Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 5-1986

Generic Specifications in LIL and in Ada via Analogies

George Chester Harrison
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

b Part of the Programming Languages and Compilers Commons, and the Software Engineering
Commons

Recommended Citation

Harrison, George C.. "Generic Specifications in LIL and in Ada via Analogies" (1986). Master of Science
(MS), Thesis, Computer Science, Old Dominion University, DOI: 10.25777/bhwj-9t34
https://digitalcommons.odu.edu/computerscience_etds/154

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has
been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/154?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

GENERIC SPECIFICATIONS IN LIL AND IN ADA

UIA ANALOGIES

by
George Chaster Harrisan

B.A. June 1863, Wilkes College
Ph.D. August 1873, Univeristy of Virginia

A Thesis Submitted to the Faculty of
0l1d Dominion University in Partial Fulfillment of thse
Requirements far the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May, 18B6

Appraoved by:

Dar—-Biau Liu CDitschr)

L s o, " JRO—

Michael Overstreet

Christian J. Wild

ABSTRACT

GENERIC SPECIFICATIONS IN LIL AND IN ADA
UIA ANALOGIES

George Chester Harrisaon
Dld Dominion University, 1986
Director: DOr. Dar-Biau Liu

We address the problem of making verifiable specifications
in genaric program units in the Ada Programming Language *.
We illustrate the methodologies of LIL proposad by Jossph
Goguen and Jjustify the use aof such a specification languages
using analogy programming originally proposed by Nachum
Dershowitz. The work in these arsas is nsw and noticeably
incomplete. We address our concern about the reusability of
Ada software in a programming environment that includes a
specification language like LIL,.

* Ada is a registered trademark of the U.S. Gaovernment (Ada

Joint Program OffFice?

TO KAY, ALEX, AND NICHOLAS

Acknowl men
My thanks go to Drs. Hussein Abdel-Wahab, Michaesl Overstrest
and Christian J. Wild for their support and inspiration, to
Dr. Janie Jordan, my department chairman at Norfolk State
University, who encouraged me to work an this thesis, Dr.
Harrison B. Wilson, President of Norfolk State University,
For his initial suggestion to pursue this dsgree and for his
providing Ffinancial support. Particular and special
appreciation goes to my thesis director, 0Or. Dar-Biau Liu,
who encourages his students to read, understand, and sxpand
on the research of others, and who looks upon thess labors

with enthusiasm.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS et ivvevovnrasononeass snenwmans v essww 24
LIST OF FIGURES. . ccucscnsnnnnssnassassssnnennmnssecnesss v

Chapter

1. INTRODBUETION sisasvnsansnssnssassvanswsnnssunss cons &

1.1 VERIFIABLE SPECIFICATIONScceceveenseans . &

1.2 ANARLOGY PROGRAMMINGcvtvvinesaenrsncnasans 2

2. REUSABILITY AND SPECIFICATIONS .,....... sswasenswwn X

2.1 REUSABLE SOFTWARE R R R 4

2.2 THE REQUIREMENTSc00tivevonsseocansns ... B

3. LIMITATIONS OF THE ADA GENERIC CONCEPTc004.. 7

4, THE LIL SPECIFICATION LANGUAGEcve0es «wvas O

4.1 THEORIESc0.0 B W A B R AR F AR E R i0

4.2 PACKABES cissnsavvsnuvunvens €O E W R RS W RE W R RS S 14

.3 VIEWS PR R - 4

4.4 INSTANTIATIONSccicveencenensnas SEEFEREF . 18

%.8 COMPOSITION c.sssessnesvcasvsnsssnasnsnanasss OO

5. THE METHODOLDGY OF MAKING ANALOGIES0 25

5.1 INTRODUCTION ...t ivineeernsecsnsensoncocanns . n BB

5.2 TWO FUNCTIONSccivevveenns T Iy 26

5.3 ANALOGIES I — sHs @ L woewssennn OB

5.4 A GENERIC RECURSIVE FUNCTION00000000000 30

5.5 A GENERIC ITERATIVE FUNCTION¢00000.0.. 33

B. INSTANTIATING ANALOGIES cetteetasan e w e 36

B.1 ITERATIVE INSTANTIATIONSvevcensoonancans 36

E.2 A NEW FUNCTIONc0000e00 VST CRE N R WY AN B 38

iii

7. ANALOGIES AND LIL

7.1 TWO FUNCTIONS ceveesevessassu e s
7.2 THE 3X+1 FUNCTION ...covvvescoosnncnos
7.3 STRUCTURING ADA TO USE LIL00
7.1 BUILDING THE LIL PACKAGE
7.5 THE ANALOGOUS PROBLEMccoc0veenens
7.6 A LIL TO ADA TRQNSFD&”ATIUN cersseenn
8. LIL IN AN ADA ENVIRONMENT iessae cos
9. CONCLUSIONc0000 teesssirss e e e une
REFERENCES .. coocioesssssersssoncssossssossnsancancss
APPENDIX
A. A WELL-FOUNDED SET PROOF.......cc000.
B, OUR VERSION OF LIL.....ivvveorsonssons

iv

ooooooooooooooooooooooooo

cccccc

ooooo

v 2

. ‘is

48

. 50

5S4

57

. 58

LIST OF FIGURES

FIGURE PAGE
3.4 Generic Z2ero Function 7
3.2 Annotated Generic Z2sro Spscifica-

tiaon = |
$.1.1 Trivial-Set Theory 11
$.1.28 Partially-Ordsered-Set Theary 11

$.1.3 Well-Founded—-Set, Reduction-
Function, and End-0f-Chain-Function
Generic Theories 12

$.1.4 Binary-0Operation, Single-Variable-
Function, and Object Generic

Theaories 13
4.2.1 Generic Package Stack ' i4
4.2.2 Generic Package Trese-Functions 15-16
3.3.1 B-Tree View 17
4.3.2 Tree-lL, Tree—-R, Null-T, Tras-N

Views 18
$.4.1 Make Binary-Tree-Product i8
$.4.2 Monoid Theory and Group, Ahelian-—-

Broup, Ring, Field Thegorias 18-20
4.4.3 Package 2Z2sec2, Boolean-Sst Uisw, and

Make Boolean-Field 21
$.5.1 Generic Package Stack-Functions 2223
$.5.2 Make Stack-Functions 23
4.5.3 Make Float-Stack-Functions 24
5.2 Inorder-Product and Fibonacci e6-27

Functions

5.3.2
5.4
5.5
6.1.1
6.1.2
6.2.1
6.2.2
7.2
73
7.4

7.5.1

7.5.28

7.6.1
7.6.2

7.6.3

Alternate Inorder-Product and
Fibonaceci Functions

Abstraction of Analogies

The Recursive-Analogy Function
Thae lterative-Analogy Function
Inorder-Product Instantiation
Fibonacci Instantiation

Three Function

Three Instantiation

3x + 1 Function in Ada

3x + 1 Papkage for Views

LIl to Ada Structure for the
3x + 1 Function

McCarthy'’s Package for Views

LIL to Ada Structure for McCarthy’s

Function
Generic Function Comp
Iterative-Comp Implementation

LIL Instantiation of 3x + 1
Function

Ada Instantiation of 3x + 1
Function

vi

28-23
29
31
33-35
36-37
37
38
38-39
41

13

H4-45

46-47

%7
48

48

49

48

1. INTRODUCTION

Computer science professionals will admit that on
occassion they have spent considerable time writing code
that either is duplicated slsewhere or at least is very
gsimilar to code written Ffor similar problems. In this
thesis we address both situations by applying methodologies
in recent literature and attempt to relate these methadol-
ogies in a unified structure for the Ada Programming

Language.
1.1 VERIFIABLE SPECIFICATIONS

We address the problem of reusabilitg, that is, the
problem of avoiding reimplementing specifications that have
been previously coded. We will demaonstrate how to make
verifiable specifications in abstract generic program units
in Ada wutilizing the methodologies propaosed in papers by
Joseph Goguen (1886), Steven Litvichouk and Allén Matsumoto
(18843, and R. M. Burstall and Gogusn (1881).

The work in this area is new, and the syntax of the
spacifications involved have not bean standardized and aras
noticeably incomplete. Thus, we will make little attempt
to explain the syntax in detail, and we will take certain

minor liberties in our examples.

l.2 ANALOGY PROGRAMMING

For many problems there are analogous soclutions. s
humans look for analogies to help solve common problems and
can understand the usefulness of analogies as an accumula-
tion o©of experiesnces. Instead of trying to recall several
particular analogies we tend to generalize and ahstract by
removing unimportant and unessential details and, we hope,
keep the wvalid general principles that controlled the
analogies. We wuse this scheme by creating an instance of
the abstracticon by giving concrete values and meanings to
each essential quality of the analogy. Ada programmers
would see this ag similar to an inétantiaticn of a genrnsric
program unit.

