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Abstract

The small-xbehavior of structure functions in the saturation region is determined by the non-linear generalization of the
BFKL equation. I suggest the effective field theory for the small-x evolution which solves formally this equation. The result is
the 2+ 1 functional integral for the structure functions at smallx.
 2001 Published by Elsevier Science B.V.

PACS: 12.38.Bx; 11.10.Jj; 11.55.Jy

The great success of pQCD in describing theQ2 behavior of structure functions of deep inelastic scattering
(DIS) can be traced back to the fact that theQ2-dependence is governed by DGLAP evolution equations which
have two remarkable properties: they are linear equations, and the evolution at highQ2 is purely perturbative (the
non-perturbative physics enters the game only when we lower the normalization pointµ2 down to the typical
hadronic scale∼ 1 GeV). The higher-order terms of perturbative expansion for both the coefficient functions and
the anomalous dimensions of the light-cone operators lie in the same framework of linear evolution and lead to the
corrections∼ αs,α

2
s , etc.

The situation for the small-x DIS is more complicated. In the leading logarithmic approximation (LLA) the
small-x asymptotics is described by the BFKL pomeron [1]. It is possible to reformulate the BFKL equation as an
evolution equation where the relevant operators are Wilson lines — infinite gauge links [2].1 The evolution of the
two-Wilson-line operator (“color dipole”) with respect to the slope of Wilson lines reproduces the BFKL equation.

Unfortunately, the theoretical status of the BFKL evolution is not as clear as the DGLAP one (for the review, see
Refs. [3]). The biggest problem is the lack of unitarity: the power behavior of the BFKL cross section violates the
Froissart bound and therefore, in order get the true asymptotics at smallx, we must go beyond the LLA. At this
step, we face a new problem. In the DGLAP case, the sub-leading logarithms follow the same general pattern of
linear DGLAP equation and the problem is purely technical: calculating the loop corrections to the kernels. In the
case of small-x evolution there are alsoαs corrections to the BFKL kernel [5], but, on the top of that, there are the
unitarity corrections which lie outside the framework of the BFKL equation. At smallαs andx, these corrections
seem to dominate over the NLO BFKL ones [6].

1 At high energies the particles move so fast that their trajectories can be approximated by straight lines collinear to their velocities. The
proper degrees of freedom for the fast particles moving along the straight lines are the (infinite) gauge factors ordered along the straight line [4].
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Another problem with the BFKL evolution is infrared instability. We can safely apply pQCD to the small-x

DIS if the characteristic transverse momenta of the gluonsk⊥ in the gluon ladder are large. For the the first few
diagrams, one can check by explicit calculation that the characteristick2⊥ are∼ Q2. However, asx decreases, it
turns out that the characteristic transverse momenta in the middle of the gluon ladder drift toΛQCD making the
application of pQCD questionable.

Recently, an idea has emerged that these two difficulties may cancel each other out. Consider the DIS from the
heavy nuclei where the large density sets the saturation scaleQs [7–10] which effectively cuts the integration over
k⊥ even at relatively low energy. As we shall see below, the small-x evolution in this case is non-linear which leads
to the growth of the saturation scale with energy, see the discussion in Refs. [7–12]. It is natural to assume that
even for the DIS from the nucleon where there is no saturation at low energies, the saturation scale at sufficiently
small x may be generated by the non-linear evolution itself. Indeed, the parton recombination described by the
non-linear evolution must balance at some point the effects of parton splitting so the partons will reach the state
of the saturation. In this high-density regime the coupling constant is small but the characteristic fields are large,
making a perfect case for the application of the semiclassical QCD methods [9,13,14]. The high-density regime of
QCD can serve as a bridge between the domain of pQCD and the “real” non-perturbative QCD regime governed
by the physics of confinement.

