
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computer Science Theses & Dissertations Computer Science 

Spring 5-1986 

Generic Specifications in LIL and in Ada via Analogies Generic Specifications in LIL and in Ada via Analogies 

George Chester Harrison 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Recommended Citation Recommended Citation 
Harrison, George C.. "Generic Specifications in LIL and in Ada via Analogies" (1986). Master of Science 
(MS), Thesis, Computer Science, Old Dominion University, DOI: 10.25777/bhwj-9t34 
https://digitalcommons.odu.edu/computerscience_etds/154 

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has 
been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU 
Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/154?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


GENERIC SPECIF.ICATIONS IN LIL. AND IN ADA 

UIA ANALOGIES 

by 

George Chester Harrison 
B.A. June 1969, Wilkes College 

Ph.D. August 1973, Univeristy or Uirginia 

A Thesis Submitted to the Faculty cf 
Old Dominion University in Partial Fulfillment of the 

Requirements fer the Degree of 

MASTER OF SCIENCE 

COMPUTER SCIENCE 

OLD DOMINION UNIUERSITY 
May, 1986 

Approved by: 

Michael Overstreet

Christian J. Wild



ABSTRACT 

GENERIC SPECIFICATIONS IN LIL AND IN ADA 
UIA ANALOGIES 

George Chester Harrison 
Old Dominion University, 1986 

Director: Dr. Dar-Biau Liu 

We address the problem of .making verifiable specifications 

in generic program units in the Ada Programming Language•. 

We illustrate the methodologies cf LIL proposed by Joseph 

Goguen and Justify the use of such a specification languages 

using analogy programming originally proposed by Nachum 

Dershowitz. The work in these areas is new and noticeably 

incomplete. We address our concern about the reusability cf 

Ada software in a programming environment that includes a 

specification language like LIL. 

• Ada is a registered trademark of the U.S. Government (Ada 

Joint Program Office) 



TO KAY, ALEX, AND NICHOLAS 

Acknowledgments 

My thanks go to Ors. Hussein Abdel-Wahab, Michael Overstreet 

and Christian J. Wild for their support and inspiration, to 

Dr. Janie Jordan, my department chairman at Norfolk State 

University, who encouraged me to work on this thesis, Dr. 

Harrison B. Wilson, President of Norfolk State University, 

for his initial suggestion to pursue this degree and for his 

providing financial support. Particular and special 

appreciation goes to my thesis director, Dr. Dar-Biau Liu, 

who encourages his students to read, understand, and expand 

on the research of others, and who looks upon these labors 

with enthusiasm. 

ii 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

LI ST CF FI GU RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 

Chapter 

l . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l 

1.1 UERIFIABLE SPECIFICATIONS .................... 1 

1.2 ANALOGY PROGRAMMING .......................... 2 

2. REUSABILITY AND SPECIFICATIONS ................... 'i 

2.1 REUSABLE SOFTWARE ............................ 'i 

2 . 2 THE REGJU I REMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

3. LIMITATIONS OF THE ADA GENERIC CONCEPT ........... 7 

'i. THE LIL SPECIFICATION LANGUAGE .................. 10 

"i . 1 THE□R I ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 O 

Lt . 2 PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Lf 

'i . 3 U I EWS . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 17 

'i. 'i INSTANTIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

'i . 5 COMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

S. THE METHODOLOGY OF MAKING ANALOGIES ............. 25 

5 . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

5 . 2 TWO FUNCT I □NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

5. 3 ANALOGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

S.'i A GENERIC RECURSIVE FUNCTION ................ 30 

5.5 A GENERIC ITERATIVE FUNCTION ................ 33 

6. INSTANTIATING ANALOGIES ......................... 36 

S.l ITERATIVE INSTANTIATIONS .................... 36 

6 .2 A NEW FUNCTION .............................. 38 

iii 



7. ANALOGIES AND LIL ............................... 'i:O 

7 . 1 TWO FUNCT I ONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'i:O 

7.2 THE 3X+l FUNCTION ........................... I.fl 

7.3 STRUCTURING ADA TO USE LIL .................. 'i:3 

7 . \f BU I LO I NG THE LI L PACKAGE . . . . . . . . . . . . . . . . . . . . 'fl± 

7.5 THE ANALOGOUS PROBLEM ....................... 'i:6 

7.6 A LIL TD ADA TRANSFORMATION ................. 'i:8 

8. LIL IN AN ADA ENUIRONMENT ....................... SO 

9 . CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S'i: 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

APPENDIX 

A. A WELL-FOUNDED SET PROOF ..................... 59 

B. OUR VERSION OF LIL ........................... 61 

iv 



FIGURE 

3 .1 

3.2 

'i.1.1 

'i.1.2 

'i.1.3 

'i .2 .1 

'f .2.2 

'i.3.1 

'i.3.2 

'f.'i.1 

'f.'i.2 

'i.'-:1:.3 

'i.5.1 

'f.5.2 

'i.S.3 

5.2 

LIST OF FIGURES 

PAGE 

Generic Zero Function 7 

Annotated Generic Zero Specif'ica-
tion 

Trivial-Set Theory 

Partially-Ordered-Set Theory 

Well-Founded-Set, Reduction-
Function, and End-Of-Chain-Function 
Generic Theories 

Binary-Operation, Single-Uariable
Function, and Object Generic 

9 

11 

11 

12 

Theories 13 

Generic Package Stack l'-:1: 

Generic Package Ti:-ee-Functions 15-16 

8-Tree View 17 

Tree-L, Tree-R, Null-T, Trae-N 
Uie1.11s 18 

Make Binary-Tree-Product 19 

Monoid Theory and Group, Abelian-
Gr-cup, Ring, Field Theories 19-20 

Package 2ee2, Boolean-Set Uia1.11, and 
Make Boolean-Field 21 

Generic Package Stack-Functions 22-23 

Make Stack-Functions 23 

Make Float-Stack-Functions 2'i 

Inorder-Pr-oduct and Fibonacci 26-27 
Functions 

V 



5.3.1 

5.3.2 

5.5 

6.1.1 

6.1.2 

6.2.1 

6.2.2 

7.2 

7.3 

7.5.1 

7.5.2 

7.6.1 

7.6.2 

7.6.3 

7.6.~ 

Alternate Inorder-Product and 
Fibonacci Functions 28-29 

Abstraction of Analogies 29 

The Recursive-Analogy Function 31 

The Iterative-Analogy Function 33-35 

Inorder-Product Instantiation 36-37 

Fibonacci Instantiation 37 

Three Function 38 

Three Instantiation 38-39 

3x + 1 Function in Ada ~1 

3x + 1 Package for Uiews ~3 

LIL to Ada Structure for the 
3x + 1 Function ~~-~5 

McCarthy's Package for Views ~6-~7 

LIL to Ada Structure for McCarthy's 
Function ~7 

Generic Function Comp ~8 

Iterative-Comp Implementation ~8 

LIL Instantiation of 3x + 1 
Function ~9 

Ada Instantiation of 3x + 1 
Function ~9 

vi 



l. INTRODUCTION 

Computer science professionals will admit that on 

occassicn they have spent considerable time writing code 

that either is duplicated elsewhere or at least is very 

similar to code written for similar problems. In this 

thesis we address both situations by applying methodologies 

in recent literature and attempt to relate these methodol

ogies in a unified structure for the Ada Programming 

Language. 

1.1 UERIFIABLE SPECIFICATIONS 

We address the problem of reusability, that is, the 

problem of avoiding reimplementing specifications that have 

been previously coded. We will demonstrate how to make 

verifiable specifications in abstract generic program units 

in Ada utilizing the methodologies proposed in papers by 

Joseph Goguen (1986), Steven Litvichouk and Allen Matsumoto 

(198~), and R. M. Burstall and Goguen (1981). 

The wo~k in this area is new, and the syntax of the 

specifications involved have not bean standardized and are 

noticeably incomplete. Thus, we will make little attempt 

to explain the syntax in detail, and we will take certain 

minor liberties in our examples. 

1 



2 

1.2 ANALOGY PROGRAMMING 

For many problems there are analogous solutions. We 

humans look fer analogies to help solve common problems and 

can understand the usefulness of analogies as an accumula

tion of experiences. Instead of trying to recall several 

particular analogies we tend to generalize and abstract by 

removing unimportant and unessential details and, we hope, 

keep the valid general principles that controlled the 

analogies. We 

the abstraction 

each essential 

use this scheme by creating an instance of 

by giving concrete values and meanings to 

quality of the analogy. Ada programmers 

would see this as similar to an instantiation of a gensric 

program unit. 

Nachum Dershowitz (1985) addresses this situation, 

which we will apply here to generic program units in Ada. He 

proposes an analogy methodology for program development. 

Finding analogies imply similarities not equalities. 

Thus, the generalization produced must be true for all 

analogous problems, 

analogous when they 

necessary not only 

the analogies in 

where we define two problems as being 

share the same semantics. This is 

to preserve the essential qualities or 

the abstraction but to allow ether 

analogous problems to be given code from an instantiation or 

this abstract generic unit; thus. the new problem will have 

been granted a program code that is both syntatically proper 

and correct under the assumptions that the original problem 



3 

specir1cat1ons were totally correct and 

p~edicate of the abstraction is adequate to 

program correctness and termination. 

that the input 

guarantee both 

We will first examine the problem of making 

verifiable specifications in an Ada software development 

environment, then illustrate the program development 

methodology of analogous abstractions, and, finally, 

illustrate how the verifiable specifications can aid in 

making analogous abstractions in the Ada environment. 



c. REUSABILITY AND SPECIFICATIONS 

2.1 REUSABLE SOFTWARE 

Ada was initiated and developed by the Department 

of Defense as an answer to a perceived software crisis 

brought on, in part, by the complexity and increasing costs 

of software production and maintenance CDOO 1983). Since 

the setting of the Ada standard in 1983, there has been 

considerable discussion and wor~ done on the concept of 

reusable software especially in the Ada Programming 

Language. It is hoped that the practice of writing program 

segments that can be reused will eventually become a quality 

of good software engineering practices and will address some 

of the major problems in the crisis of software development. 

