linear interpolation based
upon the pressures recorded at the transducer S, at time T, and the transducer S, at

time T ,,at the pressure transducers; i.e.,

SA "'S/
Sz "S1

P(S,.T)=P (S, T, )+ [Ps..T, ) -P(S,.T, )] (5.3)

The assumption employed here is that the pressure is distributed linearly along each

inclined line. A minor modification is needed if either of 7’; 4 or 7_"2 4 goes beyond the

targeted range of time period.
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Figure 5.22 The Scheme to Find 7, and 7,

The starting time index and wave velocities of an impact wave along a given

transverse section in the impact zone are summarized in Table 5.1.

Table 5.1 The Starting Time Index and Wave Velocities at the Impact Zone

Side PT# | Coord. x | Coord. S | Starting Index Vel. (in/s)
PTI11 8 2068
Port 493.51
Impact PT10 27 2838
724 in
Zone PTI12 -8 2185
Starboard 388.15
PT13 =27 3164
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Table 5.1 The Starting Time Index and Wave Velocities in the Impact Zone (Cont.)

Side PT# | Coord.x | Coord. S | Starting Index Vel. (in/s)
PT15 9 2198
Port 522.70
PT14 28 2925
676 in
PTI16 -9 2236
Starboard 409.48
PT17 -28 3164
PT19 10 2042
Port 516.61
PT18 31 2855
620 in
PT20 -10 2022
Starboard 428.20
PT21 -31 2893
PT41 9 2144
Port 753.01
PT40 34 2808
577 in
PT42 -9 3037
Starboard 868.06
PT43 -34 3613
PT45 12 2444
Port 546.88
PT44 36 2956
535in
PT46 -12 2444
Starboard 1458.33
PT47 -36 2636
PT49 12 2743
Port 1207.73
PT48 37 3157
493 in
PT50 -12 2499
Starboard 1298.70
PT51 -37 2834

The pressure distribution along the transverse section in the impact zone at x=724

inches is shown in Fig. 5.23. The pressure data is reported at 30 locations along the

transverse section at time 0.94 seconds, including those of the transducers. The more

points that are introduced, the better the result will be.
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Figure 5.23 Pressure Reconstruction along x=724 inches at the Impact Zone

On the other hand, the pressure at time T at any point along a transverse section in
the bow and the stern zones will be computed by linearly interpolating the pressure data
collected at the transducers at the same time, T. This is because there is no wave impact
found in these two zones. The pressure distributions along a transverse section in the bow
zone and the stern zone are reported in Figs. 2.24 and 2.25, respectively. The pressures

around the stern zone are symmetric with respect to the keel.
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Figure 5.24 Pressure Reconstruction along x=777 inch at the Bow Zone
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Figure 5.25 Pressure Reconstruction along x=281 inch at the Stern zone
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5.2.4 Pressure Reconstruction on (S, x) Plane
Once the pressure history along each transverse section S is obtained based upon

the scheme discussed in Section 5.2.3, it can be extended to the entire (S, x) space on the
bottom surface of the boat. The pressure at (S, x) can be obtained by linearly
interpolating the pressures at the points (S,x,) and (S, x,)on the transverse sections as

shown in Fig. 5.26.

)

X,

Figure 5.26 Pressure Reconstruction Scheme between Two Adjacent Sections

If §,, <S§<S,,, the maximal § value, S, along the line connecting two points
(S,,,x,) and (S,,,x,) is determined as:

XI'—X[

S =S8, + S,, =S, (5.4

max

1 2

If §>8S_,,,the associated point is out of range. The pressure at (S, x) is set to be zero. If
S < S, Point S}, is the intersection between the transverse section on x, and an
extension line that passing through (S,,,x;) and (S, x), and the intersection point with

transverse section x, as:

X, —x

2[s-5,] (5.5)

X, —X

1
Sy, =8, +

Hence, the pressure at the point (S, x) can be determined linearly based upon the
pressure data found at (S,,,x;) and (S;,,x,).

The pressure distribution along each transverse section S is referred to as the line

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

distribution, while the complete pressure distribution on the plane (S, x) is referred to as
a 2D distribution.
The pressure distribution at 0.94 seconds on the bottom of the craft is shown in

Fig. 5.27. Its associated pressure contour plot is displayed in Fig. 5.28.
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Figure 5.27 2D Pressure Distribution on the Craft at 1=0.94s
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Figure 5.28 2D Pressure Contour at t=0.94s

It can be seen clearly that the maximum pressure occurs at the impact zone. The
pressure at the port side is higher than the pressure at the starboard side. The impact wave
starts from the port side and moves to the starboard side. The values of the pressure at the
bow and stern zones are much less than the ones at the impact zone. The pressure

distribution obtained here is similar to that presented in Allen [58].
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5.3 Pressure Distribution Mapped onto 3D Finite Element Model

The previous sections discussed the procedure to construct a pressure distribution
on the 2D plane in (S, x) based upon the pressure data read from the pressure transducers.
This pressure distribution needs to be mapped to the surface of the 3D finite element
model of the craft for dynamic analysis.

A wire-frame model of an artificial craft is created to demonstrate the pressure

mapping process. The craft hull and the shapes of sample transverse sections are shown
in Fig. 5.29.

0. N

8

7

4
TN

Figure 5.29 Hull Profile and Shapes of Sample Transverse Sections of the Craft

In the stern zone, the bottom line of the transverse section is set to be horizontal,
though the sideline is vertical. The bottom surface of the transverse section in the impact
zone is no longer flat, though the sideline also remains vertical. In the bow zone, both the
bottom and the sideline are no longer straight. The details of the transverse section

profiles in the stern and the impact zones are shown in Figs. 5.30 and 5.31.
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Figure 5.31 Transverse Section Shape at the Impact Zone

Given any nodal coordinate in (x, y, z) on the wetted surface in the finite element
model, simple geometric relation can be used to find the corresponding arc length, S
measured from the keel. The pressure values at each node on the wetted surface are thus
obtained and are ready to be used for a transient analysis in Chapter 6. As an example, the
pressure contour plot at r=0.94 seconds on the surface of the 3D finite element model is
shown in Fig. 5.32. The pressure contour plot on the bottom of the 3D finite element boat
model is shown in Fig. 5.33 (a). In comparison, the same pressure contour plotted on the

(S,x) plane is in Fig. 5.33(b).
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Figure 5.32 Pressure Contour Plot for the 3D Finite Element Model
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Figure 5.33 Comparison of Pressure Contour Plots on the 3D Model and the 2D Plane at

=0.94 seconds
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CHAPTER 6

DYNAMIC ANALYSIS OF A FLEXIBLE CRAFT IN WAVES

A boat model under the dynamic pressure load that was constructed in Chapter 5
is analyzed in this chapter. The analysis is done by employing the equations and
procedures derived in Chapters 2 and 3 for flexible body dynamics. In the current chapter,
methods to analyze a 3D flexible structure under large angle rotation are also investigated.

For a complex structure, the elastic deformation is usually described using the
finite element method. Hence, the finite element model of the craft is built first in section
6.1. Modal analysis is then conducted in MSC/ Nastran to obtain the mode shapes, mode
frequencies, and the modal element stress. The time history nodal force is calculated from
the pressure information at the nodes in the finite element model based upon the same
work done by these two loads in section 6.3. The local coordinate of each element is built
to make sure that the local z axis is along the thickness of the triangular element.
Subsequently, the nodal force is converted to the body-fixed coordinates of the finite
element model as the externally applied force. The numerical methods on dynamics of
the 3D flexible multi-body system are introduced in section 6.4. The first one is
Newmark's method, in which the transformation matrix is calculated using the
exponential matrix. The second one is the mixed order technique with additional Euler
parameters. The main idea of the mixed order technique is to introduce the additional
Euler parameters to the governing equation of motion without eliminating the angular
velocity. The transformation matrix is described using the Euler parameters. The integrals
in the equation of motion are calculated as constants for the triangular element in section
6.5. The rigid dynamic analysis of the craft is performed to predict the motion of the craft
in section 6.6. The flexible dynamic analysis of the craft is performed to determine the
stress distribution of the craft in section 6.7. The element stress is calculated based upon

the modal element stress using the least mean square error technique in section 6.8.
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6.1 Finite Element Model of the Craft

Generally, the finite element model can be generated two ways. In the first, it is
constructed based upon the geometry information of the structure from bottom to up. The
second involves the meshing of the geometry model generated from CAD software
directly. In order to describe the location and motion of any arbitrary point on the craft,
one must determine the coordinate system first. It has been shown in Chapter 2 that the
linear inertia vanishes if the origin of the body-fixed coordinate is located at the center of
gravity (CG). However, in this study, the origin is located at the center of the rear end
because the location of CG cannot be obtained easily at first due to the complex structure
of the craft. The ox axis is positive from the stern towards the bow of the craft. The oy
axis is positive from the starboard side towards the portside of the craft. The oz axis is
positive upwards and goes through the centre of the trailing edge. The xoz plane is
symmetric abouf the central plane of the craft. The half geometry model of a simple 3D
craft used in this study is shown in Fig. 6.1. The bottom of the boat is carefully laid out so
that it covers the transverse sections shown in Fig. 5.28. The interior partitions are added
to stiffen the boat structure. The body-fixed coordinate system and its origin are also

marked in the figure.

Figure 6.1 Half Geometry of the Craft

Only the half finite element model needs to be generated; the entire finite element
model can be easily obtained by mirroring the half model with respect to the xoz plane. In
summary, the entire structure is discretized into 4,653 nodes and 10,660 triangular shell
elements. The edge length of any triangular element is limited to be within 1 inch. The

finite element model, which is shown in Fig. 6.2, is classified as three different parts by
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setting different properties numbers: interior, upper, and bottom parts. The bottom part is
the potential wet surface where the impact may occur. The thickness of the upper and
bottom parts is 0.6 inch; however, it is 1.0 inch for the interior part. Hence, the total
weight of the aluminum boat is equal to 47,746.00lbs. In order to see the interior

structures, the wire-frame mesh model is shown in Fig. 6.3.

Figure 6.2 Finite Element Model for the Craft

Figure 6.3 Wire Frame of the Finite Element Model

The modal analysis is then performed using the commercial software, MSC/
Nastran. No constraints are imposed for modal analysis on the finite element craft model.
In this study, the first 60 elastic mode shapes of the craft are extracted. Eleven of them
are displayed in Fig. 6.4. Note that the first two are the global bending modes and the rest
are dominated by local vibration modes. The collection of the mode shapes forms the

modal matrix ¥ each column of which corresponds to a single mode shape.
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(a) 7" Mode at 23.05Hz

(b) 8™ Mode at 23.79Hz

() 25™ Mode at 44.92Hz

(d) 26™ Mode at 45.11Hz
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(e) 31th Mode at47.51Hz

o

(f) 40™ Mode at 54.39Hz

(g) 53™ Mode at 59.15Hz

e

(h) 57™ Mode at 61.43Hz
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(i) 58" Mode at 62.41Hz

(j) 60™ Mode at 62.90Hz
Figure 6.4 Mode Shapes and the Corresponding Frequencies

In the finite element method, the nodal elastic displacement can be expressed in
terms of a linear combination of the mode shapes using the mode superposition method.
The coefficients of each mode shape are called the modal coordinates, which implies the
contribution of each mode shape to the final elastic displacement. The more mode shapes
are used, the more accurate the nodal elastic displacement that will be obtained. However,
accuracy is achieved at the cost of efficiency. Generally, the mode truncation method is
used to extract the mode shapes because it is unreasonable to get all the mode shapes. The
main idea of the mode truncation method is that the desired modes are those at the low
frequencies because they can be the most dominant modes at which the structure will

vibrate; the higher frequency modes have a negligible effect on the vibration.
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6.2 Properties of a Triangular Element

The finite element craft model is made of iso-parametric constant strain triangular
(CST) elements. Computing the mass moment of inertia and the surface pressure for a
given triangular element is the concern of this section. All of these quantities are needed
to form the equation of motion for the craft. In Section 6.2.1 the element coordinate
system as well as the orientation of the element are set up. Once the orientation of the
triangular element is known, the inertial integrals required for the mass matrix of a
triangular element can then be computed. This process is introduced in Section 6.2.2. It is
followed by Section 6.2.3 which presents a procedure to convert the pressure distribution

on a given triangular element into nodal forces.

6.2.1 Orientation of a Triangular Element
A typical triangular element is shown in Fig. 6.5. The element is connected with

node 1, 2 and 3 which are placed in the body-fixed coordinate system (x, y,z) with the

coordinate (x,,y,,z,), i=1,2 and 3.

3(x3, y3, z3)

\ -
» =
€,

., ,/’/ 2 (x2,¥2, 22)
e3

Figure 6.5 Element Coordinate

The element coordinate system, x'-y'—z'[85], is defined such that x’ follows the edge
connecting node | to 2 and z'is normal to the face of the triangle. Set the position vector

of anode be 7, i=1,2 and 3. The unit vector &, along the x' axis can be determined as:

e =T 7T ), -7) | (6.12)
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In a vector, it can be expressed as
(xz X Yo 2 _21)

¢, €.)=
’ \/(xz_x1)2+(J’z‘Y1)2+(zz_21)2

The z' axis is the direction of &, which is obtained as the vector product of &, and the

T
el _(el,x

(6.1b)

vector connecting node 1 to 3, i.e., ; — 7, . The detail is given in the following equation,

&, =¢,x(, -7 )|le, x (7 -#)] (6.2a)

where the vector product & x (7, —7 ) can be put into a matrix form as

’
€3 0 —€: €y || XX
v ) _ .
€; =963, r=| €, 0 —€x V3V (6.2b)
f
€. €,  €s 0 23—z

Finally, based upon the right hand rule, one can obtain the unit vector &, along the ' axis

as the cross-product of unit vectors €; and €,

A B4 B~ B 4
€, =¢€;xe =ege, (6.3a)
It can be put in a vector form as
’ ’ ' 4
€rx 0 —€: €,y |[Cx
r_ ' _ ' ! '
€, = eZ.y =l €, 0 e3,x e].y (633)
r r ! ’
€, —€;, €, 0 €

Consequently, one has the transformation matrix 4 as
A=[e, & &) (6.4)
The transformation matrix helps to map the vector or the matrix derived based upon the

element coordinate system to the body fixed-coordinate system as
fo=4f, (6.52)
I,=AI'A (6.5b)
where f, and I are in the element coordinate system, while f,and /, are in the body-
fixed coordinate system of the craft. The summations of f,and I, over the total number
of the elements will give the total force vector f and the mass moment of inertia / of the

craft defined with respect to the body-fixed coordinate system of the craft.
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6.2.2 Inertia Integrals for a Triangular Element

For the CST triangular element, the shape functions cannot only be used to
approximate the elastic displacement but also the position vector, the pressure
distribution and the stress distribution. The elastic deformation at any arbitrary point

within the CST element in a 3D space can be defined as follows:

= Ng, (6.6)

S o3

oS3 o

[ OO

D O Wy

S ™Y ©

AR
N

where (u,,v,,w,), (u,,v,, w,) and (u 35 Vs w3) are the elastic displacement components
at the vertices of the triangle element of concern in 3D space.
&E 0 0n 00 ¢ 0 0

E O 0 n 0 0 & O 5[513 nl, 4’13]istheshapeﬁmctionmatrix, in
0 & 0 0n 0 0 ¢

N=|0
0
which [;is a 3x 3identity matrix, &,  and ¢ are area coordinates. The definitions of

the area coordinates are given in Fig. 6.6. g, is the nodal elastic displacement.

3(x3, y3, 23)

Yy
_4

ST A, A4, 4
4, Calculated using

n= l Heron Formula
A

1x, 1,24 4’:713.
z S+n+d=1

2(x2, ¥2, 22)

Figure 6.6 Area Coordinate
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The area coordinates, £, n and ¢ defined over a triangular element to provide a

convenient means to compute area integrals which are often required for the flexible
body dynamic analysis. The general formula for a function of area coordinates is given
below

alb!c!

a b c —
L'f e dA_(a+b+c+2)!2A (&7)

where 4 is the area of the triangular element in 3D space. It can be calculated using

Heron’s formula. In detail, one has

J, =], maa=[ caa=3 (68
[, g = [ gaa = [ ngaa == (6.8b)

Generally, the nodal elastic displacement ¢, at the vertex is approximated in

terms of the linear combinations of the mode shapes. It is defined as follows:
Nm
qe - Z Wk,eak (6'9)
k=1

where N, is the number of mode shapes selected for modal superposition. In this study,

N, is set to be 16. y, ,is the K" mode shape evaluated at the corresponding element. a,is

the amplitude of the mode shape, which is often called the modal coordinate.

