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ABSTRACT: Recently, organic−inorganic mixed halide perovskite (MAPbX3; MA =
CH3NH3

+, X = Cl−, Br−, or I−) single crystals with low defect densities have been
highlighted as candidate materials for high-efficiency photovoltaics and optoelectronics.
Here we report the optical and structural investigations of mixed halide perovskite
(MAPbBr3−xIx) single crystals. Mixed halide perovskite single crystals showed strong
light soaking phenomena with light illumination conditions that were correlated to the
trapping and detrapping events from defect sites. By systematic investigation with
optical analysis, we found that the pseudocubic phase of mixed halide perovskites
generates light soaking phenomena. These results indicate that photoinduced changes
are related to the existence of multiple phases or halide migrations.

KEYWORDS: light soaking effect, perovskite single crystal, photoluminescence, time-resolved photoluminescence

Organic−inorganic mixed halide perovskites (MAPbX3;
MA = CH3NH3

+, X = Cl−, Br−, or I−) have been
highlighted as potential photovoltaics1−6 and optoelec-
tronics7−9 due to their outstanding optoelectronic properties
sich as high absorption coefficients,2 tunable band gaps, and
long carrier diffusion lengths.10,11 Perovskite thin films can be
prepared by a simple spin-coating method. However, solution-
processed perovskite thin films inherently contain high
densities of defects including defective grain boundaries,
surface/point defects, and others.12−14 Recently our groups
reported that the grain boundaries are composed of high
oxygen content but scarcity of Pb, Cl, and I, serving as
nonradiative recombination centers.15 Among the related
research to reduce the defect density, the perovskite single
crystal has been predominantly studied.16−18 To date, several
studies of perovskite single-crystal-based devices have been
reported including a thick MAPbI3 single-crystal solar cell with
∼100% internal quantum efficiency16 and tunable response
spectra of photodetectors from mixed halide perovskite single
crystals.18

Currently, there are numerous studies reporting light soaking
effects of thin film halide perovskite (MAPbBr3 or
MAPbBr3‑xIx).

19−21 Until now, underlying mechanisms of
light soaking effects of perovskite thin films include (i) charge
trapping and detrapping from defect sites,19 (ii) ion
migration,20 and (iii) disorder.21 The light soaking effect is a
drastic change of optical properties under illumination and is
usually observed in hybrid perovskite materials. It should be

solved to achieve long-term operational stabilities in hybrid
perovskite optoelectronic devices. However, it is expected that
perovskite single crystals will have much lower defect densities
compared to thin film perovskite films. Therefore, it is expected
that the light soaking effect might be different from that of thin
film perovskite. Nonetheless, the light soaking effect of
perovskite single crystals has not been studied yet.
In this study, we report the optical and structural properties

of mixed halide perovskite (MAPbBr3−xIx) single crystals to
investigate their underlying mechanisms of the light soaking
effect. Mixed halide perovskite single crystals were synthesized
with different mixing ratios. To confirm the crystallinity of
perovskite single crystals, we performed UV−vis absorption
and X-ray diffraction (XRD). The XRD peaks of perovskite
single crystals of mixed Br/I were located between the cubic
phase (MAPbBr3) and the tetragonal phase (MAPbI3) at room
temperature. In addition, we measured persistent photo-
luminescence (PL) and time-resolved PL (TRPL) spectros-
copies with increasing laser irradiation time. We also performed
XRD measurements on mixed halide perovskite single crystals
after white-light illumination. Particularly, we found that the
light soaking effect was strongly dependent upon the
compositions of perovskite single crystals in which the cubic
phase (MAPbBr3) and the tetragonal phase (MAPbI3) showed
weak light soaking effects. In contrast, mixed halide perovskite
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single crystals showed strong light soaking effects with light
illumination conditions that were correlated to the trapping and
detrapping events from defect sites.