Nachum Dershowitz (188S5) addresses this situatian,
which we will apply here to generic program units in Ada. He
propeses an analogy methodology for program development.
Finding analogies imply sgimilarities - not sgualities.
Thus, the generalization preduced must be true for all
analogous probhlems, where we define two problems as being
analogous when they share the same samantics. This is
necessary not only to preserve ths essential gualities of
the analpogies in the abstraction but to allow cther
analogous pfcblems to be given code from an instantiation of
this abstract generic unit; thus, the new problem will have
been granted a program code that is both syntatically proper

and correct under the assumptions that the original problem

specifications were totally correct and that the input
predicate of the abstraction is adeguate to guarantee both

program correctness and termination.

We will Ffirst gxaming the problem of making
varifiable specifications in an Ada software development
environment, then illustrate the program developmant
mathodology of analogous ahstractions, and, Finally,
illustrate how the verifiable specifications can aid in

making analogous abstractions in the Ada environment.

2. REUSABILITY AND SPECIFICATIONS
2.1 REUSABLE SOFTWARE

Ada was initiated and developed hy the Department
of Defense as an ansuer to a perceived software crisis
brought on, in part, by the complexity and increasing costs
of software production and maintenance (DOD 1883). Since
the setting of the Ada standard in 1883, there has heen
considerable discussion and work done an the concept of
reusable scftware especially in the Ada Programming
Language. It is hoped that the practice of writing program
seéments that can be reused will eventually become a quality
of good software engineering practices and will address some
of the major problems in the crisis of software development.

Rausabls softwars practices seem t0o be very
gsuccessful in Japan (Matsumoto 1984); however, ths Unitad
States =mgams +to be Far beghind in this art. However, the
direction in this country seems to be toward a careful
development of programming methodologies that lead to a
-gorrect structuring of a complets scoftware develgpment
gnvironment using specification languageé.

The Honeywell Computer Sciences Center is currasntly
doing research on defining the characteristics of rsusable
Ada software (St. Dennis et. al. 188863, Among thair
conclusions are that software packages are reusable i1f they

14

were built with reusability as a primary goal, if they are .
totally corrsct when used properly, and if the specifica-
tions of the packages are clear.

These goals, of course, demand & high degree of
abstract programming and an ability to use the tools of
making specifications. These specifications should not be
so formal as to render the softwars unrsadable nor so
informal as to make the programmer gquestion the validity or

applications of the packages.

2.2 THE REQUIREMENTS

Although Ada is the only major procedural language
that implements ahstractions in a generic context, there are
needs to make specifications for abstract data types that
Ada does not directly support. Many of these resquirements
are motivated by the desire to ﬁrcduce libraries of Ada
componants that ars to be considered totally correct upon
programmer instantiations and are documented in such a
structured manner that the instantiated versions can be used
with a high dsgree of confidence.

Qur requirements in doing analogy programming also
demonstrate the need of a specificaticon language.
Dershowitz’s analogy methodology for program development is
based on finding analogies among program ssgments, gsner-
alizing to form abstract code, and later using the analogies
to grant code to analogous prohlem specifications. In the
Ada Programming Language these actions would be to produce a
generic unit using properties of analogies, and given a
prohlem specification, to instantiate the corrsct analogy
(generic unit) to produce correct code.

We need to be able to write the specifications for a
generic unit so that we can find the analogies without
looking into the body of the function, procedure, or package
implementaticon, which may be intentionally hidden fram the
programmer. Goguen's methodology (138682 aids in this

effort.

3. LIMITATIONS QF THE ADA GENERIC CONCEPT

The primary purposas aof the generic units in Ada
are program factorization and abstraction. Parameterization
of the generic units is gensrally seen as an extension of
subprogram parametarization McGettrick 18827. Actually,
the effect of having a generic facility in Ada seems to have
had a much greater effect on the theorastical studies of
abhstract programming and of program specifications than
originally anticipated.

Generic units can be written to require the
importation of various types, objects, Ffunctions, and
procedures declared in the Ada environment at the point of

instantiation, Although the instantiatigon may compile

generic
type ELT is private;
with Function ”** (A, B : ELT) return ELT;
with Function "-" (A, B : ELT) return ELT;
Function ZERO ¢ X, Y : ELT) return ELT;

L L —-—— -— — o o

function Z2ERQ (X, Y : ELT) return ELT is
hegin

return X * Y - Y * ¥X.
end ZERQO;

- —— A i 1t o S U D UMD S VD G P TS et i, D . M Sl S S, et S S o e e D D D VD i, S S S St S

Figure 3.1

correctly, additional semantic requirements explicit in the
generic body but not the generic specification may not be
satiafied, thus, preventing normal termination of the
program or producing incorrect cutcomes.

For example, if the intention of this odd looking
generic function in Figure 3.1 is to return the additive
identity in a set ”"ELT” with well-dsefined operations ”*” and
»~-» then all works well if ELT is a field with the usual
pperatiagns of ”*” and ”-" being instantiated. What is to
"prevent” the programmer from instantiating overloaded
operators ”*” and "-" én a field ELT that do not produce the
"desired” result?

A not so obvious problem occurs when the programmer
instantiates ELT as a noncommutative ring with the usual »*”
and ”-” operators. This can occur when ELT is the sst of 2
by 2 matrices over some ring R. Certainly, there is no
guarantee that the additive identity will be returned by the
Function "Z2ER0.” Correctness considerations could only be
made here by examining the body of the Ffunction (the code
implementation) which is not always daesirable or possible.
we.will see that this is a symptom of a much larger problam.

We zould have anngtated the specification part of
this code as in Figure 3.2; however, such informality can be
discancerting to the programmer. Even Formal, explicit
comments that govern the relationships among the tupes,
objects, functions, and procedures in the specification and
implementation parts of a generic program unit as in Anna

{ANNotated Ada) (Luckham 1885 can be so large that these

—— . oo g s et . S . e o S (s . St et S S s Py S Sy S . S S St et P S, B, Sty S, S S T S

generic
type ELT is private
with Function »*» (X, Y : ELT) return ELT;
with Function "-* (X, Y : ELT) return ELT;
-— ELT is a field with the usual
== "multiplication” operation ”*” and, if
. "+? ig the usual “additive” operation,

- thena - b =a + (-b), a and b are in
- ELT and -b is the usual additive inverse
sl of b.

function 2ERO ¢ X, ¥ : ELT 3 return ELT;

s . S0 St S gy e, i, G ——

Figure 3.2

comments avertake the numbse of lines of implementad code;
such efforts ssem to work well for program verification
gxercisas but do not seem to support the top-down approach
necessary in a complete Ada environment that would support
the principle of reusability.

Notice alsao that such comments within this code
would have to be rewritten sach time a generic unit with the
gsimilar requirements is created. Thus, Ada does not support
a8 consistent methodology of supporting the semantics for
code requirsments. Equivalent specifications written at
different times by different people may include varying
levels of formality and syntax.

The Ada Programming Language environments provide
only syntactic information about the interfaces among
compilation units, For promoting rausability it is
necessary to provide some support for the semantic inter-
Faces, which current Ada Program Systems Environments (APSED

do not include.

4. THE LIL SPECIFICATION LANGUAGE

Bogusn proposes an approach that will integrate the
entities needed in an ideal software development system. His
methodology providses and extends many semantic ideas:
THEORIES, which provide axioms, VIEWS, which describe the
interconnmactions betwsen entities, VERTICAL and HORIZONTAL
compositions, which impose semantic structures at different
levels and at the same levels of abstraction, reaspectively,
and GENERICS, parameterized software promcting the reusabi-
lity goal.

He suggests that these items can be best described
in his language, LIL (Library Interconnection Language)
(Goguen 1886). LIL apﬁaats similar to Ada generic specifi-
cation syntax with formal and informal semantic definitions
along with notations that support the notion of semantic
binding. Closely tied to these concepts is the language
Clear (Burstall and Goguen 1981), which gets much af its
power from category thegry (Litvichouk and Matsumoto 1884).
Again, we will not explain all the syntax involved in LIL

and Clear; the reader should consult the excellent sources.
.1 THEORIES

To formalize data abhstractions (sets, variables,

Functions, abstract data types, etc.) LIL uses theories

10

11

containing semantics. Theories may use othar theories, stc.
to extend their properties and to bind them together. UWe
should visualize LIL theories as the software development
system primitives.

For instance, the theory in Figure 4.1.1 descrihbes a
single type (set) with no particular semantics. TRIVIAL_SET
is to be considered a simple data type void of any algebraic

or topological propertiss.

theory TRIVIAL_SET is
types ELT;
end TRIVIAL_SET;

Figure 4.1.1

Although the example in Figure 4%.1.2 imports no
properties From other theories (except for BOOLEAN from the
Ada package STANDARD), it now represents a set and a
particular Function associated with it. Notice that the

function has three axioms binding it with the set.

