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ABSTRACT 

ALTERING NITRIC OXIDE BIOAVAILABILITY AND LIPID PROFILES IN 
ENDOTHELIAL CELLS BY POLYCYCLIC AROMATIC HYDROCARBONS IN 

PARTICULATE MATTER 

Liang Yu 
Old Dominion University, 2011 

Co-Directors: Dr. R. James Swanson 
Dr. H. Anna Jeng 

Epidemiologic studies have demonstrated a significant association between 

exposure to particulate matter (PM) and atherosclerosis. Polycyclic aromatic 

hydrocarbons (PAHs) present in particulate matter, are well known to induce oxidative 

stress and lipid peroxidation via generation of reactive oxygen species (ROS). Lipid 

peroxidation involves regulating endothelial nitric oxide synthase via inhibition of its 

activity, and as a result, mediates dilation of coronary arterioles is involved with the 

pathogenesis of atherosclerosis. However, data on assessment of oxidized lipid 

formation is limited due to low resolution of mass spectrometer methods. Taking the 

advantage of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-

MS) with 12 Tesla at Old Dominion University, this study assessed how lipid 

peroxidation induced by PAHs altered the lipid profile and nitric oxide level in human 

endothelial cells. 

Human coronary artery endothelial cells (HCAEC) were exposed to PAHs with 

various doses and treatment duration times. After exposure, the level of ROS was 

measured using the fluorometric method with a flow cytometer. Lipid peroxidation was 

assessed based on the formation of malondialdehyde. Nitric oxide synthase was 



calculated using a cell-permeable diacetate that reacts with NO to form a fluorescent 

triazolofluorescein. Then, lipids of HCAEC were extracted by chloroform and methanol 

and analyzed using 12T FT-ICR-MS to separate peaks. 

After PAH exposure, cell morphology noticeably changed, granularity increased, 

and viability decreased after the short term treatment. The ROS level, expressed as 

fluorescent intensity readings from a flow cytometer, significantly increased along with 

the malondialdehyde levels. The analysis of spectrum data from FT-ICR-MS showed 

changes of the cellular lipid profile in the exposed groups as compared to the control. 

We found no significant impacts of oxidative stress on nitric oxide bioavailability in 

endothelial cells. However, direct exposure of HCAEC to PAHs increased lipid 

oxidization. These data imply that PAHs may mediate nitric oxide synthase activity 

through lipid peroxidation by a mechanism yet to be elucidated. These studies 

demonstrate one potential means by which oxidative stress can induce endothelial cell 

damage and lipid peroxidation during atherosclerosis for a short term exposure. 

In conclusion, the oxidation pathway induced by PAHs contributed to endothelial 

cell damage. This study identified lipids and developed novel data analytic approaches 

that are applicable in revealing oxidative lipid formation induced by PAHs. In addition, 

the technology enables us to identify specifically oxidized phospholipids that could serve 

as biomarkers in assessing PAH-induced endothelial dysfunction and the underlying 

mechanism. 
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CHAPTER I 

BACKGROUND, SPECIFIC AIMS, SIGNIFICANCE 

BACKGROUND 

Particulate Matters 

Airborne PM is grouped with diameter sizes range from nanometers to 100 urn. 

Particles between 10 and 2.5 um are classified as coarse (PMio), between 2.5 and 0.1 um 

are classified as fine (PM2.5), less than 0.1 um are classified as ultrafme (UFP). Exposure 

to PM is an important public health issue because of its association with cardiovascular 

mortality and morbidity (Pope and Dockery 2006; Laden et al. 2006; Woodruff et al. 

2008). Cardiovascular incidents from PM exposure have increased emergency room use 

(Schwartz 1999, 2001). Also, the number of PM-associated deaths from cardiovascular 

disease (CVD) equals or exceeds the number of such deaths from respiratory causes 

(Peters et al. 1997). More recently, Miller and his colleagues found a 76% increase in 

cardiovascular mortality for every 10 ug/m3 rise in the annual average of airborne fine 

particulate matter (Miller et al. 2007). Chronic exposure to PM2.5 and UFPs increased the 

severity of atherosclerotic aortic lesions in Watanabe rabbits and apolipoprotein (apo) E-

null mice (Chen and Nadziejko 2005; Sun et al. 2005). In human studies involving 798 

residents of the Los Angeles basin, Kunzli et al. found a 5.9% increase in the carotid 

artery intima-media thickness per 10 ug/m increase in ambient PM2.5 (Kunzli et al. 

2005). 

Some studies showed that the toxicity and the carcinogenicity of PM are related to 

their size, represent their capabilities to penetrate into the gas-exchange region of the 
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lungs (Brown et al. 2001). Churg and co-workers found that the adverse health effects 

appear to correlate better with PM2 5 than with PMio concentration (Churg and Brauer 

2000). Moreover, electron microscopy analysis showed that 96% of the effectively 

retained particles in the lung parenchyma were PM2 5, while only 5% were ultrafine 

particles (Churg and Brauer 1997). A study, investigating the association between air 

pollution and cardiorespiratory health during the winter of 1998-1999 in Amsterdam, the 

Netherlands, concluded that PM2 5 was more strongly related to cardiorespiratory 

symptoms than PMio and ultrafine particles were (de Hartog et al. 2003). 

The importance of the effects of smaller particles on health is recognized by 

scientific and regulatory communities. The Environmental Protection Agency (EPA) 

initiated routine monitoring of PM2 5 and established new standards for PM2 5 under the 

national ambient air quality standards (NAAQS) in 1997 (EPA 1997). Furthermore, a 

recent World Health Organization report from panel studies suggested that fine particles 

(<2.5 um) are more hazardous than coarse particles in terms of mortality and 

cardiovascular endpoints. More importantly, additional research is needed to establish 

the link between ultrafine PM exposure and risks to health in a more accurate and precise 

manner (WHO 2003). 

To date, there is limited data elucidating biological mechanisms between PM2 5 

exposure and acute events of cardiovascular disease. Thus, this proposed study's aim is 

to confirm the toxicity effects of PM2 5 and assess whether polycyclic aromatic 

hydrocarbons (PAHs) is a major component contribute to cytotoxicity in endothelium in 

relation to pathogenesis of cardiovascular disease. 



3 

Polycyclic Aromatic Hydrocarbons 

The use of diesel engine powered vehicles has been increasing in all over the 

world with an increased need for transportation, and hence proportional higher indexes of 

air pollution (Sydbom et al. 2001). Diesel engines emit more nitrogen oxides and 

particles than gasoline engines though they offer better fuel efficiency and lower 

emissions of carbon dioxide (Hesterberg et al. 2006). Fuel combustion and diesel engine 

powered vehicle are the primary source for PM. The respirable diesel exhaust particles 

(DEP) provide a good absorption surface for incomplete combustion derivatives of diesel 

engines, on which an estimated 18000 different organic compounds such as PAHs, nitro 

aromatic hydrocarbons, heteocyclics, quinones, aldehydes, and aliphatic hydrocarbons 

(Salvi and Holgate 1999; Bai et al. 2001). Among them, article-bound PAHs are one of 

major chemical components of PM and have been evaluated as potential carcinogens and 

mutagens and precipitate the development of several diseases (Kavouras and Stephanou 

2002). 

PAHs are a group of over 100 different chemicals. Pure PAHs usually exist as 

colorless, white, or pale yellow-green solids that are formed during the incomplete 

burning of coal, oil and gas, garbage, or other organic substances like tobacco or 

charbroiled meat. Structure of representative PAH compounds are showed in Figure 1. 
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Figure 1. Structure of PAH compounds (EPA 2008). 

The United States Environmental Protection Agency (EPA) has designated 16 

PAH compounds as priority pollutants. They are naphthalene, acenaphthylene, 

acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [&]flouranthene, 

benzo[a]pyrene, dibenz(ah)anthracene, benzo[g/zz']perylene, and indeno(l,2,3-cd)pyrene 

(Lunch 2005). The 16 EPA priority PAHs are often targeted for measurement in 

environmental samples. Although the health effects of individual PAHs are not exactly 

alike, the Agency for Toxic Substances and Disease Registry (ATSDR) has issued a PAH 
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profile as a group for their carcinogenic mutagenic and teratogenic properties. (ATSDR 

1995). The Occupational Safety and Health Administration (OSHA) have set a limit of 

0.2 milligrams of PAHs per cubic meter of air with the consideration to protect workers' 

health. The OSHA Permissible Exposure Limit for mineral oil mist that contains PAHs 

is 5 mg/m averaged over an 8-hour exposure period (Rothberg et al.). The National 

Institute for Occupational Safety and Health (NIOSH) recommends that the average 

workplace air levels for coal tar products not exceed 0.1 mg/m for a 10-hour workday, 

within a 40-hour workweek (ATSDR 1995). 

Oxidative Stress 

Oxidative stress is a general term that characterizes the imbalance by an increase 

in pro-oxidant species and/or a decrease in anti-oxidant defense that occur during 

oxidative metabolism in biologic systems. Oxidative stress has been suggested as a 

major mechanism in biological effects induced by PM (Cruts et al. 2008; Li et al. 2008). 

Human studies have associated increased systemic oxidative stress with exposure to 

PM2.5 with elevation in plasma levels of thiobarbituric acid reactive substances (TBARS) 

of 28 nonsmoking seniors (Liu et al. 2009). This result is in agreement with earlier 

reports of increased serum TBARS in association with PM2.5 (Sorensen et al. 2003). 

Experimental animal work brings support to the causality notion. Gong has reported that 

exposure to the PM2.5 and UFP led to increased hepatic lipid peroxidation, accompanied 

by a higher up regulation of Nrf2-regulated antioxidant genes in the mouse livers (Gong 

et al. 2007). 
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PAHs have been speculated as one of the components of PM inducing oxidative 

stress. In humans, the PAHs biotransformation process begins with a cytochrome P450-

mediated epoxidation of the chemical to become electrophilic intermediates (Georgellis 

et al. 1990). These reactive intermediates are then capable of engaging in redox cycling 

and produce reactive oxygen species (ROS). 

ROS are cellular oxidants which include free radicals such as superoxide (O2O? 

hydroxyl (OH-) and peroxyl (ROO-), as well as non-radical species such as hydrogen 

peroxide (H2O2). These oxidizing species are common by-products of several cellular 

processes including aerobic metabolism, fatty acid oxidation, cytochrome P450 activity, 

and the respiratory burst of immune cells (Wiseman and Halliwell 1996). Radiation 

exposure can also lead to the formation of cellular ROS (Limoli et al. 2001). 

Cells can posses a number of antioxidant defense mechanisms to protect against 

the constant generation of ROS, including non-enzymatic scavengers such as glutathione, 

uric acid, ascorbic acid and a-tocopherol, as well as the enzymes superoxide dismutase 

(SOD), catalase (CAT), and glutathione peroxidase (GPx). In addition, proteins such as 

transferrin, metallothionein and ceruloplasmin may act indirectly as antioxidants by 

sequestering transition metals responsible for the generation of hydroxyl radicals 

(Salganik 2001). The fact that all ROS would be completely removed by these 

antioxidant defenses, indicate that ROS may play an important role in cellular functions 

and that antioxidants exist primarily to maintain a steady state of ROS (Sanders 2005). A 

study of particulate pollutants showed that UFP, collected in Los Angeles area, were used 

to study the generation of ROS which caused oxidative stress in macrophages and 

epithelial cells, and in turn induces pulmonary inflammation. This result confirmed that 
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UFP induced GSH reduction and resulting in cell toxicity (Li et al. 2003). Therefore, in 

the event that ROS greatly exceed the antioxidant capabilities of the cell, either by 

increased generation of ROS or decreased capability of antioxidant defenses, a condition 

termed oxidative stress results (Davies 2000). 