■ RESULTS AND DISCUSSION

The perovskite single crystals were synthesized by modified
inverse temperature crystallization (ITC).16,22−25 The detailed
perovskite single crystal preparation procedure is described in
Figure 1a. Degrees of coordination in the perovskite single
crystals could possibly be tailored by combining different
solvents and precursor solutions.26−28 In previous reports,
MAPbBr3 and MAPbI3 single crystals were grown as high-
quality, fast-crystallized, shape-controlled single crystals.17

MAPbBr3 crystallized more pertinently from N,N-dimethylfor-
mamide (DMF), while MAPbI3 crystallized better from γ-
butyrolactone (GBL).22 Consequently, the syntheses of
MAPbBr3.0 and MAPbI3.0 were performed with DMF- and
GBL-based ITC methods, respectively. The filtrate (1.5 mL)
was placed in a vial, and the vial was kept in an oven at 80 and
110 °C for Br- and I-based mixed halide perovskite single
crystals, respectively (MAPbBr3−xIx perovskite single crystal
mixing ratio: MAPbBr3.0:MAPBI3.0 = 5:1 (v/v), i.e., MAPb-
Br2.5I0.5; MAPbBr3.0:MAPbI3.0 = 2:1 (v/v), i.e., MAPbBr2.0I1.0),
as illustrated in Figure 1a. (See Methods section for details.)
Figure 1b shows a snapshot of the perovskite single crystals; the
size distribution of the samples was about 3 mm. We further
verified the absence of GBs in the single crystals via scanning

electron microscopy (SEM), and the energy-dispersive X-ray
spectroscopy (EDS) data show the different mixing ratios of Br
and I (see Supporting Information (SI), Figure S1).
From the UV−vis absorption and PL measurements, a sharp

band edge and narrow bandwidth were observed (Figure 1c).
The band gaps extracted from Tauc plots showed values of
2.17, 2.12, 2.06, and 1.46 eV for Br/I 3:0, Br/I 5:1, Br/I 2:1,
and Br/I 0:3, respectively (see SI, Figure S2).29 The PL peak
position of Br/I 3:0, Br/I 5:1, Br/I 2:1, and Br/I 0:3 single
crystals was located at 530 (2.34 eV), 540 (2.30 eV), 554 (2.24
eV), and 773 nm (1.60 eV), respectively.
To confirm the crystallinity of the MAPbBr3−xIx single

crystals, powder XRD measurements were performed at room
temperature. XRD patterns of the single crystals (Figure 1d)
demonstrate the pure perovskite phase of both Br/I 3:0 and
Br/I 0:3. Br/I 3:0 and Br/I 0:3 had cubic and tetragonal
perovskite phases at room temperature, respectively, which are
in agreement with previous single crystals grown using the
antisolvent vapor-assisted crystallization (AVC) method.22 The
XRD patterns were monitored in the 2θ range from 28.0° to
31.0° for MAPbBr3−xIx with increasing I ions, as shown in
Figure 1e. In Br/I 0:3 (MAPbI3.0), two peaks were located at
28.11° and 28.36°, which indicate the (004) and (220) planes
for the tetragonal I4/mcm phase.30 According to previous
reports, the tetragonal I4/mcm phase is obtained from the cubic
Pm3 ̅m phase in the classic MAPbX3 perovskite structure by the
slight rotation of PbX6 octahedra along the ⟨001⟩ axis on the

Figure 1. Single-crystal growth process. (a) Schematic of the single crystals fabricated by the inverse temperature crystallization method with the
crystallization vial dipped in an oven. The solutions are heated in an oven and kept at a high temperature (80 °C for Br/I 3:0, Br/I 5:1, and Br/I 2:1
and 110 °C for Br/I 0:3) to initiate crystallization. (b) Mixed halide perovskite single crystal growth at different mixing ratios: Br/I 3:0, Br/I 5:1
(top) and Br/I 2:1, Br/I 0:3 (bottom). Steady-state absorption, photoluminescence, and powder X-ray diffraction. (c) UV−vis absorption and PL
spectra of MAPbBr3−xIx perovskite single crystals. (d) XRD patterns of MAPbBr3−xIx perovskite single crystals. (e) XRD patterns of MAPbBr3−xIx
perovskite single crystals, enlarged in the region of the cubic (200) and tetragonal (004) and (220) peaks (2θ = 28.0−31.0°). (f) Lattice parameters
of MAPbBr3−xIx perovskite single crystals as a function of I composition.
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(00l) plane while retaining their corner-sharing connectivity;
that is, the tetragonal phase can be designated by a pseudocubic
lattice.31 Although previous reports categorized a pseudocubic
phase for the tetragonal phase (in the case of the Br/I 0:3), Br/
I 0:3 (MAPbI3) referred to here had a pure phase, as did Br/I
3:0 (MAPbBr3). In addition, the mixed halide perovskite single
crystals (Br/I 5:1 and Br/I 2:1) denominated here had a
pseudocubic phase at room temperature.
To examine the optical properties of mixed halide perovskite