E_ 11 1] =

theory PARTIALLY_ORDERED_SET is
types ELT;
functions ORD : ELT ELT -> BOOLEAN;
var E1 E2 E3 : ELT;
axiaoms
(not(E1l ORD E1))
¢ if E1 ORD E2 thsn not(E2 ORD E13 >
(if E1 ORD E2 and E2 ORD E3 then
E1l ORDO E3 2
end PARTIALLY_ORDERED_SET;

Figure 4.1.2

i2

In LIL the generic concept is embodied in making
parameters. In the case of theories this will mean adding
structures and semantics to existing theories. So, building
on the notion of partially ordersed ssts we have the
WELL _FOUNDED_SET in Figure 4.1.3. The notions of the
wall-founded set, reduction Ffunctions, and end-of-chain
functions, mentioned below, are Ffundamental to proving

program termination (Levy 1880), (McBGettrick 1882).

genaric theory WELL FOUNDED_SET
L ELT :: PARTIALLY ORDERED _SET 1 is

vars E1 E2...En... : ELT;
axioms
¢ if E1, E2,...,En,... is a sequence

in ELT such that (Ei+1l ORD Ei) for
i in POSITIVE then the sequence is
Finite)

end WELL_FOUNDED_SET;

generic theory REDUCTION_FUNCTION

L ELT :: WELL_FOUNDED_SET 1 is

functions REDUCE : ELT -> ELT;

vars E1 E2 : ELT;

axioms (if REDUCECEl) = E2 then E2 ORD El1 »J
end REDUCTION_FUNCTION;

generic theory END_OF_CHAIN_FUNCTION
C ELT :: WELL_FOUNDED SET 1 is
functions EOC : ELT -> BOOLEAN;
vars E1 E2...Ei...En : ELT;
axioms
(for each chain E1 ORD E2 ORD ...
ORD En in ELT, there is an Ei,
where i is in 1..n, such that
EOQC(EiJ) = TRUE 2
¢ if E1 ORDO E2 and EDCCEZ2) = TRUE,
then EOCCEl) = TRUE)
end END_OF CHAIN_FUNCTION;

0 K3 S O TN O O OX IT3 25 T £33 S5 £ I O O3 XR T OO O 5 N 0T I3 IR G2 KD O O O T O O TR IR Y £% £ AT

Figure %.1.3

13

Next, we introduce in Figure 4.1.4% twc general
functions and tha notion of a generic aobject. Although
these are written without axioms, they will be important in

making instantiations.

=== ==

generic theory BINARY_OPERATION
L ELT :: TRIVIAL_SET 1 is
fFuctions BI_0OP : ELT ELT -> ELT;
end BINARY_OPERATION;

generic theory SINGLE_VUARIABLE_FUNCTION
L ELT1 ELT2 :: TRIVIAL_SET 1 is
functions FIN : ELT1 -> ELIZ;

end SINGLE_UARIABLE_FUNCTION;

=3 T S S

generic theory OBJECT
L ELT :: TRIVIAL_SET 1] is
vars 0OBJ : ELT;

end OBJECT;

= o oy o

Figure %.1.4%

14

‘.2 PACKAGES

Packages in LIL contain semantics rather than cods;
ctherwise, note the similarities to Ada style in the LIL

package STACK in Figure 4.2.1.

generic package STACK [ELT :: TRIVIAL_SET 1 is
typass STACK;

functions
PUSH : STACK ELT -> STACK;
POP : STACK -> STACK;
TOP : STACK ~-> ELT;
EMPTY : STACK -> BOOLEAN;
CREATE : -> STACK;
exceptions

STACK_LINODERFLOW;

STACK_EMPTY;
vars

S : STACK;

I : ELT;
axioms
POP(PUSH(S,1)) = S 3
TOPC(PUSH(S,I)) = I)
EMPTY(CREATE) = TRUE)
EMPTY(PUSH(S,I)) = FALSE)
POPCEMPTY) = STACK_UNDERFLOW >
TOPCEMPTY) = STACK_EMPTY)

a2 XalalaNaWal

and STACK;

Figure %.2.1

The collection of items in the parameter of a
generic entity is appropriately called a reguirements thegry
by BGoguen. Thus, the requirements theory, unlike generic
parameters in Ada, can not only tell us what types, objects,
functions, etc. are called for, but can describe the
complete semantic primitives necessary to make the package

or theory valid. For an interesting instance see Figure

15

4.2.2, where the Functions are pairwise independent in their
semantics, and the requirements theory is significantly

complex.

generic package TREE_FUNCTIONS €

ELT1 :: TRIVIAL_SET;
ELT2 i wELL*FUUNDEB_SET;
REDUCE1 :'+ REDUCTION_FUNCTIONC ELTZ2 1;
REDUCER2 :: REDUCTION_FUNCTIONC ELTZ2 1;
EQC :: END_OF_CHAIN_FUNCTIONLC ELTZ2 1J;
FIN :: SINGLE_UVARIABLE_FUNCTION
L ELT2; ELT1 3J;
op :: BINARY_OPERATIONLC ELT1 1;
DEFAULT :: OBJECTLC ELT1 1
1l is
Functions
INC : ELTZ2 -> ELT1;
PREQD : ELTe -> ELT1;
POSTO : ELTZ2 -> ELT1;
vars
INPUT : ELTZ;
RETURN : ELTI;
axioms

¢ INOCINPUT) = RETURN, where
if EOCCINPUT) then RETURN := DEFAULT;
else
RETURN := INOCREDUCE1(INPUT));
RETURN :=
OPC RETURN, FTNCINPUT) J;
RETURN :=
OPC RETURN, INOCREDUCEZ2CINPUTY J;
end if; >

(PREOCINPUT) = RETURN, where
1F EDCCINPUT) then RETURN := DEFAULT;
else
RETURN := FTNCINPUT);
RETURN :=
OPC(RETURN, PREOCREDUCE1C(INPUT3)Y J;
RETURN :=
OPC(RETURN, PREOCREDUCEZ2CINPUTI) J;
end if; 3

16

¢ POSTOCINPUT) = RETURN. wherea
if EDCCINPUT) than RETURN := DEFAULT;

else
RETURN := POSTOCREDUCEL1CINPUT)J;
RETURN :=
OPC RETURN, POSTOCREDUCEZ2(INPUT)));
RETURN :=
OPC RETURN, FTINCINPUT));
end if;)

end TREE_FUNCTIONS;

Figure 4.2.2

Notice that the "axioms” in TREE_FUNCTIONS are
really the recursive algorithms:

INO -- simulates the inorder movement through a
binary tree while doing computations via OP on the nodes of
the tras.

PREODO and POSTIO —- simulate the preorder and
postorder movements liks INO.

The fact that the parameter type of sach function is
a well-founded set, that REDUCTION_FUNCTION’s are used, and
that the BOOLEAN control function, END_0F~CHAIN«FUNCTION, is
included guarantee that these recursive Functions terminate

by the method of structural induction (Levy 18803,
(MeBettrick 1882).

17

$.3 VIEWS

The concept of viesws will allow us to Justify how a
given LIL entity satisfies a given LIL theory. Suppose for
the moment that the package in Figure 4.2.2 containad only
the recursive Function INO. Note that the requirements
theory would be the same and that the axiom for IND would
not be any different. Call this package INORDER_COMPUTE. IF

we wish to realize this generic function as a method of

gf _a binary tree, we will want a data type called
BINARY _TREE_OF _FLOAT dafined somewhere in the LIL environ-

ment. Since this would be the parametar type of this
Funection, we also nead to Justify that BINARY_TREE _OF FLOAT
is indeed a well-founded sst. Some other items in the
requiraments theory will need no justification because of
the lack of ambiguity. Also, suppose the notion of a prgpsr
subtrge or Just SUBTREE in a BINARY_TREE_OF_FLOAT has been

defined (or understood) elsewhere.

view B_TREE :: WELL_FOUNDED _SET => BINARY_TREE_OF
_FLOAT is
types (ELT => BINARY_TREE_QOF FLOAT >
ops (ORD => SUBTREE)

end B_TREE;

Figure 4.3.1

Now B_TREE is an abstract data type with a guarantee

that it should be considered a well-founded set with order

18

relation SUBTREE. Using this view of a binary tree we can
now view specific Ffunctions dependent on the notion that

B_TREE is justifiably a WELL_FOUNDED_SET.

S T e T =a—1 =3 3. 33 =3

view TREE_L :: REDUCTION_FUNCTION =>
TREE_LEFT is
types (ELT => B_TREE)
ops ¢ REDUCE => TREE_LEFT)
end TREE_L;

view TREE_R :: REDUCTION_FUNCTION =>
TREE_RIGHT is
types (ELT => B_TREE)
ops ¢ REDUCE => TREE_RIGHT >
end TREE_R;

2313 -2-3--R 2R3 -3 £ 3 .F_-3_-2--f - J_-F 2 -f-_R--f 3R % R_f_2_3_ %_3-3-2-2_-32-2_}

view NULL_T :: END_OF_CHAIN_FUNCTION =>
: NULL_TREE is
types (ELT => B_TREE >
ops ¢ EDC => NULL_TREE 3
end NULL_T;

generic view TREE_N :: SINGLE_UARIABLE_FUNCTION =>
TREE_NODEC ELT :: BINARY_TREE_OF FLOAT;
X :: TRIVIAL SET 1 is
types ¢ ELT => B_TREE)
ops ¢ FTN => TREE_NODE)
end TREE_N;

Figure %.3.2

13

1.4 INSTANTIATIONS

We now have enough semantic information and semantic
Justifications to make an instantiation of the Ffunction
INORDER_COMPUTE. LIL utilizes the make command using viesws
of theories and packages, and if natural defaults exists,

make uses the theoriaes thamseslves.