ROS plays a critical role in endothelial activation and potentially cause 

endothelial dysfunction. Endothelial cell death or injury may contribute to the initial 

endothelial physiological processes, such as angiogenesis, atherosclerosis, and 

thrombosis. Previous studies have indicated that the vascular endothelium was sensitive 

to ROS that can cause cell damage and death. PMio and PM2.5 from Mexico City were 

reported to induce endothelial activation and result in alternation of ROS and apoptosis in 

human umbilical vein endothelial cells (Montiel-Davalos et al. 2010). 

Lipid Peroxidation 

ROS is capable of oxidizing damaging macromolecules, including DNA proteins 

and lipids (Burcham 1999). A study conducted from the coke oven workers showed that 

chronic exposure to PAHs may induced oxidative stress and lipid peroxidation in blood 

serum (Jeng et al. 2010). This association between PAHs exposure and oxidative stress 

was supported by the measurement of molodeadhyde that was accessed as the parameter 

of lipid peroxidation among 120 school children (Bae et al. 2010). 

Lipid peroxidation causes bioactive lipid peroxides formation, which can further 

oxidize other macromolecules including other fatty acids within membranes (Meerson et 

al. 1982). Oxidized phospholipids can also initiate and modulate many cellular events 

that attribute to atherosclerosis, which suggests oxidized phospholipids would serve a 

biomarker for cardiovascular diseases (Ashraf et al. 2009). Polyunsaturated fatty acids 
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play a role of frequent targets of ROS and their susceptibility to oxidation increases with 

their degree of unsaturation (Mates and Sanchez-Jimenez 2000). Long chain PUFAs with 

more than five double bonds are at greater risk of oxidation than PUFAs with fewer double 

bonds, such as linoleic acid. Therefore, lipid peroxidation increases particular concerns 

within cellular membranes when peroxide propagation is not terminated by antioxidants, 

which can result in large-scale damage to the membrane. Recent studies demonstrated that 

lipid peroxidation play an important role in the activation of endothelial cells. For example, 

Ashraf detected two specific phospholipids, l-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-

3-phosphatidylcholine (POVPC), and l-palmitoyl-2-glutaroylsn-glycero-3-

phosphatidylcholine (PGPC) that were involved with the activation of endothelial cells 

cells (Ashraf et al. 2009). Also, a study assessing oxidized low-density lipoprotein 

(oxLDL) indicated that lipid peroxidation decrease NO bioavailability which mediate 

dilation of isolated coronary arterioles (Hein et al. 2000). Subsequent studies confirmed 

the effect via inhibition of the activity of eNOS. (Uittenbogaard et al. 2000; Shaul 2003). 

Phospholipid changes induced by lipid peroxidation yield a large number of 

oxidation products with different structures, which difficult their isolation and 

characterization (Domingues et al. 2008). Mass spectrometry using the ionization 

methods is becoming increasingly important in the study of oxidized lipids. Particularly, 

ultrahigh resolution techniques such as electrospray ionization (ESI) coupled to Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) have significantly 

advanced the knowledge of lipid identification and lipid profiling. 

Endothelial Dysfunction 

The primary mode of entry into the body is through the respiratory system; 
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however, the greatest public risk from the air pollution is due to cardiovascular disease 

based on the epidemiological data (EPA 2004). An increased incidence of adverse 

cardiovascular events has been reported in subjects with impaired endothelial function 

compared with subjects with vascular changes, such as decreased vasodilatation, 

development of prothrombotic and proinflammatory states and smooth muscle cell 

proliferation, all of which contribute to the formation of progression of chronic 

atherosclerotic lesions (Bonetti et al. 2003; Libby et al. 2002; Widlansky et al. 2003). 

Aging, hypertension, atherosclerosis are important risk factors of stroke and 

cardiovascular diseases and seem to be associated with endothelial dysfunction 

(Schneider et al. 2008). 

The vascular endothelium is important for maintaining vascular homeostasis, 

which provides a barrier between the circulation and the surrounding tissues and 

contributes in several ways to the local regulation of vascular tone by producing relaxing 

and contracting factors. It is known that PM result in increase of ROS in endothelium 

(Montiel-Davalos et al. 2010; Delfino et al. 2005). It is also known that ROS reduce 

nitric oxide (NO) bioavailability and cause endothelial dysfunction that result in many 

non-PM induced cardiovascular diseases (Ohtani and Egashira 2004; Bitar et al. 2005). 

In general, PMio can enter the upper large branches of the lung, while smaller particles, 

such as PM2.5 can enter the bronchial tubes and penetrate deep to the alveolar portion of 

the lung. The solvable PM2.5, such as PAHs, as well as UFPs may reach the 

cardiovascular vessel through blood circulation, in which highly reactive ions or 

molecules known as ROS are produced. Because of the presence of unpaired valence 

shell electrons, ROS are easily attack biological targets that include protein, lipids, and 
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DNA. Figure 2 shows that PM-derived ROS may play a critical role in endothelial 

activation and potentially cause endothelial dysfunction. 

NO, an endothelial-derived relaxing factor (EDRF) is believed to be associated 

with endothelial dysfunction. Lack of NO can increase blood pressure and decrease 

coronary flow. On the other hand, excess of NO can cause irregular heartbeat. NO is 

synthesized endogenously from L-Arginine by various NO synthase (NOS) and released 

to smooth muscle cells to regulate vascular relaxation (Figure 3). In the heart, endothelial 

NOS (eNOs) is the major form of NOS (Stewart et al. 2009) and is expressed in cardiac 

myotytes (Samii 2003), suggesting that eNOS is of importance to regulate NO synthesis 

in the cardiovascular system. 

Alveolar Space 

Erythrocyte 

Monocyte 

Proinflammatory factors: 
\ T N F - * , IL-1B, IL-8, etc. 

Figure 2. Systemic effects after PM exposure. 

file:///tnF-*
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Though the mechanisms as how PM cause CVDs are not fully known, several studies 

have demonstrated that PM can independently cause CVDs in both in vivo and in vitro models 

(Polichetti et al. 2009). Figure 4 illustrates possible mechanisms related to PM induced CVDs : 

1. The exposure of PM to the epithelial cells initiates oxidative stress and 

inflammation by the generation of ROS. The derivatives of the inflammatory 

cells may enter the cardiovascular system through blood circulation. The damage 

of the tissue may sicken the patients with previous cardiovascular diseases. 

2. PM2.5 and ultrafine particles can directly pass to the cardiovascular vessel 

and contact or penetrate the endothelial cells. These PM can generate ROS, lipid 

oxidation and alter the NO bioavailability. Such endothelium dysfunction causes 

hypertension and other cardiovascular diseases. 

3. PM may directly impact the autonomous nervous system and as a result, 

cause cardiovascular diseases. 
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VASCULAR SMOOTH GC 
MUSCLE CELLS ^**~~ ~ ^ ^ 

GTP cGMP (a second message) 

I 
Vascular tone regulation 

Figure 3. Nitric oxide biosynthesis. 

The second mechanism listed above on the PM-induced endothelial dysfunction 

was the focus of this study. The related topics are marked by the shaded boxes in Figure 

4. In the cardiovascular disease risk group, studies have shown that the endothelial 

dysfunction is usually caused by the increase of ROS, which can generate lipid 

peroxidation, oxidize NO and uncouple eNOS (Desjardins and Balligand 2006). 

Schneider demonstrated that endothelial dysfunction, including flow-medicated dilation 

(FMD) and small artery elasticity is associated with the depletion of NO bioavailability 

as well (Schneider et al. 2008). Furthermore, the generated lipid peroxidation can 

directly interact with NO (Rudolph and Freeman 2009; O'Donnell and Freeman 2001) or 

impair the eNOS activity to further alter NO production (Samii 2003; Rajagopalan et al. 
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2005). Rajagopalan hypothesized that PM may follow the same pathways as those 

demonstrated in the cardiovascular disease risk group to potentiate the cardiovascular 

disease (Rajagopalan et al. 2005). However, very limited studies have been conducted to 

confirm the hypothesis that ambient PM and its components do affect NO bioavailability. 

Thus, the hypothesis motivates this study to place its focus on the pathways of PM 

derived NO bioavailability. 

Inhaled PM 
from 

Ambient AII 

Pulmonary 
Deposition 

Translocation in 
Blood 

Endothelial cell 
Activation 

Endothelial 
Dysfunction 

Pulmonary 
Oxidative Stress 
mediated by ROS 

Vascular 
Oxidative Stress 
mediated by ROS 

Intercellular 
ROS 

Cardiovascular Disease: 
Hypertension: 

Atherosclerosis; Coronary 
Artery Disease: 

Heart foDure; 
Metabotc Syndrome 

Oxidized Lipids 

V M 7 

Release and 
increase cytokines 
in Blood. IUML-*. 

Systemic 
effect 

MO Biosynthesis. 
eNOS activity 

Homeostasis and 
Clot Formation 

Platelet aggregation: 
Vascular Tone 

Regulation 

Decrease 
Coronary Flow 

Increase Blood 
Pressure 

J ^ SM0KMG < j^ 

•^ STRESS < " 

Figure 4. Hypothetical pathways of PM into cardiovascular system. (Delfino et al. 2005; 
Simkhovich et al. 2008) * represents the related reference in the hypothesis. 
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SPECIFIC AIMS 

The central hypothesis of this study is that through ROS and lipid peroxidation, 

PAHs affected NOS, which in turn altered the biosynthesis process of NO (Figure 5). 

The investigated pathways were summarized as follows. PAHs activated endothelial 

cells, therefore increased intracellular ROS generation, which in turn oxidized lipids in 

the cell membranes and inhibitted eNOS activity. 

Endothelial 
cells line 

(In Vitro) 

Figure 5. Possible PM-mediated Pathways on lipid peroxidation and NO bioavailability 
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To address the proposed hypothesis, specific aims were to: 

• Confirm that PM exposure increased the generation of ROS, which 

resulted in oxidative stress in endothelial cells. 

• Access whether PAHs increase oxidative stress in endothelial cells. 

• Determine alteration of lipid profiling induced by lipid peroxidation. 

• Assess whether PM and/or PAHs affect NO bioavailability by 

determining NO concentration and eNOS activity 

• Determine whether PM and/or PAHs inhibit eNOS catalytic activity in 

relation to lipid peroxidation. 

SIGNIFICANCE 

The findings from this study increased the understanding of how PAHs alter 

endothelial cell function and damage via the pathway mechanism by which cells undergo 

oxidative stress. The results of this study would provide new insights into the 

mechanisms related to PM induced cardiovascular diseases, particularly atherosclerosis. 