Reusable software practices seem to be very 

successful in Japan (Matsumoto 198~); however, the United 

States saams tc be far behind in this art. However, the 

direction in this country seems to be toward a careful 

development of programming methodologies that lead to a 

correct structuring of a complete software development 

environment using specification languages. 

The Honeywell Computer Sciences Center is currently 

doing research on defining the characteristics of reusable 

Ada software est. Dennis et. al. 1986). Among their 

conclus1ons are that software packages are reusable lf they 

q 



s 

were built with reusability as a primary goal, if they are . 

totally correct when used properly, and if the specifica

tions of the packages are clear. 

These goals, of course, demand a hlgh degree or 

abstract programming and an ability to use the tools cf 

making specifications. These specifications should not be 

so formal as to render the software unreadable nor so 

informal as to make the programmer question the validity or 

applications cf the packages. 



6 

2.2 THE REQUIREMENTS 

Although Ada is the only major procedural language 

that implements abstractions in a generic context, there are 

needs to make specifications fer abstract data types that 

Ada does not directly support. Many of these requirements 

are motivated by the desire to produce libraries of Ada 

components that are to be considered totally correct upon 

programmer instantiations and are documented in such a 

structured manner that the instantiated versions can be used 

with a high degree of confidence. 

Our requirements in doing analogy programming also 

demonstrate the need cf a specification language. 

Dershowitz's analogy methodology for program development is 

based on finding analogies among program segments, gener

alizing to form abstract code, and later using the analogies 

to grant code to analogous problem specifications. In the 

Ada Programming Language these actions would be to produce a 

generic unit using properties of analogies, and given a 

problem specification, to instantiate the correct analogy 

(generic unit) to produce correct code. 

We need to be able to write the specifications for a 

generic un1t so that we can find the analogies without 

locking into the body of the function, procedure, or package 

implementation, which may be intentionally hidden from the 

programmer. Goguen's methodology Cl986) aids in this 

effort. 



3. LIMITATIONS OF THE ADA GENERIC CONCEPT 

The primary purposes cf the generic units in Ada 

are program factorization and abstraction. ?arameter1zation 

of the generic units is generally seen as an extension of 

subprogram parameterization CMcGettrick 1982). Actually, 

the effect cf having a generic facility in Ada seems to have 

had a much greater effect on the theoretical studies of 

abstract programming and cf program specifications than 

originally anticipated. 

Generic units can be written to require the 

importation of various types, objects, functions, and 

procedures declared in the Ada environment at the point of 

instantiation. Although the instantiation may 

generic 
type ELT is private; 
with function ,,. ,, CA, B : EL!) return 
with function ,,_" CA, B : EL!) return 

function ZERO C X, y : ELT ) return ELT; 

function ZERO C X, Y: ELT) return ELT is 
begin 

return X • Y - Y • X; 
end ZERO; 

Figure 3.1 

7 

compile 

ELT; 
ELT; 



8 

correctly, additional semantic requirements explicit in the 

gene~ic body but not the generic specification may not be 

eatiafied, thus, preventing normal termination of the 

program or producing incorrect outcomes. 

For example, if the intention cf this odd looking 

generic function in Figure 3.1 is to return the additive 

identity in a set "ELT" with well-defined operations"•" and 

"-" then all works well if ELT is a field with the usual 

operations of"•" and"-" being instantiated. What is to 

"prevent" the programmer from instantiating overloaded 

operators"•" and"-" on a field EL! that do not produce the 

"desired" result? 

A not so obvious problem occurs when the programmer 

instantiates ELT as a noncommutative ring with the usual"•" 

and "-" operators. This can occur when ELI is the set of 2 

by 2 matrices over some ring R. Certainly, there is no 

guarantee that the additive i~entity will be returned by the 

function "ZERO." Correctness considerations could only be 

made here by examining the body of the function (the code 

implementation) which is not always desirable or possible. 

We will see that this is a symptom cf a much larger problem. 

We could have annotated the specification part of 

this code as in Figure 3.2; however, such informality can be 

disconcerting to the programmer. Even formal, explicit 

comments that govern the relationships among the types, 

objects, functions, and procedures in the specification and 

implementation parts o~ a generic program unit as in Anna 

CANNotated Ada) CLuckham 1985) can be so large that these 



9 

generic 
type ELT is private 
with function"•" ex, Y 
with function"-" ex, Y 

ELT) return ELT; 
ELT) return EL!; 

ELT is a field with the usual 
"multiplication" operation"•" and, if 
"+" is the usual "additive" operation, 
then a - b =a+ C-b), a and bare in 
El! and-bis the usual additive inverse 
cf b. 

function ZERO C X, Y: ELT) return ELT; 

Figure 3.2 

comments overtake the number of lines cf implemented code; 

such efforts seem to work well for program verification 

exercises but de not seem to support the top-down approach 

necessary in a complete Ada environment that would support 

the principle cf reusability. 

Notice also that such comments within this code 

would have to be rewritten each time a generic unit with the 

similar requirements is created. Thus, Ada does net support 

a consistent methodology of supporting the semantics fer 

code requirements. Equivalent specifications written at 

different times by different people may include varying 

levels of formality and syntax. 

The Ada Programming Language environments provide 

only syntactic information about the interfaces 

compilation units. For promoting reusability it 

among 

is 

necessary to provide some support for the semantic inter

faces, which current Ada Program Systems Environments (APSE) 

de net include. 



~. THE LIL SPECIFICATION LANGUAGE 

Goguen proposes an approach that will integrate the 

entities needed in an ideal software development system. His 

methodology 

THEORIES, 

provides and 

which provide 

extends many semantic ideas: 

axioms, UIEWS, which describe the 

interconnections between entities, UERTICAL and HORIZONTAL 

compositions, which impose semantic structures at different 

levels and at the same levels of abstraction, respectively, 

and GENERICS, parameterized software promoting the reusabi

lity goal. 

He suggests that these items can be best described 

in his language, LIL (Library Interconnection Language) 

(Goguen 1986). LIL appears similar to Ada generic specifi

cation syntax with formal and informal semantic definitions 

along with notations that support the notion of semantic 

binding. Closely tied to these concepts is the language 

Clear CBurstall and Goguen 1981), which gets much of its 

power from category theory CLitvichouk and Matsumoto 198~). 

Again, we will not explain all the syntax involved in LIL 

and Clear; the reader should consult the excellent sources. 

THEORIES 

Tc formalize data abstractions (sets, variables, 

functions, abstract data types, etc.) LIL uses theories 

10 



11 

containing semantics. Theories may use other theories, etc. 

to extend thei~ properties and to bind them together. We 

should visualize LIL theories as the software development 

system primitives. 

For instance, the theory in Figure ~.1.1 describes a 

single type Cset) with no particular semantics. TRIUIAL_SET 

is to be considered a simple data type void of any algebraic 

or topological properties. 

theory TRIUIAL_SET is 
types ELT; 

end TRIUIAL_SET; 

Figure ~.1.1 

Although the example in Figure ~.1.2 imports no 

properties from other theories (except for BOOLEAN from the 

Ada package STANDARD), it now represents a sat and a 

particular function associated with it. Notice that the 

function has three axioms binding it with the set. 

theory PARTIALLY_ORDERED_SET is 
types ELT; 
functions ORD: ELT EL!-> BOOLEAN; 
var El E2 E3: ELT; 
axioms 

C not(El ORD El)) 
C if El ORD E2 then notCE2 ORD El) ) 
C if El ORD E2 and E2 ORD E3 then 

El ORD E3) 
end PARTIALLY_ORDERED_SET; 

Figure ~.1.2 



12 

In LIL the generic concept is embodied in making 

parameters. In the case of theories this will mean adding 

structures and semantics to existing theories. Sc, building 

on the notion cf partially ordered sets we have the 

WELL_FOUNDEO_SET in Figure ~.1.3. The notions of the 

well-founded set, reduction functions, and end-of-chain 

functions, mentioned below, are fundamental to proving 

program termination (Levy 1980), CMcGettrick 1982). 

generic theory WELL_FOUNDED_SET 
CELT:: PARTIALLY_ORDERED_SET J is 
vars El E2 ... En ... : ELT; 
axioms 

C if El, E2, ... ,En, ... is a sequence 
in ELT such that CEi+l ORD Ei) for 
i in POSITIUE then the sequence is 
finite) 

and WELL_FOUNDED_SET; 

generic theory REDUCTION_FUNCTION 
CELT:: WELL_FOUNDED_SET J is 
functions REDUCE: ELT -> ELT; 
vars El E2: ELT; 
axioms C if REDUCECEl) - E2 then E2 ORD El) 

end REDUCTION_FUNCTION; 

generic theory END_OF_CHAIN_FUNCTION 
CELT:: WELL_FOUNDED_SET J is 
functions EOC: ELT -> BOOLEAN; 
vars El E2 ... Ei ... En: EL!; 
axioms 