Lk 3R f_-% 21 -3 -3 -%_3- 2 % 33 3% -3_3_-R_-2_3 2 -+ 2 3332 _$_$_2-2_$~—2 22 _¥_2__3_3

make BINARY_TREE_PRODUCT is INORDER_COMPUTE
L FLOAT; B_TREE; TREE_L; TREE.R;
NULL_T; TREE_N; ”*”; 1.0 1 end

Figure 4.4%.1

To Ffurther illustrate the concepts thus far we will

build examples on systems of algebraic structures:

theory MONOID is

types M;

functions * : MM -> M (assoc, id : 1);
end MONOID;
== @ssgc implises that the functiaon * satisfiss
-= (M1 = M2) = M3 = M1 * (M2 * M3
-—- id _: 1 implies that the Function * satisfies
== M1 * 1 =M1 = 1 * M1

R = = =2

generic theory GROUPL ™M :: MONOID 1 is
Functions * : MM -> M (assoc, inv, id : 1J;
end GROUP;

-— inv implias that. For sach M1 there is Mlinv

= such that M1 * Mlinv = 1 = Mlinv * M1

-—- the notations of asscc and id : 1 are imported
i fFrom MONOID and are included For completeness

===z = i1 -2-3 23312 -3 3]

20

generic theory ABELIAN_GROUPL G :: GROUP 1] is
Functions * : MM -> M
(assoc, comm, inv, id : 13J;
and ABELIAN_GROUP;

== comm implies that M1 * M2 = M2 * M1

generic theory RINGC A :: ABELIAN_GROUP 1 is

gensric view A+ :: RING =>
ABELIAN GROUPL A :: GROUP 1 is
gps (* => +)

end A+;

-— hecause of the ”traditional” view of

e using + instead of * as the operator

s in the underlying abelian group in a

- ring we use this generic view to change
- its notation hefore using * as the

S "multiplicative” RING operator

functions
+ : AA -> A (assoc, comm, inv, id : 0J;
m: A => A;
- A A ~-> A;

* : AA-> A (assoc);

vars Al A2 A3 : A;

axioms
C CAl + A2)*A3 = (Al1*A3) + (A2*A33 >
(AL*CA2 + A3) = (A1*A2) + (A1*A3J))
C mAl = Alinv J
(Al - A2 = A1 + (mAS) 3

end RING;

generic theory FIELDL R :: RING 1] is

Functions
+ : RR -> R (assoc, comm, inv, id : 0)J;
m : R -> R;
- : RR -> R;

. RR -> R (Cassoc, comm, id : 1J;
/ : RR -> R;
vars R1 ONE_QOUVER_R1 R2 : R;
axioms
(if Rl /= 0, then there is
ONE_DUVER_R1 such that R1 * ONE_QOVER_R1
= 1 = ONE_OUVER_R1 * R1 3
(R / Rl = R2 * ONE_QOVER_R1 >
end FIELD;

Figu;e $.4.2

21

The following package contains the necessary axioms
to produce a two slesment field isomorphic to the field 22 =
€0,12; we will then be able to instantiate the data typs
(set) BOOLEAN with new operators to make a new field based

on {FALSE, TRUE2 with different aperators, of courss.

package ZEEZ2 is
types Z;
vars 20 21 : Z;
Functions
PLUS :: 2 2 -> 2
(assnc, caomm, inv, id : 203;
TIMES : 2 2 ~> 2
(assoc, comm, id : 21);
axioms
¢ 21 PLUS 21 = 20)
¢ 20 TIMES 20 = 20 3
C(21 TIMES 20 = 20)
end ZEEZ;

view BOOLEAN_SET :: Z2EE2 => BOOLEAN is
types ¢ 2 => BOOLEAN)
ops C PLUS => NOTC(EXOR) 3
¢ TIMES => AND >
end BOOLEAN_SET;

make BOOLEAN_FIELD is FIELDC BOOLEAN_SET 1] end

—— The usual sat of BOOLEAN = {FALSE, TRUE2 has
i now been given a field structura.

Figure 4.4.3

22

.5 COMPOSITION

Goguen introduces two fundamantal programming
activitiss - horizontal and vertical. Horizontal activities
alter structures at a fixed level of abstraction; whersas,
vaertical activities transform esntities into other entities
among levels of abstraction while preserving semantics. 0One
particular vertical activity is illustrated in Figure 4.5.1

as an example of composition.

generic package STACK_FUNCTIONSC F :: FIELD]
neaeds STACKF :: STACKLF] is

functions

AND : STACK -> STALCK;
~— add top two elements in stack
- and push sum

Sum : STACK -> STACK;
-- subtract top two elements in
i stack and push difference

MUuL : STACK -> STACK;

-= multiply top two elements in
- stack and push product

DIv : STACK -> STACK;
-— divide top element by next
e aglement in stack and push
= quotient

MINUS : STACK -> STACK;
-— change sign of top of stack

exceptions
ZERO_DIVIDE;

vars ’
S1 82 53 : STACK;
Fl F2 : F;

23

axioms
¢ F1 = TOP(S1)) -- notation
(82 = POP(S1) >
(Fe = TOP(S2))
(83 = POP(S2))
(ADD(S1) = PUSH(S3, F1 + F2))
¢ SUB(S1) = PUSH(S3, F1 - F2J))
¢ MULCS1) = PUSH(S3, F1 * F2))
¢ DIV(S1) = PUSH(S3, F1 /7 FaJ >
¢ MINUS(CS1) = PUSH(SZ2, mF1))
¢ if F2 = 0 then DIVUCS1) = ZERO_DIVIDE)

end STACK_FUNCTIONS;

Figure 4.5.1

In this generic package we must provide STACK_FUNC-
TIONS with STACKF, a version of package STACK with slsments
-having field characteristics. Since the requirsments theory
in STACK demands TRIVIAL_SET (see Figure 4%.2.1), using a
Field here which is more specific than TRIVIAL_SET is
proper. STACK can have several generic bodies in LIL. To

choose one of these versions, say STACK_BODY_3, instantiate

as in Figure 4.5.2.

make STACK_FUNCTIONSEF]1 nesds STACKF =>
STACK_BOOY_3CF] end

Figure 4.5.2

Oc, we can do the same for a specific Ffield
demonstrating the use oF.horizontal instantietion (FIELD to

FLOAT) and vertical instantiation as in Figure 4.5.3,

a4

make FLOAT_STACK_FUNCTIONS is
STACK_FUNCTIONSC FLOAT 1 needs
STACKF => STACK_BODY_3C FLOAT

Figure 4.5.3

and

S. THE METHODOLOGY OF MAKING ANALOGIES

S.1 INTRODUCTION

Bur First step in the process of making generaliza-
tions is to Find an analogy between the Ffinal assertions
(problem specifications) in the program segments in two
similar problems. Next we may apply an abstract mapping of
cng of the program segments to the generalized program
segment resulting in the generic abstraction.

Great care must bhe taken in making these abstrac-
tions: certain preconditions can be 1lost, rendaering the
ahstraction impossihle to prove correct. Houwever, the
essential parts of the lost preconditions may in fact be
recovered when we use the method of weakest preconditions
(Dijkstra, 1876).

Finally, once the correctness has heen demonstratead
other problems with analogous specifications to those of the
ahstraction may be granted correct code by assigning the
elaments of the concrete problem specification to the
elements of the generalized scheme by way of an instantia-

tign mapping.

=5

26

5.2 TWO SIMILAR FUNCTIONS

We examine some of the implications

methodaology to only one particular area of the Ada

ming Language - generic Ffunctions - using

- functions in Figures 5.2.1 and 5.2.2.

type CELL;
type BINARY_TREE is access CELL;
type CELL is
record
LEFT : BINARY_TIREE;
NOBE : FLOAT;
RIGHT : BINARY_TREE;
end record;

of this
Program-

recursive

Function INORDER_PRODUCT ¢ TREE : BINARY _TREE)

raturn FLOAT is

--= This function finds the product of all numbers
- in each naode (of type FLOAT) in the binary

e tree.
PRODUCT : FLOAT := 1.0;
begin —~-— INORDER_PRODUCT

if TREE /= null then

PRODUCT := INORDER_PRODUCTC(TREE.LEFT J;

PRODUCT := PRODUCT * TREE.NODE;

PRODUCT := PRODUCT *

INORBER_PRODUCTC TREE.RIGHT J;

end if;
return PRODUCT;

end INOROER_PRODUCT;

Figure §5.2.1

27

function FIBONACCI ¢ P : POSITIVE)
return INTEGER is

—— This function Finds the P-th term of the
- Fibonacci sequance: F(P) = F(P-1) + F(P-&2)
es for P greater than 2, where F(1) = F(2) = 1

F : INTEGER := 1;
begin -~ FIBONACCI

ifF P > 2 then
F := FIBONACCIC P-1) +
FIBONACCIC P-2 J;
end if;
return F;

end FIBONACCI;

Figure S.2.2

8

5.3 ANALOGIES

In searching for possihle analogies betwesn thess
two Functions obhserve the Ffollowing: Both functions ars
controlled by a single boolean expression, do not possess
loops, have a single local return variable with a default
value utilized at the lowest rscursive call, and have a
single parameter. The fFunction calls are not compositions.
The type of the parameter and the type of the result
gssentially have no direct operational relationship.

