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Abstract

Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show
that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate
wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for
form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states
in the Q2-channel. We calculate electric radius of the ρ-meson, finding the value 〈r2

ρ〉C = 0.53 fm2.
© 2007 Elsevier B.V.

1. Introduction

The AdS/CFT correspondence [1] conjectures equivalence
of gravity theory on the anti-de Sitter space AdS5 and a strongly
coupled four-dimensional (4D) conformal field theory (CFT).
The correspondence states that for every CFT operator O(x)

there is a corresponding bulk field Φ(x, z) uniquely determined
by the boundary condition (b.c.) Φ(x, z = 0) at the ultraviolet
(UV) 4D boundary of AdS space (x denotes the 4D coordi-
nates and z stands for the fifth extra dimension). The addition
of an infrared (IR) brane at z = z0 breaks conformal invari-
ance in the IR region, and allows one to have both particles
and S-matrix elements. Due to the holographic equivalence be-
tween the broken CFT and the gravitational picture, the two
theories have identical spectra and identical S-matrix elements
[2]. In particular, the Kaluza–Klein modes on the gravity side
can be interpreted as bound states in the 4D theory. The next
conjecture is that the AdS/CFT correspondence can be extended
to assert that any 5D gravity theory on AdS5 is holographically
dual to some strongly coupled, large-Nc 4D CFT (see, e.g., [2]).

* Corresponding author at: Thomas Jefferson National Accelerator Facility,
Newport News, VA 23606, USA.

E-mail address: radyush@jlab.org (A.V. Radyushkin).

The goal of holographic models of quantum chromodynamics
(QCD) is to find such a gravity theory for which the dual theory
is as close to QCD as possible.

Holographic duals of QCD based on the AdS/CFT corre-
spondence have been applied recently to hadronic physics (see,
e.g., [3–14]). These models are able to incorporate essential
properties of QCD such as confinement and chiral symme-
try breaking, and have demonstrated in many cases success
in determination of static hadronic properties, such as reso-
nance masses, decay constants, chiral coefficients, etc. Dy-
namic properties (form factors) have been studied originally
within the holographic approach of Ref. [3], and the connec-
tion between AdS/QCD approach of Refs. [3,4] and the usual
light-cone formalism for hadronic form factors was proposed
in [11] and discussed in [15]. The calculation of form factors
of scalar and vector hadrons within the approach of Ref. [3]
was performed in Refs. [16,17], and applied to study the uni-
versality of the ρ-meson couplings to other hadrons. The ex-
pressions for hadronic form factors given in Refs. [3,11,16]
have an expected form of z-integral containing the product
of two hadronic wave functions and a function describing
the probing current. However, the hadronic functions used in
Ref. [11] strongly differ from those in Refs. [3,16]. The lat-
ter give meson coupling constants through their derivatives at

0370-2693 © 2007 Elsevier B.V.
doi:10.1016/j.physletb.2007.05.044
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z = 0 and satisfy Neumann b.c. at the IR boundary z = z0,
while the functions used in Ref. [11] satisfy Dirichlet b.c.
at z = z0, and are proportional (after extraction of the over-
all z2 factor) to the meson coupling constants fn at the ori-
gin. In these respects they are analogous to the bound state
wave functions in quantum mechanics, which makes possible
their interpretation in terms of light-cone variables proposed in
Ref. [11].

The aim of this Letter is to study form factors and wave func-
tions of vector mesons within the framework of the holographic
QCD model described in Refs. [6–8] (which will be referred to
as H-model). To this end, we consider a 5D dual of the sim-
plest Nf = 2 version of QCD to be a Yang–Mills theory with
the SU(2) gauge group in the background of sliced AdS space,
i.e., the 4D global SU(2) isotopic symmetry of Nf = 2 QCD
is promoted to a 5D gauge symmetry in the bulk. Note, that
the AdS/QCD correspondence does not refer explicitly to quark
and gluon degrees of freedom. Rather, one deals with the bound
states of QCD which appear as infinitely narrow resonances.
The counterparts in the correspondence relation are the vec-
tor current J a

μ(x) with conformal dimension Δ = 3 (in QCD,
it may be visualized as q̄(x)taγμq(x)), and the 5D gauge field
Aa