C for each chain El ORD E2 ORD ... 
ORD En in ELT 1 there is an Ei, 
where i is in l .. n, such that 
EOCCEi) = TRUE) 

C if El ORD E2 and EOCCE2) • TRUE, 
then EOCCEl) - TRUE) 

and END_OF_CHAIN_FUNCTION; 

Figure ~.1.3 



13 

Next, we introduce in Figure ~.l.~ two general 

functions and the notion of a generic object. Although 

these are written without axioms, they will be important in 

making instantiations. 

generic theory BINARY_OPERATION 
CELT:: TRIUIAL_SET J is 
ructions BI_OP: ELT ELT -> ELT; 

end BINARY_OPERATION; 

generic theory SINGLE_UARIABLE_FUNCTION 
C ELTl ELT2 :: TRIUIAL_SET J is 
functions FTN: ELTl -> ELT2; 

end SINGLE_UARIABLE_FUNCTIONi 

generic theory OBJECT 
CELT:: TRIUIAL_SET J is 
vars OBJ: ELT; 

end OBJECT; 

Figure ~.1.~ 



l'± 

'±.2 PACJ<A6ES 

Packages in LIL contain semantics rather than code; 

otherwise, note the similarities to Ada style in the LIL 

package STACK in Figure '±.2.1. 

generic package STACK CELT .. TRIUIAL_SET . . 
types STACK; 
functions 

PUSH STACK 
POP STACK 
TOP STACK 
EMPTY STACK 
CREATE 

exceptions 
STACK_UNDERFL□W; 
STACX_EMPTV; 

vars 
S: STACK; 
I : ELT; 

axioms 

ELT 

C POPCPUSHCS,I)) = S) 
C TOPCPUSHCS,I)) • I ) 

-> 
-> 
-> 
-> 
-> 

C EMPTYCCREATE) •TRUE) 

STACK; 
STACK; 
ELT; 
BOOLEAN; 
STACK; 

C EMPTVCPUSHCS,!)) •FALSE) 

end STACK; 

C POPCEMPTY). - STACK_UNOERF'LOW ) 
C TOPCEMPTV) • STACK_EMPTV) 

----------------------------------------Figure 't.c.1 

J is 

The collection of items in the parameter of a 

generic entity is appropriately called a requirements theory 

by Goguen. Thus, the requirements theory, unlike generic 

parameters in Ada, can not only tell us what types, objects, 

functions, etc. are called for, but can describe the 

complete semantic primitives necessary to make the package 

or theory valid. For an interesting instance see Figura 



15 

~.2.2, where the functions are pairwise independent in their 

semantics, and the requirements theory is significantly 

complex. 

generic package TREE_FUNCTIONS C 
ELTl 
ELT2 
REDUCEl 
REDUCE2 
EOC 
FTN 

OP 
DEFAULT 

.. TRIVIAL_SET; 

.. WELL_FOUNDED_SET; 
:': REDUCTION_FUNCTIONC ELT2 J; 
.. REDUCTION_FUNCTIONC ELT2 J; 
.. END_OF_CHAIN_FUNCTIONC ELT2 J; 
.. SINGLE_UARIABLE_FUNCTION 

C El.!2; ELTl J; 
.. BINARV_OPERATIONC ELTl J; 
.. OBJECTC ELTl J 

J is 

functions 
INO ELT2 -> ELTl; 
PREO ELT2 -> ELTl; 
POSTO ELT2 -> ELTl; 

vai:-s 
INPUT ELT2; 
RETURN El.Tl; 

axioms 

C INOCINPUT) • RETURN, where 
if EOCCINPUT) then RETURN:• DEFAULT; 
else 

RETURN:= INO(REDUCElCINPUT)); 
RETURN:• 

OP( RETURN, FTNCINPUT) ); 
RETURN:-

□PC RETURN, INOCREDUCE2CINPUT) ); 
end if; ) 

C PREOCINPUT) = RETURN, where 
if EOCCINPUT) then RETURN:• DEFAULT; 
else 

RETURN :a FTNCINPUT); 
RETURN:• 

OPC RETURN, PREOCREDUCElCINPUT)) ); 
RETURN:• 

OPC RETURN, PREOCREDUCE2CINPUT)) ); 
end if; ) 



16 

C POSTOCINPUT) =RETURN.where 
if EOCCINPUT) than RETURN :m DEFAULT; 
else 

RETURN :m POSTOCREDUCElCINPUT)); 
RETURN:• 

OPC RETURN, POSTOCREDUCE2CINPUT))); 
RETURN:-

OPC RETURN, FTNCINPUT) ); 
end if; ) 

end TREE_FUNCTIONS; 

Figure 'i:.2.2 

Notice that the ,.axioms,. in TREE_FUNCTIONS are 

really the recursive algorithms: 

IND simulates the inorder movement through a 

binary tree while doing computations via OP on the nodes of 

the tt"BB. 

PREO and POSTO 

postorder movements like INC. 

simulate the preorder and 

The fact that the parameter type of each function is 

a well-founded set, that REDUCTION_FUNCTION's are used, and 

that the BOOLEAN control function, END_OF_CHAIN_FUNCTION 1 is 

included guarantee that these recursive functions terminate 

by the method of structural 

CMcGettrick 1982). 

induction (Lavy 1980) I 



17 

UIEWS 

The concept of views will allow us to Justify how a 

given LIL entity satisfies a given LIL theory. Suppose for 

the moment that the package in Figura ~.2.2 contained only 

the recursive function IN□. Note that the requirements 

theory would be the same and that the axiom for IN□· would 

not be any different. Call this package INORDER_COMPUTE. If 

we wish to realize this generic function as a method of 

c□mouting the product of floating point numbers in the nodes 

of a binary tree, we will want a data type called 

BINARY_TREE OF_FLOAT defined somewhere in the LIL environ

ment. Since this would be the parameter type of this 

function, we also need to Justify that BINARY_TREE_OF_FLOAT 

is indeed a well-founded set. Some other items in the 

requirements theory will need no Justification because of 

the lack of ambiguity. Also, suppose the notion cf a proper 

subtree or Just SUBTREE in a BINARY_TREE_OF_FLOAT has been 

defined Cor understood) elsewhere. 

view B_TREE :: WELL_FOUNDED_SET => BINARY_TREE_OF 
_FLOAT is 
types CELT=> BINARY_TREE_OF FLOAT) 
ops CORD•> SUBTREE) 

end B_TREE; 

Figure ~.3.1 

Now B_TREE is an abstract data type with a guarantee 

that it should be considered a well-founded set with order 



18 

relation SUBTREE. Using this view of a binary tree we can 

now view specific functions dependent on the notion that 

B_TREE is Justifiably a WELL_FOUNDED_SET. 

view TREE_L :: REDUCTION_FUNCTION => 
TREE_LEFT is 

types CELT•> B_TREE) 
cps C REDUCE-> TREE_LEFT) 

end TREE_L; 

view TREE_R .. REDUCTION_FUNCTION 
TREE_RIGHT is 

types C ELT •> B_TREE) 
ops ( REDUCE => TREE_RIGHT 

end TREE_R; 

•> 

) 

view NUL.L._T .. END_OF _CHAIN_.FUNCTION 
NULL_TREE is 

types C EL.T :zs) B_TREE) 
ops ( EOC => NULL_TREE ) 

end NULL_T; 

=> 

generic view TREE_N 
TREE_NODEC ELT 

X 
types CELT•> 
ops C FTN ... > 

end TREE_N; 

:: SINGLE_UARIABLE_FUNCTION •> 
:: BINARY_TREE_OF_FLOAT; 
:: TRIUIAL_SET J is 
B_TREE ) 
TREE_NODE) 

Figure 'i:.3.2 



19 

'-:t.'-J: INSTANTIATIONS 

We now have enough semantic information and semantic 

Justiricaticns tc make an instantiation or the function 

IN□RDER_COMPUTE. LIL utilizes the make command using views 

of theories and packages, and if natural defaults exists, 

~ uses the theories themselves. 

make BINARY_TREE_PRODUCT is INORDER_COMPUTE 
C FLOAT; B_TREE; TREE_L; TREE~R; 

NULL_!; TREE_N; "•"; 1. 0 J end 

Figur-a 'i,lf,1 

Tc further- illustr-ate the concepts thus far we will 

build examples on systems cf algebraic structures: 

theory MONOID is 
types M; 
functions• 

end M□N□ ID; 
MM-> M Cassoc, id 

assoc implies that the function• satisfies 
(Ml• M2) • M3 •Ml• CM2 • M3) 

id: 1 implies that the function• satisfies 
Ml• 1 • Ml - 1 • Ml 

generic theory GROUPC M :: MONOID J is 
functions•: MM-> M (assoc, inv, id 1); 

end GROUP; 

iJ::n!_ implies that.for each Ml ther-e is Mlinv 
such that Ml• Mlinv - 1 - Mlinv • Ml 

the notations of assoc and id: 1 are imported 
from MONOID and ar-e included for completeness 



20 

generic theory ABELIAN_GROUPC G :: GROUP J is 
functions•: MM-> M 

(assoc, comm, inv, id l); 
end ABELIAN_GRDUP; 