single crystals as a function of laser irradiation time, PL
measurements were performed at room temperature. Solid-
state lasers with wavelengths of 355 and 405 nm were used as
excitation sources, and a spectrometer equipped with a grating
(150 grooves/500 nm blaze) was utilized for the measurement.
During laser irradiation, the PL spectra of the MAPbCl3−xBrx
single crystals maintained band-edge peaks. This finding
indicates that the Cl- and Br-perovskite solution mixing ratio
has an effect on the emission wavelength of chloride−bromide
lead perovskites, as observed in Figure 2a−d. Figure 2e−h show
the contour plots of persistent PL spectra of Br- and I-mixed
halide perovskite crystals excited by a 405 nm laser. With
increasing laser irradiation time, the PL spectra of pure phase
perovskite (see Figure 2e and h) maintained a band-edge peak.
Further, in the Gaussian fit data (see SI, Figures S3 and S4), the
integrated PL intensity, PL peak energy, and full width at half-
maximum (fwhm) rarely changed during the laser irradiation
time, as observed in Figure S4a, b, g, and h. However, when the
laser irradiation time was prolonged, additional satellite peaks
appeared at ∼2.0 eV while the original peak gradually
disappeared in the pseudocubic phase perovskite (see Figure
2f and g). Interestingly, when the pseudocubic phase
perovskites were left for 15 min in the dark, the PL spectra
reverted to the initial PL states, indicating that these
photoinduced changes are completely reversible. With changing
I composition, there was a time difference in the appearance of
low-energy peaks of pseudocubic phase perovskite, but they
revealed similar behavior with increasing laser irradiation time.
As can be seen in Figure 2f and g (see SI, Figure S4c and e), PL
intensity from the low-energy peaks became more intense than

the original peak. Comparing Figure S4c with Figure S4e,
pseudocubic phase perovskite with higher iodine content
exhibited higher initial PL intensity at lower energy. This
indicates that the Br/I 2:1 single crystal generated more
photoinduced change than the Br/I 5:1 single crystal. To
confirm that this PL spectral change does not rely on the
particular laser source, we performed PL measurements using
various (355, 473, and 633 nm) excitation laser sources (see SI,
Figure S5). In the PL spectrum measured using a 633 nm
excitation laser, however, we did not obtain any signal (not
shown). In the PL spectra measured using 355 and 473 nm
excitation lasers, pure and pseudocubic phase perovskite single
crystals had a similar tendency to the 405 nm excitation laser as
a function of the laser irradiation time. This indicates that these
PL spectral changes need an excitation source above the band-
gap energy. The phenomenon of this additional PL peak at low
energy (∼2.0 eV) was recently reported for bromide−iodide
lead perovskite films (MAPb(Br1−xIx)3) and was attributed to
the existence of multiple phases.32,35 Similarly, the Br/I mixed
single crystal may have multiple phases because MAPbBr3 is a
cubic phase and MAPbI3 is a tetragonal phase. Therefore, it
shows additional PL peak due to the light soaking effect after
long time laser irradiation. On the other hand, the Cl/Br mixed
single crystal has only a cubic phase at room temperature, so
there is no light soaking effect.
We also carried out persistent PL measurements under

vacuum to confirm environmental effects (see SI, Figure S6).
The additional peak at low energy also appeared under vacuum
conditions, indicating that this phenomenon is due to
photoinduced changes and not surface adsorbates under
ambient conditions.
To investigate the derivation of the observed abnormal

behavior of the PL emission peak, TRPL experiments were
conducted and the results were analyzed using the charge
trapping/detrapping model from defect sites.33 The trapping
and detrapping rates correspond to the number of empty trap
states and occupied trap states, respectively. Accordingly, the
carrier decay dynamics in terms of charge trapping and
detrapping may depend on the density of filled and unfilled