The mode shape associated with the particular element has 9 components, three for each
node of a triangular element, as

Vi

2
Yie
Wk,e = : .

(WVie |
Consequently, the elastic displacement vector in each triangular element, described in Eq.

6.6, 1s approximated linearly in terms of the nodal displacements as

Nm

e=Nq, = (Ny,. (6.10)

k=1
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It should be noted that there is some inconsistency in displacement interpolation between
eigenvalue analysis and modal analysis. The interpolation functions used for eigenvalue
analysis in this study are linear as defined above. However, the interpolation functions
used for modal analysis are high order polynomials used for shell elements.

Here the integration of elastic displacement is taken as an example to show how
to calculate the integrals as the constants in the equation of motion.

The definition of integral of elastic displacement is as follows:
I, =Iypedv (6.11)

For any arbitrary element, according to Eq. 6.10, one has the elastic displacement

Nm
e'=Ng,=Ny,a=) a,-Ny,,.

k=1

In detail, one has

]
Vie
. W’;’ N P20 <0 B 1
etzzak'[gh nl; I, b =Zak' §Wf,e+’7w:,e+§'//]f,e EZak- v,
k=1 . k=1 3 6 9 k=1
" SWie TNV e 6V ¢, V.
k.e

With the help of results in Eq. 6.8, one has
Vie VWie Vi |

i & pAt | 5 8 i*
J‘Q.pedv=2ak~ 3 Vie TWie T Wi Ezak Iy,

6.12
Wie *Wie + Ve (6.12)

where 4, is the area of the triangle element, ¢, is the thickness of the triangle element

along the local z direction of the element coordinate.

Summing up along the entire domain:

NE Nm Nm NE . Nm
L, = L pedv=3% a, J;,_ PNy, dv= ZakZL pe'dv=>ald,,  (6.13)
! k=1 i=] k=]

i=] k=]

where NE is the number of total elements, k=1,2, ..., Nm. I vy 182 3X Nm matrix, It

should be noted that 7, is a constant matrix, so one can calculate it beforehand to reduce

the computational expense.
The integrations of the rest of the terms in the mass moment of inertia for the

triangular element are documented in detail in Appendix 3.
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6.2.3 Pressure Load to Equivalent Nodal Force

The surface pressure obtained in Chapter 5 is reported as a vector of point
pressures, each of which is applied at a node of the finite element craft model. This point
pressures are now converted into point loads including their magnitudes and directions. It
is assumed that the pressure is linearly distributed over and normal to the surface of the
triangular element. Thus, the pressure distribution over a typical element can be

expressed in terms of area coordinates as
p=(&,+mp, + ;) (6.14)
where p,, p,and p,are the nodal pressures applied at the vertices of triangular element.

The magnitude of the total force applied to the element can be conveniently obtained

through area integration as

A
fe=J.QE(@1+77P2+§P3yA:?e(p1+p2+p3) (6.15)

where A, is the area of the element. The specific nodal forces, on the other hand, are
derived in such a way that the work done by these nodal forces is the same as that of the
distributed pressure over the element of concern. Let the magnitudes of the nodal forces

at the vertices be assigned as f|', f, and f, and the corresponding displacements that
are normal to the element surface be w;, w; and w; These displacements point at the
direction of €; of the element coordinate system. The vertical displacement distribution
over the element is again assumed to be linear. Therefore:

W' =&, + 1w} + (W} (6.16)
The equivalence between the work done by the pressure and that by the nodal force

yields the following equation

Iﬂz pw'dd = fgg (&, +7p, +ps KW + 1w, +Gw; A
Ae

A , A, ' ,
=1£ (2p1+p2+173)w1+E(p1+2P2+P3)W2+'1"2'(pl+p2+2173)w3 (6.17)

= fiw + fiw; + fiw;

It can be calculated from Eq. 6.17 that magnitude of the equivalent nodal forces is

! Ae
f,=-13(2p,+p2+p3) (6.18a)
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, A4,
1 =§(p1 +2p, +p;) (6.18b)
, A4,
fi=3 (p, +p,+2p,) (6.18¢)

As for the direction of the nodal forces, they are opposite to the €, , which is normal to the

surface of the triangular element. Therefore, the nodal force vector can be derived as

fl=—1% (6.19a)
for i=1, 2 and 3. The corresponding vector form is given by
Jix €3 x
fi=11 r=-fes, (6.19b)
f':z e.’i,z

These nodal forces can be transformed into the body-fixed coordinate system,
with the aid of Eq. 6.5a, and summed up node-by-node to obtain the total force and
moment applied at any point on the craft. The results of such an effort are summarized
and presented in Figs. 6.7-6.9 in terms of the body-fixed coordinate system, x, y, z axis.
These figures reveal that the pressure induced force along the z direction and the moment
with respect to the y axis are the dominant resultant force and moment.

The force along the z axis of the local coordinate system and the sum of the total node
pressures are shown in Fig. 6.10. It can be observed that both the force and the pressure

profiles share the same trend.
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Figure 6.7 Force and Moment along the x axis of Body-fixed Coordinate
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Figure 6.8 Force and Moment along the y axis of Body-fixed Coordinate
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Figure 6.10 Force along the z axis and Pressure in Body-fixed Coordinate
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The force contours along x, y, and z axis at #=0.94s are shown in Figs. 6.11~13. It can
also be observed that the force along z axis is dominant, and the maximum force is

located at the stern zone.
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Figure 6.11 Force Contour along the x axis at #=0.94s
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Figure 6.13 Force Contour along the z axis at =0.94s
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6.3 Numerical Solution for a 3D Flexible Multi-body System
The derivation of the governing equation of motion for a single flexible system
expressed in terms of the modal coordinates has been presented in detail in Chapter 2. It
is in the form of a second order ODE as follows:
Mg =f (6.20)
where the unknowns are §” = (R o' ii) and the mass moment of inertia and the force
vector are given as

M g MRS(a’A) MRa(A)
M= M&R(a’A) Mea(a) M&,(a,A)

i
MaR(A) Maﬁ(a) Maa .y
, § =4’ and
ml , Al +1,) Al i
= “A(]w "”Ia) _(177 + 1 + 1 “*‘Iaa) Loy + Tony
A‘[N‘P I?N‘P +IZN‘~P I\yTNTN\y
g:laa,0' 4)
f= ge(a,d,w’,A)
ga(a,d,w’,A)

Vf, —Aa'a'(I, +1,)-246'1, + F
= U +INA 1 p+ @' (I + T + 1o + 1 )0 + 215, + 1) @'+ T'
W K¥Ya+(AI \¥) £,/ p+(Lrgn ¥ + Ly V) @' - 2971 o'+ ¥TW'

The rigid body equation is a special case of the above, where §” = (R a')’), M and fare

. . m - Al
simplified as M =[ ; I ] and

e { Vf, ~Ao'a'l. + F } ={ Vf, — Ao'®'l, + AF' }

LAf, p+@T .0 +T LA f, p+&.0 +T
where F', T’ are the time histories of the force and moment induced by the surface
pressure in term of the body-fixed coordinate system. The detailed derivations of F’ and
T’ can be found in Section 6.2.3.

One of the difficulties in solving Eq. 6.20 is to update the transformation matrix 4,
which is a function of the angular displacements. The set of the angular displacements is
not a vector and cannot be obtained by directly integrating the angular velocities. Two

alternatives are proposed here to overcome such a difficulty: the matrix exponential
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method and the Euler parameter method. Both methods are free of singularity in forming
A from angular displacements and vice versa. The transformation matrix can be expressed
as a matrix exponential of the rotation axis, ¥ as
A=exp(P) (6.21)

Set the unit vector of ¥ as u. The rotation angle, 7, is then the magnitude of ¥ . Thus,
one has

Y= u
where #= q’/ ”'P" . Notice that the time derivative of Eq. 6.21 yields

A=A
It provides a simple relation to compute the angular velocity

w =Y
The transformation matrix can also expressed in terms of the four Euler parameters,

p=( ¢ e e)as

4=E(p)G" (p) (6.22)
where E=[-e, —e,+¢]and G=[-e, —e,—¢]in which e, =cos y/2 and
el = (e, e, e3)= usiny/2.
The four parameters in p are not independent and have to satisfy the following conditions,
pp=1 (6.23)
and their time derivatives
pp=0 (6.24)
The angular velocity in terms of the body-fixed coordinate system is given as:
o' =2Gp (6.25)
Either Eq. 6.21 or Eq. 6.22 can be used to solve the dynamic equations, Eq. 6.20.
It should be noted that use of the Euler parameters, Eq. 6.22, for dynamic analysis will
create new constraints on p and p, but use of exponential matrix will not. These two
numerical approaches will be discussed separately in the following two sub-sections for

solving dynamic equations of a body undergoing large rotation.
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6.3.1 Matrix Exponential-based Newmark Method
Newmark's method was developed by Nathan M. Newmark [95] in 1959. It is an
explicit, unconditional stable method widely used to solve the ODEs in structure
dynamics. The Newmark method [40, 96] approximated the velocity and displacement as
i, =, +(1-y)Atit, | + yAtii, (6.26)
u,=u, +Am,_ +(1/2-B)A*a,  + pArti, (6.27)
where At is the time step, ¥ and f are free parameters. The latter two are limited by
0<y,B<1 .However, they are typically setasy = 7/ 2 and 8 =1/4 to achieve the
averaged constant acceleration formulation. It also leads to maximum accuracy and
unconditional stability. Hence, Eqs. 6.26 and 6.27 become:
w,=u, , +1/2Ai,_, +ii, ) (6.28)

u,=u,, +At,  +1/4N (i, , +ii, ) (6.29)

The Newmark method can be conveniently used to solve Eq. 6.20, particularly in
the case when the exponential matrix is used to define the transformation matrix and the
angular velocity. The update of the transformation matrix in a time-marching scheme is

done explicitly as:

AY =N, +1/2A &), (6.30)
4, =4, exp(a®) 6.31)

while the updates of the angular velocity and the velocity are done implicitly as:
w, =0, +1/2Me,_, + o)) (6.32)
V,=V,,+1/2A(R,_, +R,) (6.33)

The modal coordinate and the translational displacement can be expressed as:

a,=a, +Ma,_, +1/2(At) (G, , +id,) (6.34)
R, =R, +AR,_, +1/2(A) (R, , + R,) (6.35)

The above relations can be substituted into Egs. 6.20 to form a set of nonlinear equations

in terms of the unknowns @/, @, and R, . Once solved, Eqs. 6.31~6.35 can be used to

update 4,, ., V, a, andR, .
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6.3.2 Euler Parameters-based Method
The angular acceleration and the angular velocity are vectors, though the angular
displacement is not. Therefore, the angular velocity can be obtained by directly
integrating the angular acceleration, while the angular displacement cannot be obtained
by integrating the angular velocity. The latter is the difficulty of dynamic analysis of a
body undergoing large rotation.
In this study, a new relation between the time derivative of the Euler parameters,
p and the angular velocity is derived. The velocity constraint p” p =0 is satisfied
automatically in this new relation without introducing additional constraint as far as the
concern of rotation. Thus, the procedure to solve the equation of motion follows.
The relation between the angular velocity and the Euler parameters is given by [87]
p=12G"o' (6.36)
Its solution, p , has to satisfy the condition, p” p = 0.The proof is as follows:
Substituting Eq. 6.36 in the velocity constraint term,
P p=p" 112G’ =1/2p"G" ' (6.37)

Based upon the definition p and G, one has:

-e, -—e, —e
T ~T _ € ~€ € | _
P'G =(e, ¢ e e e, e -—e =0 0 0) (6.38)

-e, e, ¢
Substituting Eq. 6.38 into Eq. 6.37:

P p=0.
The equation of motion of concern, Eq. 6.20, is a second order ODE. It can be

reformulated as a set of first order ODEs by introducing ¢ as unknown. That is, setting

v = § or more specifically v" =(v, v, v,)=(R & d)orR=v,, a=v, and

v, =o' The values of v, and v, can be integrated to obtain the relative displacement
fields, R and a. However, the value of v_can’t be directly integrated to obtain the angular
displacement, as the angular displacement is not a vector. Instead, the relation v, = @' is

replaced by Eq. 6.36 to solve for p and then the transformation matrix A(p).
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The result of this process is a set of the first order ODE’s in terms of v, or more precisely
R , @ and @', and R, a and p. Thus, Eq.6.20 becomes a set of first order ODE’s,
M7f
- i (6.39)
I/ZGTw’-p(pTGTw')/(Zpr) '
v

a

[ ST “TE - (PR

The above equation can be solved by employing the first order ODE solver, such as

ode23s in Matlab. However, in the function call, the solution p needs to be updated in

order to satisfy the condition p” p = 1. This can be done through an iteration process set
up to improve the value of p by minimizing the error deviated from the condition p’ p =1,
min ApT Ap
Ap (6.40)
subjectto: p p+2pTAp-1=0

The necessary condition of the above minimization problem yields

Ap =—ip (6.41)
where the Lagrange multiplier A can be determined by the constraint as
O0=p"p+2p"Ap-1=p"p-22p" p-1I (6.42)
Solving the above equation, one has
A=(p"p-1)/(2p7 p) (6.43)
Substituting Eq. 6. 43 into Eq. 6.41, one has:
Ap = ‘(PTP'I)/(ZPTP)'P (6.44)

In other words, the value of p obtained after integration has to be adjusted by Eq. 6.54,

until the error,

pTp- 1} is small. The p update algorithm can then be set up as:

1. Start the correction procedure with p,which is the result of Eq.6.39.
2. Atiteration i, the change in p, Ap, is given by Eq. 6.44.
3. The updated solution is given by p,,, = p; + Ap,.

4. The process is continued until (p,T+ Pis - I)S £.
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6.4 Results of Rigid Body Dynamic Analysis of the Craft

The rigid analysis results of the numerical methods discussed in Section 6.3 will
be summarized in this section. These methods include the matrix exponential based
Newmark's method and Euler parameters based method. Newmark's method is taken as a
benchmark to verify the proposed Euler parameters based method. For each method, the
location of the origin of the body-fixed coordinate is set to be coincided with the origin of
the global coordinate system. It is located at the center of the tail end. Two time intervals,
At =5x107",and At =2.5x107 are selected to request the result report for each
method in rigid dynamic analysis. Therefore, there are total four different numerical
results. These four numerical results are compared with each other on the basis of
computational accuracy and efficiency.

The boat rests upright initially. The starting and the ending time of the simulation
are set to be 0.8 and 1.6 seconds, respectively, based upon the test data. The sample
frequency of the test data is 20,000Hz, i.e., the test data is recorded at every 5x /0~
second. The external forces and moment applied on the craft has been shown in Section

6.2.2. The boat moves forward along x direction with 30 knots (607.61 inch/s) speed.
Therefore, R ={607.61 0 0} . The angular velocity is initially set to be zero, i.e.,
@' =0. The initial value of Euler parametersis p={1 0 0 0} .

The translational position, velocity and their acceleration of the origin of local

coordinate obtained from four different cases are shown in Figs. 6.14~6.16.
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Figure 6.16 Position, Velocity and Acceleration of the Origin along the z axis

It can be observed from Figs. 6.14~16 that the position along x direction is almost linear
because the initial velocity is very big and the opposite acceleration increased to zero
gradually. The displacement along y is very small because the small acceleration along y

direction. The position along z increased quarterly.
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The angular velocity and angular acceleration of the origin of local coordinate

obtained from four different cases are shown in Figs. 6.17~6.19.
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Figure 6.19 Angular Velocity and Acceleration of the Origin along z

It can be observed from Figs. 6.17~6.19 that the rotation motion of the craft is
very small compared to the translate motion. The roll along the x axis is negative, which
means the parts in positive y go down, while the parts in negative y go up. The pitch
along the y axis is positive, which means the parts before the center of gravity go up and
the parts after center of gravity go down. This can also be seen from the positive z of
origin of the local coordinate. The yaw along the z axis is negative, which means that the
craft moves obliquely to the right. This can also be seen from the positive y position of
origin in Fig. 6.15. From the quantities of roll, pitch and yaw, it can be seen that the pitch
is the dominant rotational motion.