-- ggmm implies that Ml• M2 - M2 • Ml 

generic theory RINGC A:: ABELIAN_GROUP J is 

generic view A+:: RING=> 
ABELIAN_GROUPC A:: GROUP J is 
ops C • •> +) 

end A+; 

because of the "traditional'" view of 
using+ instead of• as the operator 
in the underlying abelian group in a 
ring we use this generic view to change 
its notation before using• as the 
'"multiplicative" RING operator 

functions 
+:AA-> A Cassoc, comm, inv, id 0); 
m A-> A; 
- • A A-> A; 
• A A-> A Cassoc); 

vars Al A2 A3: A; 
axioms 

C (Al+ A2)•A3 • CA1•A3) + CA2•A3) ) 
C Al•CA2 + A3) • CAl*A2) + CA1•A3) ) 
C mAl • Alinv) 
C Al - A2 - Al+ CmA2)) 

and RING; 

generic theory FIELDC R :: RING J is 
functions 

+: RR-> R (assoc, comm, inv, id 0); 
m: R -> R; 
- ·RR-> R; 
• RR-> R (assoc, comm, id l); 
/ RR-> R; 

vars Rl ONE_OUER_Rl R2: R; 
axioms 

C if Rl /= O, then there is 
ONE_OUER_Rl such that Rl • ONE_OUER_Rl 
= 1 • ONE_OUER_Rl • Rl) 

C R2 / Rl - R2 • ONE_OUER_Rl) 
end FIELD; 

Figure Y:.Y:.2 



21 

The following package contains the necessary axioms 

fo produce a two element field isomorphic to the field 22 • 

{0,1}; we will then be able to instantiate the data type 

Cset) BOOLEAN with new operators to make a new field based 

on <FALSE, TRUE} with different operators, cf course. 

package 2EE2 is 
types Z; 
vars ZO 21 
functions 

PLUS 

TIMES 

axioms 

2· , 

2 2 -> 2 
(assoc, comm, inv, id: 20); 
2 2 -> 2 
(assoc, comm, id: 21); 

C 21 PLUS 21 - 20) 

end 2EE2; 

C ZO TIMES 20 a 20) 
C 21 TIMES 20 - 20) 

view BOOLEAN_SET :: 2EE2 •> BOOLEAN is 
types C 2 ->BOOLEAN) 
ops C PLUS •> NOTCEXOR) ) 

C TIMES-> AND) 
end BOOLEAN_SET; 

make BOOLEAN_FIELD is FIELDC BOOLEAN_SET J end 

The usual set cf BOOLEAN= {FALSE, TRUE} has 
now been given a field structure. 

Figure '±.'±.3 



22 

'i .s COMPOSITION 

Goguen introduces two fundamental programming 

activities - horizontal and vertical. Horizontal activities 

alter structures at a rixed level of abstraction; whereas, 

vertical activities transform entities into other entities 

among levels of abstraction while preserving semantics. One 

particular vertical activity is illustrated in Figure 'i.5.1 

as an example of composition. 

generic package STACX_FUNCTIONSC F :: FIELD J 
needs STACKF :: STACKCFJ is 

functions 

ADD : STACK -> STACK; 
add top two elements in stack 

and push sum 

SUM STACK-> STACK; 
subtract top two elements in 

stack and push difference 

MUL STACK-> STACK; 
multiply top two elements in 

stack and push product 

DIU STACK-> STACK; 
divide top element by next 

element in stack and push 
quotient 

MINUS STACK-> STACK; 
-- change sign of top or stack 

exceptions 

vars 

2ERO_DIVIDE; 

Sl S2 S3 
Fl F2 

STACK; 
F· 

' 



23 

axioms 

( Fl ... TOPCSl) ) notation 
( S2 ... POPCSl) ) 

( F2 = TOPCS2) ) 

( S3 ... POPCS2) ) 

( ADDCSl) • PUSHCS3, Fl + F2) ) 

( SUBCSl) ... PUSHCS3, Fl - F2) ) 

( MULCSl) • PUSHCS3, Fl • F2) ) 

( DIUCSl) • PUSHCS3, Fl/ F2) ) 

( MINUSCSl) • PUSHCS2, mFl) ) 
( if F2 = 0 then DIUCSl) - ZERO_OIUIDE ) 

end STACK_FUNCTIONS; 

Figure 'i.5.1 

In this generic package we must pr-ovide STACK_.FUNC

TIONS with STACKF, a version of package STACK with elements 

•having field char-acteristics. Since the r-equir-ements theory 

in STACK demands TRIVIAL_SET (see Figure 'i.2.1), using a 

rield here which is mer-a specific than TRIUIAL_SET is 

proper. STACK can have several generic bodies in LIL. To 

choose one of these versions, say STACK_BODY_3, instantiate 

as in Figure 'i.5.2. 

make STACK_FUNCTIONSCFJ needs STACKF •> 
STACK_BODY_3CFJ end 

Figure 'i.5.2 

Or, we can do the same for a specific field 

demonstrating the use of horizontal instantiation (FIELD to 

FLOAT) and vertical instantiation as in Figure ~.5.3. 



make FLOAT_STACK_FUNC!IONS is 
STACK_FUNCTIONSC FLOAT J needs 

STACKF •> STACK_BODY_3C FLOAT J end 



S. THE METHODOLOGY OF MAKING ANALOGIES 

5.1 INTRODUCTION 

Our first step in the process of making generaliza

tions is to find an analogy between the final assertions 

(problem specifications) in the program segments in two 

similar problems. Next we may apply an abstract mapping of 

one of the program segments to the generalized program 

segment resulting in the generic abstraction. 

Great care must be taken in making these abstrac

tions: certain preconditions can be lost, rendering the 

abstraction impossible to prove correct. However, the 

essential parts of the lost preconditions may in fact be 

recovered when we use the method of weakest preconditions 

(Dijkstra, 1976). 

Finally, once the correctness has been demonstrated 

other problems with analogous specifications to those of the 

abstraction may be granted correct code by assigning the 

elements of the concrete problem specification to the 

elements of the generalized scheme by way cf an instantia

tion mapping. 

25 



26 

5.2 TWO SIMILAR FUNCTIONS 

We examine some of the implications of this 

methodology to only one particular area of the Ada Program-

ming Language - generic functions 

-functions in Figures 5.2.1 and 5.2.2. 

type CELLi 
type BINARY_TREE 
type CELL. is 

record 
LEFT 
NODE 
RIGHT 

end r-ecordi 

is access CELL; 

BINARY_TREE; 
FL.OAT; 
BI NARY ~TREE; 

using recursive 

function INORDER_PRODUCT C TREE: BINARY_TREE) 
retur-n FLOAT is 

This function finds the pr-oduct of all numbers 
in each node Cof type FLOAT) in the binary 
tree. 

PRODUCT: FLOAT:= 1.0; 

begin -- I NORDER _.PRODUCT 

if TREE /m null then 
PRODUCT:• INORDER_PRODUCTC TREE.LEFT); 
PRODUCT:- PRODUCT• TREE.NODE; 
PRODUCT:- PRODUCT• 

INOROER_PRODUCTC TREE.RIGHT); 
end if'; 
retur-n PRODUCT; 

end INORDER_PR□DUCTi 

Figur-e 5.2.1 



27 

function FIBONACCI C P: POSITIVE) 
return INTEGER is 

This function finds the P-th term of the 
Fibonacci sequence: FCP) - FCP-1) + FCP-2) 
for P greater than 2, where FCl) - FC2) - 1 

F: INTEGER:- 1; 

begin -- FIBONACCI 

if P > 2 then 
F :• FIBONACCI( P-1) + 

FIBONACCI( P-2 ); 
end if'; 
return F; 

end FIBONACCI ; 

Figure 5.2.2 



28 

5.3 ANALOGIES 

In searching for possible analogies between these 

two functions observe the fellowing: Beth functions are 

controlled by a single boolean expression, do not possess 

loops, have a single local return variable with a default 

value utilized at the lowest recursive call, and have a 

single parameter. The function calls are not compositions. 

The type of the parameter and the type cf the result 

essentially have no direct operational relationship. 

To preserve the integrity of the algorithms, to 

allow for a greater level of abstraction of the parameter 

type, and to allow for binary operations which may be 

non-commutitive or non-associative, we will present the 

abstraction using three primary statements (as in INORDER_

PRODUCT). To begin to make formal analogies we present the 

following adjusted functions: 

function INORDER_PRODUCT C TREE 
return FLOAT is 

PRODUCT: FLOAT; 
begin -- INORDER_PRODUCT 

if (TREE - null) then 
PRODUCT:• 1.0; 

else 

BINARY_TREE) 

PRODUCT·• INORDER_PROOUCTC TREE.LEFT); 
PRODUCT:- PRODUCT• TREE.NODE; 
PRODUCT:• PRODUCT• 

INORDER_PRODUCTC TREE.RIGHT); 
end if; 
return PRODUCT; 

end INORDER_PRODUCT; 

-- AND 



29 

fucntion FIBONACCI C P: POSITIUE) 
return INTEGER is 

F : INTEGER; 
begin -- FIBONACCI 

if' C Nin 1 .. 2) then 
F := l; 

else 
F ·= FIBONACCI( P-1 ); 
F ·"" F + O; 
F ·• F + FIBONACCI( P-2 ); 

end if'; 
return F; 

end FIBONACCI; 

Figure 5.3.1 

ANALOGIES 

types 
BINARY_TREE >>>>> POSITIVE 
FLOAT>>>>>>>>>>> INTEGER 

relations 
CTREE •null)>>> CN in 1 .. 2) 
• >>>>>>>>>>>>>>> + 

objects of type 2 
1.0 >>>>>>>>>>>>> 1 
PRODUCT>>>>>>>>> F 

objects of type T 
TREE>>>>>>>>>>>> P 

function of type Z value 
TREE.NODE>>>>>>> 0 

functions of' type T value 
TREE.LEFT>>>>>>> P-1 
TREE.RIGHT>>>>>> P-2 

ABSTRACT TO 

•-> K: T -> BOOLEAN 
••> BINARY_OP: 

2 X 2 -> 2 

=-=> DEFAULT 
••> RETURN_UALUE 

••> INPUT_ UALUE 

••> MIDDLE_FTNCINPUT_UALUE) 

•-> FIRST __ FTN C INPUT_ UALUE) 
--> LAST_FTNCINPUT_UALUE) 

########################################################### 
Figure 5.3.2 



30 

A GENERIC RECURSIUE FUNCTION 

We need some guarantees that our abstract function 

terminates. Looking towards structural induction we will 

make some assumptions on the Boolean function Kand on the 

functions of type T value: FIRST_FTN and LAST_FTN (Figura 

S.lf). 