On health perspectives, the finding of this study would link air pollution to cardiovascular 

diseases in biochemical terms, which pave a way to further investigate the adverse effects 

of PM exposure. Such knowledge will increase awareness of health risks of ambient 

particles and as a result, make us more sensitive to the control of the emissions and 

compositions of PM. 
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CHAPTER II 

POLYCYCLIC AROMATIC HYDROCARBONS AS THE MAJOR 

COMPOENTN OF PARTICULATE MATTERS INDUCE OXIDATIVE EFFECTS 

TO ENDOTHELIAL CELLS IN VITRO 

INTRODUCTION 

Organic extracts of PM can produce superoxide and hydroxyl radical during 

incubation at 37 °C with or without biological activation system (Wells et al. 1997). 

PAHs in PM are the most abundant non-polar substances in the urban atmosphere and 

have become pollutants of serious concern. After absorption, PAHs are efficiently 

metabolized in many human tissues, especially in the vascular vessels. Alveolar capillary 

endothelium lies close to alveolar epithelium (Bai et al. 2001), thus the inhaled PAHs in 

PM may easily interact with vascular endothelium and blood by producing reactive 

oxygen and soluble materials. 

Currently, there is no available data regarding PAHs toxicity on human coronary 

artery endothelial cells (HCAEC) in order to assess its role on PM-induced 

cardiovascular diseases. This study aimed to evaluate the oxidative stress generated in 

HCAEC induced by PAHs exposure. Specific aims include: 1) investigate cytotoxicity 

induced by PM to confirm its effects observed in the literature; 2) examine cytotoxicity 

and ROS generation in human endothelial cells induced by PM and PAH exposure. 
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EXPERIMENTAL PROCEDURES 

Materials 

A23187 calcium ionophore was obtained from Sigma-Aldrich (St.Louis, MO). Albumin 

standard was obtained from Pierce (Rockland, IL). Apocynin was obtained from Fisher 

Scientific (Pittsburgh, PA). P-Nicotinamide adenine dinucleotide phosphate, reduced tetra 

(cyclohexylammonium) salt was obtained from Sigma-Aldrich (St.Louis, MO). 99.8% 

chloroform was obtained from Acros (Thermo). Cell culture flasks and dishes were 

obtained from Corning (Corning, NY). Cell lysis buffer was obtained from New England 

Biolabs (Beverly, MA) and supplied as 1 OX cell lysis buffer. 8 chamber tissue culture 

treated glass slide was obtained from BD Falcon (Bedford, MA). Comassie protein assay 

kit was obtained from Pierce (Thermo, Rockford, IL). Disel particulate matter was 

obtained from National Institute of Standards and Technology (NIST, Geithersburg, MD). 

Dimethyl sulfoxide (DMSO) was obtained from Sigma. Ethylenediaminetetraacetic acid 

(EDTA) was obtained from Sigma. Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid (EGTA) was obtained from Sigma. Glass tubes, borosilicate (16x100mm), 

were obtained from Fisher. Human coronary artery endothelial cells (HCAEC) were 

purchased from Cell Applications, Inc. (San Diego, CA) and grown in culture at 37°C 

and 5% C02 cells were grown in Medoendo Eell Growth Media. Hank's balanced salt 

solution, calcium- and magnesium-free (HBSS) was obtained from Mediatech Cellgro 

(VA).30% H2O2 was obtained from Fisher Scientific. Homogenizer was obtained from 

Fisher Scientific. H2DFFDA was obtained from Invitrogen. Isopore membrane filters, 

3.0um TSTP and 1.2 um RTTP, were obtained from Millipore (Billerica, MA). 8-

Isoprostane Express EI A Kit (Catalog #516360) was obtained from Cayman Chemical 
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(Ann Arbor, MI). Lactate dehydrogenase (LDH) Kit (Cat.# 04744926001) was obtained 

from Roche. P-Nicotinamide adenine dinucleotide phosphate, reduced 

tetra(cyclohexylammonium) salt (NADPH) was obtained from Sigma. 99% methyl 

alcohol was obtained from Acros (Thermo). Mounting medium for fluorescence with 

DAPI was obtained from Vector (Burlingame, CA). Noo-Nitro-L-arginine methyl ester 

hydrochloride (L-NAME) was obtained from Sigma-Aldrich (St.Louis, MO). 

Polypropylene centrifuge tubes (15ml) were obtained from Corning Inc. (Corning, NY). 

Polycyclic aromatic hydrocarbons were obtained from Restek (Bellefonte, PA). Sodium 

dodecylsulfate (SDS) was obtained from American Bioanalytical. Sodium hydroxide 

(NaOH), ION solution, 30% w/w, was obtained by Fisher Scientific. Thiobarbituric Acid 

Reactive Substances (TBARS) Assay Kit (CatJ 0801192) was obtained from 

ZeptoMetrix Corporation (Buffalo, NY). Total Nitric Oxide Assay Kit (Lot # KGl34678) 

was obtained from Thermo Scientific (Rockford, IL). Triton-XlOO was obtained from 

Fisher Scientific. Trypan blue solution (0.4%) was obtained from Sigma-Aldrich 

(St.Louis, MO). Phosphate buffered saline 10X was obtained from Fisher Scientific. 

PTFE cap and target vials were obtained from Fisher scientific. All aqueous solutions 

and reagents were prepared in deionized distilled water using ELGA Purelab system from 

SIEMENS. 

Cell Culture and Preparation 

Endothelial cells are economical alternative, suitable for studies of endothelial 

functional and endothelial metabolism. Changes in structure and function of these cells 

have been linked to vascular diseases such as atherosclerosis, and hypertension. Human 
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coronary artery endothelial cells (HCAEC) used in this study was isolated from normal 

human coronary arteries from Cell Application (San Diego, CA). HCAEC were grown in 

Mesoendo Cell Growth Medium that is fully supplemented with fetal bovine serum, 

growth factors, trace elements and antibiotics. The cells in culture flasks were placed in 

an incubator at 37 °C with a humidified atmosphere of 5 % CO2. Cells were preserved 

and stored with liquid nitrogen in a cryosystem (Cryogenic locator, Thermo). 

HCAEC was cultured for treatment when cells are about 80-90% confluent. Cells 

were used for all experiments on the passages 5 to 15. Active proliferation cells were 

exposed to fine particle or PAHs solutions prepared as described below. After exposure, 

cells were harvested from cultured flask. This involves removal of media from flask, a 

rinse with Hank's Balanced Salt Solution IX, trysin EDTA IX 0.25 % trypsin/2.21 mM 

EDTA in HBSS addition and Mesoendo Cell Growth Medium addition. HCAEC 

preparation prior to bioassays involves centrifugation at 1092 rpm (200g), removal 

supernatant, followed by HBSS wash twice. Cell count was performed using a 

hemacytometer. 

Particulate Matter Preparation 

Diesel particulate matter (DPM), 2975-Industrial forklift, was obtained from 

National Institute of Standards and Technology (NIST, Geithersburg, MD). The 

certificate of analysis of DPM provided concentrations of PAH (i.e. phenanthrene, 

fluoranthene), the percent of extractable mass, and particle size (Appendix A, Appendix 

B, Appendix C). 
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Since the average particulate size of the DPM was less than the inhalation average 

particulate size established by the American Conference of Government Industrial 

Hygienists (ACGIH), proper inhalation/respiratory protection was employed according 

to the Occupational Safety and Health Administration (OSHA) Respiratory Protection 

Standards 29 CFR Part 1910.134 (Protection. Regulations (Standards-29 CFR)). 

Fine particle were isolated from diesel particulate matter using a multistep 

filtration process to remove particles and agglomerates larger than 3 um. Briefly, diesel 

particulate matter was weighted and suspended in HBSS to reach a concentration of 15 

mg/L. The particulate matter was vigorously stirred; the suspension was sonicated in a 

water bath sonication for 15 minutes. The homogenous suspension was filtered through a 

3-um pore polycarbonate filter. This process moved particles and agglomerates > 3 um 

in diameter. The filtrate was filtered through 1.2 um pore polycarbonate filter once again, 

which removed particles with diameters > 1.2 um. The final filtrate containing fine 

particle was used to treat cells. The particle solution was prepared and diluted 

immediately before cell exposure, and diluted as required. 

Assessment of Particle Size Distribution 

Size distribution of particles was measured by Zetasizer (Nano-series, Malvern 

Instruments). The zetasizer performs size measurements by first measuring the Brownian 

motion of the particles in a sample using Dynamic Light Scattering (DLS), Bronian 

motion is defined as the random movement of particles in a liquid due to the 

bombardment by the molecules that surround them. And then relate this to the size of the 
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particle by illuminating the particles with a laser and analyzing the intensity fluctuations 

in the scattered light. 

Fine particle were prepared and diluted as described above. Size distribution was 

displayed by intensity graph as a higtogram, with logarithmic X-axis and linear Y-axis 

settings. 

Polycyclic Aromatic Hydrocarbons Preparation 

EPA method 8310 PAH Mixture was obtained from Restek Corporation. 

Acetonitrile with composition of 99.1 % was used as solvent. Certificate of analysis 

provided PAH compound and concentration (Appendix D). Ultrasonication was used to 

remove air bubbles or to breakup agglomerates before loading 1 ml of the sample into 

disposable polystyrene cuvettes. The PAH solution was prepared and diluted 

immediately before cell exposure, and diluted as required. Cells were exposed to PAH 

with variable factors of exposure, including the concentration and the duration time of 

exposure. 

Personal protection was taken followed the safety data sheet to prevent exposure. 

Respiratory mask, safety glasses, and gloves were used to protect respiration, eyes and 

skin when handling PAHs (RESTEK 2010). 

Assessment of Polycyclic Aromatic Hydrocarbons Cytotoxicity 

Lactate dehydrogenase (LDH), a stable enzyme located in the cytosal, was rapidly 

released into the surrounding culture medium upon cell membrane damage or lysis, 

processes that occur during both apoptosis and necrosis. The LDH activity was 
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determined in an enzymatic test, firstly LDH catalyzes the reduction of NAD+ to 

NADH/H+ by oxidation of lactate to pyruvate. In the second step, diaphorase transfers the 

new-formed NADH and H+ to catalyze the reduction of a tetrazolium salt (INT) to 

highly-colored formazan which absorbs strongly at 492 nm. 

The Cytotoxicity Detection Kit (Roche Applied Sciences, Germany) was used for 

quantitating cytotoxicity of PAH to cells. Based on the preliminary study on 

determination of the optimal cell concentration, a density of 2.5 x 10 cells/well was 

decided to seed in a 96-well plate with 100 ul of culture medium per well. The procedure 

was followed according to the manufacturer's instructions. The cytotoxicity was 

calculated and described as percentage. 

Evaluation of Cell Morphology 

Cell morphology was viewed by Nikon Light microscopy TS 100. The bright 

field images were captured by a Cool Snap EZ camera. 

