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Abstract

We present a calculation of the mass of the lowest-lying negative-parity J = 1/2− state in quenched QCD. Results are
obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the mass of the
nucleon, and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling
a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the
unimproved Wilson fermion action.
 2002 Elsevier Science B.V.

1. Introduction

The study of the excited nucleon spectrum can
provide important clues to the dynamics of QCD
and the nature of the interactions between its fun-
damental partons. The observed N∗ spectrum raises
many important questions, such as the nature of
the Roper resonance, and whether the �(1405) is
a true three-quark state or a molecular state. For

E-mail address: dgr@jlab.org (D.G. Richards).
1 QCDSF Collaboration.
2 UKQCD Collaboration.
3 LHPC Collaboration.

these reasons, the study of the spectrum is an im-
portant element of the Jefferson Laboratory exper-
imental programme. The phenomenological interest
in the excited nucleon spectrum has been comple-
mented by a flurry of activity in the lattice commu-
nity. In particular, two calculations of the mass of
the parity partner of the nucleon have appeared; the
first employed the highly-improved D234 fermion ac-
tion [1,2], whilst the second employed domain-wall
fermions [3,4]. Both calculations exhibited a clear
splitting between the masses of the N1/2+ and N1/2−
states, and the importance of chiral symmetry break-
ing in obtaining a non-zero mass splitting has been
stressed [3].

0370-2693/02  2002 Elsevier Science B.V.
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In this Letter, we present a calculation of the lowest
lying negative parity nucleon using an O(a)-improved
Sheikholeslami–Wohlert (SW), or clover, fermion ac-
tion; preliminary results were presented in Ref. [5].
By choosing the coefficient of the improvement term
appropriately, all O(a) discretisation uncertainties are
removed, ensuring that the continuum limit is ap-
proached with a rate proportional to a2.

The calculation of the excited nucleon spectrum
places particularly heavy demands on lattice spec-
troscopy. The excited nucleon states are expected to be
large; the size of a state is expected to double with each
increase in orbital angular momentum. Thus a lattice
study of the excited nucleon spectrum requires large
lattice volumes, with correspondingly large computa-
tional requirements. Furthermore, the states are rela-
tively massive, requiring a fine lattice spacing, at least
in the temporal direction. These requirements could be
satisfied with much greater economy using the clover
fermion action than using the domain-wall or overlap
formulation. Thus it is important to establish that the
negative parity states are indeed accessible to calcula-
tions using the clover action. Finally, by comparing the
masses obtained using the clover action with a calcula-
tion, at a single quark mass, using the Wilson fermion
action, we also gain insight into the nature of the in-
teraction responsible for the splitting in the parity dou-
blet.

The rest of the Letter is laid out as follows. In the
next section, we introduce the hadronic operators and
correlators measured in the calculation, describe the
fermion action, and provide the simulation parame-
ters. Section 3 contains our results for the masses of
the lowest lying positive- and negative-parity nucleon
states using the SW fermion action. Detailed discus-
sion, including a comparison with the Wilson fermion
case, and our conclusions, are presented in Section 4.

2. Calculational details

2.1. Baryon operators

For a particle at rest, there are three local interpolat-
ing operators for the positive-parity I = 1/2 nucleon,

(1)N
1/2+
1 = εijk

(
uTi Cγ5dj

)
uk,

(2)N
1/2+
2 = εijk

(
uTi Cdj

)
γ5uk,

(3)N
1/2+
3 = εijk

(
uTi Cγ4γ5dj

)
uk.

The “diquark” part of both N1 and N3 couples upper
spinor components, while that in N2 involves the lower
components and thus vanishes in the non-relativistic
limit [1]. For some of the lattices in our calculation,
the positive-parity nucleon mass is obtained using the
non-relativistic quark operators [6], defined by

(4)ψ → ψNR = 1
2
(1 + γ4)ψ, ψ̄

NR = ψ̄
1
2
(1 + γ4).

In practice, lattice calculations confirm the naive
expectation that the operators N1 and N3 have a much
greater overlap with the nucleon ground state than N2,
and therefore we do not use this operator in the fits.