Notice the great similarities between this Ada 

generic function RECURSIUE_ANALOGY CFigure S.lf) and the LIL 

recursive function IND (Figure lf.2.2): 

type T. . <-> 
function FIRST_FTN .. <=> 
function LAST_FTN .. <=> 
function K. . <-> 
type 2.. <•> 
function MIDDLE_FTN,.<m> 
DEFAULT. , <•> 
function BINARY_OP .. <m> 

U,b, 

ELT2 :: WELL_FOUNDED_SET .. 
REDUCE1 :: REDUCTION_FUNCTION .. 
REDUCE2 :: REDUCTION_FUNCTION,. 
EOC :: END_OF_CHAIN_FUNCTION .. 
ELT1 :: TRIUIAL_SET,. 
FTN :: SINGLE_UARIABLE_FUNCTION .. 
DEFAULT:: OBJECT .. 
OP:: BINARY_OPERATION .. 

RECURSIUE_ANALOGY 

INPUT_UALUE 
RETURN_UALUE 

<-> IND 

Implementation 

<-> INPUT 
<=> RETURN 

<-> Axiom 



31 

generic 
type Tis private; 
with function FIRST_FTN CINPUT_UALUE T) 

return T; 
with function LAST_FTN CINPUT_UALUE T) 

with function K 
return T; 
CINPUT_UALUE T) 

return BOOLEAN; 

-- T must be a well-founded set such that 
i) objects FIRST_FTNCINPUT_UALUE) and 
LAST_FTNCINPUT_UALUE) are less than 
INPUT_UALUE, 
ii) there is an element in T, nil, 
such that KCnil) • TRUE, and 
iii) if x and y are in T such that x 
is less than y and KCy) • TRUE, then 
KCx) • TRUE. 

type 2 is private; 
with function MIDDLE_FTN CINPUT_UALUE: T) 

return Z; 
DEFAULT: in 2; 
with function BINARY_OP CU, U: 2) return 2; 

function RECURSIUE_ANALOGY C INPUT_UALUE T) 

return 2; 

function RECURSIUE_ANALOGY C INPUT_UALUE T) 
return 2 is 

RETURN_UALUE: 2; 
begin -- RECURSIUE_ANALOGY 

if KC INPUT_UALUE) then 
RETURN_UALUE :- DEFAULT; 

else 
RETURN_UALUE :• 

RECURSIUE_ANALOGVC 
FIRST_FTNCINPUT_UALUE) ); 

RETURN_UALUE :• 
BINARY_OPC RETURN_UALUE, 

MIDDLE_FTNCINPUT_UALUE) ); 
RETURN -UALUE : ID 

BINARV_OPC RETURN_UALUE, 
RECURSIUE_ANALOGYC 

LAST_FTNCINPUT_UALUE) ) ); 
end if'; 
return RETURN_UALUE; 

end RECURSIUE_A.NALOGV; 

Figure S.'¼ 



32 

There is a very natural transformation between the 

LIL package and the Ada generic function. The correctness 

in both instances, of course, depends on programmer 

instantiation; however, these considerations depend on the 

comments in the Ada specification part of the generic 

function, which are written in informal mathematical logic, 

at best. On the other hand, the governing specifications in 

the LIL package are based in the requirements theory whose 

carefully written primitives could be viewed with simple 

commands in an Ada environment. Also these primitives 

govern "all" the software written in that environment, thus, 

giving consistency and the quality of reusability to the 

entire system. 

Moreover, in Ada we will essentially have to examine 

the implementation of the generic function to be able to 

make analogies; however, in LIL the axioms in the specifica

tions correspond to the main algorithms in the generic 

package. Therefore, the programmer need only examine the 

LIL specifications for analogies. We shall also see the 

importance of having a single specification in LIL that can 

be linked ta several alternate implementations by means of 

different views; whereas in Ada each generic specification 

unit corresponds ta exactly one implementation unit. 



33 

s.s A GENERIC ITERATIUE FUNCTION 

Using the methods of Colussi (198~) there is a 

natural program transformation from the recursive inplemen

tation of INORDER_COMPUTE to an iterative version. However, 

since FIBONACCI is a second-order difference equation, a 

natural program transformation maps to a function in closed 

form; so, the program transformations drop the analogies. 

Therefore, we must preserve the meaning and intent 

of all the abstract types, functions, and objects to make a 

true transformation from the recursive abstraction to an 

iterative abstraction. We might do well in simulating the 

operation of the production cf stacks of activation records. 

generic 
(generic SPECIFICATION exactly the same as 

RECURSIUE_ANALOGY) 
function ITERATIUE_ANALOGY C INPUT_UALUE: T) 

return 2; 

For the body or ITERATIVE_ANALOGY we will use 
the following generic package: 

generic 
type ITEM is private; 

package STACK is 
procedure PUSH C X: in ITEM); 
procedure POP C X: out ITEM); 
function STACK_EMPTY return BOOLEAN; 

end STACK; 



package body STACK is 
type CELL; type ELEMENTS is access CELL; 
type CELL is record 

NODE: ITEM; 
NEXT: ELEMENTS; 

end recox:-d; 
S: ELEMENTS:- nulli 

procedux:-e PUSH C X: in ITEM) is 
TOP : ELEMENTS:• new CELL'CX,S); 

begin -- PUSH 
S := TOP; 

end PUSH; 

procedure POP C X 
begin -- POP 

X :• S.NODE; 
S :• S.NEXT; 

end POP; 

out ITEM) is 

function STACK_EMPTY is 
begin -- STACK_EMPTY 

return S - null; 
end STACK_EMPTY; 

end STACK; 

function ITERATIUE_ANALOGY C INPUT_VALUE T) 
return 2 is 

RETURN_UALUE: 2; 

type CALL_TYPE is CFIRST,LAST); 

type ACTIVE 
CALL: 
TEE 
RET 

is record 
CALL_TYPE; 
T· , 
2· , 

end record; 

REC: ACTIVE; 

package ACTIUE_STACK is new STACK C 
ITEM•> ACTIUE ); 

use ACTIUE_STACK; 



35 

procedure PUSH_LIST C N in T) is 
R : ACTIUE; . 

begin -- PUSH_LIST 
if' not KCN) then 

R :- (FIRST, N, DEFAULT); 
PUSH( R ) ; 
PUSH_LISTC FIRST_FTNC N) ); 

end if; 
end PUSH_L.IST; 

procedure CLEAN_UP CR: 2) is 
begin -- CLEAN_UP 

RETURN_UALUE :• BINARY_OPC 
R, MIDDL.E_FTNCREC.TEE) ); 

if KCLAST_FTNCREC.TEE)) then 
RETURN_UALUE : ... 

else 

BINARY_OPCRETURN_UALUE, 
MIDDLE_FTNCREC.TEE)); 

REC:• CLAST,REC.TEE,RETURN_UALUE); 
PUSHC REC ) ; 
PUSH_LISTC LAST_FTNCREC.TEE) ); 

end if'; 
and CLEAN_UP; 

begin -- ITERATIUE_ANALOGY 

if KC INPUT_UALUE) then 
return DEFAULT; 

else 
PUSH_LISTC INPUT_UALUE ); 
while not STACK_EMPTY loop 

POPC REC ) ; 
if KC FIRST_FTNC REC.TEE) and 

REC.CALL - FIRST then 
CLEAN_UPC REC.REI); 

elsif' REC.CALL• FIRST then 
CLEAN_UPC RETURN_UALUE ); 

else 
RETURN_UALUE : ... BINARY_DPC 

REC.REI, RETURN_UALUE ); 
end if; 

and loop; 
return RETURN_UALUE; 

end if; 

end ITERATIUE_ANALOGY; 

Figure 5.5 



6. INSTANTIATING ANALOGIES 

6.1 ITERATIUE INSTANTIATIONS 

Suppose now that we wished INORDER_PRODUCT and 

FIBONACCI to be iterative instead of recursive. We need 

only grant the names, types, relations, and objects meaning 

in the iterative.abstraction. Thus, we make the following 

instantiations in Figures 6.1.1 and 6.1.2: 

function NULL_TREE C TREE 
begin 

return TREE• nulli 
end NULL_TREEi 

function TREE_NODE C TREE 
begin 

return TREE.NODE; 
end TREE_NODE; 

function TREE_LEFT C TREE 

begin 
return TREE.LEFT; 

end TREE_LEFT; 

function TREE_RIGHT C TREE 

begin 
return TREE.RIGHT; 

end TREE_RIGHT; 

BINARY_TREE) return BOOLEAN is 

BINARY_TREE) return FLOAT is 

BINARY_TREE) 
return BINARY_TREE is 

BINARY_TREE) 
return BINARY_TREE is 

36 



37 

function INORDER_PRODUCT is new ITERATIUE_ANALOGY C 
T => BINARY_TREE, 
FIRST_FTN -> TREE_LEFT, 
LAST_FTN => TREE_RIGHT, 
K -> NULL_TREE, 
2 m> FLOAT, 
MIODLE_FTN -> TREE_NODE, 
DEFAULT •> 1.0, 
BINARY_OP •> "•" ); 

########################################################### 
Figure 6.1.1 

Notice the first four functions in Figure 6.1.1 give 

the names needed in the LIL views in Figures ~.3.1 and 

~.3,2, and the instantiation, above, corresponds to the LIL 

instantiation in Figure ~.~.1. 