The flow cytometry was also employed to analyze many properties of many cells 

and to study cell morphology with a number of detectors, which were aimed at the point 

where the stream passes through the light beam, one in line with the light beam (Forward 

Scatter or FSC) and several perpendicular to it (Side Scatter or SSC) and one or more 

fluorescent detectors. The intensity of FSC signal has been attributed to cell size, 

refractive index or membrane permeability. The intensity of SSC signal was proportional 

to the amount of cytosolic structure in the cell, such as granules and cell inclusions, 

where laser light that was scattered at 90 degrees to the axis of the laser path is detected 

in the side scatter channel. Since FSC associated with the cell size and SSC depended on 
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the inner complexity of the particle, a correlated measurement between them can allow 

for differentiation of cell types in a heterogenous cell population. 

Evaluation of Cell Viability 

HCAEC were cultured as previously mentioned, and were harvested from the 

cultured flask, washed, and then resuspended. Cell viability was assessed by staining 

with 0.02 % trypan blue in HBSS, and cell counts of 100 cells were performed using a 

hemacytometer after 2 minutes with a Nikon Eclipse TS 100 light microscope. 

Detection of Reactive Oxygen Species 

ROS detection was performed using the Image-iT LIVE Green Oxygen Species 

Detection Kit (Molecular Probes). The assay is based on 5-(and-6)-carboxy-2', 7'-

dichlorodihydrofluorescein diacetate (carboxy-HaDCFDA), a cell permeable, non-polar, 

H202-sensitive fluorogenic probe for ROS in live cells. Oxidation of this probe can be 

detected by monitoring the increase in fluorescence with a fluorescence microscope, 

using excitation sources and filters appropriate for fluorescien (FITC) (Oksvold et al. 

2002; Konorev et al. 2000). 

The procedures of labeling with Carboxy-H2DCFDA are as follows: 

Prepare a 10 mM carboxy-H2DCFDA stock solution by adding 50 uL of DMSO 

to one vial of carboxy-H2DCFDA to make a 10 mM stock solution. Vortex the vial until 

the powder is completely dissolved. Then prepare 25 uM carboxy-H2DCFDA working 

solution by adding 5.0 uL of the 10 mM carboxy-H2DCFDA stock solution to 2.0 ml of 

warm HBSS buffer. After that, cells are washed gently with warm HBSS followed by 



24 

labeling cells. In order to do so, apply a sufficient amount of the 25 uM carboxy-

H2DCFDA working solution to cover the cells adhering to the cover-slip. Incubate for 30 

minutes at 37 °C, protected from light. Again, cells are washed gently twice in warm 

HBSS. The final step is to mount cells in warm buffer and image immediately by 

mounting medium, using a DAPI filter set and neutral density filter(s) to assist with 

locating the cells on the cover-slip, followed by a fluorescein filter set for imaging. 

Quantification of ROS 

2', 7'- difluorodihydrofluorescein (CI3293, Invitrogen), an oxidant by-product of 

5-(and-6)-carboxy-2', 7'- difluorodihydrofluorescein diacetate (carboxy-H2DFFDA), was 

used to assess the ROS generation in HCAEC. Cells were incubated with H2DFFDA (10" 

5 M) for 0.5 hour at 37 ° C and washed twice with Hank's Buffered Salt Solution. 

HCAEC were after cultured in the presence or absence of fine particles or PAHs for 1 

hour. H2O2 (100 uM) was used as a positive control to induce oxidative stress. After an 

extensive wash, fluorescence of fine particle treated cells was evaluated by flow 

cytometry (FASCCalibur, Becton Dickinson) at Eastern Virginia Medical School 

(Norfolk, VA); fluorescence of PAHs treated cells was evaluated by flow cytometry 

(FASCAria, Becton Dickinson) at Bioelectric Center, Old Dominion University (Norfolk, 

VA). The mean fluoresce intensity was calculated by multiplying the number of 

fluorescent cells by the mean of the intensity presented by the Flow-Jo software used for 

the analysis. 
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Statistical Analysis 

Statistical analysis was performed using Sigma-Plot software. All experiments 

were carried out in triplicate, and results were expressed as means ± standard error of the 

mean (SEM). Comparisons involving three or more groups were evaluated using one­

way ANOVA and an appropriate post hoc comparison. Instances involving only two 

comparisons were evaluated with a Student's Mest. Differences among means were 

considered statistically significant by the criterion of probability P value < 0.05. 
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RESULTS 

Size distribution of PM 

In the initial phase of investigation, the size distribution of the fine particles after 

filtration has been analyzed by the Zetasizer Nano series from Malvern. Size distribution 

of fine particles is showed in Figure 6. After filtration with 3.0 um pore size filter, 

particles with larger size in DPM were removed. In the filtrate, 82.6% of particles had 

diameters at 220.8 nm on average, 17.4% of particles had diameters at 4827 nm. After 

filtration with 1.2 um pore size filter, 94% of particles were at the diameter of 262.3 nm, 

and 6% of particles were at 4546 nm. From the correlation graph, we conclued that this 

results met the quality criteria. The prepared fine particles at this step were used in the 

following studies. 

The filtrated fine particles were smaller in mass than DPM; they also had larger 

surface area to contact with cells. In addition, their numbers are higher as compared to 

other particles. Thus, fine particles had the potential to enter blood stream and affect the 

endothelium directly. 
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Figure 6. PM size distribution by Zetasizer Nano Series. PM size correlation data (A), 
size distribution by intensity (E). Green line and red line represent particle size 
distribution after filtration with 3.0 um pore size filter and with 1.2 um pore size filter, 
respectively. 
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Cytotoxicity of PM 

Cell morphology changed after PM exposure 

Figure 7 showed control cells, cells treated with PM, PM only groups. Cell size 

was measured and showed in Table 1. After PM treatment, size of HCAEC decreased 

32.5 % compared to control, illustrating that cell shrinkage took place after PM exposure. 

Results were presented as mean ± SEM of 10 independent experiments and were 

expressed as um,/? < 0.05 are considered as significant differences. 

Cells were washed twice with HBSS after exposure, and then images were taken 

under bright field microscopy. HCAEC morphology had obviously changes after PM 

treatment (Figure 7). Cell shape turned to be elliptical. Particles were observed to pass 

through the cells membrane and enter the cells indicated as the arrows in Figure 7B. 

Decreases in cell size were also noticed after PM exposure. It is likely that PM 

comprised integrity of cell membrane that allows cytosol and intracellular fluid leaked to 

the surroundings. 

Table 1. HACEC size measurements. Sample number counted in each group is 10; 
* indicates PO.0001 compared with cells only 

Cells sizes, um 

Cells Only 

30.8 ±1.48 

PM treated Cells 

20.8 ± 1.04 * 

PM only 

3.0 
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Figure 7. Cell morphology changed after PM treatment (400X). Cells Only (A), 1 mg 
PM for 1.0 hour treatment (B), PM only (Q. Cell images were token with a Nikon 
diaphot light microscopy. 
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Cell viability changed after PM exposure 

After PM exposure, cell populations had an obvious shift from the histograms in 

Figure 8 from the flow cytometer results, the whole group had the trend to move to the 

upper left. Also cell shrinkage took place due to the stimulation of PM. 

FSC readings decreased, indicating that cell size was reduced. The increased 

reading of SSC showed that the internal structure of HCAEC altered and the granularity 

on cell membrane increased. Cell viability decreased since more debris had been noticed 

after PM exposure as well as the H2O2 treatments as a positive control. These 

observations confirmed the results that cell shrinkage took place after PM exposure, the 

shape of nucleus were changed, cell membrane was damaged and resulted in membrane 

roughness due to the increasing amount of cytoplasm granules. 

After PM exposure, cell viability decreased in both 0.5 hour and 1.0 hour 

incubation groups. More dead cells were dyed with trypan blue in PM treated groups, 

revealing that cell membrane was injured. HCAEC viability of 0.5 and 1.0 hour PM 

exposure decreased 1% and 5%, respectively, compared to control in Figure 9. HCAEC 

treated with H2O2 decreased 18.7%. We expected to see harsh effects to cell viability 

after PM exposure; however, the reading has no significant decrease, nor time- dependent 

pattern. 
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Figure 8. Histograms of PM treated cells. HCAEC were treated with 1 mg/L PM for 0.5 
and 1.0 hour, following with H2DFFDA dye. 100 uM/ml H2O2 were introduced to cells 
as positive control. Cell population was displayed and distributed with a flow cytometer. 
Cells gated in rectangle with percentage were counted as total cells. Cells gated in 
elliptical with percentage of total cells were counted for viability analysis. 
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Figure 9. Cell viability after PM exposure. HCAEC were incubated with 1 mg/L PM for 
0.5 and 1.0 hour. 100 uM/ml H2O2 were introduced to cells for 0.5 hour as positive 
control. 

ROS generation by PM treated HCAEC 

Fluorescent dye DCFDA was detected in the cells exposed to PM at 

concentrations of 0.1, 1 and 10 mg/ml. The fluorescent intensity from those treated cells 

by PM was significantly increased as compared to the control (Figure 10). Interesting, 

the cells treated by PM at 1 mg/ml seemly had strong fluorescent expression than those 

treated by 10 mg/ml PM. The higher concentration of PM at the concentration of 10 

mg/ml may overshadow the fluorescence intensity. The flow cytometry method 

confirmed that fluorescence from the dye DFFDA was generated in the cells treated by 

PM (Figure 11). PM induced ROS generation in HCAEC after 1.0 hour exposure, while 
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PM has mimmal effects on ROS generation in HCAEC after 0.5 hour exposure (Table 2). 

No significant differences existed between PM treated groups and the control (p value of 

PM 0.5 hour treatment is 0.210, p value of PM 1.0 hour treatment is 0.031). The 

inconsistent results may be caused by the attachment of the fine particles on cell 

membrane and/or translocation of fine particles into the cells blocked fluorescence, and 

subsequently altered the degrees of fluorescent intensity detected by a flow cytometer. 

Control 100 ug/ml 

1 mg/ml 10 mg/ml 

Figure 10. Effects of PM on ROS generation. HCAEC was exposed to 0.1, 1 and 10 
mg/ml PM concentrations for 12 hours following with the incubation with Carboxy-
H2DCFDA. (400x) 
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Figure 11. Overlapped ROS generation after PM treatment. HCAEC were incubated with 
1 mg/L PM for 0.5 and 1.0 hour following with the incubation with H2DFFDA. 100 
uM/ml H2O2 were introduced to cells for 0.5 hour as positive control. Red line 
represented control cells, blue line represented cells treated with PM for 0.5 hour, PM for 
1.0 hour and H2O2 for 0.5 hour, respectively. 
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Table 2. Fluorescence of PM treated groups 

Treatment 
Fluorescence 
Units Mean 

Control 
660 

PM, 0.5 hour 
639 

PM, 1.0 hour 
723 

H202 

845 

Cytotoxicity of PAHs exposure 

Cell morphology and variability change after PAHs exposure 

Figure 13 shows cell treated with PAHs were shrunk and detected from the 

culture flask. After exposure to PAHs for 0.5 h, cell morphology was noticeably changed, 

granularity increased, shrinkage was observed, and viability decreased. A group of 

particles were noticeably appeared at the left of the cells in the PAHs treated groups, 

which were PAHs after comparing with the histogram result of the cell-free PAHs. 

PAHs decreased viability of endothelial cells in a concentration-dependent 

manner. Since 3 hour exposure of PAHs decreased cell viability significantly at the 

concentration higher than 10 ug/ml, and has more harsh effects than 1 hour. Thus, the 

concentration of PAHs with no more than 15 ug/ml, has been chosen in the following 

studies. 