Figure 2. Contour plots of PL spectra of Cl/Br and Br/I (v/v = 3:0, 5:1, 2:1, 1:1, 0:3) single crystals as a function of laser irradiation time. (a) Cl/Br
3:0, (b) Cl/Br 5:1, (c) Cl/Br 2:1, (d) CI/Br 1:1, (e) Br/I 3:0, (f) Br/I 5:1, (g) Br/I 2:1, and (h) Br/I 0:3. (f and g) In the pseudocubic phase
perovskite single crystals, the A, B, and C peaks in the PL spectra were reproduced by assuming three peaks with Gaussian functions. The yellow
lines of (e) and (h) are the spectra at laser irradiation time 0 min. Similarly, the yellow lines of (f) are spectra at 0 and 30 min next to the solid arrow
and the yellow lines of (g) are spectra at 0 and 6 min next to the solid arrow.
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trap states and can be described by the following
equations:34−38

= − + −n t
t

k n t k n t k n t
d ( )

d
( ) ( ) ( )trap detrap trap deep (1)

= − −
n t

t
k n t k n t k n t

d ( )

d
( ) ( ) ( )trap

trap detrap trap deep trap (2)

Here, n, ntrap, ktrap, kdetrap, and kdeep are the density of free
electrons, the density of electrons in the traps, the trapping rate,
the detrapping rate, and the deep-trapping rate, respectively. In
our case, deep trap states were not considered because density
functional theory (DFT) calculations have proposed that
shallow traps are easier to occupy than deep traps.39 These
rate equations can be solved analytically as below:

=
+

+− +n t
n

k k
k k( )

(0)
( e )k k t

trap detrap
trap

(
detrap

trap detrap)

(3)

=
+

− +− +n t
n

k k
k k( )

(0)
( e )k k t

trap
trap detrap

trap
( )

trap
trap deptrap
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Thus, a set of equations can be used to fit the carrier decay
lifetime to exhibit the trapping and detrapping rates. Figure 3a−
c display the PL decay curves at room temperature monitored
along the laser irradiation time for the main peak of the cubic
phase, the main peak of the pseudocubic phase, and the low-
energy peak of the pseudocubic phase perovskite, respectively.
The carrier lifetimes calculated from trapping and detrapping
rates using τ = (ktrap + kdetrap)

−1 are shown in the inset of Figure

3a−c. For laser irradiation time-dependent experiments, decay
curves were measured every 2 min, and their trapping and
detrapping rates were fitted and plotted in Figure 3d−f. During
laser irradiation, the decay behavior of cubic phase perovskite
showed nearly constant lifetime, and the average decay time
was about 2.10 ns (Figure 3a). The trapping and detrapping
rates also showed nearly constant values, as observed in Figure
3d. On the other hand, the decay time of the main peak of the
pseudocubic phase perovskite drastically dropped with
increasing laser irradiation time (see Figure 3b), while the
decay time of the lower energy peak of the pseudocubic phase
perovskite decreased until it saturated (see Figure 3c).
Interestingly, a substantial rise of trapping rate of the original
peak of the pseudocubic phase perovskite was observed at the
onset of laser irradiation, while a considerable drop of the
detrapping rate was observed, as shown in Figure 3e. Therefore,
the continuous increase of trapping rate and decrease of
detrapping rate led to an extremely short lifetime, as shown in
Figure 3b. Meanwhile, the trapping and detrapping rates of the
lower energy peak of the pseudocubic phase perovskite showed
a slight increase and decrease, respectively, as illustrated in
Figure 3e. In Figure 3f, even though a slight fluctuation in the
detrapping rate was observed, it might not have a large
influence on the decay time since the detrapping rate is much
lower than the trap rate by almost 2 orders. As shown in Figure
2, the lower energy peak position of the pseudocubic phase
perovksite fluctuated with laser irradiation time. Consequently,
these TRPL results as a function of laser irradiation time show a
similar tendency to the PL data.