To preserve the integrity of the algorithms, to
allow For a greater lsvel of asbstraction of the parameter
type, and to allow Ffor binary operations which may be
non-commutitive or non-associative, we will present the
abstraction uéing three primary statements (as in INORDER_-
PRODUCT). To begin to make formal analpogies we present the

following adjusted functions:

Function INORDER_PRODUCT (TREE : BINARY_TREE 3
~ return FLOAT is
PRODUCT : FLOAT;
hegin -- INORDER_PRODUCT
if (TREE = null) then
PRODUCT := 1.0;
else
PRODUCT := INORDER_PRODUCTC TREE.LEFT J;
PRODUCT := PRODUCT * TREE.NODE;
PRODUCT := PRODUCT *
INORDER_PRODUCTC TREE.RIGHT J;
end if;
return PRODUCT;
end INORDER_PRODUCT;

-= AND

29

Fucntion FIBONACCI C P : P
raturn INTE
F : INTEGER;
begin -—— FIBONACCI

OSITIVE)
GER is

ifF ¢C Nin l1l..2 J then

F := 1;
else

F

F

F

end if;

return F;

end FIBONACCI;

:= FIBONACCIC
= F + 0O
:= F + FIBONAC

P-1 J;

CI¢C P-2);

Figure 5.3.1

#HH#s S HAH SRS E LR R HAH BB S
ANALOGIES
types

BINARY_TREE >>>>> POSITIVE
FLOAT >>>>>5>>>>>> INTEGER

oz

=m)

relations

(TREE = nulll >>> (N in 1..8)
® 333335333 3353>> +

=)

=)

objects of type 2
1.0 >>>>>>35>>>>> 1

PRODUCT >>>>>>>>> F

==

==

objects of type T
TREE >>>>5>>>>>»>> P me=)

function of type 2 valus
TREE.NODE >>>>>>> O ey

Functions of types T valuas
TREE.LEFT >>>>5>>> P-1
TREE.RIGHT >>>>>> P-2

==)

ey

#A#SHSHEH SRR AR REEHS

ABSTRACT TO

K : T -> BOOLEAN
BINARY_0OP :
2 x2 -> 2

DEFAULT
RETURN_UVALUE

INPUT _UALUE

MIODDLE _FTINCINPUT_UVALUED

FIRST _FTINCINPUT_VALUED
LAST_FINCINPUT_VALUE)

HHHHH SRS ENBHHEHFE R SRS S 4RSS H S S S AR S 88
Figure 5.3.2

30

S.4 A BGENERIC RECURSIVE FUNCTION

We need some guarantess that our abstract Ffunction
terminates. Looking towards structural induction we will
make saome assumptions on the Boolsan function K and on the
functions of type T value: FIRST_FIN and LAST_FTN (Figure
5.43.

Notice the great similarities between this Ada
genaric function RECURSIVE_ANALOGY (Figure 5.4) and the LIL

recursive function INO (Figure 4.2.2);

Ada LIL

type T.. <=> ELT2 :: WELL FOUNDED_SET..
function FIRST FIN.. <=> REDUCE1 :: REDUCTION FUNCTION..
function LAST FIN.. <=> REDUCEZ :: REDUCTION_FUNCTION..

fFunction K.. <=> EOC :: END_OF_CHAIN_FUNCTION..
typs 2.. <=> ELT1 :: TRIVIAL_SET..

Function MIDOLE _FIN..<=> FTN :: SINGLE_VARIABLE_ FUNCTION..
OEFAULT. . <=> DEFAULT :: OBJECT..

Function BINARY _OP.. <=> QOP :: BINARY_OPERATION..
RECURSIVE_ANALDGY <=> INO
INPUT _VALUE <=> INPUT
RETURN_VALUE <=> RETURN

a8 e . s es s

Implemsntation <=> Axiom

31

genaric
type T is private;
with function FIRST_FIN (INPUT_VALUE : T3

return T;

with fFunction LAST_FIN C(INPUT_VALUE : T
return T;

with function K CINPUT_VALUE : T3

return BOOLEAN;

-— T must ha a well-founded set such that
s i) objects FIRST_FTINCINPUT_VALUE) and
- LAST_FINCINPUT VALUE) are less than
s INPUT_UALUE,

e ii) there is an element in T, nil,

st such that K(nil) = TRUE, and

e iii) if x and y are in T such that x
i is lsss than y and K(yJ) = TRUE, then
N K(x) = TRUE.

type 2 is private;

with function MIDOLE_FIN C(INPUT_VALUE : 1O
return Z;

DEFAULT : in 2;

with Function BINARY OP (U, V : 23 return Z;

Ffunction RECURSIVE _ANALQOGY ¢ INPUT _VALUE : T
return 2Z;
fFunction RECURSIVE ANALOGY ¢ INPUT_VALUE : 13
return 2 is
RETURN_VALUE : 2;
begin -- RECURSIVE_ANALDGY

if KC INPUT_VALUE) then
RETURN_VALUE := DEFAULT;
alss
RETURN_VALUE :=
RECURSIVE_ANALOBY(
FIRST_FTINCINPUT_UALUE) 3;
RETURN _VALUE :=
BINARY_OP(RETURN_VALLUE,
MIDOLE_FTINCINPUT_VALUE) 3J;
RETURN VALUE :=
BINARY_OP(RETURN_VALUE,
RECURSIVE _ANALOGY(
LAST_FTNCINPUT_VALUE)));
end if;
return RETURN_VALUE;

end RECURSIVE_ANALOGY;

-~ -— — ——

Figure 5.4

3e

There is a very natural transformation hetween the
LIL package and the Ada generic Function. The correctnass
in both instances, o©of courss, depends on programmer
instantiation; however, these considerations depend on the
comments in the Ada specification part of the generic
Function, which are written in informal mathematical logic,
at baest. 0On the other hand, the governing specifications in
the LIL package are based in the requirements theory whose
carefully written primitives could be viswed with simpls
commands in an Ada environment. Alsa these primitives
govern ”all” the software written in that environment, thus,
giving consistency and the quality of reusability to the
entire system.

Moreover, in Ada we will essentially have to sxamine
the implementation of the generic Function to be able to
make analogies; howaver, in LIL the axioms in the specifica-
tions correspand to the main algorithms in the generic
package. Therefore, the programmer need only examine the
LIL specifications for analogies. We shall also ses the
importance of having a single specification in LIL that can
ba linked to saveral alternate implementations by means of
different views; uwhereas in Ada each generic specification

unit corresponds to exactly one implsmentation unit.

33

8.5 A GENERIC ITERATIVE FUNCTION

Using the methods of Colussi (188%) there is a
natural program transformation from the recursive inplemen-
tation of INORDER_COMPUTE to an iterative version. However,
since FIBONACCI is a sscond-order difference sguatiaon, a
natural program transformation maps to a function in closed
Form; so, the program transformations drop the analogies.

Therefore, we must preserve the meaning and intent
of all the abstract types, Functions, and abjects to make a
true transformation from the recursive abstraction to an
iterative abstraction. We might do well in simulating the

operation of the production of stacks of activation rescords.

genaric
(generic SPECIFICATION exactly the same as
RECURSIVE_ANALOGY)
fFunction ITERATIVE_ANALOGY ¢ INPUT _VALUE : T 3
return 2;

~— For the body of ITERATIVE_ANALOGY we will use
- the following generic packags:

ganaric
type ITEM is private;
package STACK is
procedure PUSH ¢ X : in ITEM);
procedure POP (¢ X : out ITEM J;
function STACK_EMPTY return BOOLEAN;
and STACK;

3%

——— -t ——— — S St s o

package body STACK is
type CELL; types ELEMENTS is access CELL;
type CELL is rscord
NODE : ITEM;
NEXT : ELEMENTS;
end record;
S : ELEMENIS := null;

procedure PUSH ¢ X : in ITEM J is

TOP : ELEMENTS := new CELL’(X,S);
begin —— PUSH

S := TOP;
end PUSH;

procedure POP (X : out ITEM J is
begin —— POP

X := S.NODE;

S := 5,NEXT;
end POP;

Function STACK_EMPTY is
begin -— STACK_EMPTY
return S = null;
end STACK_EMPTY;
end STACK;

——— st s it —— - —

function ITERATIVE_ANALOGY C(INPUT _VALUE : T D
return 2 is

RETURN_VALUE : 2;
type CALL_TYPE is (FIRST,LAST);

type ACTIVE is record
CALL : CALL_TYPE;

TEE : T;

RET : 2;

end record;

REC : ACTIVE;
package ACTIVE_STACK is nesw STACK (

ITEM => ACTIVE)J;
use ACTIVE_STACK;

35

procedure PUSH_LIST (N : in T J is
R : ACTIVE;
begin —- PUSH_LIST
if not K(NJ) then
R := (FIRST, N, DEFAULT);