From the above three figures, it can be seen that the amplitude of the angular
acceleration along the y axis is the largest. In order to check the differences of these four
cases clearly, the zoomed figures for the angular acceleration along y axis is shown in Fig.
6.20. It can be found that these four cases are identical with each other from the zoomed

figure.
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—— Euler Method: Ar=5x10"° - - Euler Method: At =2.5x107°
-------- Newmark Method: A7 = 5x 107" -- - Newmark Method: Ar=2.5x10"°

Figure 6.20 Zoomed Angular Acceleration of the Origin along y

The time history position of the maximum vertical force node (85.6, 0, 0) is also
shown in Fig. 6.21. The time history position of the node where the maximum force
along z is located resembles the motion of the origin of the local coordinate system
because these two nodes are both in the same side of the center of gravity. The difference
is the magnitude of displacement along x, y and z, which is caused by the effect of the

rotational motion.
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Figure 6.21 Position of the Maximum Force Point
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From the translational and rotational results at the origin of the local coordinate
system and the maximum force point, it can be seen that the Euler parameter based
method and the Newmark method have identical results no matter what the time interval
is. This proves that both the Euler parameter based method and the Newmark method are
correct.

Although the motion of the craft can be identified from the analysis of the time
history of the position of the origin, it can be observed directly and clearly from the
animate motion of the craft. The snap shots of configurations of the rigid craft at four
different time instants during motion are generated and shown in Fig. 6.22. The same
conclusion can be drawn regarding the motion of the craft as in the results analysis in
Figs. 6.14~6.19. From (a) to (b), the craft moves forward and obliquely to the right. From
(b) to (¢), the front part at the bow zone goes down, while the rear end in the stern zone

goes up. From (c) to (d), the front part of craft still goes down.

(a) (b)
!
(c) D

_

L
-

(a) time=0.81505s (b) time=1.1285s (c) time=1.2564s (d) time=1.1285s

Figure 6.22 Configurations of the Rigid Craft at Different Time
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6.5 Results of Flexible Dynamic Analysis of the Craft
The first order equation of motion (Eq. 6.39) for the flexible craft obtained by

introducing the Euler parameters can be repeated:

7 o
o| |MS
_:<‘}>=
q 2 v ¢
. |4
a
1
: ~G'o
kp, \2 )

where V and R are the velocity and displacement of translation motion of origin of body-
fixed coordinate described in the global coordinate, @'is the angular velocity described

in the body-fixed coordinate, @ and v are the modal coordinate and its velocity term,

pP= {eo € €, ¢ }T = {eo e}T is Euler parameters, and G= [—e € “‘E]-

ml, —A(l. +1,) Al
M: —(1;7 +I;r'€ +IE?+IEE) I?N\P +15N\y
sym. Loyt ag

Vf, - Ad'®'(I, +1,)-24&'I, +F
f=3 Un+I)A 1 p+ & (i + Lp + Lo + I Joo' + 215, + 1) @' + T
~VTKYa+(AI,\¥) £,/ p+Lgy¥ + Ly ¥) 0 - 2971 o'+ VW'

Compared to the rigid craft, the mass matrix and generalized force term are no
more constants regarding the flexible craft. The coefficients in the equation of motion are
time-dependent variables due to the elastic deformation. Using the method introduced in
subsection 6.2.2, these time-variants need to be calculated only once beforehand.

In the flexible dynamics analysis, four cases are studied. In the first two cases, the
problem is solved using the matrix exponential based Newmark method. The time
interval for the first case is At = 5x /0™, while Az = 2.5x 107 for the second case. In the
last two cases, the Euler parameters based method is used. The time interval for the third
and fourth cases are At = 5x /0 and At = 2.5x 107, respectively. The initial value of
the modal coordinate @ and its first order derivation a are both zeros, and other initial

values are the same as in the rigid craft analysis.
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6.5 .1 Results Comparison between Different Methods

The rigid results are set as a benchmark for the flexible dynamic analysis. The
results for position and acceleration of the translation motion, angular velocity and
acceleration of rotation motion at the origin of local coordinate are identical between the
rigid and flexible cases. Here, only the comparison results of the position of the
maximum force node between rigid body and flexible body are shown.
The position of maximum force node for the matrix exponential based Newmark Method

at two different time intervals is shown in Fig. 6.23.
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Figure 6.23 Position of the Maximum Force Point for Newmark Method

The differences cannot be found in the whole time domain. However, the differences can
be observed in the zoomed figures along y and z. They are shown in Figs. 6.24 and 6.25.
It implies that the results of the matrix exponential based upon Newmark Method are

dependent on the time step size.
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The flexible results for the Euler parameters based method with different time intervals
are identical. It can be seen from Figs. 6.26 and 6.27 for the zoomed position figures
along y and z. The identical results show that the Euler parameter based method is not

sensitive to the time step size.
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Figure 6.26 Zoomed Position of the Maximum Force Point along y for Euler Method
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The flexible results for the Euler parameters based method with time intervals
At = 2.5x 107 are compared with the matrix exponential based Newmark method with

time intervals Az = 5x /0™ . The compared results at the origin and maximum force node

are shown in Figs. 6.28 ~6.34.

600 Y T T T T T T

400} : : -

Position

T

2590 § . -
8

§580 . o . m

T

1 { ; L I 1 1
578 0.9 1 1.1 1.2 13 1.4 1.5 1.6

o

N
S o«
1
1

Accelergtion
o
Q
T
it

" 1 1 { 1 1 J i
.8 0.9 1 11 1.2 13 1.4 1.5 1.6
Time(S)

(22}
O

Figure 6.28 Position, Velocity and Acceleration Comparisons of the Origin along the x
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Figure 6.34 Position of the Maximum Force Point for Euler Method

The zoomed position figures along y and z are shown in Figs. 6.35 and 6.36. The
identical results between the Euler parameter based method with large time step and the
matrix exponential based Newmark method with small time step show that the Euler

parameter based method is not sensitive to the time step size.
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Figure 6.35 Zoomed Position of the Maximum Force Point along y for Euler Method
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The time history of the modal coordinate is shown in Fig. 6.37. It can be seen that

the second mode in Fig. 6.3 (b) is the dominant mode.
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The deformation of the craft at different times is shown in Fig. 6.38. It can be seen
that the elastic deformation along z is dominant as the maximum force is along z. The

deformation along y is bent towards the left side.

Original Deformed

Figure 6.38 Deformations of the Craft at Different Time

6.5.2 Computational Time Comparison for Different Methods
The CPU time is obtained to check the efficiency of the methods used for the
rigid craft and the flexible one. The average value of three different runs is taken as the

CPU time for each method, which is shown in Table 6.1.

Table 6.1 Time Comparison for the Rigid and Flexible Craft Dynamics

System Rigid Flexible
Method Euler Newmark Euler Newmark
At 2.5¢7 | 5¢7 | 257 | 5e7 2.5¢7 5¢° | 2580 | 5e7
1% 6.37s | 71.40s | 8.92s | 269.06s | 674.79s 71.19s
2nd 6.32s | 70.42s | 9.13s | 288.74s | 685.76s 70.69s
31 6.26s | 71.85s | 8.27s | 272.79s | 694.67s 86,0365 70.65s 22,4385
Average | 6.32 | 71.22s | 8.77s | 276.86s | 685.07s 70.86s

Although the Euler parameters based method consumes significantly more time
than the matrix exponential based Newmark method for the flexible dynamics, higher

accuracy can be obtained even with a large time step.
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6.6 Results of Dynamic Stresses

Once the time history of the elastic displacement is obtained, one can then
proceed to compute the dynamic stresses. This can be done using the mode shapes output
from the eigenvalue analysis, ¥, and the modal coordinates a from the solution of the
ODE solver. The Von Mises stresses are the quantities to be reported. NASTRAN reports

the stresses, o

x,i?

o, the shear stress, Tois and the Von Mises stress, o, at the lower

and upper surface of each element for the ith mode shape. The modal superposition can

be applied here to find the total stresses, o, o, and 7, as the results of dynamic results

Nm

o, =Y.a0,, (6.452)
i=]
Nm

c,=Y a0, (6.45b)
i=1
Nm

T, =Y a7, (6.45¢)
i=1

where a,, modal coordinate, can be obtained from the solutions of ODEs.
Once the normal stresses, o _, o, and the shear stress, r,, are known at the center

of each triangular element, one can then use the following equation to find the von Mises

stress at the element center [97],

_ 2 2 2
o, = \/ax +o0,-0.0, +32'xy (6.46)

The von Mises stresses at the centers of all elements can be collected and used to find the
von Mises stresses at all nodes. The latter can be used to find the stress distribution over
the entire finite element model. The process [85] starts with an assumption that the von

Mises stress is distributed linearly over the triangular element. Thus, one has
0, =0, +n0,,+¢0,,)=ns, (647)
where n’ = [§ n ¢ ] is the shape function vector, 6, = [0'“l O,, O, ]T is the nodal

Von Mises stress at the vertex of the triangular element is unknown.

The values of the nodal Von Mises stresses, &, can be found by minimizing the

error between the constant and the linear stress distribution oven each triangular element.

The minimization problem is defined as:
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m“kazflh@¢~qﬂw (6.48)

where NE is the number of elements. With the aid of the interpolation given in Eq. 6.53,

the integration in Eq. 6.48 can be carried out to obtain

%J.Q (o-\",c -o, )2dA = —;—G:Weov +G€Sz (649)

e

A
where the vector, s = —3—(1 1 1) and the square matrix W, are given by

A . :
W, = anTndA = —1—5 . The summation over the elements gives the total error.

_— e N
— N
N =

Therefore, the necessary condition of the above minimization problem Eq. 6.49 yields:

Y _we-R=0 (6.50)
oo

The von Mises stress o at all vertex nodes in the finite element model can be obtained by
solving the above equations as:

c=W7'R (6.51)
Through the above process, the stress history for the maximum stress point, which is the

same as the maximum force point, is shown in Fig. 6.39.
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Figure 6.39 Time History of von Mises Stress at Maximum Stress Point
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The contour stress distribution along the craft at two time instants is shown here.
The first one is maximum pressure time instant, 7=0.94s; the other is time instant,
=1.3975s when the maximum contour stress occurred. It should be noted that the contour
stress is calculated from the von Mises stress at each node.

The contour stress of the craft and internal structure are shown in Figs. 6.40 and

6.41. It can be seen that the stress concentrated on the rear end.
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Figure 6.40 Stress Contour at =0.94s
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Figure 6.41 Stress Contour of Internal Structure at /=0.94s
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The maximum contour stress of the craft is shown in Fig. 6.42. The area is also the

maximum force location. The contour stress distribution for the internal structure is

shown in Fig. 6.43.
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Figure 6.42 Maximum Stress Contour at 7=1.3975s
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary

This dissertation focuses on the computational dynamics of the flexible multi-
body systems and particularly on the accuracy and efficiency issues.

A planar slider-crank mechanism with a flexible connecting rod is taken as a
vehicle to show how to calculate the inertia integrals as time-invariant beforehand and
solve the governing equation of motion using the proposed projection method with
displacement and velocity constraints correction.

The integrals that represent the dynamic coupling between the rigid motion and
elastic deformation are calculated as constants in advance by expressing in the explicit
format of the modal coordinate. The advantages of this approach are as follows:

1. Reduction in the computational time because the integrals are only needed to be
calculated beforehand regardless of the number of times the ODE solver is called.

2. Reduction of the data storage space requirements while avoiding the large
dimension matrix multiplication because the integration is done within each
element separately rather than in the whole concerned domain.

3. Fewer terms need to be calculated because the time derivation integration terms
do not need to be calculated.

4. The equation of motion is no longer related to the finite element code. The commercial

finite element code only served as the pre-processor to provide the nodes and elements

information and the mode shapes.

The coordinate partitioning method is a widely used numerical method to solve
DAE:s due to its straightforward characteristic. However, the projection method with
constraints correction is proposed to solve the DAEs, in which all the generalized system
coordinates are included in the DAEs. The linear approximation of the displacement

constraints violation is proposed to find the displacement correction Ag explicitly.

Otherwise, it is needed to solve the nonlinear equations to find the displacement
correction. Although the number of system variables is increased, the projection method

has its own advantages compared to the coordinate partitioning method:
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1. It does not need to identify independent and dependent coordinates for the
projection method. One reason is that it is very difficult to select independent
coordinates in practice. The other reason is that a singularity may occur when the
dependent coordinates are calculated in terms of the independent coordinates.

2. The equation of motion does not need to be rearranged in the order of dependent
and independent coordinates for the projection method. However, this must be
done for the coordinate partitioning method.

3. The time for constraints correction is very small compared to the time consumed
by the ODE solver based upon the proposed numerical method.

A 3D flexible craft under the reconstructed pressure load is utilized as an example
to show how to perform the dynamic analysis using the additional Euler parameters
method. The raw test data for the pressure between the hull surface and the water is
processed to eliminate the high frequency noise based upon the FFT and low-pass filter.
The linear hydrodynamic pressure distribution reconstruction algorithm is carried out
based upon the filtered pressure data. Then the pressure load for 3D finite element model
is obtained by converting the 3D coordinates to 2D based upon the assumption that the
hull surface is of the V type. Finally, the equivalent nodal external force is calculated
from the pressure information at the nodes in the finite element model based upon the
same work done by these two loads.

The final first order ODEs for a 3D flexible multi-body are expressed in terms of
the angular velocity and of the additional Euler parameters at the same time. The angular
velocity is not eliminated from the ODEs. Otherwise, the angular acceleration needs to be
expressed as the second order derivation of the Euler parameter, which will cause
difficulties. In other words, Euler parameters and angular velocity both are the system
generalized coordinates shown in the governing equation of motion. The advantages of
the additional Euler parameter methods are as follows:

1. The format of E.O.M. remains unchanged when introducing Euler parameters.

2. Only constraints on 1st order time derivation of Euler parameters are needed.

3. Angular displacement calculations are unnecessary because the time integration
of angular velocity is not a vector for 3D problems.

4. No 2™ order derivation of Euler parameters is required.
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5. The additional Euler parameter method is not sensitive to the time step compared
to the Newmark Method.

The dynamic stress distribution is directly calculated in terms of the modal
coordinates obtained from the ODE solver. It obviates the need to run the dynamic
analysis in commercial software to obtain the dynamic stress under the displacement
loads at each node. Hence, it will save a lot of time in finding the dynamic stress

distribution along the structure.

7.2 Future Work

Two demonstration examples in this dissertation are purely beam elements for a
2D slider-crank mechanism and the space triangular elements for the craft. Future work
could be extended to suit the mixed element types, such as the quadratic element and the
tetrahedral/hexahedral solid element, for the general mechanical system.

The description of the elastic deformation plays a very important role in
predicting the flexible multi-body system. It should be noted that in this study the elastic
deformation is calculated based upon the mode shapes using the mode superposition
technique. Hence, the selection of the mode shapes is very important to capture the elastic
deformation accurately. There are two factors that can influence the mode shapes. The
first one is the number and how to select the mode shapes. The second one is the
components that constitute the mode shape. For the mode number and selection of mode
shapes, the mode shapes at the concerned frequency are all extracted and used as modal
coordinates in this study. However, some of these mode shapes have a very small
contribution to the elastic deformation. Therefore, it is necessary to find a method for
selecting the mode shapes. For the components of the mode shape, only the translational
DOFs of the triangular elements nodes are used to approximate the elastic deformation.
In a future investigation, the rotational DOFs could be incorporated to represent the nodal
rotational contributions to the elastic deformation.

The flexible dynamic analysis of the craft in irregular waves is carried out in
detail in the current research. Nevertheless, it is based upon a simple finite element model
of the craft, which cannot represent the actual craft very well, particularly regarding

details of the substructures. Hence, a more detailed finite element model is needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

REFERENCE:

1. Neubauer, A. H., Cohen, R. and Hall, A.S., "An Analytical Study of the Dynamics of
an Elastic Linkage", Journal of Industrial Engineering, ASME, Vol. 88, pp. 311-317,

1966.

2. Viscomi, B. V. and Ayre, R. E., "Nonlinear Dynamic Response of Elastic Slider-
Crank Mechanism", Journal of Industrial Engineering, ASME, Vol. 93, pp. 251-262,
1971.

3. Winfrey, R. C., "Elastic Link Mechanism Dynamics", Journal of Engineering for
Industry, Vol. 93, Issue 1, pp. 268-272, 1971.