Figure 3. Carrier lifetime measurement. (a, b, and c) PL decay curves monitored as a function of laser irradiation time ((a) pure phase single crystal;
(b) and (c) original peak and low-energy peak of pseudocubic phase single crystal, respectively). Insets: PL decay times of the center peak. The PL
decay times were obtained by calculation of trapping and detrapping rates through τ = (ktrap + kdetrap)

−1. (d, e, and f) Trapping and detrapping rates
of perovskite single crystals upon laser irradiation.

ACS Photonics Article

DOI: 10.1021/acsphotonics.7b00797
ACS Photonics 2017, 4, 2813−2820

2816

http://dx.doi.org/10.1021/acsphotonics.7b00797
http://pubs.acs.org/action/showImage?doi=10.1021/acsphotonics.7b00797&iName=master.img-006.jpg&w=428&h=301


To understand the nature of the lower energy peaks, we
performed power-dependent PL measurements as shown in
Figure 4. The PL line shapes of the main peak in Figure 4a and
b are identical over the entire range of excitation intensities.
Figure 4c shows that the PL intensity follows the excitation-
power law with an exponent of 1.20 (without irradiation), 1.34
(region A), and 0.63 (region B). These exponent values

determined the origin of the PL spectra. Generally, near-band-
edge emissions of semiconductors may have various origins
such as exciton-like transitions, free-to-bound transitions, band-
to-band transitions, and donor−acceptor pair transitions.39,40

Therefore, under nonresonance conditions in direct-band-gap
semiconductors, the luminescence intensity (IPL) follows the
power law equation of the excitation density, IPL ∼ Iex

k , where k

Figure 4. Excitation-power density dependent PL of Br/I 5:1 (pseudocubic phase) single crystals. Power-dependent PL (a) without laser irradiation
and (b) after 15 min of laser irradiation. Steady-state PL spectra with excitation density (a) from 5.0 × 107 to 5.2 × 108 μW cm−2 and (b) from 5.0 ×
107 to 3.0 × 108 μW cm−2. All spectra were measured at RT. (c) Logarithmic plots of the integrated PL intensity versus excitation-power density.
Original peaks (without/with laser irradiation, top) and the additional peak of the low-energy peaks (with laser irradiation for 15 min, bottom). The
data show a power-law dependence with k = 1.20, 1.34, and 0.63.

Figure 5. (a)−(d) The (200) XRD pattern of Br/I (v/v = 3:0, 5:1, 2:1, 1:1, 0:3) single crystals before and after white-light illumination for 1 h
(white-light illumination at AM 1.5G 100 mW cm−2). The integrated intensity is fit by Gaussian functions. (e) Schematic of the proposed
mechanism for abnormal PL behavior of laser irradiation time-dependence based on mixed halide perovskite single crystal band structure evolution
by sketching the valence (VB) and conduction (CB) bands for four situations: initial states, photogenerated excitons stabilizing the formation of
iodine-rich domains (phase segregation according to increasing laser irradiation time causing the appearance of a lower energy peak), recovery in the
dark after laser-off, and recovery of initial states. The red dotted lines represent light-induced metastable self-trap states that relax after laser-off (in
the dark) returning to the initial states.
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is the power index with k < 1 for free-to-bound and donor−
acceptor recombinations, and 1 < k < 2 for exciton
recombination including bound and free excitons.40 These
processes are related to the neutral impurities caused by the
photoneutralization of the donor−acceptor pair, which appear
in all semiconductor materials. The coefficient k = 2 is related
to band-to-band recombination. In our power-dependent PL
data, the k value corresponds to the previously reported
excitation-power dependence of excitons in semiconductors.41

From these results, we know that the lower energy peaks of
pseudocubic phase perovskites are related to defect sites.
Further, the peak in region B (see Figure 4b) shifts to higher
energy with increasing laser power density. At high excitation-
power density, it takes place through a band-filling effect in
which photogenerated electrons and holes occupy the higher
energy sub-band gaps.42 This process is expected to contribute
to the blue-shifted PL peak position of region B. Another
pseudocubic phase perovskite (Br/I 2:1) also has a similar
trend of power-dependent PL measurement (see SI, Figure S7).
Because of the appearance of the low-energy peak during