μ(x, z).
We start with recalling the basic elements of the analysis

of two-point functions 〈JJ 〉 given in Refs. [6,7], and introduce
a convenient representation for the A-field bulk-to-boundary
propagator V(p, z) based on the Kneser–Sommerfeld formula
[18] that gives V(p, z) as an expansion over bound state poles
with the z-dependence of each pole contribution given by “ψ
wave functions”, that are eigenfunctions of the 5D equation
of motion with Neumann b.c. at the IR boundary. Then we
study the three-point function 〈JJJ 〉 and obtain expression for
transition form factors that involves ψ wave functions and the
nonnormalizable mode factor J (Q, z). We write the latter as
a sum over all bound states in the channel of electromagnetic
current, which gives an analogue of generalized vector meson
dominance (VMD) representation for hadronic form factors. As
the next step, we introduce “φ wave functions” that strongly re-
semble wave functions of bound states in quantum mechanics
(they satisfy Dirichlet b.c. at z = z0, and their values at z = 0
give bound state couplings g5fn/Mn, i.e., they have the prop-
erties necessary for the light-cone interpretation of AdS/QCD
results proposed in Ref. [11]). We rewrite form factors in terms
of φ functions, formulate predictions for ρ-meson form fac-
tors, and analyze these predictions in the regions of small and
large Q2.

The ρ-meson electric radius is calculated, and it is also
shown that H-model predicts a peculiar VMD pattern when two
(rather than just one) lowest bound states in the Q2-channel
play the dominant role while contributions from higher states
can be neglected. This double-resonance dominance is estab-
lished both for the ρ-meson form factor F(Q2) given by the
overlap of the ψ wave functions (here we confirm the re-
sults obtained in Ref. [16] for the ρ-meson form factor con-
sidered there) and for the form factor F(Q2) given by the
overlap of the φ wave functions. Finally, we summarize our
results.

2. Two-point function

Our goal is to analyze form factors of vector mesons within
the framework of the holographic model of QCD based on
AdS/QCD correspondence. As a 4D operator on the QCD side,
we take the vector current J a

μ(x) = q̄(x)γμtaq(x), to which
corresponds a bulk gauge field Aa

M(x, z) whose boundary value
is the source for J a

μ(x). We follow the conventions of the
H-model [7], with the bulk fields in the background of the sliced
AdS5 metric

(1)ds2 = 1

z2

(
ημν dxμ dxν − dz2), 0 � z � z0,

where ημν = Diag(1,−1,−1,−1), and z0 ∼ 1/ΛQCD is the
imposed IR scale. The 5D gauge action in AdS5 space, cor-
responding to Aa

M(x, z), is

(2)SAdS = − 1

4g2
5

∫
d4x dz

√
g Tr

(
FMNFMN

)
,

where FMN = ∂MAN − ∂NAM − i[AM,AN ], AM = taAa
M ,

(ta ∈ SU(2), a = 1,2,3) and M,N = 0,1,2,3, z. Since the
vector field Aa

M(x, z) is taken to be non-Abelian, the 3-point
function of these fields in the lowest approximation can be ex-
tracted directly from the Lagrangian.

Before calculating the 3-point function, we recall some prop-
erties of the 2-point function discussed in [7]. Consider the
sliced AdS space with an IR boundary at z = z0 and UV cut-
off at z = ε (taken to be zero at the end of the calculations).
In order to calculate the current–current correlator (or 2-point
function) using the AdS/CFT correspondence, one should solve
equations of motion, requiring the solution at the UV boundary
(z = 0) to coincide with the 4D source of the vector current,
calculate 5D action on this solution and then vary the action
(twice) with respect to the boundary source. The task is simpli-
fied when the Az = 0 gauge is imposed, and the gauge field is
Fourier-transformed in 4D, Aμ(x, z) ⇒ Ãμ(p, z). Then

(3)Ãμ(p, z) = Ãμ(p)
V (p, z)

V (p, ε)
,

where Ãμ(p) is the Fourier-transformed current source, and the
5D gauge field V (p, z) is the so-called bulk-to-boundary prop-
agator obeying

(4)z∂z

(
1

z
∂zV (p, z)

)
+ p2V (p, z) = 0.