########################################################### 
function INITIAL_UALUE C P: POSITIUE) return BOOLEAN is 
begin 

return Pin 1 .. 2; 
end INITIAL_UALUE; 

function ZERO C P: POSITIUE) return INTEGER is 
begin 

return O; 
end ZERO; 

function MINUS_ONE ( P 
begin 

return P-1; 
end MINUS_ONE; 

function MINUS_TWO C P 
begin 

return P-2; 
end MINUS_TWO; 

POSITIUE) return POSITIUE is 

POSITIUE) return POSITIUE is 

function FIBONACCI is new ITERATIUE_ANALOGY C 
T •> POSITIVE, 
FIRST_FTN => MINUS_ONE, 
LAST_FTN •> MINUS_TWO, 
K => INITIAL_UALUE, 
2 •> INTEGER, 
MIDDLE_FTN -> ZERO, 
DEFAULT a> 1, 
BINARY_OP -> "+" ); 

########################################################### 
Figure 6.1.2 



38 

6.2 INSTANTIATING A SIMILAR FUNCTION 

Examine the recursively defined function: 

f(n) - nf(n-l)/f(n-3) for n > 3 and fCl) = fC2) - f(3) - 3. 

We can implement this function in the fellowing recursion: 

function THREE C P: POSITIUE) return FLOAT is 
D: FLOAT :Q 3.0; 

begin -- THREE 
if P > 3 then 

D :• CFLOATCP)•THREECP-1))/THREECP-3); 
end if; 
return D; 

end THREE; 

Figure 6.2.l 

There is an exact analogy between this function and 

the abstract recursive generic function. If we write 

D := THREE( P-1) I Cl.0/FLOATCP)) / THREEC P-3 ), we 

have the necessary analogy. Thus, we may change this 

function directly to iterative form by the 

instantiation: 

following 



39 

function INITIAL_UALUE ( P: POSITIVE) return BOOLEAN is 
begin 

return Nin 1 .. 3; 
end INITIAL_UALUEi 

function MINUS_ONE C P 
begin 

return P-li 
end MINUS_ONE; 

function MINUS __ THREE C P 
begi,:, 

return P-3; 
end MINUS_THREE; 

POSITIUE) return POSITIUE is 

POSITIUE) return POSITIVE is 

function ONE_OUER_P C P: POSITIUE) return FLOAT is 
begin 

return 1,0/FLOATCP); 
end ONE_OUER_P; 

fucntion THREE is new ITERATIUE_ANALCGY 
T -> POSITIVE, 
FIRST_FTN => MINUS_ONE, 
LAST_FTN => MINUS_THREE 1 

J( => INITIAL_UALUE, 
2 •> FLOAT, 
MIDDLE_FTN -> ONE_OUER_P, 
DEFAULT -> 3.0, 
BINARY_OP -> "I" 

( 

) ; 

########################################################### 
Figure 6.2.2 



7. ANALOGIES AND LIL 

7.1 TWO SIMILAR FUNCTIONS 

We examine two recursive functions taken directly 

from McGettrick (1982): 

a) The 3x + 1 Function 

FCN) • if N mod 2 • O then N/2 else FCF(3*N + 1)) end if 

It can be shown that this function terminates for 

all Nin NATURAL Cthe nonnegative integers)._ In fact, if N 

is even, FCN) - N/2; otherwise, setting N (uniquely) to 

C2 •• h) • k + (2 •• Ch-1)) -1 for some h, k in NATURAL, 

then 

FCN) • (3 •• Ch-1)) • k + (3 •• Ch-1) - 1)/2. 

b) McCarthy's 91-function 

FCZ) • if 2 > 100 then? - 10 else F(F(Z + 11)) end if 

Again, it can be shown that this function terminates 

for all integers 2. In fact, if 2 is greater than 100, then 

FC2) = 2-10; otherwise, FCZ) = 91. 



Y:1 

7.2 THE 3x + 1 FUNCTION 

Examine first the 3x + 1 function fer making 

abstractions. Notice that this function contains three 

controlling internal functions: KCN) - CN med 2 • 0), GCN) 

• N/2, and HCN) • 3•N + 1. So we can write this function as 

FCN) m if KCN) then GCN) else fCfC HCN) )) end if. It is 

also true here that KCN) false implies then K(H(N)) true. 

So, writing this in Ada, we have 

function F C N: NATURAL) return NATURAL is 
A, 8, C, D: NATURAL; 

begin -- F 
if KCN) then 

A : - GCN); 
return A; 

else 

<<FF>> 
B :• N; 
C : .,. GCHCB)); 
if KCC) then 

D : - GCC); 
return D; 

else 
B :• C; goto FF; 

and if; 
end if; 

and F; 

Or, we can write 

function F C N: NATURAL) return NATURAL is 
M: NATURAL; 

begin -- F 
ir KCN) then 

return GCN); 
else 

M :• GCHC N )); 
ir KCM) then 

return GCM); 
else 

return FCM); 
end if; 

end if; 
end F; 

Figure 7.2 



Or, FCN) • if KCN) then return GCN) else FCGCHCN))) end if. 

This new definition of the 3x + 1 function is based 

an the fact that if KCN) is false then KCHCN)) is true. Sa, 

we have simplified the function from the composition of two 

recursive functions to a single function call. 

Define a special ordering en NATURAL: Y ORO X if 

and only if NOT KCX) and there is a sequence XO = X, Xl, 

X2, ... ,Xn m Yin NATURAL such that Xi+l = GCHC Xi)) for i = 

1, 2, ... ,n-1. Thus, it can be shown that NATURAL is a 

well-founded set with ordering ORD as described in Figures 

~.1.2 and ~.1.3 Csee the Appendix A for a proof). 

Therefore, we have made KC ) an END OF_CHAIN_FUN

GTION and GCHC )) a REDUCTION_FUNCTION, and termination of 

the function Fis assured. 



'i3 

7.3 STRUCTURING ADA TO USE LIL 

To build the LIL generic package notice that we 

already have all the basic theories: WELL_FOUNDED_SET, 

REDUCTION_FUNCTION, SINGLE_UARIABLE_FUNCTION and END_OF_-

CHAIN_FUNCTION. We must code the following to utilize LIL 

specifications effectively: 

function THREE_X_PLUS_ONE ( N: NAfURAL) 
return NATURAL is 

begin 
return 3•N + l; 

end THREE_X_PLUS_ONE; 

function X_OUER_TWO C N NATURAL) 
return NATURAL is 

begin 
return N/2; 

end X_OUER_TWO; 

function X_EUEN C N: NATURAL) 
return BOOLEAN is 

begin 
return C N med 2 • 0); 

end X_EUEN; 

function X_LT C Nl, N2: NATURAL) 
return BOOLEAN is 

begin 
if CCX_EUENCNl) and X_EUENCN2)) or 

CNl < N2)) then 
return FALSE; 

elsif (Nl - X_OVER_TWOCTHREE_X_PLUS_ONECN2))) 
then 

r-etut'n TRUE; 
else 

return X_LTC Nl, . 
X_OUER_TWOCTHREE_X_PLUS ONECN2)) ); 

end if'; 
end X_LT; 

Figure 7.3 



BUILDING THE LIL PACKAGE 

geneLic package COMPOSITION_RECURSIUE_FUNCTION C 
.. WEll_FOUNDED_SET; 
.. REDUCTION_FUNCTIONC ELT J; 

ElT 
REDUCE 
EOC 
FTN 

.. ENO_OF_CHAIN_FUNCTIONC El! J; 

.. SINGLE_UARIABLE_FUNCTION 

function 
COMP 

CELT; ELTJ 

ELT -> ElT; 

INPUT ELT; 
axioms 

J is 

C COMPCINPUT)= if EOCCINPUT) then FTNCINPUT); 
else COMPCFTNCREDUCECINPUT))) ); 

C if notEOCCINPUT) then EOCCREDUCECINPUT)l ); 

C FTNCREDUCE) :: REDUCTION_FUNCTIONC ELT J ); 

end COMPOSITON_RECURSIUE_FUNCTION; 

view NATURAL_LT :: WELL_FOUNDED_SET •> NATURAL is 
types CELT•> NATURAL) 
ops CORD 0 > X_LT) 

end NATURAL_LT; 

-~--•••••~••-•••••••--••••••-••a-•••••--

view THREEXPLUSONE :: REDUCTION_FUNCTION •> 
THREE_X_PLUS_ONE is 

types CELT•> NATURAL_LT) 
ops C REDUCE-> THREE_X_PLUS_ONE) 

end THREEXPLUSONE; 

view EUEN :: END_OF_CHAIN_FUNCTION => X_EUEN is 
types CELI-> NATURAL_LT) 
ops C EOC •> X_EUEN) 

end EUEN; 



'-J:5 

view HALF : : SINGLE_UARIABLE __ FUNCTION => 
X_OUER_TWO is 

types CELT•> NATURAL_LT) 
ops ( FTN => X_OUER_TWO) 

end HALF; 

make THREE_X_PLUS_ONE_FUNCTION is 
COMPOSITION_RECURSIUE_FUNCTION 

CNATURAL_LT; THREEXPLUSONE; 
EUEN; HAlFJ end 

Figure 7.'i: 



7.5 THE ANALOGOUS PROBLEM 

Notice now that by examining McCarthy's 91-function 

and the generic package COMPOSITION_RECURSIUE_FUNCTION we 

find several analogies. However, there is a problem! 