PAHs concentrations at < 7.5 ug/ml did not alter viability of endothelial cells 

after incubation for one and three hours. At the concentration of lOug/ml, PAHs started 

causing decreased cellular viability in three-hour contact. The degree of the cytotoxicity 

continues to increase as the increase in PAH concentrations. After three hours exposure, 

significant differences were observed from PAHs 10, 15 and 25 ug/ml groups in 

comparison with control, p values were 0.0006, 0.0002 and 5.306E-20, respectively. 

That demonstrates the effect was in a dose-depended fashion 
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LDH is a stable enzyme located in the cytosal, which rapidly release into the 

surrounding culture medium upon cell membrane damage or lysis, this processes occur 

during both apoptosis and necrosis. This method indicated that integrity of cellular 

membrane was comprised by PAHs exposure to allow cytosol to release from the inside 

cells to the surrounding culture medium At the same time, the LDH assay showed that 

PAHs caused cytotoxicity to HCAEC. 

i 

t . 

Control H202 exposure 

\ 

i 

x 

1 ug/ml of PAHs 5 ug/ml of PAHs 12 ug/ml of PAHs 

Figure 12. Cell morphology after PAHs exposure. Cells were treated with 0 (control), 1, 
5 and 12 ug/ml of PAHs for 0.5 hour, respectively. Cells treated with H2O2 were used as 
positive control. Cell images were token under lOOx 
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Figure 13. Histograms of PAHs treated groups. Cells were treated with 0 (control), 1, 5 
and 12 ug/ml of PAHs for 0.5 hour, respectively. PAHs were detected in a cell-free 
condition as well. 
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Figure 14. Cytoxicity of PAHs to HCAEC. HCAEC were incubated with different 
concentrations of PAHs, 0 (control), 0.5, 1.25, 2.5, 7.5, 10, 15, 25, and 50 ug/ml and 
cultured in HBSS at 37 °C for land 3hours. Lactate dehydrogenase method was used to 
measure the cytotoxicity of PAHs. LDH released into the media was assessed. Results are 
presented as mean ± SEM of three independent experiments and are expressed as 
percentage,/? < 0.05 are considered as significant differences. 
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Vehicle effects on HCAEC 

Cell morphology changed after CH3CN exposure 

99%o pure acetonitrile were used as solvent in PAHs stock. After a series of 

dilution, the concentration of acetonitrile in the PAHs suspension for exposure was no 

more than 2%. Acetonitrile is colorless liquid that is mainly used as a polar aprotic 

solvent in purification of butadiene. Acetonitrile has only a modest toxicity in small 

doses (Wexler 2005). To ensure the observed cytotoxicity induced by PAHs instead 

solvent used to disovle PAHs, 2% CH3CN was examined any toxic effects on HCAEC. 

Cell morphology has no significant differences after acetonitrile treatment (Figure 15). 

Cell distribution in vehicle treated group was the same with control from the histograms 

results in Figure 16. 

ROS generation after CH3CN exposure 

No significant increase of ROS was observed from the results in Figure 17 (p 

value = 0.17). Therefore, the increase of ROS level and cell activation in the PAHs 

treated groups were not due to the effects of acetonitrile. 

ROS generation in HCAEC after PAHs exposure 

Microscopy photographs illustrated 1 and 5 ug/ml PAHs t induced the gerenation 

of ROS after 0.5 hour contact (Figure 18). Fluorescent cells were found in the PAHs 

treated groups, while absent in the control and vehicle treated group. 



Control Vehicle 

Figure 15. Cell morphology after vehicle treatment. Cells were treated with 0 (control), 
2% CH3CN for 0.5 hour, respectively. Cell images were token under lOOx. 
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Figure 16. Histograms of 2% acetonitrile treated HCAEC. 
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Figure 17. Vehicle effects on ROS generation. Cells treated with 2% acetonitrile for 0.5 
hour as vehicle. 
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Figure 18. Fluorescent images of ROS after PAHs exposure. HCAEC were treated with 
0 (control), 1 and 5 ug/ml PAHs for 0.5 hour. The cells were stained with carboxy-
H2DFFDA, then mounted with DAPI (blue: nucleus), cover slipped and viewed by a 
Nikon Eclipse 80 i microscope and cells were captured with a Cool SNAP EZ camera. 
(lOOx) 
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Figures 20 and 21 showed fluorescence generated in PAHs treated cells. A 

representative overlapped results of PAHs treated cells showed that the fluorescence of 

total cells shifted to the left (Figure 19). This indicates that the fluorescence reading 

increased after PAHs exposure as compare with the control. Also, all of the HCAEC 

exposed to 1, 5, and 12 ug/ml PAHs induced significant increases in ROS in HCAEC as 

compared to the control (p values all < 0.05). The ROS level in the 1 ug/ml treated group 

was more than three times higher than the control. 5 and 12 ug/ml PAHs exposure 

induced 468% and 548% increases in ROS concentrations, respectively, as compared to 

the control. Therefore, a dose-dependent pattern was observed. 
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Figure 19. Oxidative effects of PAHs treatments. Gray, green and red lines represent 
cells treated with 0 (control), 1 and 5 p.g/ml of PAHs, respectively. Data are the mean ± 
SEM of three independent experiments. * Indicates p < 0.05 in comparison with the 
control group. 
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Figure 20. Concentration effects of PAHs on ROS production. HCAEC were treated 
with 0 (control), 1, 5 and 12 ug/ml PAHs for 0.5 hour. 100 uM/ml H2O2 were introduced 
to cells as positive control. Data are the mean ± SEM of three independent experiments. 
* Indicates/? < 0.05 in comparison with the control group. 
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Figure 21 shows the effect of exposure duration on ROS generation. No 

significant differences were observed between 0.5 and 1 hour exposure at 5 ug/ml and 12 

ug/ml PAHs. The results suggested that 0.5 hour PAH exposure could maximize the 

ROS generation in the endothelial cells. 

1600 

1400 

~ 1200 

~ 1000 
(/> 
c 

3 
£ 800 H 
CD 
O 

g 600 

CD 

J 400 
iZ 

200 

0 

0.5 hour exposure 
1.0 hour exposure 

1 
Control 1 ug/ml 5 ug/ml 

PAHs exposure 

12 ug/ml 

Figure 21. Time effects of PAHs on ROS production. Cells treated with 1, 5 and 12 
ug/ml of PAHs for 0.5 and 1 hour, respectively. Data are the mean ± SEM of three 
independent experiments. * Indicates/? < 0.05 in comparison with the control group. 
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DISCUSSION 

Previous research had shown that PM extracts caused damage to vascular 

endothelial cells in vivo (Ichinose et al. 1995). Researchers also have found different 

results of the association between PM sizes and cytotoxicity (Churg and Brauer 1997). 

However, whether PM or PAHs causes direct cell damage in HACEC has not been 

clearly described. The study showed that PM induced acute cytotoxicity to endothelial 

cells. The findings were similar with other studies. The activation of human umbilical 

vein endothelial cells induced by PM2.5 and PMio has been reported to associate with an 

oxidative stress (Montiel-Davalos et al. 2010). Van Eeden reported that endothelial 

activation by PM may be due to pro-inflammatory factors released in the lung or to a 

direct contact of PM with the endothelium (van Eeden et al. 2005). 

Fine particles with the size less that 3 um compromised and damaged the cell 

membrane integrity to the degree that alters cellular morphology. Also, cell permeability 

was altered since cytosol was leaked out from HCACE. The cell injury could be 

associated with a decrease in the content of phospholipids (Prasad 1991). Particles were 

found to either bind outside cell membrane or enter into the cells. Subsequently, HCAEC 

viability was decreased after PM exposure. Although the mechanism of cell death was 

not investigated in this study, it is usually undergoing either apoptosis or necrosis. PM 

were proved to induce cell apoptosis in RAW 264.7 and J774 cells and human alveolar 

macrophages by activating the TNF-a-induced pathway (Huang et al. 2004; Alfaro-

Moreno et al. 2002). Similar with PM, PAHs were observed to induce acute cytotoxicity, 

including the damage to the cell membrane integrity and decreased viability. PAHs were 
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likely the major component that contributes to acute cyotoxicity to endothelial cells 

induced by PM. 

The ROS level is an important characteristic in the cellular responses to external 

stress. Moreover, increase in ROS level initiates various responses within the cell, 

including damage to proteins, DNA and lipid (Halliwell 2001). In order to measure the 

ROS level in HCAEC, two fluorescent probes were used in this study. Fluorescent dye, 

carboxy-H2DCFDA, can be taken up by live cells and are able to emit fluorescence upon 

oxidation which can then be monitored using digital microscopy. After 12 hours of PM 

exposure, cell viability decreased, correlating with the increasing of ROS levels. ROS 

detection with a fluorescent microscopy after 24 hours of PM has no significant 

difference with the ones after 12 hours incubation. Possible reasons could be that the fine 

particles likely aggregate during the exposure or the fluorescence leaked out from the 

cells. The effects of PAHs with 1 and 5 ug/ml induced the increase of ROS were 

obviously noticed in HCAEC. 

In order to quantify the level of ROS, the flow cytometry method was used with 

the fluorinated derivative, H2DFFDA, which exhibits improved photo stability compared 

to chlorinated fluorescein derivatives. This dye also shows exceptional retention in live 

cells due to the reaction of thiols with the fluoromethyl group which "traps" the 

difluorodihydrofluorescein in the cell. Oxidation by ROS yields a fluorescent 

difluorodihydrofluorescein which is detectible. After the cells treated with PAHs with 

the concentrations from 1, 5 and 12 ug/ml for different time periods, ROS intensity were 

significantly increased as compared to the control. The study clearly showed that PAHs 

induced the generation of ROS in the endothelial cell. PAHs on PM could be undergone 
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bio-transformation via cytochrome P450 to yield reactive electrophiles and superoxide 

hydroxyl radicals and continue the pathway involved with redox cycling to generates 

excessive concentrations of ROSs, such as H202, superoxide and hydroxyl radical 

(Shimizu et al. 2003). 

The results demonstrated an imbalance of the production and the manifestation of 

ROSs, which can lead to oxidative stress to the cells. Excessive of the ROS production 

can disturb the redox status that lead to toxic effects to cells including alteration of cell 

morphology and the decrease in cellular viability. 

In conclusion, PAHs induced acute cytotoxicity to endothelial cells via oxidative 

stress. PAHs on PM could increase the risk of the damage to endothelial cells in relation 

to cardiovascular disease. Thus, the control of emissions and compositions of PM is the 

important to the protection of public health.. 
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CHAPTER III 

POLYCYCLIC AROMATIC HYDROCARBONS CHANGE LIPID PROFILE 

AND NITRI OXIDE BIOAVAILABILITY TO ENDOTHELIAL CELLS IN VITRO 

INTRODUCTION 

Enhanced production or attenuated degradation of ROS leads to oxidative stress 

that affects endothelial and vascular function, which in turn contributes to vascular 

disease. Several pathological conditions increase the production of ROS in the vascular 

wall, such as diabetes and hypertension. These conditions are associated with endothelial 

dysfunction and cardiovascular disease. Among the arterial vascular tree, endothelium is 

the key member. Nitric oxide, a product of the normal endothelium, principally 

determined normal endothelial and vascular function (Montiel-Davalos et al. 2010), and 

increased in states of inflammation and contributed to oxidative stress in conjunction with 

other ROS (Lubos et al. 2008). Oxidative stress is proved to associate with lipid 

peroxidation as well. Lipid peroxidation is a major contributor to the related loss of 

membrane integrity, and with respect to pore formation and accumulation of unspecific 

lipid-protein adducts from aldehydic end products, such as malondialdehyde (Gujral et al. 