The operators appropriate to negative-parity states
are obtained from those of Eqs. (1)–(3) by simply
multiplying by γ5. However, correlators constructed
from these operators receive contributions from both
parities. The best delineation that can be achieved
is that of forward-propagating positive-parity states
and backward-propagating negative-parity states, or
the converse, through the use of the parity projection
operator (1±γ4). On a lattice periodic or anti-periodic
in time, the resulting correlators may be written:

C
N

+/−
i

(t)

(5)

=
∑

�x

(
(1 ± γ4)αβ

〈
Ni,α(�x, t)	Ni,β(0)

〉

+ (1 ∓ γ4)αβ
〈
Ni,α(�x,Nt − t)	Ni,β(0)

〉)
,

where Nt is the temporal extent of the lattice. At large
distances, when t � 1 and Nt − t � 1, the correlators
behave as

(6)CN+
i
(t) →A+

i e
−m+

i t +A−
i e

−m−
i (Nt−t ),

(7)CN−
i
(t) →A−

i e
−m−

i t +A+
i e

−m+
i (Nt−t ),

where m+
i and m−

i are the lightest positive- and
negative-parity masses, respectively, in channel i .

2.2. Fermion action

To leading order in a the Symanzik improve-
ment programme amounts to adding the well-known
Sheikholeslami–Wohlert term to the fermionic Wilson
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action [7]

(8)δS = −csw
iκ

2

∑
x,µ,ν

ψ̄(x)σµνFµν(x)ψ(x).

Provided that csw is chosen appropriately, spectral
quantities such as hadron masses approach the con-
tinuum limit with a rate proportional to a2. Non-
perturbative determinations of csw have been made in
the quenched approximation to QCD in Refs. [8,9].

The Sheikholeslami–Wohlert term, Eq. (8), is of
magnetic moment form, and it is well known that the
use of the SW action results in hyperfine splittings
that are closer to their experimental values than those
obtained using the standard Wilson fermion action,
see, for example, Ref. [10]. The SW term also removes
the leading chiral-symmetry-breaking effects at finite
a. In view of these considerations, we compare the
splitting between the positive- and negative-parity
states obtained using the Wilson fermion action at a
single light-quark mass with the results obtained using
the SW fermion action.

2.3. Simulation details

The calculation is performed in the quenched ap-
proximation to QCD using lattices generated by the
UKQCD and QCDSF collaborations; calculations of
the light hadron spectrum using these lattices have ap-
peared in Ref. [11] and [12,13], respectively. Propa-
gators on the UKQCD lattices were computed from
both local and fuzzed sources to both local and fuzzed
sinks; the fuzzing procedure is described in Ref. [14].
The parameters used in the calculation are listed in Ta-
ble 1. Propagators on the QCDSF lattices were com-
puted using Jacobi smearing at both source and sink,
described in Ref. [15].

In the case of the UKQCD data, the same numbers
of configurations are used for each of the quark
masses for a given β ≡ 6/g2 and lattice volume; here
the errors on the fitted masses are computed using
a bootstrap procedure. In the case of the QCDSF
configurations, different numbers of configurations
are used at different quark masses even at the same
β and volume. There the errors on the masses are
also obtained using a bootstrap procedure. For the
chiral extrapolations, a simple uncorrelated χ2 fit is
performed, with the uncertainties computed from the
variation in the χ2.

3. Results

The masses of the lowest-lying N1/2+ and N1/2−
states are obtained from a simultaneous, four-para-
meter fit to the positive- and negative-parity corre-
lators of Eq. (5), constructed using fuzzed sources
and local sinks (UKQCD) or using smeared sources
and smeared sinks (QCDSF), using the fit functions
of Eqs. (6) and (7). We see a clear signal for the
mass of the negative-parity states, and the quality of
a fit is illustrated in Fig. 1; the contamination of the
negative-parity correlator from the lighter, backward-
propagating, positive-parity state is clear both in the
fits and in the data. The masses of the lightest particle
of positive and negative parity as a function of m2

π on
each ensemble are shown in Figs. 2–4.

For the chiral extrapolations of the hadron masses,
we adopt the ansatz

(9)(amX)
2 = (aMX)

2 + b2(amπ)
2,

where we use upper-case letters to denote masses
obtained in the chiral limit, and X is either N1/2+ or

Table 1
The parameters of the lattices used in the calculation. The labels J and F refer to use of Jacobi and “fuzzed” quark sources, respectively. Lattice
sizes in physical units are quoted using r0 to set the scale [18]

β csw L3 × T L (fm) κ Smearing

6.4 1.57 323 × 48 1.6 0.1313,0.1323,0,1330,0.1338,0.1346, 0.1350 J
6.2 1.61 243 × 48 1.6 0.1346,0.1351,0.1353 F

243 × 48 1.6 0.1333,0.1339,0.1344,0.1349,0.1352 J
323 × 64 2.1 0.1352,0.1353,0.13555 J

6.0 1.76 163 × 48 1.5 0.13344,0.13417,0.13455 F
163 × 32 1.5 0.1324,0.1333,0.1338,0.1342 J
243 × 32 2.2 0.1342,0.1346,0.1348 J
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Fig. 1. The effective masses for the N1/2+ channel (circles) and the
N1/2− channel (diamonds) at β = 6.2 with κ = 0.1351. The lines
are from a simultaneous fit to both parities.