McCarthy's function can be written as 

fC2) - if 2 > 100 then 2 - 10 else FCFC 2 + 11 )) end if. 

If 2 < SO, then 2 + 11 is NOT> 100; however CZ+ 11) > 100 

is REQUIRED by the specifications of the LIL generic 

package, COMPOSITION_RECURSIUE_FUNCTION. We could change 

the package spacifications or simply alter the domain of 

McCarthy's function to 90, 91, .... If we allow all of the 

Ada type INTEGER in the domain, McCarthy's function still 

terminates. Therefore, with minor adjustments, we have made 

an exact analogy. We can now build the corresponding Ada 

and LIL structures to instantiate· this function in the LIL 

environment. 

type NINETY is range 90 .. INTEGER'LAST; 

function 2_PLUS_ELEUEN C 2: NINETY) 
return NINETY is 

begin 
return 2 + 11; 

end Z_PLUS_ELEUEN; 

function 2_MINUS_TEN C 2: NINETY) 
return NINETY is 

begin 
return 2 - 10; 

end 2_MINUS_TEN; • 



'-¼7 

function 2_LARGER_THAN_100 C 2: NINETY) 
return BOOLEAN is 

begin 
retur:-n 2 > 100; 

end 2_LARGER_THAN_100; 

function 2_LT C 21, 22: NINETY) 
r:-etur:-n BOOLEAN is 

begin 
retur:-n (22 < 21) and CZl <• 101); 

end 2_LT; 

Figura 7.5.1 

view NINETY_LT :: WELL_FOUNOEO_SET => 
NINETY is 

types CELT•> NINETY) 
ops CORD a> Z_LT) 

end NINETY_LT; 

view ELEVEN:: REDUCTION_FUNCTION a> 
2_PLUS_ELEVEN is 

types CELT•> NINETY_LT) 
ops C REDUCE=> 2_PLUS_ELEUEN) 

end ELEUEN; 

view LARGER:: ENO_OF_CHAIN_FUNCTION •> 
2_LARGER_THAN_100 is 

types CELT•> NINETY_LT) 
ops C EOC => 2_LARGER_THAN_100) 

end LARGER; 

view TEN:: SINGLE_UARIABLE_FUNCTION => 
2_MINUS_TEN is 

types ( ELT •> NINETY_LT) 
ops C FTN => 2_MINUS_TEN) 

end TEN; 

make MCCARTHYS_Sl_FUNCTION is 
COMPOSITION_RECURSIUE_FUNCTION 

CNINETY_LT; ELEUEN; 
LARGER; TENJ end 

======================================== 
Figuz:-e 7.5.2 



7.6 A LIL TO ADA TRANSFORMATION 

Producing an Ada generic function new is simple. 

All the necessary information is built into the LIL generic 

package COMPOSITION_RECURSIUE_FUNCTION cf Figure 7.~. 

generic 
type ELT is private; 
with function REOUCEC E: ELI) return ELT; 
with function EOCC E: ELT) return BOOLEAN; 
with function FTNC E: ELT) return ELT; 

function COMP C INPUT: ELT) return ELT; 

function COMP C INPUT: ELT) return ELT is 
begin -- COMP 

if EOCCINPUT) then 
return FTNCINPUT); 

else 
return COMPCFTNCREDUCECINPUT))); 

end if; 
end COMP; 

Figure 7.6.1 

We also can have an iterative version of COMP called 

ITERATIUE_COMP with exactly the same generic specification 

except fer the name, of course. 

function ITERATIUE_COMP C INPUT: ELT) 
return ELT is 

RET: ELT :- INPUT; 
begin -- ITERATIUE_COMP 

while not EOCCRET) loop 
RET :- FTNCREDUCECRET)); 

end loop; 
return FTNCRET); 

end ITERATIUE_COMP; 

Figure 7.6.2 



Of course we can choose this Ada generic implemen

tation by using LIL. This should be done for purposes of 

run-time effeciency, etc. 

make THREE_X_PLUS_ONE_FUNCTION is 
COMPOSITION_RECURSIUE_FUNCTION 

CNATURAL_LT; THREEEXPLUSONE; 
EUEN; HALFJ •> 

ITERATIUE_COMP end 

-- and so forth. 

Figure 7.6.3 

We can now map this LIL. instantiation to an Ada 

instantiation by Figure 7.6.'t. 

function THREE_X_PLUS_ONE_FUNCTION is new 
ITERATIUE_COMP C 

ELT a> NATURAL, 
REDUCE => THREE_X_PLUS_ONE, 
EOC => X_EUEN, 
FTN •> X_OUER_TWO 

) ; 

Figura 7.6.'t 



8. LIL IN AN ADA ENVIRONMENT 

Burstall and Goguen (1981) and Goguen (198~) 

describe attempts to work only with specification languages 

that are divorced from the implementation environment, that 

are concerned with only abstract higher-order logic program 

design, or that are designed especially to be manipulated by 

a syntax checker. Such languages can be very useful in 

requirements engineering environments to verify specifica

tions; however, there is not yet an automated transition 

from program specifications to program implementations. 

Placing a specification language into a program 

development environment where "ordinary" programmers labor

could be a fruitless effort - especially i~ making r:-eusable 

code. The language should support some degree of infor

mality for readability while maintaining strict adherence to 

good logic. It should be able to use some of the Ada tools 

for its own support, and Ada code should refer to the 

specifications when links exits between these languages 

CLitvichouk and Matsumoto 198~). 

These specifications should also be able to access 

the predefined Ada language library units and packages like 

STANDARD, TEXT_IO, SYSTEM, etc. and any ether units that are 

peculiar to the implementation like MATH_FUNCTIONS, 

SORT_ALGORTIHMS, etc. If the later units are utilized, the 

so 



51 

language should clearly record this act with a "use" 

statement; doing this will support a degree cf implementa

tion independence of the language. 

LIL meets these criteria. Although we have not 

demonstrated all the possibilities of LIL expressed by 

Goguen (1986) like hide types, hide ops, initialization, and 

hidden implementations, these additional qualities add much 

weight to the suggestion that LIL could affectively be 

placed in an Ada development system. 

Library management of LIL and Ada code may actually 

be quite complex. Some LIL code may have to be made to be 

readable (as text or graphs) by humans, while other files 

may only be machine readable for the purposes of syntax 

checking, linking with other LIL files, enforcement of LIL 

to Ada transformations, and data base management. 

As an example, if we examine the demonstration cf 

LIL and Ada in Chapter 7 1 we see that after making a general 

analogous abstraction we were able to move wall "above" an 

Ada generic specification to the LIL generic package 

COMPOSITION_RECURSIUE_FUNCTION. However, the theories in 

the requirements theory had to be predefined in LIL. This 

could have besn dona even before the addition o~ LIL in the 

Ada environment, although some theories like PARTIALLY_

ORDERED_SET and even GROUP can have different but equivalent 

def'initicns. Furthermore. even words used in the axioms of 

these theories like the BOOLEAN "not", "sequence", and 

"chain" may be defined at an even more abstract level of LIL 



52 

theories, 

LIL packages themselves are designed to support 

different versions of some abstract data types. These, of 

course, are not dependent on Ada code at all - except for 

predefined library units. Uiews, on the other hand, may 

link LIL units to LIL units or LIL units to Ada units that 

should have been previously written. The latter views could 

have a notation refering to the specific Ada compilation 

unit containing the Ada units listed in the views. Fer 

example view HALF in Figure 7.~ could contain the informa

tion " with ADA package THREE_X_FUNCTIONS., since this 

Ada package contains the function X_OUER_TWO utilized in 

this view. 

A LIL instantiation like "make MCCARTHYS ... " of 

Figure 7.5.2 that contains no reference to a particular 

generic implementation has no calls to non-predefined Ada 

units. Therefore, once the necessary theories have bean 

constructed, the views will link the details cf LIL theories 

with implementable non-abstract Ada. 

So, we can think of the major LIL-Ada link as a 

transformation 

T: < LIL generic package, LIL instantiation> 

--><Ada generic package, Ada instantiation>, 

where the details of this transformation are set by the 

views and the implementable non-abstract Ada in these views. 

The Ada generic units and instantiation could be 

annotated to link them with their corresponding LIL units. 



53 

For example in the generic specification or the function 

COMP in Figure 7.6.1 we could have written " use LIL 

generic package COMPOSITION_RECURSIUE_FUNCTION". In the Ada 

instantiation THREE_X_PLUS_ONE_FUNCTION in Figura 7.6.~ we 

could have written" -- use LIL make THREE_X_PLUS_ONE_FUCN

TION." 