4. Winfrey, R. C., "Dynamic Analysis of Elastic Link Mechanisms by Reduction of
Coordinates", Journal of Engineering for Industry, Vol. 94, pp. 577-582, 1972.

5. Chu, S. C. and Pan, K. C., "Dynamic Response of a High-Speed Slider-Crank
Mechanism With an Elastic Connecting Rod", Journal of Industrial Engineering,
ASME, Vol.97, Issue 2, pp. 542-550, 1975.

6. De Veubeke, B. F., "The Dynamics of Flexible Bodies", International Journal of
Engineering Science, Vol. 14, Issue 10, pp. 895-913, 1976.

7. Schiehlen, W., "Multibody System Dynamics: Roots and Perspectives", Multibody
System Dynamics 1, pp. 149-188, 1997.

8. Shabana, A. A., "Flexible Multibody Dynamics: Review of Past and Recent
Developments", Multibody System Dynamics 1, pp. 189-222, 1997.

9. Wasfy, T. M. and Noor, A. K., "Computational Strategies for Flexible Multibody
Systems", Applied Mechanics Reviews., Vol. 56, pp. 553-613, 2003.

10. Likins, P. W., "Modal Method for the Analysis of Free Rotations of Spacecraft”,
American Institute of Aeronautics and Astronautics Journal, Vol. 5, pp. 1304-1308,
1967.

11. Miline, R. D., "Some Remarks on the Dynamics of Deformable Bodies", American
Institute of Aeronautics and Astronautics Journal, Vol. 6, pp. 556-558, 1968.

12. Canavin, J. R. and Likins, P. W., "Floating Reference Frames for Flexible Spacecraft"”,
Journal of Spacecraft and Rockets, Vol. 14, pp. 724-732, 1977.

13. Rankin, C. C. and Brogan, F. A., "An Element Independent Co-rotational Procedure
for the Treatment of Large Rotations", Journal of Pressure Vessel Technology, ASME,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

Vol. 108, pp. 165-174, 1986.

14. Hsiao, K. M. and Jang, J. Y, "Dynamic Analysis of Planar Flexible Mechanisms by
Co-rotational Formulation", Computer Methods in Applied Mechanics and
Engineering, Vol. 87, pp. 1-14, 1991.

15. Belytschko, T. and Hseih, J., "Non-linear Transient Finite Element Analysis with
Convected Coordinates", International Journal for Numererical Methods in
Engineering, Vol. 7, pp. 255-271, 1973.

16. Shabana, A. A., "Finite Element Incremental Approach and Exact Rigid Body
Inertia", Journal of Mechanical Design, ASME, Vol. 118, pp. 171-178, 1996.

17. Bauchau, O. A. and Rodriguez, J., "Formulation of Modal-Based Elements in
Nonlinear, Flexible Multibody Dynamics", Journal of Multiscale Computational
Engineering, Vol. 1, No. 2&3, pp. 161-180, 2003.

18. Cavanin, J.R. and Likins, P.W., "Floating reference frames for flexible spacecraft"”,
Journal of Spacecraft and Rockets, Vol. 14, No. 12, pp. 724-732, 1977.

19. Drab, C. B., Haslinger, J. R., Pfau, R. U. and Offner, G., "Comparison of the
Classical Formulation with the Reference Conditions Formulation for Dynamic
Flexible Multibody Systems", Journal of Computational and Nonlinear Dynamics,
Vol. 2, pp. 337-342, 2007.

20. Shabana, A. A., "Substructure Synthesis Methods for Dynamic Analysis of Multi-
body Systems", Computers and Structures, Vol. 20, pp. 737-744, 1985.

21. Cardona, A. and Geradin, M., "A Superelement Formulation for Mechanism
Analysis", Computer Methods in Applied Mechanics and Engineering, Vol. 100,
Issue 1, pp. 1-29, 1992.

22. Agrawal, O. P. and Shabana, A. A., "Application of Deformable-body Mean axis to
Flexible Multibody System Dynamics", Computer Methods in Applied Mechanics
and Engineering, Vol. 56, pp. 217-245, 1986.

23. Cardona, A., "Superelements Modelling in Flexible Multibody Dynamics", Multibody
System Dynamics, Vol. 4, pp. 245-266, 2000.

24. Agrawal, O. P. and Shabana, A. A., "Dynamic Analysis of Multibody Systems Using
Component Modes", Computers and Structures, Vol. 2, pp. 1303-1312, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



165

25. Ambrosio, J. A. C., and Goncalves, J. P. C., "Complex Flexible Multibody Systems
with Application to Vehicle Dynamics", Advances in Computational Multibody
Dynamics, IDMEC/IST, Lisbon, Portugal, Sept. 20-23, pp. 241-258, 1999.

26. Kim, S. S. and Haug, E. J., "Selection of Deformation Modes for Flexible Multibody
Dynamics", Mechanics of Structures and Machines, Vol. 18, Issue 4, pp. 565-586,
1990.

27. Friberg, O., "A Method for Selecting Deformation Modes in Flexible Multibody
Dynamics", International Journal for Numerical Methods in Engineering, Vol. 32,
Issue 8, pp. 1637-1655, 1991.

28. Wu, H. T. and Mani, N. K., "Selection of Modal Basis for Flexible Bodies of

Mechanical Systems", Mechanism and Machine Theory, Vol. 30, Issue 3, pp. 471-
489, 1995.

29. Yoo, W. S. and Haug, E. J., "Dynamics of Articulated Structures. Part I. Theory",
Journal of Structural Mechanics, Vol. 14, Issue 1, pp. 105-126, 1986.

30. Yoo, W. S. and Haug, E. J., "Dynamics of Articulated Structures. Part II. Computer
Implementation and Applications", Journal of Structural Mechanics, Vol. 14, Issue 2,
pp. 177-189, 1986.

31. Pan, W. and Haug, E. J., "Flexible Multibody Dynamic Simulation Using Optimal
Lumped Inertia Matrices", Computer Methods in Applied Mechanics and Engineering,
Vol. 173, Issue 1-2, pp. 189-200, 1999.

32. Pan, W., Mao, S., Haug, E. J. and Solis, D., "Efficient Modal Approach for Flexible
Multibody Dynamic Simulation", Mechanics Based Design of Structures and
Machines, Vol. 31, Issue 1, pp. 1-23, 2003.

33. Shabana, A. A., Dynamics of Multibody Systems (3’ edition), Cambridge, New York:
Cambridge Unversity Press, 2005.

34. Bayo, E. and Avello, A., "Singularity-free Augmented Lagrangian Algorithms for

Constrained Multibody Dynamics", Nonlinear Dynamics, Vol. 5, No. 2, pp. 209-231,
1994.

35. Book, W. J., "Recursive Lagrangian Dynamics of Flexible Manipulator Arms",
International Journal of robotic Research, Vol. 3, pp. 87-101, 1984.

36. Kim, S.S. and Haug, E.J., "A Recursive Formulation for Constrained Mechanical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

System Dynamics: Part I: Open Loop Systems”, Mechanics of Structures and
Machines, Vol. 15, Issue 3, pp. 359-382, 1987.

37.Kim, S. S. and Haug, E. J., "A Recursive Formulation for Constrained Mechanical
System Dynamics: Part II: Closed Loop Systems", Mechanics of Structures and
Machines, Vol. 15, Issue 4, pp. 481-506, 1987.

38. Changizi, K. and Shabana, A. A., "A Recursive Formulation for the Dynamic
Analysis of Open Loop Deformable Multibody Systems", Journal of Applied
Mechanics, ASME, Vol. 55, pp. 687-693, 1988.

39. Blajer, W., Schiehlen, W. and Schirm, W., "A Projective Criterion to the Coordinate
Partitioningng Method for Multibody Dynamics", Archieve of Applied Mechanics,
Vol. 64, pp. 86-98, 1994.

40. Fisette, P. and Vaneghem, B., "Numerical Integration of Multibody System Dynamic
Equations Using the Coordinate Partitioning Method in an Implicit Newmark
Scheme", Computer Methods in Applied Mechanics and Engineering, Vol. 135, pp.
85-105, 1996.

41. Yoo, W. S. and Kim, O. J., "A Hybrid Coordinate Partitioning Method in Flexible
Mechanical System", NATO-ARW on Computational Aspects of Nonlinear Structure
System W/ Large Rigid Body Motion, Pultusk, Poland, July2-7, 2000.

42. Yoo, W. S, Kim, S. H. and Kim, O. J., "A Hybrid Scheme Using LU Decomposition
and Projection Matrix for Dynamic Analysis of Constrained Multibody Systems",
International Journal of Automotive Technology, Vol. 2, No. 3, pp. 117-122, 2001.

43. Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous Flow

Problems", Journal of Computational Physics, Vol. 2, Issue 1, pp. 12-26, 1967.

44. Guermond, J. L., Minev, P. and Shen, J., "An Overview of Projection Methods for
Incompressible Flows", Computer Methods in Applied Mechanics and Engineering,
Vol. 195, pp. 6011-6045, 2006.

45. Wahage, R. A. and Haug, E. J., "Generalized Coordinate Partitioning for Dimension
Reduction in Analysis of Constrained Dynamic Systems", Journal of Mechanical
Design, ASME, Vol. 104, pp. 247-255, 1982.

46. ABS, Guide for Building and Classing High Speed Craft, 1997.

47. DNV, Design Principles, Design Loads, Rules for Classification of High Speed and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

Light Craft, Part 3, Chapter 1, 1996.

48. Lloyd’s Register of Shipping, Rules and Regulations for the Classification of
Special Service Craft, 1998.

49. Heller, S. R. and Jasper, N. H., "On the Structural Design of Planing Craft", RINA,
Quarterly Transactions, July, 1960.

50. Savitsky, D., "Hydrodynamic Design of Planing Hulls", Journal of Marine
Technology, Vol. 1, Issue 1, pp.71-95, 1964.

51. Savitsky, D. and Brown, P. W., "Procedures for Hydrodynamic Evaluation of Planing
Hulls in Smooth and Rough Water", Marine Technology, Vol. 13, No. 4, pp. 381-400,
1976.

52. Fridsma, G., 4 Systematic Study of the Rough-Water Performance of Planing
Boats, Davidson Laboratory, Stevens Institute, Report 1275, 1969.

53. Fridsma, G., 4 Systematic Study of the Rough-Water Performance of Planing Boats in
Irregular Waves, Part 11, Davidson Laboratory, Stevens Institute, Report SIT-DL-71-
1495, 1971.

54. Savitsky, D. and Koebel, J. G., Seakeeping of Hard Chine Planing Hulls, Technical
research bulletin R-42, SNAME, 1993.

55. Savitsky, D., DeLorme, M. F. and Raju, D., "Inclusion of Whisker Spray Drag in
Performance Prediction Method for High-speed Planing Hulls", Journal of Marine
Technology, Vol. 44, No.1, pp. 35-56, 2007.

56. Spencer, J. S., "Structural Design of Aluminium Crewboats", Marine Technology,
Vol. 12, No. 3, pp. 267-274, 1975.

57. Henrickson, W. A. and Spencer, J. S., "A Synthesis of Aluminium Crewboat
Structural Design", Marine Technology, Vol. 19, No.1, pp. 52-72, 1982.

58. Allen, R. G. and Jones, J. R., "A Simplified Method for Determining Structural
Design Limit Pressures on High Performance Marine Vehicles", AIAA/SNAME
Advanced Marine Vehicle Conference, April, 1978.

59. Grimsley, J. S., A Comparison of Prediction Methods for Impact Pressures of High-
speed Light Craft, B.S. thesis, Webb Institute of Naval Architecture, Glen Cove, New
York, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

168

Koelbel, J. G., "Structural Design for High Speed Craft- Part One", Professional
Boatbuilder, No. 67, pp. 31-47, 2000.

Koelbel, J. G., "Structural Design for High Speed Craft- Part Two", Professional
Boatbuilder, No. 68, pp. 32-43, 2001.

ABS, Guidance Notes On ‘Dynamic Load Approach’ And Direct Analysis For High
Speed Craft, American Bureau of Shipping, Houston, Texas, 2003.

Rosen A., Loads and Responses for Planing Craft in Waves, PhD thesis, Aeronautical
and Vehicle Engineering, Division of Naval System, Stockholm, Sweden, 2004.
Chiu, F. C., Tiao, W. C. and Guo, J., "Experimental Study on the Nonlinear Pressure
Acting on a High Speed Vessel in Irregular Wave", Journal of Marine Science and
Technology, Vol. 12, pp. 203-217, 2007.

Chiu, F. C., Tiao, W. C. and Guo, J., "Experimental Study on the Nonlinear Pressure
Acting on a High Speed Vessel in Irregular Wave", Journal of Marine Science and
Technology, Vol. 14, pp. 228-239, 2009.

Lai, C. H and Troesch, A. W., "A Vortex Lattice Method for High-speed Planing",

International Journal for Numerical Methods in Fluids, Vol. 22, No. 6, pp. 495-513,
1996.

Savander, B. R., Scorpio, S. M. and Taylor, R. K., "Steady Hydrodynamic of Planing
Surface", Journal of Ship Research, Vol. 46, No. 4, pp. 248-279, 2002.

Zhao, R. and Faltinsen, O. M., "Water Entry of Two-Dimensional Bodies", Journal of
Fluid Mechanics, Vol. 246, pp. 593-612, 1993.

Zhao, R, Faltinsen, O. M. and Haslum, H. A., "A Simplified Nonlinear Analysis of a
High-speed Planing Craft in Calm Water", Proceedings of the Fourth International
Conference on Fast Sea Transportation, Australia, 1997.

Xie, N., Vassalos, D. and Jasionowski, A., "A study of Hydrodynamics of Three
Dimensional Planing Surface”, Journal of Ocean Engineering, Vol. 32, pp. 1539—
1555, 2005.

Wang, X., Day, H. and Alexander, A., "Numerical Instability in Linearized Planing
Problems", International Journal of Numerical Methods Engineering, Vol. 70, pp.
840-875, 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.
84.

169

Doctors, L. J., "Representation of Three Dimensional Planing Surfaces by Finite
Elements", Proceedings of the 1* Conference on Numerical Ship Hydrodynamics, pp.
517-537, 1994.
Cheng, X. and Wellicome, J. F., "Study of Planing Hydrodynamics Using Strips of
Transversely Variable Pressure", Journal of Ship Research, Vol. 38, No. 2, pp. 30-41,
1994.
Ghassemi, H. and Ghiasi, M., "A Combined Method for the Hydrodynamic
Characteristics of Planing Crafts", Ocean Engineering, Vol. 35, pp. 310-322, 2008.
Ghassemi, H. and Su, Y. M., "Determining the Hydrodynamic Forces on a Planing
Hull in Steady Motion", Journal of Marine Science and Application, Vol. 7, pp. 147-
156, 2008.
Ghassemi, H. and Kohansal, A. R., "Hydrodynamic Analysis of Non-Planing and
Planing Hulls By BEM", Mechanical Engineering, Vol. 17, No.1, pp. 41-52, 2010.
Kohansal, A. R. and Ghassemi, H., "A numerical Modeling of Hydrodynamic
Characteristics of Various Planing Hull Forms", Ocean Engineering, Vol. 37, pp.
498-510, 2010.
Kohansal, A. R., Ghassemi, H. and Ghaisi, M., "Hydrodynamic Characteristics of
High Speed Planning Hulls, Including Trim Effects", Turkish Journal of Engineering
and Environmental Science, Vol. 34, pp. 155-170, 2010.
Sun H. and Faltinsen, O. M., Numerical Study of Planing Vessels in Waves, gth
International Conference on Hydrodynamics, Oct. 11-15, 2010, Shanghai, Chian.
Faltinsen, O. M. and Sun, H., "Dynamic Behavior of Semi-displacement and Planning
Vessels in Calm Water and Waves", IX HSMV Naples, May 25-27, 2011.
Sun, H. and Faltinsen, O. M., "Dynamic Motion of Planning Vessels in Head Seas”,
Journal of Marine Science and Technology, Vol. 16, pp. 168-180, 2011.
Stenius, 1., Finite Element Modelling of Hydroelasticity in Hull-water Impacts, PhD
Thesis, Aeronautical and Vehicle Engineering, Division of Naval System, Stockholm,
Sweden, 2006.

wiki, Virtual Displacement, http://en.wikipedia.org/wiki/Virtual _displacement.

Shames, I. H. and Dym, C. L., Energy and Finite Element Methods in Structural
Mechanics, Taylor & Francis, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85.

86.

87.