PUSHC R J;
PUSH_LISTC FIRST_FTNC N 2 J;
end if;

and PUSH_LIST;

procedure CLEAN_UP (R : 2) is
begin -- CLEAN_UP
RETURN_UVALUE := BINARY_OPC
R, MIDOLE_FTNC(REC.TEE) J;
if KC(LAST_FINCREC.TEE)) then
RETURN_VALUE :=
BINARY_OPC(RETURN_VALUE,
MINODLE_FINCREC.TEE));

elss
REC := (LAST,REC.TEE,RETURN _VALUE);
PUSHC REC J;
PUSH_LIST(LAST_FTINCREC.TEE) J;

and if;

end CLEAN UP;
begin -- ITERATIVE_ANALOGY

if KC INPUT _VALUE > then
raeturn DEFAULT;
else
PUSH_LIST(INPUT _VALUE 3J;
while not STACK_EMPTY loap
POPC REC J;
if XKC FIRST_FINC REC.TEE) and
REC.CALL = FIRST then
CLEAN_UPC REC.RET J;
elsif REC.CALL = FIRST then
ELEAN_UP(RETURN_VALUE J;
glse
RETURN_UVALUE := BINARY_OPC(
REC.RET, RETURN_UALUE)J;
end if;
end loop;
return RETURN_VALUE;
end if;

end ITERATIVE_ANALOGY;

-— —— pa— ——— — —

Figure 5.5

B. INSTANTIATING ANALOGIES
6.1 ITERATIVE INSTANTIATIONS

Suppose now that we wished INORDER_PRODUCT and
FIBONACCI to be iterative instead of recursive. We need
only grant the names, types, relations, and cbjects meaning
in the iterative ahstraction. Thus, we make the following

instantiations in Figures 6.1.1 and 6.1.2:

HHBHHHRSH RSB HREBEH LSS HHHHSREHE R SRR ARSI S

Function NULL_TREE (¢ TREE : BINARY_TREE) rsturn BOOLEAN is
begin

return TREE = null;
end NULL_TREE;

function TREE _NODE (TREE : BINARY_TREE) return FLOART is
begin

return TREE.NODE;
end TREE_NODE;

function TREE_LEFT ¢ TREE : BINARY_IREE)
raeturn BINARY_TREE is
begin
return TREE.LEFT;
end TREE_LEFT;

Function TREE_RIGHT ¢ TREE : BINARY_TREE)
return BINARY_TREE is
begin
return TREE.RIGHT;
end TREE_RIGHT;

36

ar

function INORDER_PRODUCT is new ITERATIVE_ANALOGY (¢

T => BINARY_TREE,

FIRST_FIN => TREE_LEFT,

LAST_FIN => TREE_RIGHT,

X => NULL_TREE,

z => FLOAT,

MIDDLE_FTN => TREE_NODE,

DEFAULT => 1.0,

BINARY_OP => rwn 3;

############################%##############################
Figure 6.1.1

Notice the first fFour functions in Figure 6.1.1 give
the names needed in the LIL views in Figures 4.3.1 and
4.3.2, and the instantiation, abaove, corresponds to the LIL

instantiation in Figure 4.4%.1.

HHHHHHBHEHHRHHBH SR HHH RS A SRR AR B H S H AR RS
function INITIAL _VALUE ¢ P : POSITIVE) return BOOLEAN is
begin

return P in 1..2;
end INITIAL_UVALUE;

Function Z2ERO (P : POSITIVE) return INTEGER is
begin

return O;
end ZERO;

Function MINUS _ONE ¢ P : POSITIVE) return POSITIVE is
begin

return P-1;
end MINUS_ONE;

function MINUS_TwWO ¢ P : POSITIVE) return POSITIUVE is
begin

return P-2;
snd MINUS _TWO;

function FIBONACCI is new ITERATIVE _ANALOGY C(

T => POSITIVE,

FIRST_FIN => MINUS_ONE,

LAST_FTIN => MINUS_TUO,

K => INITIAL UALUE,

2 => INTEGER,

MIDOLE_FTN => ZERO,

DEFAULT => 1,

BINARY_OP => nen 3;

HEHHHHHHFEHFHHHHEH B S A HHHHHB S H RS S S HH RS S48
Figure B6.1.2

38

6.2 INSTANTIATING A SIMILAR FUNCTION

Examine the recursively defined Function:
F(n3 = nF(n-1)/F(n-3) For n > 3 and F(1) = F(2) = £(3) = 3,

We can implement this function in the following recursion:

fFunction THREE ¢ P : POSITIVE) return FLOAT is
0O : FLOAT := 3.0;
begin —-— THREE
if P > 3 then
D := (FLOAT(P)*THREE(P-1))/THREE(P-3);
end if;
return 0;
end THREE;

Figure 6.2.1

There is an exact analogy between this Function and

the abstract recursive generic fFunction. If we write
D := THREEC P-1) / (1.0/FLOAT(P)Y) s/ THREEC P-3), we
have the necessary analogy. Thus, we may change this
function directly to iterative Fform by the following

ingtantiation:

33

HHEHAHHHHHHRAFHHHEE A RARAH RS SRR RS R

function INITIAL VALUE C P : POSITIVE) return BOOLEAN is
begin

return N in 1..3;
end INITIAL UVALUE;

function MINUS_ONE C(P : POSITIVE) return POSITIVE is
begin

return P-1;
end MINUS_ONE;

function MINUS_THREE (P : POSITIVE) return POSITIVE is
begin

return P-3;
and MINUS_THREE;

function ONE_OVER_P ¢ P : POSITIVE) return FLOAT is
begin

return 1.0/FLOART(P);
end ONE_QOUVER_P;

Fucntion THREE is new ITERATIVE_ANALOGY ¢

T => POSITIVE,

FIRST_FIN => MINUS_ONE,

LAST_FTN => MINUS_THREE,

K => INITIAL_VALLE,

2 => FLOAT,

MIDDLE_FTN => ONE_OUER_P,

DEFAULT => 3.0,

BINARY_OP =y ny® 3;

HERHHBHHEF SRR R BB H R R RSB RAR S H AR HBRR RS EH
Figure 6.2.2 :

7. ANALOGIES AND LIL
£ xd TWO SIMILAR FUNCTIONS

We examine two recursive Ffunctions taken dirsctly
From McGettrick (13882):
al h + Function

ECN) = if N mod 2 = O then N/Z slgg FC(FC(I*N + 133 end if

It can be shown that this function terminates For

all N in NATURAL (the nonnegative integers). In fac;, if N
is even, F(N) = N/8; otherwise, setting N (uniguely?l to

(2 **% h) * k + (2 %% (h-1)) -1 for some h, k in NATURAL,

than
FCN) = (3 #% (h-13)) * k + (3 ** (h=1) = 1)/2.
bl Cacthy’ —Fun n
FeZ23 = if 2 > 100 then 2 -~ 10 else F(F(Z2 + 1132 and if

Again, it can be shown that this function terminatas
fFor all intagers Z. In fact, if 2 is graeater than 100, then

F(2) = 2-10; otherwisse, F(2) = 381.

40

3

7.2 THE 3x + 1 FUNCTION

Examine Ffirst the 3x + 1 Function for making
abstractions. Notice that this Ffunction contains three

controlling internal Functions: KN) = (N mod 2 = Q), G(ND

. = N/2, and HIN) = 3*N + 1, So we can write this function as

= i N n N N)) en if . It is
also trus hare that K(N) false implies then K(HCNII trus.

So, writing this in Ada, we have

function F (N : NATURAL) return NATURAL is
R, B, C, O : NATURAL;
begin —— F
if K(N) then
A = GCIN);
return A;
else
B := N;
<<FF>> C := BCH(B));
if K(C) then
D := B(C1;
return 0;
else
B := C; goto FF;
end iF;
end if;
end F;

Or, we can write

function F ¢ N : NATURAL) return NATURAL is
M : NATURAL;
begin -—- F
if K(N) thsn
raturn GI(N);
alse
M := GCHC N)3,
if K(M) then
return G(M);
else
return F(M);
end if;
end if;
end F;

Figure 7.2

e 1=

Oc, ECNY = if KCNI then return G(N) else F(GCHCNIJ) end if.

This new definition of the 3x + 1 function is based
on the Fact that if K(N) is false then K(H(NJ)) is true. So,
we have simplifised the function from the componsition of tuwo
recursive functions to a single function call.

Define a special ordering on NATURAL: Y ORD X if
and only if NOT K(X) and there is a sequence X0 = X, Xi,
X2,...,Xn = Y in NATURAL such that Xi+1 = G(HC Xi J)) for i =
1, 2,...,n-1, Thus, it can be shoun that NATURAL is a
wsll-founded set with ordering ORD as described in Figures
$.1.2 and %.1.3 (see the Appendix A for a proof).

Therefors, we have made K() an END_QOF CHAIN_FUN-
CTION and GC(HC >3 a REDUCTION_FUNCTION, and termination of

the function F is assured.