2004). Therefore, the biological importance of lipids has drawn extensive attention to the 

analysis of lipid diversified molecular species. Latest characterizations by soft ionization 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) have been 

increasingly utilized to profile global lipid distribution (Ivanova et al. 2001; Jones et al. 

2005; Saghatelian et al. 2004; Yu 2006). For example, electrospray ionization FT-ICR-

MS of total lipid extracts has been reported to be useful in detecting differences between 
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the distributions of highly heterogeneous mixtures of lipids found in eukaryotic cells 

(Ivanova et al. 2001). Thus, 12T FT-ICR-MS was performed in this study to access the 

lipid profiling on HCAEC. 

Previous research showed that the bioactive lipids, especially oxidized 

phospholipids, can initiate and modulate many cellular events that attribute to 

atherosclerosis, suggesting that oxidized phospholipids would serve a biomarker for 

cardiovascular disease (Ashraf et al. 2009). Thus, this work aimed to evaluate 1) whether 

lipid peroxidation is linked to endothelial dysfunction in the HCAEC exposed to PAHs, 

and 2) whether the treatment of human endothelial cells with PAHs can alter the lipid 

profile and NO generation due to a disruption in redox balance. 
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EXPERIMENTAL PROCEDURES 

Materials 

A23187 calcium ionophore was obtained from Sigma-Aldrich (St.Louis, MO). Albumin 

standard was obtained from Pierce (Rockland, IL). Apocynin was obtained from Fisher 

Scientific (Pittsburgh, PA). P-Nicotinamide adenine dinucleotide phosphate, reduced tetra 

(cyclohexylammonium) salt was obtained from Sigma-Aldrich (St.Louis, MO). 99.8% 

chloroform was obtained from Acros (Thermo). Cell culture flasks and dishes were 

obtained from Corning (Corning, NY). Cell lysis buffer was obtained from New England 

Biolabs (Beverly, MA) and supplied as 10X cell lysis buffer. 8 chamber tissue culture 

treated glass slide was obtained from BD Falcon (Bedford, MA). Comassie protein assay 

kit was obtained from Pierce (Thermo, Rockford, IL). Disel particulate matter was 

obtained from National Institute of Standards and Technology (NIST, Geithersburg, MD). 

Dimethyl sulfoxide (DMSO) was obtained from Sigma. Ethylenediaminetetraacetic acid 

(EDTA) was obtained from Sigma. Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid (EGTA) was obtained from Sigma. Glass tubes, borosilicate (16x100mm), 

were obtained from Fisher. Human coronary artery endothelial cells (HCAEC) were 

purchased from Cell Applications, Inc. (San Diego, CA) and grown in culture at 37°C 

and 5% C02 cells were grown in Medoendo Eell Growth Media. Hank's balanced salt 

solution, calcium- and magnesium-free (HBSS) was obtained from Mediatech Cellgro 

(VA).30% H2O2 was obtained from Fisher Scientific. Homogenizer was obtained from 

Fisher Scientific. H2DFFDA was obtained from Invitrogen. Isopore membrane filters, 

3.0um TSTP and 1.2 um RTTP, were obtained from Millipore (Billerica, MA). 8-

Isoprostane Express EI A Kit (Catalog #516360) was obtained from Cayman Chemical 
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(Ann Arbor, MI). Lactate dehydrogenase (LDH) Kit (Cat # 04744926001) was obtained 

from Roche. P-Nicotinamide adenine dinucleotide phosphate, reduced 

tetra(cyclohexylammonium) salt (NADPH) was obtained from Sigma. 99% methyl 

alcohol was obtained from Acros (Thermo). Mounting medium for fluorescence with 

DAPI was obtained from Vector (Burlingame, CA). Nco-Nitro-L-arginine methyl ester 

hydrochloride (L-NAME) was obtained from Sigma-Aldrich (St.Louis, MO). 

Polypropylene centrifuge tubes (15ml) were obtained from Corning Inc. (Corning, NY). 

Polycyclic aromatic hydrocarbons were obtained from Restek (Bellefonte, PA). Sodium 

dodecylsulfate (SDS) was obtained from American Bioanalytical. Sodium hydroxide 

(NaOH), ION solution, 30%> w/w, was obtained by Fisher Scientific. Thiobarbituric Acid 

Reactive Substances (TBARS) Assay Kit (Cat.# 0801192) was obtained from 

ZeptoMetrix Corporation (Buffalo, NY). Total Nitric Oxide Assay Kit (Lot # KGl34678) 

was obtained from Thermo Scientific (Rockford, IL). Triton-XlOO was obtained from 

Fisher Scientific. Trypan blue solution (0.4%) was obtained from Sigma-Aldrich 

(St.Louis, MO). Phosphate buffered saline 10X was obtained from Fisher Scientific. 

PTFE cap and target vials were obtained from Fisher scientific. All aqueous solutions 

and reagents were prepared in deionized distilled water using ELGA Purelab system from 

SIEMIENS. 

Cell Culture and Preparation 

Endothelial cells are economical alternative, suitable for studies of endothelial 

functional and endothelial metabolism. Changes in structure and function of these cells 

have been linked to vascular diseases such as atherosclerosis, and hypertension. Human 
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coronary artery endothelial cells (HCAEC) used in this study was isolated from normal 

human coronary arteries from Cell Application (San Diego, CA). HCAEC were grown in 

Mesoendo Cell Growth Medium that is fully supplemented with fetal bovine serum, 

growth factors, trace elements and antibiotics. The cells in culture flasks were placed in 

an incubator at 37 °C with a humidified atmosphere of 5 % C02. Cells were preserved 

and stored with liquid nitrogen in a cryosystem (Cryogenic locator, Thermo). 

HCAEC was cultured for treatment when cells are about 80-90% confluent. Cells 

were used for all experiments on the passages 5 to 15. Active proliferation cells were 

exposed to fine particle or PAHs solutions prepared as described below. After exposure, 

cells were harvested from cultured flask. This involves removal of media from flask, a 

rinse with Hank's Balanced Salt Solution IX, trysin EDTA IX 0.25 % trypsin/2.21 mM 

EDTA in HBSS addition and Mesoendo Cell Growth Medium addition. HCAEC 

preparation prior to bioassays involves centrifugation at 1092 rpm (200g), removal 

supernatant, followed by HBSS wash twice. Cell count was performed using a 

hemacytometer. 

Polycyclic Aromatic Hydrocarbons Preparation 

EPA method 8310 PAH Mixture was obtained from Restek Corporation. 

Acetonitrile with composition of 99.1 % was used as solvent. Certificate of analysis 

provided PAH compound and concentration (Appendix D). Ultrasonication was used to 

remove air bubbles or to breakup agglomerates before loading 1 ml of the sample into 

disposable polystyrene cuvettes. The PAH solution was prepared and diluted 

immediately before cell exposure, and diluted as required. Cells were exposed to PAH 
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with variable factors of exposure, including the concentration and the duration time of 

exposure. 

Measurement of Thiobarbituric Acid Reactive Substances 

Thiobarbituric acid reactive substances (TBARS) were used as a colorimetric 

method to detect malondialdehyde (MD A), an index of lipid peroxidation. 

The measured MDA concentration was followed by comparison to linear 

regression analysis, and was expressed as MDA equivalents and normalized to total 

protein in each sample. In brief, cell homogenization was mixed with the commercially 

kit, including butylated hydroxytoluene, thiobarbituric acid and trichloroacetic acid. The 

mixture was boiled for 1 hour at 95 ° C, followed by centrifugation after cool down. The 

supernatant was measured by a spectrophotometer at the 535 nm. A standard curve was 

made based on a series of known MDA concentrations. MDA level was expressed in 

nmol/ml/mg after the adjustment of protein concentration. 

Protein Measurement 

The protein level was estimated by Bradford method using bovine serum albumin 

(BSA) as a standard. Dilute the 2 mg/ml BSA standard to make a standard curve from 

2.5-2000 ug/ml in 0.05 N NaOH. Add 5 uL of standard, resuspended protein pellet to 

each well of a micro plate in duplicate. Add 250 uL of IX coomassie protein assay 

reagent to each well of the plate. Incubate at room temperature for at least 5 min. Read 

on a micro plate at 600 nm. 
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Lipid Extraction 

The entire cellular lipids were extracted based on the process that the volumes of 

chloroform, methanol and water, before and after dilution, were kept in the proportions of 

1:2:0.8 and 2:2:0.8, respectively. The lower chloroform layer containing lipids were 

aliquotted as 10% of total sample into glass vials. The vial was placed under a stream of 

nitrogen for evaporation and dryness. Briefly, HCAEC were harvested from the flasks 

with scraper, and then were transferred and centrifuged for 10 minutes at 1500 rpm. The 

supernatant was discarded and the pellet was resuspended in 0.8ml H20. Spin gently to 

mix the cell pellet and transfer the mixture to a homogenizer. Cell lipids were 

homogenized for a few minutes with 2ml methanol and 1ml chloroform. Then additional 

lml chloroform was added and was homogenized for 30s following spinning at a high 

speed. After allowing a few minutes for separation and clarification, the alcoholic layer 

on the top was removed with long glass pipettes. Remaining chloroform layer containing 

the purified lipid were collected and evaporated to dryness under a stream of nitrogen at 

room temperature. Lipids were stored at -80 °C if not used immediately. 

Lipid Profiling Assessment 

A Broker 12 Tesla Apex Qe Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometer (12T FT-ICR-MS) at ODU's COSMIC LAB was applied to obtain exact 

chemical formulae for organic compounds under 2000Da and to profile lipid distribution. 

The high-resolution capability of this instrument offers detection of ions in a wide m/z 

range. The ion funnel with the electrospray and nanospray provided both positive and 

negative ion runs for identification of polar compounds. 
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In this study, the 12 T FT-ICR-MS was performed on the lipid extracts of 

HCAEC to demonstrate its lipid profiling capability. The dry lipid sample was prepared 

by chloroform and methanol with the extraction method described as above, and then it 

was resuspended in running solvent before injecting in the FT-ICR-MS. The solvent of 

methanol with 0.1% (v/v) formic acid was used for the positive ion runs, and that of 

methanol with 0.1 % (v/v) ammonium hydroxide was for the negative ion runs. 

After screening the raw data, spectrum was calibrated and the peaks were 

separated to determine molecular mass while molecular formulas were assigned. The 

molecular formulas were used to generate the van Krevelen diagram, a two-dimensional 

plot, to clarify where the lipids classes were located and to recognize oxidation/reduction 

pathways. And then the Matlab program was used to analyze the atoms (C, H, N, O, S, 

and P) in negative ion mode and to compare them among treatment groups. 