88

89.
90.

91.

92.

93.

94.

95.

96.

97.

170

Chandrupatla, T. R. and Belegundu, A. D., Introduction to Finite Elements in
Engineering, 3™ edition, Prentice Hall, 2002.

Soman, K., Multibody Dynamics Using Matlab, Master Thesis, Old Dominion
University, 2008.

Haug, E. J., Intermediate Dynamics, Prentice Hall Publication, 1992.

. Yoo, W. S, Kim, S. H. and Kim, O. J., "A Hybrid Scheme Using LU Decomposition

and Projection Matrix for Dynamic Analysis of Constrained Multibody ",
International Journal of Automotive Technology, Vol. 2, No. 3, pp. 117-122, 2001.
Wiki, Butterworth filter, http://en.wikipedia.org/wiki/Butterworth_filter

Riley, M. R., Haupt, K. D. and Jacobson, D.R., 4 General Approach and Interim
Criteria for Computing A, Accelerations Using Full-Scale High-Speed Craft Trials
Data, Technical Memorandum, Ship System and Integration and Design Department,
NSWCCD-23-TM-2010/13

Garme, K. and Rosen, A., "Time-Domain Simulations and Full-Scale Trials on
Plaining Craft in Waves", International shipbuilding Progress, Vol. 50, No. 3, pp.
177-208, 2003.

Rosen, A. and Garme, K., "Model Experiment Addressing the Impact Pressure
Distribution on planning Craft In Waves", International Journal of Small Craft
Technology, 2004.

Rosen, A., "Impact Pressure Distribution Reconstruction from Discrete Point
Measurements ", International shipbuilding Progress, Vol. 52, No. 1, pp. 91-107,
2005.

Garme, K., Rosen, A. and Kuttenkeuler, J., "In Detail Investigation of Planing
Pressure”, Proceedings of the HYDRALAB III Joint User Meeting, Hannover,
February, 2010.

Newmark, N. M., "A Method of Computation for Structural Dynamics", Journal of
Engineering Mechanics, Vol. 85, pp. 67-94, 1959.

Krysl, P. and Endres, L., Explicit Newmark/Verlet Algorithm for Time Integration of
the Rotational Dynamics of Rigid Bodies, University of California, San Diego, 2004.
Wiki, Von Mises Stress, http://en.wikipedia.org/wiki/Von_Mises_yield_criterion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

APPENDIX 1

IN-LOOP INTEGRALS CALCULATION FOR BEAM ELEMENT

The Connecting Rod can be considered as a pure bending beam with axial

deformation as shown in Fig. Al.1.

Figure A1.1 Bending of a Beam Element

The body-fixed coordinate system and degree of freedom of each node for the beam

element are shown in Fig. A1.2. u, and u, are axial displacements of the endpoints, v,

and v, are the transverse displacements, €, and 6, are the slopes at the endpoints.

A 4
0; < 0, «

Figure A1.2 Beam Element Displacement Field at Local Coordinate System

Based upon the finite element model, the displacement of the beam element can be

expressed as:

u(x) =y (x)= v/(x)
where, u(x) is displacement in x' direction, v(x) is the displacement in ' direction,
u, (x) is the elongation of the neutral axis, y is the vertical distance of a tension fiber on

the edge from neutral axis and v/(x)is the bending slope.
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uy=Nu,+N,u,and v=Nyv, + N6, + Nyv, + NG,

where

N =1-&N, =&N, =1-38" +26"N, =€ (6287 + &} N, =357 - 26" N, =0, (-7 + &)
where §=x/1,

Based upon the chain rule, one has:
vi(x)= Mx) _ v de | N, v, + v, 6, + il v, + AN, 6,1,
dx dé dx dé dé dé d
= [(—6§+6.§2)v, +4,(1-4E+38%)0, +(6E—6E7 W, +£,(=2E+3E7)0, ]/e

e

From the above equations, one has:

u(x)=Nu, _ Y N, v, —!—ij—v—"-ﬁl +N,u, _ Y AN, v,
£, dé ¢, d& ¢, d&

=(I=&u, +&u, +y'(65-65°)/L v, +y'(-1+4& -3,

+Y(-68+687)/L v, +y' (28 - 387)6,

Now the displacement vector of the flexible for the beam is given by,

v,
dg

y!
- Z 6,

e={u v W}T={uo—-yv' v W}T=th

where N is the shape function matrix given by:

_yaN, Yy dN, _Y'dN, __ydN, |

Yow,de 0, de 7 g, dE ¢, dé&
N=|0 N, N, 0 N, N,
0 0 0 0 0 0

1-¢ Y(6E-681)1, y(-1+4E-38) & Y(-6E+6EN)L, y(2£-3E)
=l 0 138428 pfg-2848) 0 -2 -2
0 0 0 0 0 0

q,=[u, v, 6, u, v, 6,]isthe elastic displacement in the local coordinate,

Thus, the strain in x’ direction is given by:

£, = 2ule)= L) v (x) = -
where u,, =%—6—;—f—=—u,/€e+u2 /¢ ,and v"=%: j‘é%

From the above equation, one has
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, ' v dE
V= prp =[(=6+12EW, +£,(~4+68)8, +(6 ~ 12E)v, + £ (-2 +6£)6, )/ £
L =l =YV

=—u, [0, +u, 1, =y [(=6 + 128w, + £, (~4+ 6£)6, + (6 — 12E)v, +£ (=2 + 6£)6, ]/ 3

__u  V(6-129) +)"(4—6é‘)91+y_2_+y’(—6+12§)v

+ Y (ZZ_6§) 62 = qu

ge ei l ge fe Ei ’ e
where B=| L Y(6-125) y'(4-65) 1 y(6+125) y'(2-6%)
£, e l, l, ¢ ‘.

According to Hooke’s Law, o, = E¢ = EBq,

The strain energy stored in each element can be calculated as follows:

~ |, orde.dv=—{ (EBq) (Bayldv=—q! [ E(B"Blivsy,

B'B=
(1 y'U2¢-6) y'(-4+6£) =1 y'(6-12¢) y6s5-2)
¢ I ¢ ¢ ¢! M
Y6-128)°  yU(6-128)4-68) y(6-128) -y (6-128°  y’(6-126)2-6&)
f £ £ e ‘,
y'’(4-6¢)° Y'(E-68) yI(4-6612%-6) ' (4-6£N2-68)
£ £ % ‘
1 y'2¢-6) y'(2-6¢)
£ e £
sym Y (6-12¢) ¥ (128 -6)2-6£)
e l,
y'(2-64)°
i £ ]

Substituting into the integration equation, one has — J;) old dv=—q'K°q,

0 0 - 0 0
[f ge
12EI 6EI 12EI 6FEl
0 3 2 0 -— Vi
Ze ee ee e;
where o GEL  4EH _OEl  2EI | i the stiffness matrix.
K" — ei Zr.’ ei ee
E4 0 0 ﬂ 0 0
Zf gf
12EI 6 El 12FT 6E]
O = 0 Z T
6EI  2EI 6EI  4EI
0o 2= 0o -5
f; ee 'ee Ee J
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The following integration results will be used latter in calculating the integration terms:
1 1 1 1
LN,d; =L(I—§)d.§ =1/2; Ldeg = jogdg =1/2;
1 i
J'ON3d§ = L(1—3§2 +2E3)dE=1/2; j;N4d§ = j;ee(g—zgz +ENdE=1£,/12

JNod = [[38 ~280)dE =1/2; [|Nodg = [ ¢,(& - &)l =2, 112

tdN; . 2 _ . (dNg 2

[ i dé = [ (-6&+6£7)ds =1 | T dé = [ £,(1-4£+3¢)dg =0
1d]VS - ! 2 —1- ldN — ! 2 -
gz 4 = |65 -6¢h)az =1: s %= 068 -2ag =0

[[avde=[ NN, de = [ s1-&raz =116 [ av,ag = [ Nidg = [ ggdg = 113

[l av,de = ['N,Nde = [ 20~ 387 + 267 = 31205

[l N de = [ NN de = [ e, 6& - 282 +&)de = 0,130
I;‘fjvsd§=f;NzN5d§=f0]§(3§2 —2ENdE=7/20;

[[N,dg=[ N.N,de = [ 0,6 -£)dg=~¢,/20

[ Nidg= [ a-g)rds=1/3; [ NN,dg = [ (-1~ 3¢ +2£7)dE =7120

[NV ds=t, [ U-oE-287+&)dg=,120 [ N N,d = [ (1-£)3E7 ~28°)dE = 3/20
[NNdz=e [ U-ex-g +&)de=—2, 130

LINfdf =f01(1—3§2 +28°) dE=13/35

J:N3N4d§=€eJ:(1—3§2 +2EWE-28°+ENdE=110,1210

[N Ndg = [ (138 + 287 )(3¢* - 267 )dE = 9170
[NN,de=e, jo' (1= 382 + 283\~ + & )dE = ~13¢, /420
[Nidg=e2[ (& -28% + &) de =€ 1105

[NNag =0, [/(&-267+£)3& - 28%)dE = 13¢,1420
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LIN"Néd‘f = ‘ij(,l(f—%z +EN-E2 +E)dE = —02 1140
J:Nfzd‘f = L1(3é‘2 - 28%)3E7 = 28%)dE = 13135

[ NN dg =, [[(357 = 28°)&" - £ =~118,1210
[Wiag=e jo’ (=& + &)= +&)dE = 121105

ks yg & =l & dé——:ﬂ(—éfm:f)zdg:igz:
Jﬂv'yz;dzj C;A; dv=1, f( 6&+68° W1~ 45 +3& )daf_l—o
k fczvé GZ\; “g = [(-65+6£7)6&~66)dE = 5‘;’
k, ye GZ\; ddj\g“’” L ﬁ<*6s‘+662>(—2¢+352)d5=-’1-£5

1,4,

J‘QKZ )dvlfj(l 45 + 3§)d§_

0, );22 a;]\; c?.; =1, £(1"4§+3§2)(6§—6§2)d§ - _11022
JQ,yg—z%%dv=1ﬂeej;(1~4g+3¢2)(_2§+3§z)d5=—_13,;£5_
2 £2 g j(éf 687 )6 -66%)de =2 &
n;%%%dv=lnfo(6§~6§2)(3§2 - 20)dg == L,
L 2z + 3826+ 367 = 2 f
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The integration terms are calculated in detail as follows:

1. Global Stiffness matrix K

Assuming that the start and the end node number for an arbitrary element are i,

and i, , respectively, one has the global stiffness matrix as:
K(3i,-2:3i,:3i,-2:3i,)=K*(1:3,1:3) K(3i, = 2: 3i,: 3i, - 2: 3i,) = K*(1: 3,4:6)
K(3i,-2:3i,:3i,-2:3i,)=K*(4:6,1:3) K(3i, - 2:3i,: 3i, - 2:3i,)=K*(4:6,4:6)

3x 3(NE+I)

2.1, = jﬂ PNdv = f‘; J‘Q‘ ONa
i=] !

At any arbitrary element, one has:

_Y'dN, _y'aN, o _y'dN, _y'dN,
| Yow, dE ¢, de 4, dE ¢, dE
Il = J'Q{Vdv = IQ; ol 0 N, N, 0 N, N, v
0 0 0 0 0 0
N, 0 0 N, 0 0 6 0O 6 0 0
pAL,
=p[ |0 N, N, 0 N, N jv= 0 ¢, 0 6 -2,
o, 12
0 0 0 0 0 0 0 0o 0 0 0

where A=bd, is the area of the beam intersection , ¢, is the length of the element.
Summing up along the entire domain:
LoG3G—1)+1:3G+1)=1,(,3G-1)+1:3(G+1))+ 1,

where i=1,2,... NE. NE is the total number of the elements, /, isa 3 x 3(NE + I) matrix.

3.1, = Lpr'dv

w (¥ wllergdav o T2
L= [ oy |dv=), 0 =Y pdl,| 0

i=1 2 i=] 0 i=] 0

If the origin is located at the center of gravity, /.. =0.
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3a) /. = jﬂ o7 dy

0 0 0
I.={0 0 -I.()
0 I.() 0

4.1, =jﬂpedv =§vaedv
i=l

3x!

I, = jﬂpedv = Zijﬂ.- PNg'dv

u,
MK 0 6 0 0‘2’,, " i 6(u! +ul)
=p12" 0 0, 0 6 -1, j:Z-’?]z—fa(v;w;)we(e;—e;)
o 0o o o o o] " 0
1
6, |
4.a) I; =J.QpZJV 3x3
0 0 L@
L=l 0 0 -LQ
-2 1.1 O
5.1, =JQ;)édv 3x1
ol dmpg | oy +is)
[ peav=> [ Ng'dv=3 5[ 607 +9) +£.(6; - 6)
=] i=]

0

6. I, = [ pFFa

3x3

The result of the product of skew matrices is given as:
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~p o~y

rr=
12 12 1 1t 2 12 [ [ ’ t
Y-z Xy Xz -y -z . +ct.)y (xe+6t, )z
__x:z ___zr.? y'Z' — _(x; +5€e)2 _Zrz yrzl
sym. =x"7 =y sym. —(+8) -y

The mass moment of inertia at any arbitrary element is then integrated as

J, A= ] o7 F s = ¢, [[[ 77

" 42 2
d +b 0 0
12
=-pAl,| 0 x;2+x;€e+i£f,+——1-b2 0
3 12
'2 ' 1 2 ) 2
0 0 x,” +xf,+—{, +—d
Summing up along the entire domain, one has:
NE g0 d’ +b° 0 0
Ly =Y -E2cl 0 12x7+12x0, 4400 48 0
o 12 12 , 2 2
0 0 12x)" +12x0 ,+ 44 +d
1. Ly = | o,
0 -w v {0 -z ) -wz'-vy' vx' wx'
er'=lw 0 -ulz 0 xX'|=| w —wz' —ux' wy'
-v u 0§y x 0 uz' vz' —w' —ux'

The integration of the above term over the sectional area results in the following matrix:

0 (L+&,)v 0
J‘Q?’e?’dv - jQ’ yu —&.+&,)u 0 dv
0 0 —(x, +&0,)u

[ o+t vav=[ oL+ )N, +N,6,+ Ny, + N6, )dv

= At [ XNy, + N6, + N, + N6, ME + AL & (N,v, + N6, + Ny, + N, 6, )dé

j (x, + &, )vdv=AL x, —Vi+£e—q’~+—‘~’i—£?—9—z +A€‘Z(—3—Z’—+€ee’ +7v2 —-6692)
Q 2 12 2 12 20 30 20 20

= AL, /60[(30x. +9¢, ), +(5x. +2¢,)0,6, +(30x. + 21¢ v, —(5x. + 3¢ )¢ ,6,]
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u, 2

jyudv—f dev,-l——-dN49,+Nz —Z—devz—l——dNﬂe v
e, dE 0, dE 2y, dE e, dE

[ y]- Y N, v]__!__dN4 gl,lﬁvivz_)_/_d]% 6, |dv
o\ ¢, dE " 4, dE 0, dE 7 0, dE
_ J-(dN N, , ,dN; . dN

dE I+d§ ! de V) d‘;e)d'f I,(v,=v,)

bd’ . o L
where 1, = N3 is the moment inertia along the z axis.

R N A T

ZJ‘Qi (x, +€eé)(N1u1 +N2u2)a‘v = A£e|:J; x;(Nﬂ‘z +N2u2)d§+L€e§(N,u, +N2”2)d5}
Li(x:, +0,E udv = AL [(x./2+0,/6)u, +(x./2+4,/3)u,]
Summing up along the entire domain:

NE
I;(1,2)=" pae, 160[(30x, +9¢ v, +(5x, +2¢,).,6, +(30x, +21¢, v, - (5x. +3¢,)¢.,6,]
i=l

NE
127'(2:1) = ZPIZZ(VI —-V;)
i1

- PAL, ., .
I;:(22)=1.(33)=> - - [(3x! +£,)u, +(3x. +2¢ )u, ]

7.2) 1., j oredy

Since (e7')" =7"¢” =¥%¢,Onehas: I., =1L,

8. [;;' = IQPZF' 3x3

0 0 vl o = y] [-» w 0
eF' =l 0 0 -alz 0 x'|=|w - 0
—voa 0| ¥ 0| |u v - -
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0 v 0
er dv = J'Q’ uy' —ux 0 |dv
0 0 —ux

According to the results in the integration /. :

. (1.2)= Zp

b, +(5x, +20,)0,6, +(30x, + 210, o, — (5x. + 3£, )¢.6,]

NE pAg
I, Zp]zz(v, v,); 1.,.(2,2)= Z— [(3x2 + 0 ), +(3x! +2¢, )i, ]
i=]
9.1 -_“Qpe’“Zdv 3x3
0 -w v 0 —-w v —w? —y? uv uw
ee=lw 0 —-ullw 0 -—-ul|= uv —ut—w? vw
-V U O ll-v u 0 uw vw —u?-=v?