The UV b.c. Ãμ(p, ε) = Ãμ(p) is satisfied by construction. At
the IR boundary (when z = z0), we follow Ref. [7] (see also
Ref. [16]) and choose the Neumann b.c. ∂zV (p, z0) = 0 which
corresponds to the gauge invariant condition Fμz(x, z0) = 0.
Evaluating the bilinear term of the action on this solution leaves
only the UV surface term

(5)S
(2)
AdS = − 1

2g2
5

∫
d4p

(2π)4
Ãμ(p)Ãμ(p)

[
1

z

∂zV (p, z)

V (p, ε)

]
z=ε

.

The 2-point function of vector currents is defined by

(6)
∫

d4x eip·x 〈J a
μ(x)J b

ν (0)
〉 = δab Πμν(p)Σ

(
p2),
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where Πμν(p) ≡ (ημν − pμpν/p
2) is the transverse projector.

Varying the action (5) with respect to the boundary source pro-
duces

(7)Σ
(
p2) = − 1

g2
5

(
1

z

∂zV (p, z)

V (p, ε)

)∣∣∣∣
z=ε→0

.

(To get the tensor structure of (6) by a “naïve” variation, one
should change AμAμ → AμΠμν(p)Aν in Eq. (5).)

It is well known (see, e.g., [3,16]) that two linearly inde-
pendent solutions of Eq. (4) are given by the Bessel functions
zJ1(P z) and zY1(P z), where P ≡ √

p2. Taking Neumann b.c.
for V (p, z), one obtains

(8)V (p, z) = Pz
[
Y0(P z0)J1(P z) − J0(P z0)Y1(P z)

]
,

and, hence,

(9)Σ
(
p2) = πp2

2g2
5

[
Y0(P z) − J0(P z)

Y0(P z0)

J0(P z0)

]
z=ε→0

.

This expression is singular as ε → 0:

(10)Σ
(
p2) = 1

2g2
5

p2 ln
(
p2ε2) + · · · .

By matching to QCD result for J a
μ = q̄γμtaq currents one finds

g2
5 = 12π2/Nc (cf. [6]).

The two-point function Σ(p2) has poles when the denom-
inator function J0(P z0) has zeros, i.e., when Pz0 coincides
with one of the roots γ0,n of the Bessel function J0(x). These
poles can be explicitly displayed by incorporating the Kneser–
Sommerfeld expansion [18]

Y0(P z0)J0(P z) − J0(P z0)Y0(P z)

J0(P z0)

(11)= − 4

π

∞∑
n=1

J0(γ0,nz/z0)

[J1(γ0,n)]2(P 2z2
0 − γ 2

0,n)
,

valid for z � z0 (the case we are interested in). Taking formally
z = 0 gives a logarithmically divergent series reflecting the ln ε

singularity of the z = ε expression. Thus, some kind of regu-
larization for this divergency of the sum is implied. Under this
assumption,

(12)Σ
(
p2) = 2p2

g2
5z2

0

∞∑
n=1

[J1(γ0,n)]−2

p2 − M2
n

,

where Mn = γ0,n/z0. Hence, the 2-point correlator of the
H-model has poles when P coincides with one of Mn’s. Given
that the residues of all these poles are positive, the poles may be
interpreted as bound states with Mn’s being their masses. The
coupling f 2

n with which a particular resonance contributes to
the total sum is determined by

(13)f 2
n = lim

p2→M2
n

{(
p2 − M2

n

)
Σ

(
p2)}.

This prescription agrees with the usual definition 〈0|J a
μ|ρb

n〉 =
δabfnεμ for the vector meson decay constants. In our case,

(14)f 2
n = 2M2

n

g2
5z2

0J
2
1 (γ0,n)

.

3. Three-point function

Consider now the trilinear term of the action calculated on
the V (q, z) solution:

(15)S
(3)
AdS = −εabc

2g2
5

∫
d4x

z0∫
ε

dz

z

(
∂μAa

ν

)
Aμ,bAν,c.