Manipulations were done after importing data into Excel to find out the oxidative effects 

of PAH on lipids in endothelial cells. 

Measurement of Total Nitric Oxide 

Total nitric oxide in the endothelial cells following PAHs exposure was assed 

quantitatively using Griess reagent kit (Thermo, KG 134678) (Ghosh et al. 2009). NO 

concentration was determined by measuring the content of N02" in cell culture 

supernatants, Griess reagents was used for spectrophotometric determination of N02". 

Because of the instability of NO in physiological solution, NO oxidizes rapidly to the 

mixture of N02" and NO3" in the presence of oxygen. To avoid underestimating NO, 

NO3" was converted to NO2" by nitrate reductase, thereby yielding measurement of total 
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NO. The colorimetric assay of nitrite (N02")/ nitrate (NO3") provided high sensitivity at 

lower Arginine concentrations. 

HCAEC were cultured in a 96-well culture plate at a density of 2 x 104cells/ml, 

and were treated with 1 ug/ml, and 5 ug/ml PAHs for 0.5 hour incubation. Cell culture 

supematants were collected and loaded in a polystyrene black clear bottom 96- well plate 

with lOOul/well, followed by 25 ul of diluted NADH and 25 ul of nitrate reductase 

enzyme dilution added into each well. The plate was shaking gently to mix well and was 

incubated for 0.5 hour at 37 °C with a plate sealer. Then the plate was incubated at room 

temperature for 10 minutes after adding 100 ul of Griess reagent into each well. The 

reaction produced a chromophore that was measured at 540 nm. The amount of nitrite 

accumulated was calculated (in uM) by comparison with standard curve constructed with 

known concentrations of sodium nitrite prepared in the cultured medium. 

Detection of Endothelial Nitric Oxide Synthase Activity 

A fluorimetric cell-associated nitric oxide synthase system was used to detect 

NOS activity (Sigma, FCANOSl). The method is based on the principle that a detectable 

fluorescent DAF-2T is converted from the non-fluorescence DAF-2DA at the presence of 

NOS derived NO. A plate reader at the excitation wavelength of 450-495 nm and an 

emission wavelength of 505-550 nm measured the fluorescent product. Relative units 

was reported to reflect NOS activity, because most fluoresce is affected by numerous 

factors that vary from the environmental conditions of experiments, including excitation 

light quality and quantity, instrument geometry and detector characteristics. The NOS 

activity was adjusted to the total protein. The protein level and activity of NOS was 
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studied simultaneously. A23187, also known as calcium ionophore was used as NOS 

stimulator to increase NO production. Diphenyleneiodonium chloride (DPI) was used as 

an NOS inhibitor in the positive group to reduce NO generation. 

Statistical Analysis 

Statistical analysis was performed using Sigma-Plot software. All experiments 

were carried out in triplicate, and results were expressed as means ± standard error of the 

mean (SEM). Comparisons involving three or more groups were evaluated using one­

way ANOVA and an appropriate post hoc comparison. Instances involving only two 

comparisons were evaluated with a Student's Mest. Differences among means were 

considered statistically significant by the criterion of probability P value < 0.05. 
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RESULTS 

Lipid peroxidation measurements in HCAEC 

Base on the standard curve of MDA, excellent quality control (R2= 0.99) was 

generated for the following analysis. 

After exposure, MDA was significantly increased in the 1 ug/ml PAHs treated 

groups (69.9%,p value = 0.001) after 0.5 hour of treatment as compared to the control 

(Figure 22). Moreover, the increase of MDA released from 5 ug/ml PAHs treated 

HCAEC was significantly higher than the control (\6l.5%,p < 0.001). However, no 

significant difference was observed between 1 and 5 ug/ml PAHs treated groups. From 

the results, PAHs induced MDA production in endothelial cells followed a concentration-

dependent manner. In addition, increased MDA production in HCAEC had the same 

trend with the increase in ROS generation (Figure 23). 

Effects of PAHs on NO level 

The present study measured the total nitrite as the indicator to estimate the NO 

level in HCAEC. Base on the standard curve of nitrite, excellent quality control (R = 1) 

was generated for the following analysis. 

After exposure, there was an increase in nitrite concentration in the 1 ug/ml PAHs 

treated groups (52.7%) after 0.5 hour of treatment as compared to the control (Figure 24). 

Moreover, the increase of NO release from treated HCAEC treated by 5 ug/ml PAHs was 

significantly higher (74.2%) than the control (p value = 0.003). The increased total nitrite 

generation in HCAEC had the same trend with the increase in ROS generation (Figure 

25). 
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Figure 22. Lipid peroxidation measurement. HCAEC were exposed to 0 (control), 1 
ug/ml and 5 ug/ml PAHs for 0.5 hour. After incubation, MDA released into the cell 
growth medium was determined. Data are the mean ± SEM of three independent 
experiments. * Indicates/? < 0.05 in comparison with the control group 
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Figure 23. Effects of PAHs on MDA level and ROS. 
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Figure 24. PAHs effects on NO level. HCAEC were exposed to HCAEC were exposed 
to 0 (control), 1 ug/ml and 5 ug/ml PAHs for 0.5 hour. After incubation, total nitrite 
released into the media was determined. Data are the mean ± SEM of three independent 
experiments. * Indicates/? < 0.05 in comparison with the control group 
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Figure 25. Effects of PAHs on NO level and ROS. 
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Effects of PAHs on eNOS activity 

This study describes comparative in vitro studies of the kinetics patterns of 

calcium ionophore (A23187)-stimulated NO release was associated with accelerated 

decomposition of NO from the endothelial cells. After control cells incubated with 

A23187, a rapid increase of fluorescence reading, 35.1% (p value = 0.01) was observed 

in comparison with control group. This result confirmed the stimulating effects of 

A23187toeNOS. 

1 |J.g/ml of PAHs induced an increase of 12.4% in eNOS activity in HCAEC, 

compared to control, while the eNOS activity in 5 and 12 ug/ml of PAHs treated groups 

were observed significantly increases with 13.8% and 31.2% (p values were 0.04 and 

0.02, respectively). Percentages increase in eNOS activity induced by 5 and 12 ug/ml 

PAHs were significantly higher than 1 ug/ml of PAHs treated group (p values were 0.02 

and 0.004, respectively). The eNOS activity level observed after incubated with 12 

ug/ml of PAHs was significantly higher than 5 ug/ml of PAHs (15.2%, p value was 

0.007). Therefore, PAHs modulated eNOS activity in endothelial cells followed a 

concentration-dependent manner. 
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Figure 26. PAHs effects on eNOS activity. HCAEC were exposed to 0 (control), 1, 5 
and 12 ug/ml PAHs for 0.5 hour. Cells incubated with 5 uM A23187 for 10 minutes as 
positive control. Cells treated without dye, DAF-2DA, were used as negative control. 
Data are the mean ± SEM of three independent experiments. * Indicates/? < 0.05 in 
comparison with the control group. A Indicates/? < 0.05 in comparison with the 1 ug/ml 
PAHs treated group. # Indicates/? < 0.05 in comparison with the 5 ug/ml PAHs treated 
group 
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Effects of PAHs on NO Levels in HCAEC 

L-NAME was used as the inhibitor of eNOS. After PAHs exposure, the NO 

levels increased in a concentration dependent manner, while the L-NAME decreased the 

NO generation in HACEC treated with PAHs. In addition, a significant decrease of NO 

was observed in the 5 ug/ml PAHs treated group, which indicating that the L-NAME 

modulated eNOS played an important role in regulating the NO level in HCAEC. This 

data supported the results generated from the last set of experiment that PAHs activate 

eNOS activity in endothelial cells. The altering eNOS activity induced by PAHs is 

involved with altering NO bioavailability. 

Control 1 ug/ml PAHs 5 |jg/ml PAHs 

Treatment Groups 

Figure 27. Effects of L-NAME to HCAEC 
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Effects of NADPH on NO Levels in HCAEC 

NADPH was used to investigate whether superoxide induced by PAHs is 

involved with NO bioavailability. After PAHs exposure, NO levels increased with a 

concentration-dependent manner. However, with NADPH exposure, the cells exposed to 

both 1 and 5 |Jg/ml PAHs had significantly lower the NO levels as compared to the 

control. This result confirmed that superoxide can be generated by PAHs exposure and 

directly oxidize NO. At the same time, other mechanisms existed and possibly up-

regulate eNOS that dominates biological reactions in the cells treated by PAHs. Thus, in 

overall, NO levels were increased after PAH exposure. 

Control 1 |jg/ml PAHs 5 ug/ml PAHs 

Treatment Groups 

Figure 28. Effects of NADPH on HCAEC 
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Effects of PAHs to lipid profile in HCAEC 

Van krevelen diagram was commonly used as an approach to visalized 

complicated mass spectra in the ultrahigh-resolution ESI-MS analyses (Kim et al. 2003). 

With this approach, complicated spectra can be plotted in a way that allows for possible 

reaction pathways to be identified and qualitative analyses on major classes, such as 

lipids. In the present study, van Krevelen diagrams revealed PAH-exposed groups had 

cluster molecules, defined as lipids according to the compound classes. 

Figure 29 displayed the calibrated mass spectrum of lipids in the control and 1 

ug/ml PAHs treated group from negative iron run. Over 600 peaks are detected in the 

mass range from 200 to 700 m/z. The lipid extracts may contains other biomaterials or 

biodegraded residues, resulting in a multitude of peaks being observed at each nominal 

mass (see table 3). The elemental compositions of peaks are calculated from the 

corresponding exact mass numbers obtained from the calibrated spectrum, from which, C, 

H, O, and N atoms are used to assign the most probable elemental formulas. The 

compositions can be assigned with usually < 1 ppm error, and the numbers of atom used 

to set during the calibrations are C: 4-65; H: 4-150; O: 0-20; N: 0-4; P: 0-4; S: 0-1. Some 

peaks with higher molecular weight, such as over 400 m/z, may have more than one 

possible elemental formula. In order to resolve this problem, Kendrick mass defect 

analysis was used to determine the assigned elemental formula to make the compound 

biological and chemical available, which was done previously (Stenson et al. 2003; 

Hughey et al. 2001). To show the complexity of the spectrum, the region of 219-340 m/z 

is selected and expanded (Figure 29). Representative peaks of lipids in 1 ug/ml PAHs 

treated HCAEC are detected and assigned (Table 3). Therefore, examining individual 



peaks in the entire mass range and extracting information, such as the distribution of the 

class of the compounds from the spectra, represents a tremendous time and effort 

involved. 