In this Letter I suggest the effective field theory which describes the small-x evolution in the saturation region.
First, let me remind the OPE for high-energy amplitudes derived in [2]. Consider the amplitude of forwardγ ∗γ ∗-
scattering at smallxB = Q2/s. In the target frame, the virtual photon splits intoqq̄ pair which approaches the
nucleon at high speed. Due to the high speed the classical trajectories of the quarks are straight lines collinear to
the momentum of the incoming photonq . The corresponding operator expansion switched between nucleon states
has the form [2]:

(1)
∫

d4x eiq·x〈p|T {jµ(x)jν(0)}|p〉 =
∫

d2x⊥ Iµν(x⊥)〈p|Tr
{
Û(x⊥)Û†(0)

}|p〉,

whereIµν(x⊥) is a certain numerical function of the transverse separation of quarksx⊥ and virtuality of the
photonQ2 = −q2. The relevant operatorsU(U†) are gauge factors ordered along the classical trajectories which
are almost light-like lines stretching from minus to plus infinity:

(2)U(z⊥) = P exp

(
i

∞∫
−∞

dueµAµ(ue + z⊥)

)
,

wheree is collinear toq andz⊥ is the transverse position of the Wilson line.
It turns out that the small-x behavior of structure functions is governed by the evolution of these operators with

respect to the deviation of the Wilson lines from the light cone; this deviation serves as a kind of “renormalization
point” for these operators. At infinite energy, the vectore is light-like and the corresponding matrix elements of
the operators (2) have a logarithmic divergence in longitudinal momenta. To regularize it, we consider operators

corresponding to large but finite velocity and takeeζ = e1 + ζ e2, wheree1 = (q − q2

2pq p) and e2 = p are the
lightlike vectors close to the directions of the colliding particles. Now, instead of studying the energy-dependence
of the physical amplitude we must investigate the dependence of the operators (2) on the slopeζ . Large energies
mean smallζ and we can sum up logarithms ofζ instead of logarithms ofs (at present, we can do it only in the
leading logarithmic approximation (LLA)αs � 1, αs ln s

m2 ∼ 1). The equation governing the dependence ofU
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Fig. 1. BFKL evolution in terms of Wilson-line operators (denoted by dotted lines).

on ζ has the form [2]2

(3)

ζ
d

dζ
U(x⊥, y⊥) = αsNc

2π2

∫
dz⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

× {
U(x⊥, z⊥)+ U(z⊥, y⊥) −U(x⊥, y⊥) +U(x⊥, z⊥)U(z⊥, y⊥)

}
,

whereU(x⊥, y⊥) ≡ 1
Nc

Tr{U(x⊥)U†(y⊥)} − 1. The first three linear terms in braces in the r.h.s. of Eq. (3)
reproduces the BFKL pomeron [1] while the quadratic term will give us the three-pomeronvertex [18]. The solution
of the linearized evolution equation is especially simple in the case of zero momentum transfer (e.g., for the total
cross section of small-x DIS):

(4)〈p|Uζ=xB (x⊥,0)|p〉 =
∫

dν

2π2

(
x2⊥
)− 1

2+iν

(
s

m2

)ω(ν) ∫
dz⊥(z2⊥)−

1
2−iν〈p|Uζ0(z⊥,0)|p〉,

whereω(ν) = 2Nc
αs

π
[−Reψ(1

2 + iν) − C] andm2 is eitherQ2 or m2
N (in LLA, we cannot distinguish between

αs ln s

Q2 andαs ln s

m2
N

). The sketch of linear evolution is presented in Fig. 1. The starting point of the evolution is

the slope collinear to the momentum of the incoming photon q (ζ = xB ) and it is convenient to stop the evolution
at a certain intermediate pointζ0 = Q2/s0, where s0 � m2

N, αs

π
ln s0

m2
N

� 1. The first of these conditions means

that s0 is still high from the viewpoint of low-energy nucleon physics while the second condition means thats0
is sufficiently small from the viewpoint of high-energy physics (so one can neglect the BFKL logs). The matrix
element of the double-Wilson-line operator at this slope is a phenomenological input for the BFKL evolution (just
as the structure function at lowQ2 serves as the input for ordinary DGLAP evolution). At larges the integral over

ν is dominated by the vicinity ofν = 0 which gives the familiar BFKL asymptoticsσ tot � x
−12αs

π ln2
B .