A naïve variation gives the result for the 3-point correlator
〈Jα

a (p1)J
β
b (−p2)J

μ
c (q)〉 that contains the isotopic Levi-Civita

tensor εabc , the dynamical factor

(16)W(p1,p2, q) ≡
z0∫

ε

dz

z

V (p1, z)

V (p1, ε)

V (p2, z)

V (p2, ε)

V (q, z)

V (q, ε)
,

and the tensor structure

T αβμ = ηαμ(q − p1)
β − ηβμ(p2 + q)α + ηαβ(p1 + p2)

μ

familiar from the QCD 3-gluon vertex amplitude. Restoring the
transverse projectors Παα′

(p1), etc. one can convert it into

(17)T αβμ = ηαβ(p1 + p2)μ + 2(ηαμqβ − ηβμqα).

For the factors corresponding to the hadronized channels, the
Kneser–Sommerfeld expansion (11) gives

(18)
V (p, z)

V (p,0)
≡ V(p, z) = −g5

∞∑
n=1

fnψn(z)

p2 − M2
n

,

where p equals p1 or p2, and

(19)ψn(z) =
√

2

z0J1(γ0,n)
zJ1(Mnz)

is the “ψ wave function” obeying the same equation of motion
(4) as V (p, z) (with p2 = M2

n ), satisfying the b.c.

(20)ψn(0) = 0, ∂zψn(z0) = 0,

and normalized according to

(21)

z0∫
0

dz

z

∣∣ψn(z)
∣∣2 = 1.

One remark is in order here. Since the “ψ wave functions” van-
ish at the origin and satisfy Neumann b.c. at the IR boundary,
it is impossible to establish a direct analogy between ψn(z)’s
and the bound state wave functions in quantum mechanics. For
the latter, one would expect that they vanish at the confinement
radius, while their values at the origin are proportional to the
coupling constants fn.

Taking a spacelike momentum transfer, q2 = −Q2 for the
V/V factor of the EM current channel gives

(22)J (Q, z) = Qz

[
K1(Qz) + I1(Qz)

K0(Qz0)

I0(Qz0)

]
,

the nonnormalizable mode with Neumann b.c. (see also
Ref. [16]). This factor can also be written as a sum of
monopole contributions from the infinite tower of vector
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mesons:

(23)J (Q, z) = g5

∞∑
m=1

fmψm(z)

Q2 + M2
m

.

This decomposition, discussed in Ref. [16], directly follows
from Eq. (18). Incorporating the representation for the bulk-to-
boundary propagators given above we obtain

(24)T
(
p2

1,p
2
2,Q

2) =
∞∑

n,k=1

fnfkFnk(Q
2)

(p2
1 − M2

n)(p2
2 − M2

k )
,

where T (p2
1,p

2
2,Q

2) = W(p1,p2, q)/g2
5 , and

(25)Fnk

(
Q2) =

z0∫
0

dz

z
J (Q, z)ψn(z)ψk(z)

correspond to form factors for n → k transitions. This expres-
sion was also written in Ref. [16] for form factors considered
there.

4. Wave functions

The formulas obtained above using explicit properties of
the Bessel functions in the form of Kneser–Sommerfeld ex-
pansions, can also be derived from the general formalism of
Green’s functions. In particular, the Green’s function for Eq. (4)
can be written as

(26)G(p; z, z′) =
∞∑

n=1

ψn(z)ψn(z
′)

p2 − M2
n

,

where ψn(z)’s are the normalized wave functions (19) that sat-
isfy the Sturm–Liouville equation (4) with p2 = M2

n and Neu-
mann b.c. (20). As discussed in Ref. [6], the bulk-to-boundary
propagator is related to the Green’s function by

(27)V(p, z′) = −
[

1

z
∂zG(p; z, z′)

]
z=ε→0

,

and the two-point function Σ(P 2) is obtained from the Green’s
function using Eqs. (7), (27)

(28)Σ
(
P 2) = 1

g2
5

[
1

z′ ∂z′
[

1

z
∂zG(p; z, z′)

]]
z,z′=ε→0

.