Further, for a 2D problem, one has w = 0. As a result, the product ee becomes
v uv 0
ee=| w —u’ 0
0 0 -u’-V

Now, one can integrate each of those non-zero terms in the matrix separately to obtain
v’ =(N,v,+N,8,+Nv, + N,6,XN,v, + N6, + N.v, + N,6,)
(VINZ +2v,9,N N, +vINZ)+(2v,0,N,N, + 2v,0,N,N, + 26,y,N,N, + 2v,6,N,N,)
+(67N7 +20,6,N,N, +0IN?)

J. vidv= Al (13 2+——9—v,v2+13 ) + AL (” ,9,—-]—3—-\;,02+1—3v29,——£v26’2)
35 35 35 105 210 210 105

+ Al (—92 ! -6, 2+—-1——:92"]
105 70 105
u=|Nu,- > an, v, ldN‘61+Nzu2 N, 2_111\_,292
0. dg Ty de 0 dE T de

(N,v,+N,8,+N,v, +N,6,)
jngvdv - jn,- (N,u, + Nu,\N,v, + N6, + N,v, + N, 6, v
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= [ Nt (N, + N6, + Nov, + NG v+ [ Ny (Nyv, + N6, + Nyv, + N6, Yav

7 1 3 1 3 1 7 1
J.Qt!vdv:Afe[u,(EO—v, +—1£,0,+—v, —-ﬁftﬁzjﬂzz(}zv, +—10,0,+—v, ——6202)}

20 20 30 20 20
"dN,  y'dN, " dN ' ’
J-uzdvz_[ Nlul"z‘ Ly, - )+ Nyu, - sz_;y—dN6 6, | dv
Q; Q, ¢, d& f dé ¢, d& l, d&

:J‘Qi N, (N, +N2u2)dv+J.Qi N,u, (N, + N,yu, )dv

& 12
ST\ T\ T N 2 (a’N5)2 s
07 dE dz e
12 dN dN 12 N N '2 2
J(yZ 191+y2d d 2V12+Zz_dN4.divi v,0, + yz dN; dN62 0, |dv
dnN, dN dN,
.[ o; yz 20,0, + y2 (&2)’6?
2 de aE 7 Cae

AL 61
ngzdvz 3e 2+u,u2+u§)+~§;‘—(v,2—2v,v2+vj)

e

I
B (20,0, +2v,0, = 20,0, = 2v,0,) + ! lﬁ < (26} - 6,6, +207)

NE

1.(1,0) Z—-———[(78v1 +54v,v, +78v2 )+ 220 (v,0, ~v,8,)+13¢,(v,0, —v,6,)

+12(207 - 36,6, + 262 )]

I.(1,2)=1,(21)= Zp‘“ u,(20v, +30,0,+9v, - 20,0, )+u,(9v, + 2¢ 6, + 2Iv, - 31,6, )]

e (u] +uu, +ul)—..

NE
I, (2,2)= Z{— pA
i=1

%[18(\;, v,V 430,(6, +6,)v, —v, )+ £2(207 - 6,6, + 267 )]}

I5(33) =15 (L1)+15(22)

10.1;, = [ peedy

3x3
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0 0 vi[o o0 v - v 0
ee=|0 0 —uall0 0 -ul=|uv —uu 0
v o O0ll-v u 0 0 0 —siu—wv

w=(N,v, +N,6,+N,v,+N,0,N,v, +N,6, + Ny, + N,6,)

=[ov, N2+ @, +9,9,)N,N, +V,v,N?]

+[(5,6, + 6, )N, N, + (5,6, + 6,9,)N,N, +(6,v, +9,6,)N,N, + (5,8, +6,v,)N,;N, ]
+|6,6,N2 + 6,6, +6,6)N,N, +6,0,N?]

. 13 . 9 . . 13 .
L\i/vdv= AZE{{:EVIVI +7—0(v,v2 +v2v1)+§v2v2:]

[IM v,6, 9v,)— 13¢ (VH 9v,)+ (9v2 9v2)——(6v2+v26’)}

2 2 2
+ Ze@,, 2 (6’9+90)+€"99
105 105

J.Qvudv ZIQ', [(N3‘.’1 +N49, +N,v, +N692).

" dN " dN " dN " dN
[N Yy L g Ny, -2 s, Y 692)}#

MTaE T de ¢ g Ty ae
=, (N,%, + N6, + N, + N8, \Nu, + Ny, v
:jﬂi(Nsv,+N49,+N5v'z+N6éz v+ Ini(va,+N49,+N5vz+N692 u,dy
=.[Qi(N,N3\3,+N,N46",+N,N5v2+N,N6é2)1,dv+ _[Qi(Nzva,+N2N49,+N2N5v2+N3N692}42dv

. /. . .
jmdv ae | L+ -f—ea,+i\>2——eez u, + AL, iv‘,+ﬁe,+—7-v2—ff-02 u,
20" 207 207 30 207 307 207 20

Similarly, one has:

[svav={ (N, + N, XN, + N0, + Nyv, + N6, v =
, ]
=Al | u, Lv,+—“9,+i v, — _Le —=0, |+u,| — 3 +—€~‘:’-¢9,+lv2~—g—e—62
2077207207 30 20773077207 2077

L"‘“d“L.KN iy =L Dy, L e Ny - L Dy Y e

¢, dé fdzf ¢, dé 7 b, dE
'Nlul_Ldevl_Lng 2__y_dN5v2_l_dN692 W
¢, d& ¢, dé& ¢, dé& ¢, dé
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:J NluI(Nlul +N2“2)d"+"- NZuZ(Nlul +N2u2)dv

y'? dN; dN "2 dN;
j( ( 5 Vv, + gf 5(v,v2+v2v,)+y z'zszdv

de dg dé
r2 N 12
I yzd N0 buys yszdN
02 dE dE £, d§ dé
[ 12
y'* dN, dN y'" dN; dN
fﬁ d§ d/; (v,0, Hvz) Ez df d/; (v,6, +6 Lv,) ldv
12 r2
+J~ y_sz,, 29101+y dN, dN, N, e
ds e dg dg §

jﬂgudv = Al (u,/ 3+, 16)+ AL (i,u, /6 +1t,u, /3)

I . . . .
+ 772 [Vivz - (Vlvz +V,V, )+ Vzvz]

e

= [(v,H, +0,)+ (5,8, +6,9,) = (5,0, + 6,,) - (5,8, +6,v,)]

1 , . . .
o 46,6, - (6,0, + 6,6, + 46,0,]

L. (11)=
NE pAg

[(156v,v, +54(3,v, +v,9, )+ 1569,v, )+ 22¢ [9,6, +v,6,)- (3,6, +v,6,)]

i=]

+ 13&[(%9, + \'129,)— (5,6, +v,6, - £2 (46,6, - 36,6, - 36,6, + 46,6,

Z

i=l

Z”Af [a,(21v, + 30,6, + 9v, — 20 ,0,)+4,(9v, + 2¢,6, + 21v, - 3¢.6,)]

i=]

NE oA, ) ) . XE ol . .

=Z_p © (2,u, +i,u, +i,u, + 20,u, )— .;001? $36(v, v, Xv, -v,)
Py i=1 e

+30,[5, -9, X6, +6,)+ O, -v, X6, + 6, J}r £2[46,6, - 6,6, - 6,6, + 46,6, ]
1.(33)=1,(1.1)+I.(2.2)

[uf(21v', +30,6, + 99, - 20,6, )+ u, (99, +2¢,6, + 21, - 3¢ 6, |

3Ix3(NE+1)

1. Ligy = | pF'@Nav

Since F'@' =0’ r' -r'" o’
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Ly = jQ pr'@'Ndy = _[Q p(w’r’r -r7 a)’)Ndv =’ L pr'" Ndv - L pr'" &'Ndv

Ay _2dNs YN, YN,y N,
x Yoe,de 0, dE T 4, dE e, dE
r'N=y'|] 0 N, N, 0 N, N,
2|0 0 0 0 0 0
"dN "dN "dN "dN
=|xN, —x,Z__3+y'Nj —x'L—"+y'N4 x'N, —x'~)1—~——-5—+y'N5 ——x'i—6+y'N6
0, dt 0, dé ¢, dé ¢, d¢

After integration of the above term over y' and z' for any arbitrary element, one has:

[rNav={ [ +& )N, 0 0 GL+& )N, 0 OWv

Q;

=%€e[(3x;+ee) 0 0 (3x.+2¢,) 0 0]

Ij,rNEpIQ('TNdv=%[e[(3x;+£e) 0 0 (3x.+2¢,) 0 0]

—_

e AN, 2Ny dN, _ VAN, Yy N
POV e de e ag 7 g, de e, de
rTo'N=|y||0]| 0 N, N, 0 N, N,
||l ] 0 0 0 0 0 0
_y'dN, _y'adN, _y'dN, _ y'dN,
Yog,de e, dE P 0, dE 4, dE
=z'0| 0 N, N, 0 N, N,
0 0 0 0 0 0

After integration of the above matrix over )’ and z’, one has J Qr’Ta)']\’a‘v =0.

Finally, /;.-, = J;) OF'@'Ndy = IQ p(a)’r" - r'Tco')Ndv =o' J;z pr'’'Ndv=ao'-1,,
where

NE
Loy G3G=1)+1:3G+0)=D I,
i=]

12 Ly = | &N

3x3(NE+])
Since ea’ =w'e’ —e” o'

Ly = Lp(a)'er —era)’)Ndv = a)"[QpeTNdv —IQpeTw'Ndv
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e"N=g"N'N
[N, 0 0]
y' dN
-=——2 N, 0
¢, dg - y
A
TA — e
NN = , 0 0 g
y' dN
-=——2 N, 0
£, dé L
y' dN
-—=—=L N, 0
¢, dg i
_NZ ___)_’L dN, -Z.'.Nd_N!_
’ ¢, de ¢, ' d¢
l',—(ﬂi)-’Jer Yo AN, dN‘+N3N4
e, dg ¢; dg dg
Y2 @Noe N
G
sym
~I - T
Iy = [N Nav
A, 0 0
3
61, 1340, I 114¢;
5¢, 35 10 210
216, AL
—+—=
_ 15 105
sym

185

"dN, __X’_dN4 _1’_st ___)j'_dNa
dé ¢, d& 4, dé 4, dE
N, 0 N, N, |=
0 0 0 0
NN, ‘X" 1dN5 "Z'iNJdN6
¢, dg ¢, d§
_YN,dN; y?dN,dNs o yZdN,dNg o
¢, d& 2 dE dg T 02 dg de T C
_YN,aN, y?dN,dNs o yPdN,dNs o
¢, d&¢ 2 dE dg T 2 odE a7
’ ¢, d¢ ¢, d¢
02 2
B4 (_‘.1.1\.,.&)2 +N? !._fiﬂifi_N_ﬁ_,.NjNé
e dg ¢ d¢ dg
v’ % 2 2
¢ (dg) N ]
AL, 0 0
6
-61_ 94¢, __13A£§
5¢, 70 10 420
I 13442 1.4, AC
0 —_——EE P —
10 420 30 140
Al
< 0 0
3
61, . 134¢, 1. 11442
5¢, 35 10 210
21_¢, Al
mte  ALe
15 105 |
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T il T Ty _ i
JeTNav=q" [ NTNav=q" -1}, =1},

- T
pAee(Zu,+u2)
pAL, ol
70 (156v,+22¢,6, + 54v, —130.6,)+ J_(Z[]Z(v’ ~v,)+£,(6, +6,)]
pAL, Pl
| T (22v, + 42,6, + 13v, —3¢eez)+-§~5-(3(v, ~v,)+4¢,6,-1.,6,)
Al
£ €)(“1'*'2“2)
pAL, Pl
70 (54v, +13¢,6, + 156v, — 220 .6, )- 100, [12(v, ~v,)+ 2,6, +6,)]
407 )4
_P 13y, +30,6,+22v, - 41.6,)+ ’030 [3v, =v,)- 1.6, +4¢,0,]
o Iy YAV, YN, ydN Y Y,
ul | O e de 4, dE T 1, déE 4, dE
e"oN=|v||0] 0 N, N, 0 N, N, |=0
0] ||| 0 0 0 0 0 0

Finally, /5, = o' pe" Ndv=0o'-1 ,,

NE
where 1, (,3(i—-1)+1:3(+1)=>1I

e™N
i=]

131 = [ pF'Nabv

3x3(NE+])

Iy Y _yav, . _ydN, _ydN,
0 -z y ! 2
y 0, dé ¢, d& £, d&é ¢, dé
rN=|z 0 -=x'|0 N, p 0 N, N
-y X 0]0 0 0 0 0 0
0 -z'N, -z'N, 0 —-z'N; -z'N,
| oy, XEA, _yEdN, oy YR, AN,
¢, de ¢, dé 0. dE ¢, dé
12 IN 12 12 12
-y'N, y—&+x'N3 27 AN, +x'N, —yN, 7_ 4N, ¥N, 2— N +x'N,
] A 0. dE ¢, de ¢, dE
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Jl?'Ndv =
Q
0 0 0 0 0 0
[lo 0 0 0 0 0 dé
0 dN dN dN dN,

0 I,—2+A0 XN, I, —2+A40xXN, 0 I,—S+A40,x'N, 1.2+ 40 xN,
= dE = dE = e 7 e

([ 2

5)

+ AL, xX'N, |d& = j”’ [1 ‘?;3 + A, (x + 2, )N3]d§ =1, + Afe(%. + 31)

~

j() Izz d;\;’ +A€ex'N4 d§=Afe(€ex;/12+€i/30)

~

d]\; + AL XN |dE =T+ AL (x./2+7¢,120)

1=

[|1. ‘2’; + AL XN, |dE = —ae (6 %0112+ 42 120)

I, (3.2)=—pl,, + pAe, 1 20(10x. +3¢,); 15, (3,3)= pat, /1 60(5¢ . + 2¢2)
5 (3.5)= pl . + pde, 120(10x, +7¢,); Iy (3,6)=—pat, 1 60(5¢ x. +3¢?)