Unlike the linear evolution, the general picture is very complicated since the number of operatorsU andU†

increases after each evolution. At the time being, it is not known how to solve the non-linear evolution equation
in an explicit form. It is possible, however, to write down the solution of the non-linear equation (3) in the form
of a functional integral over the double set of the variables,ςi=1,2(z⊥, η) = taςa

i=1,2(z⊥, η) belonging to the Lie
algebra of theSU(3) color group andΩi=1,2(z⊥, η) belonging to the group itself:

UηA(x⊥)⊗U†ηA(y⊥) =
π1,2(ηA)=0∫

Ω1,2(η0)=1

Dς1(z, η)Dς2(z, η)DΩ1(z, η)DΩ2(z, η)

2 The first non-linear equation for parton densities is known since 1983 as the GLR equation (it was conjectured in Ref. [7] and proved
in the double-log limit in Ref. [8]). The full LLAx result was first derived in Ref. [2] by the above method. After that, it was reobtained in
Ref. [11] in the framework of the dipole model [15,16], in Ref. [17] by direct summation of relevant Feynman diagrams, and in Refs. [19,20]
by the semiclassical methods.
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× Ω
†
1(x⊥, ηA)U

η0
x Ω2(x⊥, ηA) ⊗Ω

†
2(y⊥, ηA)U

†η0
y Ω1(y⊥, ηA)

(5)

× exp

{ ηA∫
η0

dη

∫
d2z

[
1

g

∑
i=1,2

ςa
i (z, η)

�∂2(Ω†
i (z, η)Ω̇i(z, η)

)a
− 1

4π
ςa

1 (z, η)ς
b
2 (z, η)

�∂2(Ω†
1(z, η)U

η0
z Ω2(z, η)

)ab]}
,

whereΩ̇ ≡ ∂Ω/∂η and (Ω†Ω̇)a ≡ 2 Tr{taΩ†Ω̇}. Going to the the variablesπ = �∂2⊥ς we see that Eq. (5) is a
phase-space functional integral for the non-local Hamiltonian

(6)Ĥ (π1,π2,Ω1,Ω2) =
∫

dx⊥ dy⊥ πa
1 (x⊥)((x⊥| 1

�p2⊥

[�∂2⊥
(
Ω

†
1Ω2

)ab] 1

�p2⊥
|y⊥))πb

2 (y⊥),

where |x)) is an eigenstate of the coordinate operator normalized according to((x|y)) = δ(2)(x − y), see, e.g,
Ref. [21]. The rapidityη serves as a Euclidean “time” for this evolution.

We shall demonstrate that the perturbative expansion of the functional integral (5) reproduces the evolution of
the color dipoleU(x⊥)⊗U†(y⊥) in the LLA. To get the perturbative series, we substituteΩ(x⊥, η) = e−igφ(x⊥,η):

UηA
x ⊗ U†ηA

y =
π1,2(ηA)=0∫

φ1,2(η0)=0

∏
i=1,2

Dςi(z, η)Dφi(z, η)

× eigφ1(x⊥,ηA)Uη0
x e−igφ2(x⊥,ηA) ⊗ eigφ2(y⊥,ηA)U†η0

y e−igφ1(y⊥,ηA)

(7)

× exp

{ ηA∫
η0

dη

∫
d2z

[
1

g

∑
i=1,2

ςa
i (z, η)

�∂2
(
eigφi(z,η)

∂

∂η
e−igφi(z,η)

)a

− 1

4π
ςa

1 (z, η)ς
b
2(z, η)

�∂2(eigφ1(z,η)Uη0
z e−igφ2(z,η)

)ab]}
.

Next, we can represent the r.h.s. of Eq. (7) in the form (φ̇ ≡ ∂φ/∂η)

π1,2(ηA)=0∫
φ1,2(η0)=0

∏
i=1,2

Dςi(z, η)Dφi(z, η) [ηA,η0]xUη0
x {η0, ηA}x ⊗ {ηA,η0}yU†η0

y [η0, ηA]y

(8)

× exp

{ ηA∫
η0

dη

∫
d2z

[
−i

∑
i=1,2

ςa
i (z, η)

�∂2φ̇i (z, η)− 1

4π
ςa

1 (z, η)
�∂2([ηA,η0]zUη0

z {η0, ηA}z
)ab

ςb
2(z, η)

]}
,

where we introduced the notations

(9)[η1, η2]x ≡ Te
ig
∫ η1
η2

φ̇1(x⊥,η)
, {η1, η2}x ≡ Te

ig
∫ η1
η2

φ̇2(x⊥,η)
.