3

7.3 STRUCTURING ADA TO USE LIL

To build the LIL generic package notice that we
already have all the basic theories: WELL_FOUNDED_SET,
REDUCTION_FUNCTION, SINGLE_VUARIABLE_FUNCTION and END_OF_-
CHAIN_FUNCTION. We must code the following to utilize LIL

specifications effectively:

function THREE_X_PLUS ONE ¢ N : NATURAL 3
return NATURAL is
begin
return 3*N + 1;
end THREE_X_ PLUS_ONE;

function X_0OUVER_TWO ¢ N : NATURAL 3
raturn NATURAL is
begin
return N/2;
end X_QVER_TWQ;

Function X_EVEN (N : NATURAL)
raeturn BOOLEAN is
begin
return (N mod 2 = 0);
end X_EUVEN;

Function X_LT € N1, N2 : NATURAL >
raturn BOOLEAN is
begin
if CC(X_EVENCN1) and X_EUVEN(N2)) or
(N1 <€ N2)) then
return FALSE;
elsif (N1 = X_OVER_TWOCTHREE X _PLUS ONECNZ232)
then
return TRUE;
alse
return X_LTC N1, ,
X_OVER_TWOCTHREE X _PLUS _ONECN23) J;
end if;
end X_LT;

——— —— —

Figurs 7.3

Hi

BUILDING THE LIL PACKAGE

generic packaga CDHPUSITIUN _RECURSIVE _FUNCTION C

ELT :: WELL_FOUNDED_SET;

REDUCE 3 REDUCTIONMFUNCTIONE ELT 1;

EOQC :: END_OF_CHAIN_FUNCTIONC ELT 1;

FTN :: SINGLE_VARIABLE_FUNCTION

L ELT; ELT1
1 is

Function

COMP : ELT -> ELT;
vars

INPUT : ELT;
axioms

(COMPCINPUT)= if EOCCINPUT) then FINCINPUT);
else COMP(FTNC(REDUCECINPUTII));

(if notEOCCINPUT) then EOCCREDUCECINPUTII J;
(FINCREDUCE) :: REDUCTION_FUNCTIONC ELT 1 J;

end COMPOSITON_RECURSIVE_FUNCTION;

view NATURAL_LT :: WELL_FOUNDED_SET => NATURAL is
types ¢ ELT => NATURAL >
ops C ORD => X_LT)

end NATURAL _LT;

view THREEXPLUSONE :: REDUCTION_FUNCTION =>
THREE_X_PLUS ONE is
typas (ELT => NATURAL_LT)
ops ¢ REDUCE => THREE_X_PLUS_ONE 2
end THREEXPLUSONE;

visw EVEN :: END_OF_CHAIN_FUNCTION => X_EUVEN is
types (ELT => NATURAL LT)
ops ¢ EOC => X_EVEN)

end EUVEN;

15

EE 22222 223 -3 2 -3 __2 23 32§ 33333 _2-_-2-2-3-2_$_3_3 ¢$ -3 _2_$-32 2§ %1%}

view HALF :: SINGLE_VARIABLE_FUNCTION =>
X_OVER_TwO is
types (ELT => NATURAL_LT >
ops ¢ FIN => X_0OVER_TwO >
end HALF; :

-2 —32_2_-%-3-3-3_% 3% -3-3-§ -3 -} 23§ 2222 34 = ==

make THREE_X_PLUS_ONE_FUNCTION is
COMPOSITION_RECURSIVE_FUNCTION
CNATURAL _LT; THREEXPLUSONE;
EVEN; HALF] end

Figure 7.4

e {=]

7«8 THE ANALOGOUS PROBLEM

Notice now that by examining McCarthy’s 8l-function
and the genseric package COMPOSITION _RECURSIVE_FUNCTION we
find several analogies. Howsver, there is a problem!
McCarthy’s fFunction can be written as

FCzy = if 2 > 100 then 2 ~ 10 else FC(FC 2 + 11 D)) end if.
If Z < 80, then 2 + 11 is NOT > 100; however (2 + 113 > 100

is REQUIRED by the specifications of the LIL generic
package, COMPOSITION_RECURSIVE_FUNCTION. We could change
the package spacifications gor simply alter the domain of
McCarthy’s Ffunction to 90, 81,.... If we allow all of the
Ada type INTEGER in the domain, MeCarthy’s FfFunction still
terminates. Thersfore, with minor adjustments, we have made
an exact analogy. We can now bhuild the corresponding Ada
and LIL structures to instantiate this function in the LIL

environment.

———— -— -—— — s s) e i s il e O S S

type NINETY is range S0..INTEGER’LAST;

Function Z2_PLUS ELEVEN ¢ 2 : NINETY >
return NINETY is
hegin
return 2 + 11;
end Z2_PLUS_ ELEVEN;

function Z2_ MINUS _TEN (2 : NINETY)
return NINETY is
begin
return 2 - 10;
end 2_MINUS_TEN;

w7

Function Z2_LARGER _THAN_ 100 (2 : NINETY)
return BOOLEAN is
begin
return 2 > 100;
end Z2_LARGER_THAN_100;

fFunction 2 LT (21, Z2 : NINETY >
return BOOLEAN is
begin
return (22 < 21) and (21 <= 101);
end 2_LT;

Figurs 7.5.1

view NINETY_LT :: WELL_FOUNDED_SET =>
NINETY is
typss (ELT => NINETY)
ops C(ORD => 2 LT >
end NINETY_LT;

mes == E 23 f--% -

view ELEVEN :: REDUCTION_FUNCTION =>
Z_PLUS_ELEVEN is
types (ELT => NINETY_LT 3
ops (REDUCE => 2Z_PLUS_ELEUVEN)
end ELEVEN;

view LARGER :: END_OF_CHAIN_FUNCTION =>
Z_LARGER_THAN_100 is
types C ELT => NINETY_LT)
ops (EOC => 2_LARGER_THAN_100 >
end LARGER;

= m= = E-2-2- 2% %% -3 -%_-2_-%- 4

view TEN :: SINGLE_VARIABLE_FUNCTION =>
Z_MINUS_TEN is .
types (ELT => NINETY_LT)
ops C FIN => Z_MINUS_TEN >
end TEN;

bt 221332 -{_3-3-3 2_2_-£_32 -} -3 3% -B-2-3-2-3_$3-2_%2_ %2 -3_2_+2 33+ 233 2 J

make MCCARTHYS_S1_FUNCTION is
COMPDSITION_RECURSIVE_FUNCTION
CNINETY_LT; ELEVEN;
LARGER; TEN] end

ey ey S S e i it St o s e S s G . S A At St SAAR SR St S S S S S S St D S e S ey T Gy
= R - A A A A

48

7.6 A LIL TO ADA TRANSFORMATION

Producing an Ada generic Ffunction now is simple.
All the necessary information is built into the LIL gsneric

package COMPOSITION_RECURSIVE FUNCTION of Figure 7.Y4.

generic
type ELT is private;
with function REDUCE(E : ELT) return ELT;
with function EOQCC E : ELT 2 return BOOLEAN;
with Function FINC E : ELT) return ELT;
Function COMP (INPUT : ELT) return ELT;

e Gt . St e G, e, ety e ey S ——— -~ —

function COMP (INPUT : ELT) return ELT is
begin -- COMP
if EDCCINPUT) then
return FINCINPUT);
alse
return COMP(FINC(REDUCECINPUT>J3J;
end if;
end COMP;

-— —-—

Figure 7.68.1
We also can have an iterative version of COMP called
ITERATIVE _COMP with exactly the same generic specification

except for the name, of course.

function ITERATIVE COMP (INPUT : ELT >
return ELT is
RET : ELT := INPUT;
begin -- ITERATIVE_CDOMP
while not EDCC(RET) loop
RET := FINCREDUCECRET));
end loop;
return FTN(RET3J;
end ITERATIVE_COMP;

. i et it e e, et S S Gt ot U e, S e o S S i .t S S, A Sl e S S . . B D et S S el St Sord

Figure 7.6.2

48

Of course we can choose this Ada generic implemen-
tation by using LIL. This should be done for purposes of

run—-time effeciency, stc.

RO IR ORI LI I

make THREE_X_PLUS_ONE_FUNCTION is
COMPOSITION RECURSIVE FUNCTION
ENATURAL_LT; THREEEXPLUSONE;
EVEN; HALF1 =>
ITERATIVE_COMP end

-- and sa forth.

Figure 7.6.3

We can now map this LIL instantiation to an Ada

instantiation by Figure 7.6.4%.

- i e S ot e st

Function THREE_X_PLUS_ONE_FUNCTION is new
ITERATIVE _COMP (

ELT => NATURAL,
REDUCE => THREE_X_PLUS_ONE,
EOC => X_EVEN,

FIN => X_OUVER_TWO

3;

Figure 7.8.4%

8. LIL IN AN ADA ENVIRONMENT

Burstall and Goguen (1981) and Goguen (13984)
describe attempts to work only with specification languages
that are divorced from the implemsntation environment, that
are concerned with only abstract higher-order logic program
Hesign, or that are designed especially to be manipulated by
a syntax checker. Such languages can be very useful in
requirements engineering envirgnments to verify specifica-
tions; however, there is not yst an automated transition
From program specifications to program implementations.

Placing a specification language into a program
development environment where "ordinary” programmers labor
could be a fruitless effort - especially in making rsusable
code. The language should support some degree of infor-
mality for readability while maintaining strict adherence to
good logic. It should be able to use some of the Ada tools
fFor its own support, and Ada code should refer to the
specifications when 1links 8xits between these languages
(Litvichouk and Matsumoto 188%).