laser irradiation and reverting to the initial state in the dark, we
propose a photoinduced change related to the phase separation
of pseudocubic phase perovskite single crystals. To verify this
scenario, we performed XRD measurements on the perovskite
single crystals after white-light illumination (see SI, Figure S8a).
Figure 5a−d show the (200)C (cubic phase), (220)T
(tetragonal phase), and (004)T (tetragonal phase) peaks on a
magnified scale. We observed that the pseudocubic phase
perovskite single crystals coexist in cubic and tetragonal phases.
Jang et al. also showed that the mixed halide perovskite
(MAPbBr3−xIx; x = 0.5−1.0) nanocrystals have multiple
phases.43 With Gaussian fitting, the XRD diffraction peaks of
pure phase perovskites scarcely changed with light irradiation
(Figure 5a and d). However, the XRD diffraction peaks of
pseudocubic phase perovskites are reversed in intensity ratio of
the (200)C and (220)T by light irradiation, and the diffraction
patterns reverted to the initial state when the pseudocubic
phase perovskites were left in the dark state overnight (Figure
5b and c).
Figure S8b shows the PL spectra excited by the 633 nm laser

after irradiation with the 473 nm laser for 40 min. The PL
spectra of pseudocubic phase perovskite single crystals only
appear at the low energy (∼1.70 eV); however, PL spectra did
not appear without irradiation of the 473 nm laser. These
results indicate that there is a metastable state that can be
activated with larger energy than the band gap.
To understand the abnormal PL behavior with increasing

laser irradiation time, we propose a mechanism based on phase
segregation with illumination time in the mixed halide
perovskite single crystal, as illustrated in Figure 5e. Under
constant laser irradiation, there is an increasing number of
photoinduced metastable states (dashed red lines) that
accumulate over tens of minutes, causing phase segregation,
which results in the lower energy PL peak (phase segregation
scheme).43 However, when the pseudocubic phase perovskite
single crystals are rested in the dark (laser off), the dominant
photoinduced trap states dissipate and the pseudocubic phase
perovskite single crystals revert to nearly 100% of the initial
state (self-healing and recovered initial states scheme). This
mechanism is similar to the light soaking mechanism of mixed
halide perovskite film.44

In previous studies, photoinduced halide migration has been
reported in PbBr2 and PbI2.

45 Dawood et al. proposed that the

lead metal and iodine are created in a reaction of two excitons
at a suitable trapping site, finally leading to the formation of an
iodine molecule and an anion vacancy.46 Verwey has extensively
studied the mechanism, which involves the trapping of
photogenerated holes to the surface and anion vacancies from
the surface to the crystal.45 The valence band of MAPb-
(Br1−xIx)3 contains contributions between the strong Pb s
orbital and the halide p orbital antibonding coupling,47 so we
conjecture that the region of iodide-rich domains stabilizes
holes. Therefore, the iodide-rich domains could provide a
moving enthalpy for halide separation under laser irradiation
(phase segregation regime). Further, reversible structural
changes in the PbBr2 crystal have been attributed to self-
trapped holes and electrons caused by photogeneration.48 The
iodide-rich domains are a stable state under extrinsic change of
condition (condition of illumination), but self-trapped states
are unstable under intrinsic conditions. Consequently, these
processes are activated by laser irradiation, which revert to the
initial states in the dark. In addition, to support this mechanism,
we performed UV−vis absorption measurement on the
perovskite single crystals after white-light illumination and in
the dark state (see SI, Figure S9). After the illumination, the
band gaps extracted from the Tauc plot in the pure perovskite
single crystals are almost unchanged. However, band gaps of
the pseudocubic phase perovskite single crystals are changed
from 2.12 eV to 1.95 eV (Br/I 5:1) and 2.06 eV to 1.96 eV (Br/
I 2:1). These results well matched with the proposed
mechanism in Figure 5e.
In contrast, pure phase perovskite single crystals are almost

unchanged during laser irradiation. Previous studies have
reported that all the perovskite films including pure phase
display photoinduced PL enhancement.21 Generally, this
phenomenon is related to the passivation of defects on the
perovskite film surface. Zhao et al. show that surface defects
work as p-type dopants in perovskite films.19 Therefore, under
illumination, photogenerated charge carriers will be trapped at
surface defect sites and make the defects nonactive.16

Meanwhile, in our research, pure phase perovskite single
crystals show no change in the PL features upon laser
irradiation, which can be explained by the low defect density
of perovskite single crystals.