Let us now expand the r.h.s. of Eq. (8) in powers ofg. The first nontrivial term in this expansion is
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UηA
x ⊗ U†ηA

y

= αs

π1,2(ηA)=0∫
φ1,2(η0)=0

∏
i=1,2

Dςi(z, η)Dφi(z, η)

×
[(
φ1(x⊥, ηA)U

η0
x − Uη0

x φ2(x⊥, ηA)
)⊗ (

φ2(y⊥, ηA)U
†η0
y − U†η0

y φ1(y⊥, ηA)
)

− (
φ1(x⊥, η0)U

η0
x φ2(x⊥, ηA)

)⊗U†η0
y + Uη0

x ⊗ (
φ2(y⊥, ηA)U

†η0
y φ1(y⊥, ηA)

)]
(10)×

ηA∫
η0

dη

∫
d2zςa

1 (z, η)ς
b
2 (z, η)

�∂2(Uη0(z⊥)
)ab exp

{
−i

ηA∫
η0

dη

∫
d2z

∑
i=1,2

ςa
i (z, η)

�∂2φ̇a
i (z, η)

}
.

The propagators for this phase-space functional integral are〈
φa
i (x, η)ς

b
j (y, η

′)
〉= iδij δ

ab((x| 1

�p2
|y))θ(η − η′),

(11)
〈
φa
i (x, η)φ

b
j (y, η

′)
〉= 0,

〈
ςa
i (x, η)ς

b
j (y, η

′)
〉= 0.

With these propagators, the r.h.s of Eq. (10) reduces to

(12)

−αs(ηA − η0)

[(
taUη0

x ⊗ tbU†η0
y + Uη0

x tb ⊗U†η0
y ta

)
((x| 1

�p2
�∂2Uη0

1

�p2 |y))ab

− taUη0
x tb ⊗ U†η0

y ((x| 1

�p2

(�∂2Uη0
) 1

�p2 |x))ab − Uη0
x ⊗ tbU†η0

y ta((y| 1

�p2

(�∂2Uη0
) 1

�p2 |y))ab
]
,

which coincides with the Eq. (B17) from Ref. [2]. Taking trace over the color dipole indices one reproduces the
Eq. (3). Similarly, it can be demonstrated that further terms of the expansion of Eq. (8) in powers ofg reproduce
the subsequent iterations of the non-linear equation (3).

The integral overπ variables can be easily performed resulting in:

UηA(x⊥)⊗U†ηA(y⊥)

=
Ω̇1,2(ηA)=0∫

Ω1,2(η0)=1

DΩ1(z, η)DΩ2(z, η)Ω
†
1(x⊥, ηA)U

η0(x⊥)Ω2(x⊥, ηA)⊗Ω
†
2(y⊥, ηA)U

†η0(y⊥)Ω1(y⊥, ηA)

(13)

× exp

{
− 1

αs

ηA∫
η0

dη

∫
d2z

[�∂2(Ω†
2(z, η)U

†η0
z Ω1(z, η)

)]−1
ab

× �∂2(iΩ†
1(z, η)Ω̇1(z, η)

)a�∂2(iΩ†
2(z, η)Ω̇2(z, η)

)b}
.

Note that the action of this effective field theory is local. This functional integral for the small-x evolution of the
Wilson-line operators is the main result of the Letter.

In the case of large nuclei it is possible to write initial conditions for the small-x evolution using the McLerran–
Venugolalan model. The nuclear matrix element of the two-Wilson-line operator (“color dipole”) is given by the
Glauber formula [22–24], see Fig. 2.

(14)
∫

d2z⊥〈A|TrU(x⊥ + z⊥)U(z⊥)|A〉 = Nc

∫
d2b

[
1− e−g2cFG(x2⊥)Lb

]
.
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Fig. 2. Propagation of the color dipole through the nucleus.

HereLb ≡ 2
√
R2 − b2 is the propagation length of the dipole (located at the impact parameterb) through the

nucleus,ρ = A

4/3πR3 is the nuclear density, and

(15)G(x2⊥) ≡ πx2⊥
4(N2

c − 1)
ρσ0G

(
σ0,µ

2 = 1

x2⊥

)
.

The Eq. (15) is derived under the assumption that the characteristic size of the dipole (the “saturation scale”) is
smaller than the size of the nucleon.3 In this case, the quarks propagating along the straight light-like lines4 interact
by the instantaneous (in the light-cone timex+) potential

(16)ρg2ta ⊗ ta
∫

d2p⊥
(2π)2

g2

2p4⊥

(
ei(p,x−y)⊥ − 1

)= g2ta ⊗ taρ
αs

8
(x − y)2⊥ ln(x − y)2⊥m2

0,

wherem0 � mN/2 is the IR cutoff [23]. It is worth noting that the factor−1 in the parenthesis in the l.h.s. comes
from the diagrams with the two gluons attached to the same nucleon and the same Wilson line. Taking into account
the color factors, one obtains the Eq. (14) withxBG(xB,µ

2 = x−2
⊥ ) = 4αs

π
lnx−2

⊥ /m2
0, see Ref. [23].