Accordingly, the coupling constants are related to the ψ wave
functions by

(29)fn = 1

g5

[
1

z
∂zψn(z)

]
z=0

(cf. [6,16]). In view of this relation, it makes sense to introduce
“φ wave functions”

(30)φn(z) ≡ 1

Mnz
∂zψn(z) =

√
2

z0J1(γ0,n)
J0(Mnz),

which give the couplings g5fn/Mn as their values at the ori-
gin. In this respect, the “φ wave functions” are analogous to
the bound state wave functions in quantum mechanics. More-
over, these functions satisfy Dirichlet b.c. φn(z0) = 0 and are

normalized by

(31)

z0∫
0

dz z
∣∣φn(z)

∣∣2 = 1,

which strengthens this analogy. However, the elastic form fac-
tors Fnn(Q

2) are given by the integrals

(32)Fnn

(
Q2) =

z0∫
0

dz

z
J (Q, z)

∣∣ψn(z)
∣∣2

involving ψ rather than φ wave functions. In fact, due to the
basic Eq. (4), ψn(z) wave functions can be expressed in terms
of φn(z) as

(33)ψn(z) = − z

Mn

∂zφn(z),

and we can rewrite the form factor integral as

Fnn

(
Q2) =

z0∫
0

dz zJ (Q, z)
∣∣φn(z)

∣∣2

(34)+ 1

Mn

z0∫
0

dzφn(z)ψn(z)∂zJ (Q, z).

Note, that the nonnormalizable mode

(35)
1

z
∂zJ (Q, z) = −Q2

[
K0(Qz) − I0(Qz)

K0(Qz0)

I0(Qz0)

]

corresponds to equation whose solutions are the functions
J0(Mnz) satisfying Dirichlet b.c. at z = z0. Expressing φn(z)

in terms of ∂zψn(z), integrating |ψn(z)|2 by parts and using
Eq. (4) for J (Q, z) gives

Fnn

(
Q2) =

z0∫
0

dz zJ (Q, z)
∣∣φn(z)

∣∣2

(36)− Q2

2M2
n

z0∫
0

dz

z
J (Q, z)

∣∣ψn(z)
∣∣2

.

The second term contains the original integral for Fnn(Q
2), and

we obtain

(37)Fnn

(
Q2) = 1

1 + Q2/2M2
n

z0∫
0

dz zJ (Q, z)
∣∣φn(z)

∣∣2
.

Notice, that the normalizable modes φn(z) in this expression
correspond to Dirichlet b.c., while the nonnormalizable mode
J (Q, z) was obtained using the Neumann ones.

Thus, we managed to get the expression for Fnn(Q
2) form

factors that contains φ instead of ψ wave functions. However,
it contains an extra factor 1/(1 + Q2/2M2

n), which brings us to
the issue of different form factors of the ρ-meson and kinematic
factors associated with them.
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5. Form factors

Our result (25) contains only one function for each n → k

transition, in particular Fnn(Q
2) in the diagonal case. However,

the general expression for the EM vertex of a spin-1 particle
of mass M can be written (assuming P - and T -invariance) in
terms of three form factors (see, e.g., [19], our G2 is theirs G2 −
G1):
〈
ρ+(p2, ε

′)
∣∣Jμ

EM(0)
∣∣ρ+(p1, ε)

〉

= −ε′
βεα

[
ηαβ

(
p

μ
1 + p

μ
2

)
G1

(
Q2)

+ (
ημαqβ − ημβqα

)(
G1

(
Q2) + G2

(
Q2))

(38)− 1

M2
qαqβ

(
p

μ
1 + p

μ
2

)
G3

(
Q2)].

Comparing the tensor structure of this expression with (17),
we conclude that H-model predicts G

(n)
1 (Q2) = G

(n)
2 (Q2) =

Fnn(Q
2), and G

(n)
3 (Q2) = 0 for form factors G

(n)
i (Q2) of nth

bound state. It was argued (see [16]) that this is a general fea-
ture of AdS/QCD models for the ρ-meson form factors. Since
J (Q = 0, z) = 1, the diagonal form factors Fnn(Q

2) in the
H-model are normalized to unity, while the nondiagonal ones
vanish for Q2 = 0 (the functions ψn(z) are orthonormal on
[0, z0]).

The form factors Gi are related to electric GC , magnetic GM

and quadrupole GQ form factors by

GC = G1 + Q2

6M2
GQ, GM = G1 + G2,

(39)GQ =
(

1 + Q2

4M2

)
G3 − G2.

For these form factors, H-model gives

G
(n)
Q

(
Q2) = −Fnn

(
Q2), G

(n)
M

(
Q2) = 2Fnn

(
Q2),

(40)G
(n)
C

(
Q2) =

(
1 − Q2

6M2

)
Fnn

(
Q2).