Ly (3G - 1)+ 1:3(G+ 1) = Ly (3G = 1)+ 1: 3G + 1))+ I,

3x3(NE+1)

14.1,,, = [ peNav

The product of integrands in a two dimensional problem is given by:

] _Y'dN, _y'dN, _ Y aN, _ydN,]
00 v ™ oy de e, dE 74, dE 4, dE
eEN=| 0 0 -ulo0 N, N, 0 N, N,
-V u 0_ 0 0 0 0 0 0
0 0 0 0 0 0
=l 0 ’ 0 , 0 0 ’ 0 ’ 0
—oN, 22y VA, N, 2R Ly s Ly
¢, d¢ . dé . dé {, d&

o 0 0 0 0 0
[evav=ar,[| 0 0 o o 0o o0 pe
-vN, uN, uN, -vN, uN, uN,
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[ vNdv=ae,[ (Ny, +N,8,+Ny, +N,6,)N,de

! 7 ! !
= A(Ze( [ NNy, de+ [ NNGdE+[ NNwv,dE+ [ N,N602d§)
=A0,(7v,/20+¢,0,120+3v,/20~1¢,6,/30)
[, vNdv=at, [ (N, + N6, + N, + N,6,)N,dé

7 ) 1 1
= AL [ NNy, dé + [ NN, 6,dE+ [ NN pw,dé+ [ N,N602d§)
= Al ,(3v,/20+¢,6,/30+7v,/20-1¢,6,/20)

_ y' dN, y dN, Y dN; y' dNy
jﬂiuN3dv—IQi(N,u, 7 dé v, — ﬂ d§ 0] Nll2 fe df v"_Z_;i_g_e" N3dv

= [ (N, + Ny, )N v = 48 (7u, 120+ 3u, / 20)

dN dN dN dN
J uN4dv=J- Nu, -2 2y, — X —2£6,+N,u Nou, -2 Sy, -2 ° 6, |N,dv
0, o, P TRNAPT. ¢ dr T ar

= [ (N, + Ny, )N dv= 462w, 120 +u,130)

dN, y' dN "dN "dN
j udevzj Nu, - b v - L2 g Ny, - Ly, Y P , INdv
0, o, 0 de z e 0 aE 2T ae

= jﬂ} (N,u, + N,u, )Nydv = A¢,(3u, 120 +7u, | 20)

y' dN, dN ' dN '
J.uNédvzj Nu, y - LN g N, -2 sy L Ws g N
3 z dé 1, de ¢, df ° ¢, df

= IQ, (N,u, + Nu,)N,dv=—A40(u,/30+u,/20)

pAK

IL,(3.1)= --’-’-g-gl(zw, +30,6,+9v, - 24 .0,); IL,(3,2)=—==(u, + 3u,)

I,(33)= pAge Bu, +2u,); I1,(3,4)= ”:Eew +20,0,+21v, - 3.8,
I,(3.5)= p‘“ < Gu, +7u,); I (3,6)= p‘“ +3u)

Ly (:,3(i—1)+] 3+ 1)=1,,(3(-1)+1: 3(1 +1)+1L,
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Ix3(NE+D)

15.1;,, = [ peNdv

_L'dN3 y' dN, N y dN, y' dN,

0 0 v Tyar Telde U e dE d, as

EN={0 0 -ul 0 N, N, 0 N, N,
v i 0] 0 0 0 0 0 0
0 0 0 0 0 0
=l o 0 0 o 0 0
Ny sy PNy Ny PV oy 20Ny
¢, d& ¢, dé ¢, dé ¢, d&

0 0 0 0 0 0
jZNdv=j 0 0 0 0 0 0
0, Q,

~-Ny Ng Ng -Ny Na N

According to the results in the integration /), :

L o(3,10)=- p?g < (20V,+3£,0,+9v,-20,6,); I (3,2)= %ff (i, + 3u,)
2
L(33)= ”?{f < (3u,+2u,); 1L, (3.4)=— ”2’5 < (9v,+2£,0,+21v,—30,0,)
; AL, . A
L, (35)=2 5B 715 14,(36)= L " (2, + 3iiy)

L, 36 -0)+1:3(+1) =L, (3G - )+ 1: 3G + )+ I,

16.1,r, = _“Q pNTNdv| 3(NE+I)x3(NE+])
1o BG=1)+1:3(+1)3(-1)+1:3(+1))
=1, BG-1)+1:3G+1)3(G- 1)+ 1:3G+ 1)+ 1,

where I, has been defined in the term of I, .
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APPENDIX 2
PRE-ODE INTEGRALS CALCULATION FOR BEAM ELEMENT

0. v' Ky = diag(A)

wherer A is the eigen values, which can be obtained from mode analysis directly.

1. I, =prNwdv

ol 6lws +wi)

Pl 6y 4y )+ eyl —yt)

Jo, PNy =T = 12 0

6y +vi)

LGB = 2 ol v ) v -v)
- 0

uyg:me
Nm Nm Nm A
jQ pe;dv = Zak J.Q Ny(3(i—1)+1:3i+1)k)dv = Zak IQ_ Navy Ezak TNy
i k=] i k=1 ‘ k=1

Nm
I, = Zak ~1NW
k=1

1.2)1, = L pédv

Nm
é=Nyi=>) a, Ny,

k=1

Nm
I=[ pedv=3 a1,
k=1

1.3)1; = [@av
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0 0 1)
L= 0 0 -I()
-1,(2) I.) O

= _{Q pr'dv : same as integration within ODE
2.1) I, = jﬁ oFdy

3. I = JQ pr'r'dv: same as integration within ODE

4. I.. —J' per'dv
Nm 0 —y/wk !//vk Nm
€= 4, ¥V 0 Vu | = Zak Vn
k=1 k=]
- l//vk Wuk 0

Un F =, 0 -—yuiz 0 X
VY Vu 0 f» x 0

~Z'W V'V, X'V X' W
= V'V e —Z2'W o = XY, V'V
Z’Wuk z,‘//vk —x'y/uk _y'!//vk

The integration of the above term over area results in the following matrix.

0 (+& )y, 0
Jerdv= Za,,j Y, -GL+E )y, 0 dv
0 0 —(,+ &)y,

[, P+ w av

L'dN,W_L'dm
¢, d& " 4, dé

Z-[Q, px; + Zeé)(va/ii +N2'//:t )dv-—-pAZeU;x;(N,l//; +N2W;( }ié +J‘01£e§ NIWii +N2‘//i: }"‘:]

1 1 1 1 ;
=pAl, || =x. +=0, W, +|=x +=£, |yl |=T
p e|:(2 [4 6 ejwtk (2 e 3 eJV/:k:l xu

- p(x;%é)[zv,u/,’k— AL N AL ]

Sy Nyl TSy
Vi W ¢, dr Vie — f e Wi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



192

Y dN, , ' dn, ' dN, "N,
v dv = ' Y z_ +Nw' -2 s _ Y G 5 |
o v L,W( Vi f_—d.fw TR T T w}

_ fdN; , dN, , dN,; s dN; , _ 2 5N 7i
——plzzj;[dé wwdg wik+d5 Vet e Vi dg=pl.. (i —va) =1,

.[Q‘ p(x; + gge)‘//vdv =j0' p(x; + éee)(va/ti + N4l//i1 + NSV,ii + N6V/li }’V
1
= pAgejo xe(NJWIi + N4'/’ii + le//ijl—c +N61//3¢ )dé:

1
+pA€eL§€e(N3V/xi +N4Wii +N5l//ii +N6!//s( Pé

x 3 x f x, 7¢, x. f .
=pAl || ==+ =yl +| == 14 + M < c Wyl =1
p e[( 2 20 )Wzk (12 30) e‘/lzk ( 2 20 )V/ (12 20) eWIk} xv

Nm
Iy =Y a Iz,
i=]

. ~\T _ = T~T _ ~ry . g7
Since (€7') =7"é” =7¢,Onehas: I, =1L,

42) I, = [ péFdv

Nm Nm
Since e = Nya = ZNl//kc'zk = Zc’zk Ny, , one has:

i=1 i=1

I _I per F'dv= Zm:aij ‘pl/7,v7'dv Zak &k

k=1 i=l

43) L, = |, PF'@Nydv
Since '@’ =a'r'" -r'T 0’

Liony = J‘Qp?'a'N!//dv =.f p(a)’r’r r’Ta)’)Nl//dv rw’jgpr'TNl//dv - Lpr"w’Nwdv

For any arbitrary element, one has:
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l//uk
wy(k) =¥,
0 k=12, Nm
l//ulr
r’TWN (k) = [x' y, Z' !/jvk = x,‘//uk + y,WVk
0

Iy, 0=, +1.,)

'T _
_[Qpr Nydy = Ir'va/

NE
where 1, (k)= Y (1%, +1,)

i=1

7

X 0 V/uk ‘//uk Z'Wuk
r’Tw'l//N (k) = y’ 0 '//vk = a)z"z' ‘//vk = a); Z’WVI(
||| 0 0 0

IQ or'"w'Ny , dv =0

— ’
Ligny = @1 1y,

44) Ly, = [ PPNy

0 -z Yy vy, -z'y,
ryyk)y=| z' 0 x|y, |= 'y,
-y X 0§ 0] |-y, +xy,

NE
Ly GRH=Y| 0

i=1

_Iyui +vai
5.1; =J-Qpeedv
0 -w v 0 -w v ~vi—w? vu wu
ee=lw 0 -ulw 0 -u|= —u’—-w? wv
-V u 0|-v u 0 sym. —u’ =V’
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Nm Nm Nm
Let u=) yha, =yla,v=> ytfa, =y aand w= Y wia, =y!awhere Nm
k=1 k=1 k=1
is the number of mode shapes used to approximate the displacement field, w*, w* and
w! arethex, yand z components of the k" eigenfunction. a, (t)is the corresponding

modal coordinate. One then has uv = (t//ur a)T (l//vr a)= a’ (q/ut//f )a In doing so, one can

obtain the mass moment of inertia term, /; as:

~a"(y ! +wplh a"y,yla a'ypla ]
I = peedv=p| "yl +y,plh a'yy.a v
sym. 2"yl +y ik
-a" [ plyy +y,p kv a’ [ py,y]dva a'[ py,ylda |
= o[ oyl +wikia a"[ pyyldva
sym. —~a"[ plyyl +y T kina|
For 2D beam, the displacement along z vanished, w=0, one has:
-a"[ plyyl kb a[ py,pTdva 0
Igg = J;, (WuWu }]va 0
sym. -a"[ plywl +y ] hiva

Each term in the above equation can be calculated separately, the details are as follow:
Iyy(mmy= [ ylyidv

= Ny, (Nl + Nl v+ IQ Ny (N, + N Jav

12
A : aN, .,
+
j[ 5) A A 2 2 APTALL

'? dN, dN, "? dN, dN,
J yz (WIMWIn '/’:fn‘//,i) yg
Q g2 df dE 0 dE de

(W:my/m + W"n !//m)

" dN, st 3.5 53 y'z dN dN, . s
+ - S hwlwe : 5y |
ei dé; d§ (W:mvlm V/lmy/m) fz a'.f dg (l//tml//m Wzml//m) \%
y? aN,., y'? dN, dN, »? an,
+ —(— 4 + s
I { ( e Y'Yl r —L WV +VaYs) ( T Yyiwe
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i Age
1., (m,n) = pT lwivl +wivt +wiviy+2vivi]
6ol .
+ 5’; = lwiwi -ivl vvivi)vwivi]

.
+ ”]—0" lwiwi vwivi)+Wivs +wiwi)-wivl +vwiwd) -wiwt +wivl)]

+ % lyiawi - wiws vwiwi+aviv]
=28 Dyl it + vl i e B sl v v v

+30 Jlwi -wi i+l )+l +wi Wi -wi e vl —wivt —uiyl s auiut))

Ly Oy = [ wrwrdv=[ (Nyi, + Ny XNl + Ny + Nl + Nt v
=J.Qil//i;(NlN3l/lli +N1N4'//31 +NIN5‘//z‘i +N1N6‘//;)dv
+J.Q '//;n(NzNﬂ//xi +N2N4V/ii +N2N5'//zi +N2N6W31)d"

Iy (mm) = | wlyldv= = :5 i vl + 3000 + 9w - 20 07)

vyt low +20 ) +21y7 - 30,50 )|

i m, n Age
Iy (mmy = [ ylyldv = % 156w+ sdlw i, +viwi)+ 156w

v 220 flwiwi +wiwi) -yt vwiwi | 13 lwivi +vivi)-live +viw?l)]
+0ayiyl -3t +wiwl )+ 4wty

5.0)I, =jQpZEdv

0 -w v |0 -w v —(vWw+ww) uv uw
ee=|w 0 -ualw 0 -u|= av ~ (i + vow) W
v @ 0l-v u 0 aw vw — (Vv + 1)

Similarly, /-, can be defined as follows:
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I.. =
-d" | (! +v.w Mva a’ [yl dv o’ [y
pl @ | wld -d [ (ypl +y ] iva o’ [y
L dTJ‘QWquzv.dva a-TJ.Qv/v‘//zdva -a.TIQ(!//”l//Z +Wvl//3.yva
--a'T(IW +IWW)a aT]UVd aTIUWd
= dT]UVa "dT(IWW‘*‘]UU)” aTIVWd
L a'l,a a'l,,a -a’ (I, +IUU)a

For 2D beam, one has:

-a"VVa a'UVi 0
I..=| a'UVa -a'UUa 0
0 0 -a"(VV +UU)a

5.2) Lgy, = [ A Nydv
Since e’ =w'e’ —e" &'

Loow, = IQ p(a)'eT —era)')Nl//dv = Ipr’eTNwdv—IQpeTwWwdv
= w'jﬂpeTNwdv - J.Qpera)’Nl//dv

Nm
Jo, pe"Nydv= [ pe” Ny dv = ;ak Jo, PV v

Nm Nm
= Zakjﬂ‘p(vlukl//uj tY. Y, )d" = Zak '(IUU +IVV)
k=1 i k=1

T

Nm Nm W“k 0
eTa)'=Zak-(//;a)'=Zak- ¥ 0 |=0
k=1 k=1 ,
0 w,
J.Q pe’ o'Nydv =0
Nm
Ieon, =@ Zak '(IUU +1VV)
k=1
If the mode shape is normalized, then I, = w'a”
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BN
53 ey, = | oY N Nydyv

T
V/uk Wuj
Wi NNy, =|v | (v, [=vav, tvay,
01l|o

Loy, =W +1,)

If mode shape is normalized, then I = j.V pv ' N'Nydv =1

TN Ny

6. Loy, = [ PENye

For any arbitrary element:

. 0 0 w, Y Wz " Virm
Z= ak : 0 0 —Wuk Nl// = Wv] WVZ Wva
! VY Vu 0 0 o - 0
Nm 0 0 Y v/“j Nm 0
[Ny =3af o 0 0 -v,|v,|@=Dalp 0 dv
= - ‘//vk '//uk 0 0 = _‘//vk'//uj + Wuk'//xy‘
According to the integration /. in [, , one has:
- 7 1 3 1
Ly =pAl |yl —wi+—L s +—y) ——1 yl
129 p e[Wy(ZOWzk 20 e(/,zk 20W1k 30 erk
3 1 7 1
Y P SRy S A S Sy R
V/y(zol/lxk 30 eWzk 20‘//114' 20 e‘/llk
0
Nm NE
Ly, ) =D"a,- > | 0
k=1 i=]

-1, +1,,

6.1) I, = PENydv

Similarly, one has:

~ Nm  NE 0
Ly, = J.VpeNt//dv= ;ak ,Z=1: | 0 |
-1 VW +1 Vullyy
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APPENDIX 3

INTEGRAL CALCULATION FOR TRIANGULAR ELEMENT

For the iso-parametric constant strain triangular (CST) element, the elastic
displacement and coordinates within the element both can be approximated using the

same polynomial function. The elastic displacement is defined as follows:

u Uy +1uy + QU N
e=|V |=9 &, +nv, +4v; =qu=zN'//kak
k=1
W Sw, + 1w, + (W,
where (u,,v,,w,), (4,,v,,w,) and (u;,v,,w, )are the components of displacements at the

vertices of the triangle element of concern.

E 0 0 n 00 ¢ 0 0
& 0 n 0 0 ¢ 0|= [§I s nl, ¢l j]is the shape function matrix in
0

N= 0
EO00n 00 ¢

0
0
which /; is a 3X3 identity matrix, £, 77 and ¢ are area coordinates, ¥, is the " mode
shape value. g, is the corresponding modal coordinate of the mode shape.
1. 1,, =ijNt//dv

Assuming that the node numbers of the i™ element are N 1, N2, N3, the mode vector

of the ¥ mode for the /" element w,, is defined as follows:

(W, (3N, = 2)

v, GN, - 1)
v, (3N)) !
v, BN, -2)| [V*
Wi = v, GN, - Dp=| Y
RELA ;
w,(3N, - 2) Vi

W (N, =)

[ wi(GN;)

where k=1, 2, ..., Nm, Nm is the number of total mode shapes.

For any arbitrary element, one has:
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1
,
v v v | vl

v,
Nyu=vy=le, nl, a]""|=|gvi+nvi+dvi|=|v!
S| Gva rnvi v v

N

Vi
v, Sy +nv g +4V 5,
[, Nvaav=|, W:; dv=[ &//,Ewwiﬁé’w,z dv
v, SW it +CW 4

In Chapter 6, one has the integration of area coordinates as follows:

Li &dA =Li ndA =L,- {dA = ?; L‘ ész — J'Ainsz _ L' gsz _ §;
A
[, énaa=|, &da = n¢da= =

With the help of such integrations:

” Wi +Vi +W,
fo Nvadv ="t i 4y v | =15,
Wi +wh v,

where 4, is the area of the triangular element, 7, is the thickness of the triangle element

along the local z direction of body fixed coordinate.