Fig. 2. The masses in lattice units of the lowest-lying positive- and
negative-parity nucleons on the lattices at β = 6.0. The curves are
from independent fits to the Jacobi-smeared and fuzzed data for m2

X
using Eq. (9), as described in the text.

N1/2−. In order to avoid large discretisation errors, we
include in the extrapolation only those masses which
are less than of order unity, in lattice units. We include
data at different volumes, but at the same β , in the
chiral extrapolations, but treat the fuzzed and Jacobi-
smeared data independently. The parameters of the fit
for the positive- and negative-parity states are given in

Fig. 3. The masses in lattice units of the lowest-lying positive-
and negative-parity nucleons at β = 6.2. The curves are from
independent fits to the Jacobi-smeared and fuzzed data for m2

X
using

Eq. (9).

Fig. 4. The masses in lattice units of the lowest-lying positive- and
negative-parity nucleons at β = 6.4. The curves are from fits to m2

X
using Eq. (9).

Table 2, and the chiral extrapolation, together with the
extrapolated masses, shown in Figs. 2–4.

The fit to m2
X , rather than mX, gives a sensible be-

haviour in the heavy-quark limit, whilst being formally
the same at light pseudoscalar masses. The data for
mX at β = 6.4, shown in Fig. 5, exhibit clear curvature
compared with those in Fig. 4, and a satisfactory fit to
the data requires the addition of a non-analytic term
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Table 2
The parameters of the fit of the lightest positive- and negative-parity states to Eq. (9)

β 6.4 6.2 6.0

Jacobi Jacobi Fuzzed Jacobi Fuzzed

aM
N1/2+ 0.285(4) 0.369(3) 0.37(2) 0.512(6) 0.53(2)
b2 2.38(2) 2.40(2) 2.5(3) 2.42(3) 2.3(2)

aM
N1/2− 0.46(1) 0.58(1) 0.62(2) 0.89(2) 0.91(5)
b2 2.58(6) 2.67(7) 2.4(4) 2.1(2) 1.7(7)

Fig. 5. The masses in lattice units of the lowest-lying positive- and
negative-parity nucleons at β = 6.4. The curves are fits to mX using
Eq. (10), as described in the text.

Table 3
A comparison of the masses of the lowest-lying negative-parity
states on the small-volume and large-volume lattices at β = 6.0 and
β = 6.2, at a pseudoscalar mass amπ = 4.8/(L/a)

β amπ am
N1/2− (small) am

N1/2− (large)

6.0 0.3 0.97(1) 1.01(1)
6.2 0.2 0.664(9) 0.69(4)

(10)amX = aMX + b2(amπ)
2 + b3(amπ)

3.

The fit to Eq. (10) at β = 6.4 yields

(11)aMN1/2+ = 0.296(5),

(12)aMN1/2− = 0.47(1)

to be compared to the fits of Eq. (9)

aMN1/2+ = 0.285(4), aMN1/2− = 0.46(1).

The addition of such a non-analytic term makes
only a small difference to the extrapolated masses in

Fig. 6. The masses of the lowest-lying positive- and negative-parity
baryons in units of r−1

0 [17,18] against a2 in units of r2
0 . The lines

are linear fits in a2/r2
0 to the positive- and negative-parity baryon

masses. Also shown are the physical values.

the fits to m2
X . There has been considerable study of

the contribution of non-analytic terms arising from
pion-induced baryon self energies [16]. We do not
investigate the effect of these contributions in this
Letter.

In order to isolate the magnitude of the possible
finite-volume uncertainties in our results, we choose
not to examine the masses in the chiral limit, but
rather at a value of the pseudoscalar mass for which
we have data on both smaller and larger volumes.
Specifically, we compare the masses obtained from the
Jacobi-smeared data at β = 6.0 and β = 6.2 with a
pseudoscalar mass given by

(13)amπ = 4.8/(L/a),

where L is the spatial extent of the smaller of the
lattices at each β . The results of this analysis are
provided in Table 3; the mass of the negative-parity
state on the larger lattices is higher than on the smaller
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lattices at both lattice spacings, by an amount of order
5%.