Table 3. List of representative peaks indentified in the 1 ug/ml PAHs treated HCAEC 

Observed 

mass, m/z 

219.175402 

221.154692 

227.201675 

233.154725 

234.186182 

235.170223 

239.12872 

239.165087 

239.201475 

241.144575 

241.180867 

241.217275 

242.176173 

247.170347 

249.149563 

Proposed mol formula 

C 

15 

14 

14 

15 

15 

15 

13 

14 

15 

13 

14 

15 

13 

16 

15 

H 

23 

21 

27 

21 

24 

23 

19 

23 

27 

21 

25 

29 

24 

23 

21 

H+l 

24 

22 

28 

22 

25 

24 

20 

24 

28 

22 

26 

30 

25 

24 

22 

N 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

O 

1 

2 

2 

2 

1 

2 

4 

3 

2 

4 

3 

2 

3 

2 

3 

S 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

P 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Theoretical 

mass, m/z 

219.175439 

221.154703 

227.201654 

233.154703 

234.186338 

235.170354 

239.128883 

239.165268 

239.201654 

241.144533 

241.180918 

241.217304 

242.176167 

247.170354 

249.149618 

Difference from thero 

value (ppm) 

-0.2 

-0.1 

0.1 

0.1 

-0.7 

-0.6 

-0.7 

-0.8 

-0.7 

0.2 

-0.2 

-0.1 

0 

0 

-0.2 
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Figure 29. The expanded view of 219.0-340.0 m/z region of the ultrahigh-resolution 
mass spectrum of HCAEC lipids 
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The van Krevelen diagram of ultrahigh-resolution mass spectrometric data was 

plotted using the molar ratio of hydrogen to carbon (H/C) as the y-axis and the molar 

oxygen to carbon ratios (O/C) as the x-axis. In the van Krevelen diagram, major 

biomaterial classes of compounds locate in specific plot areas on the diagram since they 

have their own characteristic H/C and O/C ratios. The lipid data of HCAEC was 

displayed and circled in Figure 30. The outliers were possibly derived from noise spikes 

in the diagram, or some contamination compounds that remained after lipid extraction. 

In the PAHs treated groups, the number of molecules clustered with the mole O/C 

and H/C rations between 0 and 0.4, and 1.5 and 2.2, are much higher than that in the 

control, indicating that PAHs increased the component numbers of lipids. In the van 

Krevelen plot, trend along the line can be used to indicate the structural relationships 

among families of compounds generated by reactions that involve loss or gain of 

elements in a specific molar ratio (Kim et al. 2003). The plot revealed that PAH 

exposure induced various chemical reactions in HCAE. For example, the pink line in 

Figure 31 showed the oxidation and/or reduction that occurred after PAH exposure. Also, 

the methylation and/or demethylation reaction took place marked as the blue line. 
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Figure 30. Lipid data plot in the van Krevelen diagram. Lipids of cell membrane were 
extracted by chloroform and methanol, and then analyzed using the FT-ICR-MS to 
separate peaks. The separate peaks were used to determine molecular mass while 
molecular formulas were assigned. After screening the row data, the Matlab program 
was used to analyze the atoms (C, H, N, O, S, and P) in negative ion mode and to 
compare them among treatment groups. Van Krevelen diagram were generaged based on 
O/C and H/C ratio. Lipid compound classes are represented by circles overlaid on the 
plot. 
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Figure 31. Lipid data plot in the van Krevelen diagram with the mole O/C and H/C 
rations between 0 and 0.4, and 1.5 and 2.2, respectively. 
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Since the van Krevenlen diagram failed to demonstrate the oxidative reaction, a 

new metric for the degree of oxidation of organic compounds, the average carbon 

oxidations state ( OSc) is used, which is a quantity that necessarily increases upon 

oxidation and is measurable using FT-ICR-MS. In the present study, the average carbon 

oxidations state coupled with carbon numbers (n c) can provide a frame work for 

describing the insight into the oxidation. The oxidation state of carbon is defined by the 

identity and abundance of non-carbon atoms in the organic compounds; it may be 

simplified to 

O S c - 2 O/C-H/C 

The oxidation state of individual carbon atoms within a molecule may not change in the 

same way upon oxidation, but the average oxidation state of the carbon much increase 

(Kroll et al. 2011). Therefore, the quantity of average carbon oxidations state is an ideal 

metric for the degree of oxidation of lipids in this study. 

Figure 32 showed the combinations of average carbon oxidation state and number 

of carbon atoms (n c) for lipid molecules in HCAEC. In OSc ~ n c space, lipid oxidation 

has an inherent directionality. Since the carbon oxidation state will increase upon 

oxidation, the ultimate end product is CO2 ( OSc = +4 ). Reaching this point requires 

both the addition of oxygen-containing moieties, which increases average carbon 

oxidations state ; and the breaking of C-C bonds, which decreases n c. Thus, the blue 

arrows in Figure 33 indicate that the oxidation of HCAEC lipids involves an overall 

movement towards the upper right. This figure also represents three key classes of 

reactions: functionalization (the oxidative addition of polar functional groups to the 
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carbon skeleton), fragmentation (the oxidative cleavage of C-C bonds) and 

oligomerization (the association of two organic molecules). Then possible combinations 

of average carbon oxidation state and number of carbon atoms for lipid molecules in 

Control, 1 and 5 ug/ml PAHs treated HCAEC are compared in figure 33. After PAHs 

treatment, more plots are clustered with the -2 < OSc < -1 (Figure 34), however, most 

known compounds with higher average oxidation states are small, with 20-40 carbon 

atoms. 
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Figure 32. Possible combinations of average carbon oxidation state ( OSc) and number 
of carbon atoms ( n c ) for lipid molecules in HCAEC. 
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Figure 33. Possible combinations of average carbon oxidation state ( OSc) and number 
of carbon atoms ( n c ) for lipid molecules in Control, 1 and 5 ug/ml PAHs treated 
HCAEC. 
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Figure 34. Possible combinations of average carbon oxidation state (- 2.5 < OSc < 
1.0) and number of carbon atoms ( n c ) for lipid molecules in Control, 1 and 5 ug/ml 
PAHs treated HCAEC. 
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DISCUSSION 

NO, a major signaling molecule has been shown to associate with oxidative stress 

and apoptosis in endothelial cells (Niu et al. 1994). It is also a key regulator of 

endothelial function generated by endothelial NO synthase (Forstermann et al. 1993). 

Vascular NO could relax blood vessels, prevent platelet aggregation and limit oxidation 

of low density lipoprotein cholesterol, decrease the expression of proinflammatory genes 

that advance atherogenesis (Forstermann 2008; Forstermann and Munzel 2006). Recent 

studies suggested that the toxicity of PAHs may be associated with NO level (Li et al. 

2004). The present study documented the results of direct measurement of stimulated 

NO release from the HCAEC after short-term treatment with PAHs. 

Total nitrite level from the PAHs treated cells was found to be increased than 

control. The higher level of NO release was found to be significantly increased after the 

treatment with 5 ug /ml of PAHs. NO released from these activated HCAEC along with 

the cell damage may thus regulate endothelial function. PAHs increased the NOS 

activity after 1 jig/ml, the magnitude of NO release was found to be greatly increased 

after 5 and 12 ug/ml concentration. These observations suggest that PAHs treatment 

causes eNOS up regulation after a short term exposure. Thus, these data clearly shows 

that, following PAHs treatment, eNOS was modulated within HCAEC that results 

inalteration of NO production. Similar findings have been reported in two studies that 

benzo [ajpyrene, a PAH compound, induced increased NO production in mouse 

neuroblastoma cells (Halliwell 2001; Dutta et al. 2010). The study demonstrated that 

PAHs induced lipid peroxidation in HCAEC as the evidence by the increased MDA 

production. MDA concentrations positively correlated with an increase in ROS 
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concentrations. 12T FT-ICR-MS was employed to detect lipids of HCAEC and the van 

Krevelen analysis was performed to depict lipid profiling. To our knowledge, this is the 

first study to examine the profile of the global lipid distribution in HCAEC in relation to 

PAH exposure. Based on the analysis of spectrum data in comparison to untreated 

groups, the van Krevelen analysis revealed a significant change in the lipid profile of the 

groups exposed to PAHs. The carbon oxidation state was employed to investigate the 

oxidation degree from the data of FT-ICR-MS. In the OSc .nc space, oxidation moves 

HCAEC lipids upwards and to the right ( OSc = + 4, and n c = 1 ), whereas radical 

association reactions in high oxygen environments. The measurement of average carbon 

oxidations state allows for the determination of the trajectories for entire lipid mixtures, 

offering the potential for lipids. 

The number of lipid compounds increased after PAHs exposure, which is likely 

resulted from the oxidative stress. The increasing lipid species should be resulted from 

unsaturated fatty acyl side chain containing phospholipids, which were oxidized by ROS. 

The damage of endothelial cell membrane induced by PAHs may be the other reason to 

increase the number of lipid species by fragmentation. 

In conclusion, PAHs were a group of components of PM that contributed to 

oxidative stress and the dysfunction of endothelial cells. In addition, PAHs contributed 

to lipid peroxidation and the changes in the global lipid profile of HCAEC after a short 

term exposure. This study has advanced the ability to identify lipids and to develop novel 

approaches applicable to large quantity sets of lipid molecular formula data. 
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CHAPTER IV 

CONCLUSION 

Epidemiologic studies have demonstrated a significant association between 

exposure to PM and atherosclerosis. Endothelial dysfunction and oxidative stress has 

been identified as a common denominator of many cardiovascular risk factors 

(Forstermann 2010). Thus, this study has investigated for the first time the role of PAHs 

in inducing vascular oxidative stress and endothelial dysfunction in HCAEC. 

The findings of this study included the following: 

• PM induced acute cytotoxicity to endothelial cells including change in cellular 

morphology, alteration of cellular membrane integrity, and decrease in cellular 

viability. 

• PAHs were one of the major components in PM that contributed cytotoxicity to 

endothelial cells 

• PAHs could induce a significant increase in ROS concentrations with resulting 

oxidative stress to endothelial cells. 

• PAHs induced lipid peroxidation that can cause oxidative degradation of lipids, 

resulting in cell damage. . 

• PAHs could alter the lipid profile of HCAEC and increase the number of lipid 

species. 

• PAHs altered NO bioavailability by modulating eNOS activity after a short term 

exposure. 
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CHAPTER V 

FUTURE STUDIES 

The study showed that PAH induced a significant increase in the number of lipid 

specie from the global lipid profiling in HCAEC. The increasing lipid species should be 

resulted from unsaturated fatty acyl side chain containing phospholipids, which were 

oxidized by ROS. Therefore, the next steps beyond these preliminary data include 

identification of specific oxidized lipids, and investigate whether the oxidized lipids 

could serve as new candidates for oxidized lipid biomarkers. 

In order to conclusively identify the pathway would require further investigation. 

The following pathways are considered to influence NO bioavailability as well; however, 

the related investigations will be conduct in this future: 1) A potential pathway for 

decomposition of NO is the rapid interaction with superoxide anions (O2) to generate an 

oxidative stress maker, peroxynitrite (OONO ) (Ignarro 2000). 2) Physical stimuli, 

receptor-dependent agonists will affect endothelium derived NO. 3) NO stimulates sGC 

that works to produce cGMP. The cGMP accumulation will disturb NO degradation in 

smooth muscle cells, and 4) thoroughly examine alteration of NO bioavailability 

observed in this study in relation to endothelial dysfunction. 
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APPENDIX C 

REFERENCE VALUES FOR PARTICLE-SIZE CHARACTERISTICS FOR SRM 2975 
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APPENDIX D 

CERTIFICATE OF EPA METHOD 8310 PAH MIXTURE 
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