■ CONCLUSIONS

We observed the light soaking phenomena in the MAPbBr3−xIx
perovskite single crystals. By systematic investigation with
optical analysis, we found that the pseudocubic phase generates
light soaking phenomena. On the contrary, there was no change
in the PL and TRPL spectra in the pure phase perovskites. For
the structural analysis, we performed XRD measurements of
MAPbBr3−xIx perovskite single crystals after white-light
illumination. In the case of pseudocubic phase perovskite
single crystals, the magnitude of intensity of the cubic and
tetragonal phase regions ((200)C and (220)T) reversed under
illumination, which reverted to the initial state after cooling
overnight. We suggest that photoinduced changes are fully
reversible and relate to the existence of multiple phases or
halide migration. These physical changes will be useful for
understanding the working mechanisms of perovskite single
crystal optoelectronic devices.
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■ METHODS
Chemicals and Solvents. MABr and MAI were purchased

from Dyesol Limited (Australia). Lead bromide (≥98%), DMF
(N,N-dimethylformamide, anhydrous, 99.8%), and GBL (γ-
butyrolactone, ≥99%) were purchased from Sigma-Aldrich.
Lead iodide (≥99.99%) was purchased from Xi’an Polymer
Light Technology Corp. (China). All solvents and salts were
used as received without any further purification.
Growth of CH3NH3PbBr3−xIx Single Crystals. MAPbX3

perovskites show inverse temperature solubility behavior in a
proper solvent. This phenomenon of mixed halide perovskites
allows the design of a new crystallization method for these
materials, named inverse temperature crystallization. DMF and
GBL were chosen for MAPbBr3 and MAPbI3 ITC, respectively.
A solution (1 M) of PbX2 and MAX was prepared in DMF or
GBL for X = Br− and I−, respectively. All solutions were
prepared at room temperature, ambient condition, and a
humidity of 35−40%. The solutions were filtered using a
hydrophobic PTFE-D filter with a 0.2 μm pore size. The filtrate
(1.5 mL) was placed in a vial, and the vial was kept in an oven
at 80 and 110 °C for Br- and I-based mixed perovskites,
respectively (MAPbBr3.0:MAPBI3.0 = 5:1 (v/v), i.e., MAPb-
Br2.5I0.5; MAPbBr3.0:MAPbI3.0 = 2:1 (v/v), i.e., MAPbBr2.0I1.0).
The single crystal used for measurement was grown over about
3 h.
Characterization Methods. Field-emission scanning elec-

tron microscopy (JSM7000F, JEOL) was performed to examine
the surface morphologies of the perovskite single crystals. The
elemental compositions of the perovskite single crystals with
different mixing ratios were carried out using energy dispersive
spectroscopy data in SEM mode. UV−vis absorption spectra
were measured using a commercial spectrophotometer (V-670,
JASCO) in the range from 300 to 1000 nm. Powder X-ray
diffraction was performed on an X-ray diffractometer (Rigaku,
SmartLab) with Cu Kα radiation (λ = 1.540 59 Å).
MAPbBr3−xIx single crystals were ground into a powder with
a mortar. Bragge−Brentano focusing was operated with a tube
at 45 kV and 200 mA. Photoluminescence spectra were
obtained using a multifunctional optical microscopy system
(NTEGRA SPECTRA, NT-MDT). In this system, a 405 nm
(3.06 eV) laser as the excitation source and an excitation power
of 0.2 μW were used during the laser irradiation. In-plane
spatial resolution of ∼380 nm was indicated by an objective
lens (numerical aperture 0.7). For analysis of TRPL, confocal
microspectroscopy including a time-correlated single photon
counting system was employed (NTEGRA SPECTRA, NT-
MDT). The excitation source for the TRPL measurement was a
405 nm pulsed laser with a repetition rate of 20 MHz and a
pulse width down to 60 ps. The long time light irradiation
measurement was performed under ambient condition with
controlled temperature and humidity (24 °C, 42%) in a dark
room without UV light. In addition, the samples were stored in
the vacuum desiccator after measurement.
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