For Q2 = 0, it correctly reproduces the unit electric charge
of the meson, and “predicts” μ ≡ GM(0) = 2 for the mag-
netic moment and D ≡ GQ(0)/M2 = −1/M2 for the quadru-
pole moment, which are just the canonical values for a pointlike
vector particle [20].

Another interesting combination of form factors

(41)F
(
Q2) = G1

(
Q2) + Q2

2M2
G2

(
Q2) −

(
Q2

2M2

)2

G3
(
Q2)

appears if one takes the “+++” component of the 3-point cor-
relator (obtained, e.g., by convoluting it with nαnβnμ, where
n2 = 0, (np1) = 1, (nq) = 0 [15]). The H-model result (37) for
F(Q2) is particularly simple:

(42)Fnn

(
Q2) =

z0∫
0

dz zJ (Q, z)
∣∣φn(z)

∣∣2
.

Thus, it is the form factors Fnn(Q
2) that are the most direct

analogues of diagonal bound state form factors in quantum me-
chanics.

6. Low-Q2 behavior

Our expression for Fnn(Q
2) is close to that proposed for

a generic meson form factor in the holographic model of
Ref. [11]. There, the authors used K(Qz) ≡ QzK1(Qz) as the
q-channel factor. Indeed, the difference between J (Q, z) and
K(Qz) is exponentially small when Qz0  1, but the two func-
tions radically differ in the region of small Q2, where the func-
tion K(Qz) displays the logarithmic branch singularity

(43)K(Qz) = 1 − z2Q2

4

[
1 − 2γE − ln

(
Q2z2/4

)] +O
(
Q4),

that leads to incorrect infinite slope at Q2 = 0. To implant
the AdS/QCD information about the hadron spectrum in the
q-channel one should use J (Q, z) that corresponds to a tower
of bound states in the q-channel. The lowest singularity in this
case is located at Q2 = −M2

1 . Since it is separated by a finite
gap from zero, the form factor slopes at Q2 = 0 are finite.

To analyze the form factor behavior in the Qz0 � 1 limit,
we expand

(44)J (Q, z)|Qz0�1 = 1 − z2Q2

4

[
1 − ln

z2

z2
0

]
+O

(
Q4).

As expected, the result is analytic in Q2. For the lowest transi-
tion (i.e., for the ρ-meson form factor), explicit numbers are as
follows:

(45)F11
(
Q2) ≈ 1 − 0.692

Q2

M2
+ 0.633

Q4

M4
+O

(
Q6),

where M = M1 = mρ . Another small-Q2 expansion

(46)F11
(
Q2) ≈ 1 − 1.192

Q2

M2
+ 1.229

Q4

M4
+O

(
Q6),

can be either calculated from the original expression (32) in-
volving ψ -functions or by dividing F11(Q

2) by (1+Q2/2M2).
The latter approach easily explains the difference in slopes of
these two form factors at Q2 = 0. Finally, for the electric form
factor, we obtain

(47)G
(1)
C

(
Q2) ≈ 1 − 1.359

Q2

M2
+ 1.428

Q4

M4
+O

(
Q6).

For the electric radius of the ρ-meson this gives

(48)
〈
r2
ρ

〉
C

= 0.53 fm2,

the value that is very close to the recent result (0.54 fm2)
obtained within the Dyson–Schwinger equations (DSE) ap-
proach [21]. Lattice gauge calculations [22] indicate a similar
value in the m2

π → 0 limit.
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7. Vector meson dominance patterns

Numerically, the result 1.359/M2 for the slope of G
(1)
C (Q2)

is larger than the simple VMD expectation 1/M2. In fact, a part
of this larger value is due to the factor (1 − Q2/6M2) relating
G

(1)
C (Q2) and F11(Q

2), which is kinematic to some extent. The
F11(Q

2) form factor, however, can be written in the generalized
VMD representation (cf. [16])

(49)F11
(
Q2) =

∞∑
m=1

Fm,11

1 + Q2/M2
m

,

with the coefficients Fm,11 given by the overlap integrals

(50)Fm,11 = 4

1∫
0

dξ ξ2 J1(γ0,mξ)J 2
1 (γ0,1ξ)