Summing up along the entire domain:
NE i
Iy, (k)= I,
i=]

where NE is number of total elements, /,,, is a 3x Nm matrix,

L1) 1, = [ pedv

NE Nrm Nm  NE Nm
I, = JVpedv = Zzak J'Q PNy, dv = Zak ZJ'Q PNy, dv = ZakINq/
i=1 k=1 ' k=1 =l k=1

1.2) 1, = [ pedv
NE Nm

Nm
I, = szkjﬂ pNWikdv:deINy/
‘ k=1

i=] k=1
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1.3) I, = peav

0 -1 1.2
Iy =| 1,(3) 0 10D
=-1.(2) 1.() 0

2.1, = [ prav
x' s b [ZR R
fn, pridy = jﬂi p y: dv, j(f'dv - L,. j ;}?z'dsz - L_ -Z—Z- :édA = L tzdA=t, L:z‘dA
Z
x' x'
v =], 1y v =n], 1y
z V4

For an iso-paramatic element, the coordinates and displacements of any triangle with

thickness ¢ in 3D space can be expressed as follows:

! &, +1x, +6x; X,
= @1“"7/}’2"'@3 2[513 7713 473] Y,
&, +nz, + ¢z, Z,

NI < %

where (x,,%,,2,) , (x,,7,,2,) and (x,,y,2, )are the vertices coordinates of the triangle

of concern, which are given by the meshed finite element model.

NE
L, =ZJ.Q.pr'dv
i=1
NE x’ NE &, + 1%, + & 2 oAt X, +x, +X5
=Z’i_[4p y’ A:Ztin @1+7D)2+6/3 A:Z—% VitV +ty;
= A ; i i=1

- _ =1
’ z ' &, +nz, +¢z, z,tz,+z;
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21) I, = pF'dv

0 -3 L)
L=l 1,3 0 -1
-1, LM 0

0 '—Z’ yr 0 _Zr yr _yr,? _Zr.? xyr xlzr
;;r;r — Z' 0 _xr Z, 0 _xr — _er __ZIZ y'Z,
__yr X' 0 _yr i 0 sym _xfz _ 4,12

jQ' px'z'dy, = L, x' j 33 pe'dzdxdy = L, o't Zdxdy =1, L{ px'Zdxdy

=1, [, P&+, + e N, + e, + 2 Yy

A t,
=£I—"2t—'~[(2x,z, +x,2,+x,2;)+(X,2, +2x,2, +x,2;)+(x;z, + x;2z, +2x3zj)]

A t
= '012 [(xl +X,+x; 0z, +2,+z;)+x,z2, +X,2, +x323] I,
Similarly:

, B40,12 , 3 z+1,/2
j' pz' adv, j‘ I_” pz' dzdxdy = J‘ v— dy=L (z t + ]dxdy
z-;12 ’
At .

—tj pzzdxcbz+——j pdxdy = p61 Lzl +zi+zi+z,2,+ 2,2, +2223)+p;1’2t’ =1,

1t pAiti i
J;) ox'y'dv, =:——1—5—[(x, +x,+ X))y, + Y, +y;)+X,y, +X,Y, +x3y3].——_-1Xy

PAL;

PR CRSRS D OREAESESAIES RS EA LI

fgipyzdv, =
At .
Llpx’zdvi =%[(x, +x, +x,) +x} +x3 +x32]s Il

J.Q‘_P)dei pj"[(yl+y2+y3) +y, +y2+y3] ]1
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NE —1;}_—1;_, IJlry [)ia

[;:’;r' = —I)ch _I:' I:"
; - l.“ i
sym -1, -1,

4. I =J‘V per'dy

For any arbitrary element:

Nem Nm Yk
ezNV/iazzak'NWikEZak‘ Yy |»then
k= =
] k=1 .,
N 0 —ka y/vk Nm

E=Zak' Yok 0 Y Ezak";/v
_va Wuk 0 !

Y VY 0 J»" x 0

~Z'YW V'V X' W X' W
= y'l//uk - z"//wk - x,'//uk yll//wk
'Y Z'Wy ~ XY=V,

According to the terms in the integration /..., one has:
4 pAiti i
_“Q oy v = R [(x1 X, T X )(V/iic +YR W)+ X Wiy + XWh + X ] I,

! p i I
Llpy y,dv= [(y, LIRS (7R RS A NSRS R ES IA i

! pAI i i
L 'y, dv= 12 [(21 +z, +23)('//,k 'H//xk +'//1k)+21w:k +Zz‘/’zk +Z$W:k] I,

’ pAiti i

jﬂ, o'y dv = [(xl +X, +x3)('//5¢ “H;Vi +'/’xi)+x1§”xi +x2‘//:i +x3l//,i]-3 I,
J‘ dv p i 1 [( ] i
'y, VitV v Y)W AV v W) F Y YW+ v =1

i

, AL,
L_ PRy, dv = %[(21 +2, +2,) Wi Wi TV W 2 +Z3W.i]5 I,
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pAL,;

5 6, + 3, + 2,003 +wl vl +xwl +xwt +xpll=1,

IQ, Y v =

: PAL, ;
fo »'v.dv = —E—[(y, IR (R R AR T S R N 7 T

’ pAiti i
J.Q /szwdvz 12 [(21 +Z2 +zj)(‘/’ij( +'//I6k +'//3()+21!//;; +22!/jii +z3!//i£l’c]EIZW

MEYINES I, I,
I G3(k=1)+1:3k) = ZJ P Fldv = Z I, -1 -1 I,
L I, -1, -1,

ZakZI‘le//,krdv Zak e 3k —1)+1:3k)

4.1) I = | preay

. T o~
Since (Fe¢)’ =¢"#7 =&F ,onehas: I, =L,

er

NE Nm

42) I, =Ipé?’dv ZZakJ. PYNF'dv= Zmaij PYNT'd

i=l k=1 i=

Zak oy (3= 1)+ 1:3k)

4.3) Ly, = jy OF' &' Nydy
Since F'&' =ar'" -r'" '
raNy = J.V PF'&'Nydy = J;/ p(a)'r’T - r'Ta)')Nwdv =w'IV pr'" Nydy - IV or'" o'Nydy

For an arbitrary element,

j‘Qipr'TNt//dv
7 W Wi - Wonn

=IQ,_P YNV Ve Vo dv=[1;j;+1;i+12’fv Ij,"”‘"+1;:"”'+1zf\;mi]
i W Va0 Vow
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1T
FTa'y (k)
M7 ' ' [ '
x Cox Wuk Wuk X ‘//uk y '//ulr ¥4 ‘//uk
_ ’ ’ - ot [ "t RPN ’ ' ' ' '
- y w_v 'Yllvk -(a)xx +wyy +a):z !//vk _a).x X l)[/vlc +a)y y ‘//vk +a)z ¥4 y/vk
’ ' ' [ '
z D, | ¥k Yk XV YV Z Y
i i i
Ixu I_vu ]zu
T AN ] i ’ i ’ i
'[Q!pr oNy,dv=w |1l |+o,|l, |+o]|l,
i i i
wa Iyw Izw
e PN PN PN
Ligny =@ 1y, =0 d .y~ d o —@ I
i i
NE NE I’W NE I-V"
. - i i i . - i . — j
where 1, (k)= L, +I, +1L, 1., GO=2|1,1, L., GKH=3|I,|
i=/ i=] I,' i=] I,'
xw w

i
zu

NE A
Loy, G =21 L,

i=1 i
Izw

4.4) Iy, = [ pF'Nydv

0 -z Y lw.,| |[-Zy.+)Vvy,
ryyk)y=| 22 0 -x'|y, |=| 2v,~xy,
__yl xl 0 W‘v _y'wu +x!'//v
—I,+1,,
NE ) N
I?'NV/(:’k) = Z Izl'u —I;'w
i=] i i
-1, +1,
5.1 = | peedy
0 -w v [0 -w v -’ +wh) vu wu
ee=\lw 0 —-ullw 0 -u|= uv -’ +w) wy
-v u 0 j-v u 0 uw vw -’ +v%)

Nm Nm Nm
k T k T .
Letu=Y whia, =ya,v=>Y yla, =y aand w=>) yia, =y]awhere Nm is the
k=1 k=1 k=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



205

number of mode shapes used to approximate the displacement field, ' *, w* and ! are

the x, y and z components of the A eigenfunction. a, (t)is the corresponding modal

coordinate. One then hasuv = (y/uT a)T (er a)= a’ (y/uy/vr )a In doing so, one can obtain the

mass moment of inertia term, /; as:

~a"(yw! +ywlh a'y,yla a'wyla |
Iy =] peeav=p| ~a"(y ]ty ylh a'ywla v
sym. ~a"ly I vl h
~a" [ ply ! +y,v iva a" [ py,yldva a’[ pyylda
= ~a"{ ply,w! +y,wl)iva a"[ py,yldva
sym. -a" [ plywl +vw] Jiva

Each term in the above equation can be calculated separately. The details are as follows:

Tyy EPL‘//uWquV

v, v, wwl o wwwlm
2 2 2 2 Nm
‘//u 2 m Wul//u T l//ul)”u
=17 el vl o wim =g . S
al o . :
w sym. Vo e

Ly Ommy= [ wividv=[ (o, +nwi +swi Nawi +nw +ow] v
_ 14, [ 1 4 7 7 4 7 I, 4 4 7 7]
T Win Wi T Wi W+ W, W) HW LWL F VLWL W LW,

Iy =p[ vy dvdv

v, v, Wl o
'//3 1 2 Nm '/’3!//3 ’/’:'//va
:J‘ . (‘/’v l//v P l)(/v pv:pjv . :
N ) . :
w" sym. vy

Ly (mmy=[ wrwidv=[ (Gui, +owi +ow vl +nwi +owl v
4, [ ! 4 7 2 5 8 12 4.5 7 8 ]
- ‘7—2” (v/im + Wim + .//im )(Win + Win + Win) + ‘//im'//in + y/imWin + '//im'//in

Iy =p| wwidv
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V. W, Ve o wlwln
Ve l(1 2 Nm wave o v
:I . (Wu WW e !//u }fv:pj u w ) u‘w v
Q . Q t. .
po sym. wi

Ly (mm)= [ yiyldv=[ (vl +nvi, + vl Naws +nwi +cvi v

14
=0 (i +vi + vl Wi+l +ul) +wivl vwivt vyl

Ly =p[ wyldv

v, v, vl o v

2 2.2 2. Nm

WV m v v oo v v
=17 v vl =gl oy
3 J A

w," sym. v,y

Ly Ommy= [ wrwidv=|[ (Gl +nvi, +owi Newl + vl + vl
_ 4 [ 2 5 8 2 5 8 2.2 5.5 8, 8 ]
- 7_2_ (Wim + !//im + V/im )(V/in + Win + l//in) + Wim‘//in + '//im')[/in + Wimv/in

Ly =p| yidv

v, W, WL o v
ol s - 70 N e
=I : (‘//w ‘//w Ww pv:pJ’ viw . v:w
o J . :
p sym. y

Ly (mmy=[ wryidv={ (Gu?, +nwi, +sul vl +nvl + o v
_tfi[ 2 5 8 N1y 3 6 9 2.3 5.6 8 9]
- 12 (W:m + Wim + ')Ilim )(l//in + ll(',in +¥/in) +v/iml//in + Wiml//in + '//ime

L =p[ v v

v, v, WL o wlpl”
2 2.2 2. Nm
WW m WMWW tee WM’WW
=[177 el Wl i hv=pf 3 Ty
o J . :
v sym. v v
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Liw(mmy=[ yrwidv=[ (&wo, +nwi, +owi s +nul +oul v
_H, [ 3 6 9 \g 3 6 9 3.3 6.6 9.9 ]
=T Win ¥V i T V)W Vo W) F VW W W VLY,

5.1).1, =J’Vp5e~dv

0 -w v [0 -w v - (w+ww) uv uw
ee={w 0 -u|lw 0 -ul= uv — (uu +ww) YW
-V u 0|-v u 0 uw vw — (v +uu)

Similarly, /;, can be defined as follows:

I.. =
o r r T T 1. T T 4 .
-a _[Q(WVWV Ty )lva a jﬂy/uwvdva a ,[Q%Wwdva
P ‘iTL‘/’ W dva -dffg(w,,t//u’ +y ! iva a’ jngwgdva
dTJ'Ql//ul//ﬁdva aT'[Qwvw,fdva 'dTIQ(WuWZ +y ! )dva
-dT(]VV +IWW)“ aTIUyd aTIUWd
= dTIUVa 'dT(IWW +IU(]M aTIVWa-
dTIUWa dTIVWa 'dT(IVV +IUU)a

52) Lgy, = | PEGNydy

Since €@ = w'e” —e '

Lisw, = | plo'e” -7 o' Wydv = [ po'e™ Nydv- [ pe” ' Nyav
o[ v [ e

Nm
J, pe"Nydv=[ pe" Ny, dv= ;ak Jo, PV gy

Nm Nm
=ZakJ‘Q p('//uk‘//uj i/ +‘//wk‘//wj)dvzzak '(IUU +1y, +IWW)
k=1 ' k=]

If the mode shape is normalized, then (I vo T +1yy ) =1

T

'
Nm Nm Vo @y Nm
r_.r__ T _.r__ [ . ' ’ l
e’ =Y a yro' =Y a, | vy | |0 =Y a, {0y, + o, +oly,,)
k=1 k=1 ] k=1
ka a)z
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jﬂ, pe’ o'Nydv = J-Q,' pe’ ' Ny dv

Nm l//"j Nm W"j Nm Wuj
— ’ ’
- a)x kz ak J.Q v/uk ‘//\«j + a)y kZ ak .[Q va u/vj + a): Z ak J;} V/wk ‘//Vf
=] ' =] i k=1 i
an l//wj ij

NE I‘,{U NE I‘IfU NE 1;?’”
Ifrw'NWX(:,j,k) - ; IUV ’ Ierw'Nu/y(:,J’k) B ,Z:; IVV ’ Iera;’Nya (:’J”k) = ; IWV
Ty Tyw Ly

where j,k=1, 2, .., Nm
Ly = [ woawydv=[ (G +nui+cwiNewl +nv; + oy v
_f{!_i_[(j_{_ Sy Yyl vyl + 8)+32+65+98]
- 12 ‘//ik '//ik V/ik Wy !/,ij '//y l//ikWij !//ik'//ij l/likWij
Ly = [ wawgdv=[ @ui+nul +owi New, +nv) +ow] v
_fé_,-_[(s_l_ Syl ! + 4+7+31+64+97]
=7 Wa W W)W, +W, W) H W W+t
Ly = [ wawgdv=[ (&wi+nwi+awiew)+nv) +ow) b
_tfi[(z_l_ L 8)(1+ ‘., 7)+21+54+87]
= 12 Vi TVu TWa )W, TV, YW ) TRV YWV YVaY5
1., 1, ,and 1}, have been defined in the term of I;.

r Nm Nm Nm
-“Q/x a)Nde = a)x;aklermww + a).";akle'm'l‘/wy + a)z;aklermwv/z

Nm Nm Nm

Nm
P . NG PN PN
IE(T'WW =w Zak (IUU + IVV + IWW) @, Zaklerw'Ny/x C()y Zal‘ Iefm'Ny/y a)z Zaklzra)'Nw
k=1

k=1 k=1 k=1

If the mode shape is normalized, then

Nm Nm Nm
— AT ! '
]E‘T"N‘/’ =wa a)x Z ak IeTmNWx a)y Z ak IeTmey a)z Z ak IeTmNu/z
k=1 k=] k=1

T T
S3) 1 ryry, =jV oy NT Nydv
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T

Wuk Wuj

Wi NNy, =|wv, | v, |=vav, +vaw, +v.v.,
l//wk Wuj

Ly, =y + 1y + 1)

. . _ TNT -
If the mode shape is normalized, then 7 VNN IV pv N Nydv=1

6.1y, = jy peNydy
Nm 0 - l//wk va Wu] W:«Z tr WuNm
€=,V 0 -y,| wy=Ny=iy, v, - ¥,
k=1
- V/vk V/uk 0 le WWZ e ’//wNm

Nm 0 - l//wlt V ok v/uj
[ #vidv=Yal pAlv. 0 -vaulv, |
i Py i
- y/vk l//uk 0 (//\gj

kaWug +V/vky/w1 Nm _I;VV +I'
- Zak J‘Q P l//wkl//uj ‘//ukWWJ dv= Zak ];VU 11
k= i i
VW VLY, Y=Ly + 1
Ly s Ly » Iy aredefined in Iy, Iy, 1y, Iy, have been defined in the term of /4y,
el =D +
eNy/( J’k) Zak Z I;VU-IZJW
k=1 i=1 i i
-1y, +1,
6.1) I,,, =[ PeNyav
Similarly:
-1, +1,,
NE ) .
eNn//( J’k) jpeNde Zak Z ];VU—.IIIJW
-1, + 1,
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