The axioms imported from the LIL generic package by 

the transformation r, above, would aid the programmer 1n 

coding various generic implementations which could be linked 

later with alternate LIL "make" entities as in Figure 7.6.3. 



S. CONCLUSION 

Much of the methodology in making analogous abstract 

generic program units is straightforward and deterministic; 

however, Judgements still have to be made. Since these 

generic units literally implement abstractions, the notion 

of a permanent, reusable template CDOD 1983) demands extreme 

care in making program verifications. Ada, with its 

separate compilation and with its separation of generic 

specifications and implementations, supports many modern 

software engineering standards (Beech 1983), but there is a 

lack cf support in the use of and refinement of abstrac

tions. 

In order to utilize such methodologies as analogy 

programming effectively the programmer must see the 

semantics of abstract analogies. These semantics are most 

often expressed, and thus hidden, in the implementation 

parts of generic units which may not be available to the 

programmer nor included in a library specified for reuse of 

code. 

LIL opens up these specifications to the entire 

environment making them not only visible but reusable and 

standard. Making specifications in LIL is not, as yet, an 

exact science. However, same of the major goals set forth 

in our paper (Harrison and Liu 1986) have been satisfied 

5~ 



55 

especially those demanding support for analogy programming 

and the development of abstract notions within an Ada 

environment. 

LIL is certainly not yet a complete specification 

language that could be used effectively in an Ada language 

development system. However, the need to reduce costs and 

improve reliability in embedded software systems written in 

Ada calls for techniques which Ada does not completely 

support on its own. 

Many questions still must be answered before LIL or 

a similar language is fully implementable. How can LIL be 

accessed effectively by the programmer? How can we use LIL 

to make. specifications for dynamic allocation of memory 

(access types)? Can LIL be used to specify the actions of 

Ada tasks? Can LIL be placed effectively in a distributive 

processing environment that supports an Ada development 

system? 

We have tried to demonstrate the link between 

analogy programming and the inclusion of a specification 

language as an essential part of the Ada program development 

environment. While analogy programming in Ada promotes the 

reuse of algorithms by the abstraction of specifications, 

our extentions of LIL maintain these analogies by "forcing" 

reliability of instantiated coda. If we accept that 

implementations of abstract generic code should be generally 

hidden from the user, then the inclusion cf LIL semantics in 

the development environment can aid in· creating and 



56 

maintaining the libraries of generic program units to insure 

a high degree of trust in the instantiated versions, thus 

promoting the reuse of code over reimplementation. 

Since most of the current methodologies in promoting 

the reuse of Ada code are based on documenting the code by 

descriptive identifiers and annotations est. Dennis et al, 

1986), we feel the Goguen•s LIL and our extenticns of this 

language Csee Appendix 8) would not only reduce the need for 

these documentations but could enforce by automation the 

appropriateness and correctness of the code use. 

The production of a specification language internal 

to a software development system plus the techniques of 

modern programming and new implementable methodologies 

spurned by the development of Ada should give programmers 

and developers an edge in dealing with the complexity of the 

software crisis. 



57 

REFERENCES 

ClJ Beech, Grady, Software Engineering with Ada, Menlo 
Park, Benjamin/Cummings, 1983. 

C2J Burstall, R. M. and Goguen, Joseph A., "An Informal 
Introduction to Specifications Using Clear 1 " in :nm, 
correctness Problem in Computer Science, R. s. Boyer 
and J. s. Mcore 1 Eds. 1 New York, Academic Press, 
1981, 185-213. 

C3J Cclussi, L, "Recursion as an Effective Step in 
Program Development," ACM Transactions on 
Programming Languages and Systems, uo1. s, Ne. 1, 
January 199q, pp. 55-67. 

C'¼J 

CSJ 

C6J 

[7J 

CBJ 

CSJ 

ClOJ 

C11J 

C12J 

Oershcwitz, Nachum, "Program Abstraction and Instan
tiation." ACM Transactions en Programming Languages 
and Systems, Uol. 7, No. 3, July 1985, pp '¼'¼6-'177. 

DiJkstra, Edsgar w., A Discipline of Programming, 
Englewood Cliff's, New Jersey, Prentice-Hall, 1976. 

ooo, Reference Manual for the ADA Programming 
Language1 ANSI/MIL-STD-1815A-1983, United States 
Department of Defense, 1983. 

Goguen, Joseph A., ''Reusing and Interconnecting 
Software Components," IEEE Computer, Uol. 19, 
No. 2, February 1986, pp. 16-28. 

Harrison, George C. and Liu, Dar-Biau, "Generic 
Implementations Uia Analogies in the Ada Programming 
Language," AdaLETTERS, Cto appear). 

Levy, Leon s., Discrete structures of computer 
Science, New York, John Wiley & Sons, 1980. 

Litvichouk, Steven D. and Matsumoto, Allen S. 
"Design of' Ada Systems Yielding Reusable Components: 
An Approach Using Structured Algebraic Specifica
tions," IEEE Transactions on Software Engineering, 
Vol. SE-10, No. s, September 190q, pp. 5~~-551. 

Luckham, D.C. and vcn Henke, F. W., "An Over:-view of 
Anna, a Specification Language for:- Ada", 
IEEE Sgftwar:-e, Uol. 2, Ne. 2, March 1985, pp. s-22. 

McGettirck, Andrew D., Prggram Uerificaticn Using 
Ada, Cambridge, Cambridge Univer:-sity Press, 1982. 



58 

C13J Matsumoto, Yoshihiro, "Some Experiences in Promoting 
Reusable Software Presentation in Higher Abstract 
Levels," IEEE Transactions an Software Engineering, 
Uol. SE-10, No. 5, September 198~, pp. 502-513. 

Cl~J St. Dennis, R., Stachour, P., Frankowski, E., and 
Onuegbe, E., "Measurable Characteristics of Reusable 
Ada Software," AdaLETTERS, Uol. UI, No. 2, March, 
April 1986, pp. ~1-50. 



59 

APPENDIX B 

A WELL-FOUNDED SET PROOF 

(see Section 7.2) 

Definition: If X and Y are in NATURAL, then define Y ORD X 

if and only if NOT KCX) and there is a sequence XO= X, Xl, 

X2, ... ,Xn =Yin NATURAL such that Xi+l • GCHC Xi)), where 

far i - 1, 2, ... ,n-1. 

Theorem: NATURAL with order relation ORD is a well-founded 

set. 

Proof: a) If it were true that X ORD X for some X in 

NATURAL, then there would be a sequence X • XO, Xl, ... , Xn 

= X such that Xi+l - GCHC Xi)) for i = 1,2, ... ,n-1. So, 

Xi+l - GCHC Xi)) - C3Xi + 1)/2, and Xi< Xi+l. Therefore, 

by transitive property of"<" in NATURAL, X < X which is a 

contradiction. 

b) Suppo~e both Y ORD X and X ORD Y for some X, Yin 

NATURAL. Then there are sequences XO• X, Xl, ... ,Xn = Y and 

YO= Y, Yl, ... ,Ym - X such that Xi+l • GCHCXi)) and 

Yi+l - GCHCYi)). Linking the two sequences we would 

have X ORD X, which is a contradiction. Thus, if Y ORD X 

then NOTCX ORD V), 

c) Transitivity is derived by an arguement similar to b). 

d) Suppose Al, A2, ... ,An, ... is a sequence of elements in 

NATURAL such that Ai+l ORD Ai. So, by the definition of 

ORD, Al is odd. Suppose h > 0 is the position of the first 

zero on the right in the binary expansion of Al; 



60 

thus Al - (2 •• (h+l))*k + (2 •• h) -1 for some unique 

k >= O. Since, ORD is determined by successive applications 

of ECHCx)) • C3x+l)/2, h applications or 6CHC )) leads to 

(3 •• h)•2•k + (3 •• h) -1, which is even. Since the 

element on the right or ORD must be odd, the sequence above 

terminates. Thus all such "decreasing" sequences are finite. 



61 

APPENDIX B 

OUR UERSION OF LIL 

Tc Goguen (1986), LIL is a tool for automated 

support of the reusing and connecting of software 

components and to provide a non-visible, internal tool 

in a general program development 

goal is to apply this language 

System. In doing so we tried to 

environment. Our 

to an Ada Language 

make the language 

closer in syntatic style to Ada, remove a few syntatic 

inconsistancies in Goguen's paper, and use more 

descriptive identifiers in our examples. It is not 

clear who would build and maintain Goguen's version of 

LIL in a programming environment. It is our intention 

to make the programmer responsible fer maintenance; 

thus, this is our Justification for using a more 

Ada-like syntax that still is formal enough to support 

graphical and natural language interfaces. 

Goguen's LIL is used to make and support links 

among software components without making reference to 

the Ada language. Our version of LIL intimately and 

visually links LIL theories with concrete Ada code. In 

our design Ada generic specifications and initial 

versions of implementations can be written directly 

from LIL generic packages. Like Gcguen's LIL, "makes" 

can be produced by using direct "views" from LIL to LIL 

and from LIL to standaLd data types. Unlike Goguen, we 



62 

use "views" to link LIL theories with Ada subprograms, 

thus making the creation of Ada instantiations a direct 

consequence of the production of LIL "makes." 

Therefore, the Ada version of LIL involves the 

programmer in maintaining and using the language so 

that the· Ada environment becomes literally a two-lan

guage system with Ada code as the deliverable product 

while LIL is being enlarged and perfected within the 

system. 


	Generic Specifications in LIL and in Ada via Analogies
	Recommended Citation

	tmp.1704741200.pdf.F327G