Similarly to Eq. (13), it is possible to represent this result as a functional integral over a variableΛ(x⊥, l) ∈
SU(3):∫

d2z〈A|Uη0
x+zU

†η0
z |A〉

=
∫

d2b

Λ′(Lb,y)=0∫
Λ(0,y)=1

DΛ(y, l)Λ(x + z,Lb)Λ
†(z,Lb)

(17)× exp

{
1

2g2ρ

Lb∫
0

dl

∫
d2y

(
Λ(l, y)Λ′(l, y)

)a(−�∂2 + m2
0

)2(
Λ(l, y)Λ′(l, y)

)a}
,

whereΛ′ ≡ ∂Λ/∂l. Extra Uη0(x) (U†η0(x)) lead to extraΛ(x,Lb) (Λ
†(x,Lb)) in the pre-exponent.

3 This assumption is certainly true atA → ∞. For real nuclei, one should find the saturation scaleQs from the final result for the matrix
element of the color dipole between the nuclear states, and verify thatQs � 1 GeV.

4 As we mentioned above, the energysσ0 should be high enough so we can replace the slopep1 + ζ0p2 by p1 in the non-logarithmical
expressions.
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The final formula for the matrix element of the color dipole operator at smallxB is obtained by combining the
functional integrals (13) and (17):∫

d2z 〈A|UηA(x + z)⊗ U†ηA(z)|A〉

=
∫

d2b

Λ′(Lb,y⊥)=0∫
Λ(0,y⊥)=1

Ω̇1,2(ηA,y)=0∫
Ω1,2(η0,y)=1

DΛ(l, y)DΩ1(y, η)DΩ2(y, η)Ω
†
1(x + z, ηA)Λ(Lb, x + z)

× ⊗Ω2(x + z, ηA)Ω
†
2(z, ηA)Λ

†(Lb, z)Ω1(z, ηA)

(18)

× exp

{
− 1

2g2ρ

Lb∫
0

dl

∫
d2y

(
iΛ(l, y)Λ′(l, y)

)a(
m2

0 − �∂2)2(iΛ(l, y⊥)Λ′(l, y)
)a

− 1

αs

ηA∫
η0

dη

∫
d2y �∂2(iΩ†

1(y, η)Ω̇1(y, η)
)a[�∂2(Ω†

2(y, η)Λ
†(Lb, y)Ω1(y, η)

)]−1
ab

× �∂2(iΩ†
2(y, η)Ω̇2(y, η)

)b}
.

The gluon structure function in the LLA is proportional to the matrix element of the dipole operatorxBG(xB,µ
2 =

x−2
⊥ ) = −2π

s
〈A|TrUηA

i (x⊥)U
ηA
i (0)|A〉, so the numerical calculation of the functional integral (18) should give the

nuclear structure functions at smallx. This would be complementary to the approximate solutions of Refs. [11,12,
17,19,20,26] since it could give the structure functions not only in the asymptotic black-body limit, but also in the
intermediate region defining the saturation scaleQs .

It should be mentioned that our formula (13) gives the evolution of the color dipole only in the LLA. In the
case of large nucleus we have an additional parameterA � 1 so our LLA approximation based on the non-linear
equation (3) has a windowα2

s A
1/3 ∼ 1,αs lnxB ∼ 1 where it is justified even at moderately smallxB . In the case of

nucleon, ourαs(Qs) � 1, αs(Qs) lnxB ∼ 1 approximation should be justifieda posteriori after checking that the
saturation does occur at sufficiently smallxB . If the saturation takes place at such lowx thatαs(Qs) lnxB � 1, our
LLA breaks down and we need to take into account the non-fan diagrams such as t-channel loops formed by BFKL
pomerons. However, the non-linear equation (3) leads to the result for the structure function which does not violate
unitarity (see the discussion in Refs. [11–13,17,25]) and therefore we should not expect the large discrepancy
between the unitary LLA result and the exact amplitude at present energies.
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