γ0,mJ 2
1 (γ0,m)J 2

1 (γ0,1)
,

apparently having a purely dynamical origin. The coefficients
Fm,11 satisfy the sum rule

(51)
∞∑

m=1

Fm,11 = 1,

that provides correct normalization F11(Q
2 = 0) = 1. Numeri-

cally, the unity value of the form factor F11(Q
2) for Q2 = 0 is

dominated by the first bound state that gives 1.237. The second
bound state makes a sizable correction by −0.239, while adding
a small 0.002 contribution from the third bound state fine-tunes
1 beyond the 10−3 accuracy. Contributions from higher bound
states to the form factor normalization are negligible at this pre-
cision.

The slope of F11(Q
2) at Q2 = 0 is given by the sum of

Fm,11/M
2
m coefficients. Now, the dominance of the first bound

state is even more pronounced: the Q2 coefficient 1.192/M2

in Eq. (46) is basically contributed by the first bound state
that gives 1.237/M2, with small −0.045/M2 correction from
the second bound state. Other resonances are not visible at the
three-digit precision.

Thus, for small Q2, H-model predicts a rather peculiar pat-
tern of VMD for F11(Q

2) (observed originally in Ref. [16] for
a form factor considered there): strong dominance of the first q-
channel bound state, whose coupling F1,11 exceeds 1, with the
second resonance (having the negative coupling F2,11) compen-
sating this excess.

Similarly, the F11(Q
2) form factor has the generalized VMD

representation with coefficients Fm,11 given by the overlap in-
tegrals

(52)Fm,11 = 4

1∫
0

dξ ξ2 J1(γ0,mξ)J 2
0 (γ0,1ξ)

γ0,mJ 2
1 (γ0,m)J 2

1 (γ0,1)
.

Now, F1,11 ≈ 0.619, F2,11 ≈ 0.391, F3,11 ≈ −0.012, F4,11 ≈
0.002, etc. In this case also, the value of the F11(Q

2) form fac-
tor for Q2 = 0 is dominated by the first two bound states. For
the slope of the form factor at Q2 = 0, the dominance of the
first bound state is again more pronounced: the Q2 coefficient
0.692/M2 in Eq. (45) is basically contributed by the first bound

state that gives 0.619/M2, with a small 0.074/M2 correction
from the second bound state and a tiny −0.001/M2 contribu-
tion from the third one.

Thus, for F11(Q
2), H-model gives again a two-resonance

dominance pattern, with the coupling F2,11 of the second reso-
nance being now just somewhat smaller than the coupling F1,11
of the first resonance, both being positive. The relation between
the two VMD patterns follows from Eq. (37):

(53)Fm,11 = Fm,11

1 − M2
m/2M2

1

.

In particular, it gives F1,11 = 2F1,11, and negative sign for
F2,11. It also determines that if higher coefficients Fm,11 are
small then Fm,11’s are even smaller.

8. Large-Q2 behavior

Eq. (37) tells us that asymptotically F11(Q
2) is suppressed

by a power of 1/Q2 compared to F11(Q
2), which is known to

behave like 1/Q2 for large Q2 [11,15]. The absence of 1/Q2

term in the asymptotic expansion for F11(Q
2) means that the

coefficients Fm,11 defined in Eq. (49) satisfy the “superconver-
gence” relation

(54)
∞∑

m=1

M2
mFm,11 = 0,

reflecting a “conspiracy” [16] between the poles. Writing
M2

mFm,11 ≡ AmM2, we obtain that A1 ≈ 1.237, A2 ≈ −1.261,
A3 ≈ 0.027 (our results for the ratios A2/A1, A3/A1 agree with
the calculation of Ref. [16]). Again, the sum rule is practically
saturated by the first two bound states, which give contributions
that are close in magnitude but opposite in sign.

In case of F(Q2), the two lowest bound states both give
positive O(1/Q2) contributions at large Q2. In Ref. [15], it
was shown that the asymptotic normalization of F11(Q

2) ex-
ceeds the VMD expectation M2

1/Q2 by a factor of 2.566. We
can infer this normalization from the values of the coefficients
Fm,11 defined in Eq. (52). Writing M2

mFm,11 ≡AmM2
1 , we ob-

tain that A1 ≈ 0.619, A2 ≈ 2.061, A3 ≈ −0.150, A4 ≈ 0.054.
Note, that the total result is dominated by the second bound
state, which is responsible for about 80% of the value. The low-
est bound state contributes only about 25%, while the higher
states give just small corrections.