In order to look at the discretisation uncertainties in
our data, we show in Fig. 6 the masses in units of r0
against the a2/r2

0 , where r0 = 0.5 fm is the hadronic
scale [17,18]. For the lightest positive-parity state,
we obtain entirely consistent results at the different
lattice spacings. For the case of the negative-parity
states, there is some trend towards decreasing mass
at finer lattice spacings. In order to quantify the
discretisation uncertainties, we perform uncorrelated
χ2 fits in a2/r2

0 :

(14)(MXr0)(a)= MXr0(a = 0)+ c

(
a

r0

)2
,

where X is either N1/2+ or N1/2−, yielding

(15)MN1/2+ r0 = 2.74(4), MN1/2−r0 = 4.1(1).

The fits and extrapolated masses are shown on the
figure, together with the experimental values of the
masses in units of r0. We estimate the difference
between the values obtained in the continuum limit
and that obtained on our finest lattice, β = 6.4, as
a measure of the discretisation uncertainties in our
calculation; this is negligible for the positive-parity
state, and 10% for the negative parity state.

Though there is a noticeable discrepancy between
the lattice and physical values, a direct experimental
measurement of r0 is unavailable, and r0 is a better
scale for comparing data at different lattice spacings
than for comparing data with experiment. Therefore,
we choose as our final result the mass ratio of the
negative- and positive-parity masses in the quenched
approximation

(16)MN1/2−/MN1/2+ = 1.50(3),

where the quoted error is purely statistical, and we es-
timate systematic uncertainties of 5% due to finite vol-
ume effects, and 10% due to discretisation uncertain-
ties. This is to be compared with the physical ratio of
1.63.

4. Discussion and conclusions

The calculation exhibits a clear mass splitting be-
tween the positive- and negative-parity states, in agree-
ment with calculations using the highly-improved and

domain-wall fermion actions. In view of the dearth
of studies of negative-parity baryon masses using the
Wilson fermion action, it is instructive to compare the
mass splitting obtained with the clover fermion action
with that obtained from the standard Wilson fermion
action. In order to study this, Wilson quark propaga-
tors were computed on the UKQCD 243 × 48 lattices
at β = 6.2 at a quark mass corresponding to mπ/mρ =
0.7; the smearing and fitting procedures were the same
as those employed in the SW calculation.

The splitting between the masses of the positive-
and negative-parity states obtained with the Wilson
fermion action, together with that obtained with the
SW fermion action is shown in Fig. 7. The splittings
obtained with the two actions are entirely consistent,
which we will now argue is reasonable. Under the
SU(6) spin-flavour symmetry, the low-lying negative-
parity baryons, up to around 2 GeV, can be assigned
to a l = 1 70-plet. Similarly, the low-lying positive-
parity baryons can be assigned to an l = 0 56-plet.
Thus the splitting in the parity doublets is analogous to
the P –S splitting in the meson sector, which we know
is relatively faithfully reproduced using the Wilson
fermion action. Indeed an earlier lattice calculation
demonstrating that the P -wave baryons are accessible
to lattice calculation is contained in Ref. [19].

Fig. 7. The masses in lattice units of the lowest-lying positive- and
negative-parity nucleons using the SW-clover action at β = 6.2 on
the 243 × 48 lattices (circles). Also shown is the corresponding
results obtained using the Wilson fermion action (diamonds) on the
same ensemble of configurations.
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Within the l = 1 70-plet, calculations of the masses
of these states both in the quark model [20], and in
large NC [21], suggest that the spin–orbit contribution
is surprisingly small, whilst the hyperfine contribution
is of normal size, and there is an effective interaction
carrying the quantum numbers of pion exchange [22].
It is within a multiplet that we might expect the choice
of action to play a rôle.

The continuation of the calculation to lighter quark
masses will require careful consideration. A baryon
can change parity through the emission of a π or η;
the latter process is accessible even in the case of
quenched QCD, where the π and η are degenerate
in mass, as illustrated in Fig. 8.4 The non-unitary
behaviour associated with such processes has been
observed in the scalar correlator [23–25]. Whilst no
evidence for non-unitary behaviour is observed in this
calculation, the lightest quark mass is indeed close to
the N∗ → Nπ threshold.

In this Letter it has been shown that both the
SW-clover and Wilson fermion actions are capa-
ble of resolving the splitting between the positive-
and negative-parity baryon masses in the quenched
approximation to QCD, and therefore that these are
accessible to relatively economical calculation. We
obtain a ratio for the masses of the negative- and
positive-parity states of 1.49(2), where the error is
purely statistical, compared with the experimental
value of 1.63. A more extensive study of the spectrum
including the case of non-degenerate quark masses,
and for the lowest-lying I = 3

2 states will appear in
a longer paper [26].

Fig. 8. Diagram contributing to the decay N1/2− −→ N1/2+η in
quenched QCD.

4 We are grateful to Robert Edwards and Chris Michael for this
observation.
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