It is worth noting that the large-Q2 behavior of F11(Q
2) is

determined by the large-Qz0 form of J (Q, z): it can be (and
was) calculated using K(Qz), the free-field version of J (Q, z).
As a result, the value of the asymptotic coefficient (2.566 in
case of F11(Q

2)) is settled by the sum rule

(55)
∞∑

m=1

M2
mFm,11 = ∣∣φ1(0)

∣∣2
∞∫

0

dχ χ2K1(χ) = 2
∣∣φ1(0)

∣∣2
,

that should be satisfied by any set of coefficients Fm,11. A par-
ticular distribution of “2.566” among the bound states is gov-
erned by the specific q-channel dynamics (in our case, by the
choice of the Neumann b.c. for J (Q, z) at z = z0). Thus, in the
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dynamics described by J (Q, z), the large value of the asymp-
totic coefficient is explained by large contribution due to the
second bound state.

It was shown in Ref. [15] that the asymptotic 1/Q2 behav-
ior for F11(Q

2) is established only for Q2 ∼ 10 GeV2, and
one may question the applicability of the H-model for such
large Q2. The discussion of this problem, however, is beyond
the scope of the present Letter.

9. Summary

In this Letter, we described the formalism that allows to
study form factors of vector mesons in the holographic QCD
model of Refs. [6–8] (H-model). An essential ingredient of our
approach is a systematic use of the Kneser–Sommerfeld repre-
sentation that explicitly displays the poles of two- and three-
point functions and describes the structure of the corresponding
bound states by eigenfunctions of the 5D equation of motion,
the “ψ wave functions”. These functions vanish at z = 0 and
satisfy Neumann b.c. at z = z0, which prevents a direct anal-
ogy with bound state wave functions in quantum mechanics. To
this end, we introduced an alternative description in terms of
“φ wave functions” that satisfy Dirichlet b.c. at z = z0 and have
finite values at z = 0 which determine bound state couplings
g5fn/Mn. Thus, the φ wave functions have the properties nec-
essary for the light-cone interpretation proposed in Ref. [11]
and discussed also in Ref. [15].

Analyzing the three-point function, we derived expressions
for bound state form factors both in terms of ψ and φ wave
functions, and obtained specific predictions for form factor be-
havior at small and large values of the invariant momentum
transfer Q2. In particular, we calculated the electric radius of
the ρ meson, and obtained the value 〈r2

ρ〉C = 0.53 fm2 that prac-
tically coincides with the recent result [21] obtained within the
DSE approach. Our result is also consistent with the m2

π → 0
extrapolation of the recent lattice gauge calculation [22].

We derived a generalized VMD representation both for the
F11(Q

2) form factor (the expression for which coincides with
a model ρ-meson form factor considered in Ref. [16]) and for
the F11(Q

2) form factor introduced in the present Letter, and
demonstrated that H-model predicts a very specific VMD pat-
tern, in which these form factors are essentially given by contri-
butions due to the first two bound states in the Q2-channel, with
the higher bound states playing a negligible role. We showed
that, while the form factor slopes at Q2 = 0 in this picture are
dominated by the first bound state, the second bound state plays
a crucial role in the large-Q2 asymptotic limit. In particular, it
provides the bulk part of the negative contribution necessary to
cancel the naïve VMD 1/Q2 asymptotics for the F11(Q

2) form
factor (corresponding to the overlap integral involving the ψ

functions), and it dominates the asymptotic 1/Q2 behavior of
the F(Q2) form factor (given by the overlap of the φ functions).

A possible future application of our approach is the analysis
of bound state form factors in the model of Ref. [12] in which
the hard-wall boundary conditions at the z = z0 IR boundary are
substituted by an oscillator-type potential. This model provides

the M2
n ∼ nΛ2 asymptotic behavior of the spectrum of highly

excited mesons, which is more consistent with the semiclassical
limit of QCD [23] than the M2

n ∼ n2Λ2 result of the H-model.
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