These specifications should alsoc be abls to access
the predefinad Ada language library units and packages like
STANDARD, TEXT_IO, SYSTEM, etc. and any other units that are
paculiar to the implementation like MATH_FUNCTIONS,
SORT_ALGORTIHMS, etc. IF the later units are utilized, the

50

51

language should clearly record this act with a “use”
statement; doing this will support a degree of implementa-
tion independence of the language.

LIL meets these criteria. Although we have not
demonstrated all thse possihilities of LIL expressed by
Goguen (1986) like hide types, hide ops, initialization, and
hidden implemsntations, these additional qualities add much
weight to the suggestion that LIL could effsctively bhe
placed in an Ada development system.

Library management of LIL and Ada code may actually
be quite complex. Some LIL code may have ta be made to be
readable (as text or graphs) by humans, while other files
may only be machine readable for the purposes of syntax
checking, linking with other LIL Files, enforcement of LIL
to Ada transformations, and data base management.

As an example, if we examine the demonstration of
LIL and Ada in Chapter 7, we sse that after making a general
analogous abstraction we were able to move well “above” an
Ada generic specification to the LIL gsneric package
COMPOSITION_RECURSIVE _FUNCTION. Howsver, the theories in
the requirements theory had to be predefined in LIL, This
could have basn done evan before the addition aof LIL in the
Ada environment, although some theoriss 1like PARTIALLY -
ORDERED_SET and even GROUP can have different but equivalesnt
definitions. Furthermore. sven words used in the axioms of
these theories 1like the BOOLEAN "not”, sequence”, and

*chain” may be defined at an sven more abstract level of LIL

ac

thearies.

LIL packages themselves are designed to support
diffarent versions of some abstract data types. These, of
course, are not dspendent on Ada code at all - except for
predefined library units. Views, on the other hand, may
link LIL wunits to LIL units or LIL units to Ada units that
should have been previously written. The latter visws could
have a notation refering to the specific Ada compilation
unit containing thes Ada units 1listed in the views. For
example view HALF in Figure 7.4 could contain the informa-
tion ” ~—-- with ADA package THREE_X_FUNCTIONS ” since this
Ada package contains the function X_OVER_TWO wutilized in
this visw.

A LIL instantiation 1like “make MCCARTHYS ...” of
Figure 7.5.2 that contains no reference to a particular
generic implementation has no calls to non-predefined Ada
units. Therefore, once the necessary theories have been
canstructed, the views will link the details of LIL thécries
with implementable non—-abstract Ada.

Sa, we can think of the major LIL-Ada link as a
transformation

T : € LIL generic package, LIL instantiation >

-=> < Ada generié package, Ada instantiation >,
where the detaiis of this transformation are set by the
views and the implementable non-abstract Ada in these visus,

The Ada generic units and instantiation could be

annoctated to link them with their corresponding LIL units.

543

For example in the gsneric specification of the function
COMP in Figure 7.8.1 we could have uwritten *» -- use LIL
generic package COMPOSITION_RECURSIVE_FUNCTION”. In the Ada
instantiation THREE_X_PLUS_ONE_FUNCTION in Figure 7.68.4 we
could have writtan ” —- use LIL make THREE_X_PLUS_ONE_FUCN-
TION.”

The axioms imported from the LIL generic package by
the transformation T, above, would aid the programmer in
coding various generic implementations which could be linked

later with alternate LIL "make” entities as in Figure 7.6.3.

8. CONCLUSION

Much of the methadology in making analogous ahstract
ganerie program units is straightforward and detarministic;
howesver, judgements still have to be mads. Since these
generic units literally implement abstractions, the notion
of a permanent, rsusable template (D00 18983) demands extreme
cars in making program verifications. Ada, with its
separats compilation and with its separation of generic
specifications and implementations, supports many modern
softwars engineering standards (Booch 1883), but there is a
lack of support in the use of and refinement of abstrac-
tions.

In order to utilize such methodologies as analogy
programming affectively the programmer must sea the
semantics of abstract analogies. These semantics are most
often exprassed, and thus hidden, in tha implementation
parts of generic units which may not bhe available to the
programmer nor included in a library specified for reuse of
code.

LIL opens up these specifications to the entire
environment making them not only visible but reusahles and
standard. Making specifications in LIL is not, as yet, an
exact science. However, some of the major goals set Fforth
in our paper (Harrison and Liu 19862 have been satisfied

54

S5

gspecially those demanding support for analogy programming
and the development of abstract notions within an Ada
environment.

LILL is certainly not yset a complete specification
language that could be usad effectively in an Ada language
development system. However, the need to reduce cosgs and
improve reliabhility in embedded software systems written in
Ada calls for techniques which Ada does not complstely
support on its own.

Many questions still must be answered before LIL or
a similar language is fully implementable. How can LIL be
accessed effectively by the programmer? How can we use LIL
to make . specifications for dynamic allocation of memory
(access types)? Can LIL be used to specify the actions of
Ada tasks? Can LIL be placed effectively in a distributive
processing environment that supports an Ada development

system?

We have tried to demonstrate the 1link between
analogy programming and the inclusion of &a specification
language as an aessential part of the Ada program development
anvironment, While analogy programming in Ada promotes the
reuse of algorithms by the abstraction of specifications,
pur extentions of LIL maintain thase analogies by ”fForcing”
reliability of instantiated code. If we accept that
implementations of abstract generic code should be generally
hidden from the user, then the inclusion of LIL semantics in

the development environment can aid in creating and

56

maintaining the libraries of generic program units to insﬁre
a high degree of trust in the instantiated versions, thus
promoting the reuse of code over reimplementation.

Since most of the current methodologies in promoting
the reuse of Ada code are based on documenting the code by
descriptive identifiers and annotations (St. Demnis et al,
19865, we feel the Goguen’s LIL and our extentions of this
language (see Appendix B would not only reduce the need for
these documentations but could enforce by automation the

appropriatenass and correctness of the code use.

The production of a specification language internal
to a software develaopment system plus the techniques of
modern programming and new implementable methodologiss
spurned by the develaopment of Ada should give programmers
and developers an edge in dealing with the complexity of the

software crisis.

C13

L2l

£33

£l

£53

£el

£71

£8l

£91

£101

£111

£i2l

57

REFERENCES

Booch, Grady, Ftwar ineering with Ada, Menlo
Park, Benjamin/Cummings, 1883.

Burstall, R. M. and Boguen, Joseph A., "An Informal
Intrcduction tao Spec1€1catians U31ng Clear,” in The
n=]e : R. S. Boyer
and J S. Noora Eds., New York Academic Press,
1881, 185-213.

Colussi, L, "Recursion as an Effective Step in

Programming languages and Systems, Usl. B, No. 1,
January 1884, pp. 55-67.

Dershowitz, Nachum, ”Program Abstraction and Instan-
tiation,” nsac n P ammin n es
and Systems, Uagl. 7, No. 3, July 1885, pp 446-477.

Dijkstra, Edsgar W., A Discipline of Programming,
Englewood Cliffs, New Jersey, Prentice-Hall, 1376.

DOD, Reference Manual for the AODA Programming
Language, ANSI/MIL-STD-1B15A-13883, United States
Department of Dafense, 13983.

Goguen, Joseph A., "Reusing and Interconnecting

Sof tware Componants,” IEEE Computer, VUol. 19,
No. 2, February 1886, pp. 16-28.

Harrison, George C. and Liu, Dar-Biau, ”Generic
Implemgntations VUia Analogies in the Ada Programming

Language,” AdalLETTERS, (to appear).

Levy, Leon 5., Dist [e
Science, New York, John wlleg 1 Sons, 1980.

Litvichouk, Steven D. and Matsumoto, Allen S.
*PDesign of Ada Systems Yislding Reusable Companants:
An Approach Using Structured Algebraic Specifica-
tions,” 1EEE Transactions on Software Enginescing
Upl. SE-10, Nao. 5, September 1384, pp. 544-551.

Luckham, B.C. and von Henke, F. W., "An Overview of
Anna, a Specificatiaon Language for Ada”,

IEEE Saftware, VUol. 2, No. 2, March 1885, pp. 8S-22.
McGettirck, Andrew D., Program Verificatign in

Ada, Cambridge, Cambridge University Prass, 13882.

£133]

Ci43]

58

Matsumoto, Yashihiro, "Some Experiences in Promoting
Reusable Software Presentation in Higher Abstract

Levels,” JEEE Transactions on Software Engineering,
Uagl. SE-10, No. 5, September 1384, pp. 502-513.

St. Dennis, R., Stachour, P., Frankowski, E., and
Onuegbe, E., "Measurable Characteristics of Reusable

Ada Software,” AdalLETTERS, VUol. VI, No. 2, March,
April 1886, pp. 41-50.

58

APPENDIX B

A WELL-FOUNDED SET PROOF
(see Section 7.23
Definition: If X and Y are in NATURAL, then define Y ORD X
if and only if NOT K(X) and there is a sequence X0 = X, X1,
X2, ..., Xn = Y in NATURAL such that Xi+l1 = G(H(Xi J), whers

for i =1, 2,...,n"1.

Ihegrem: NATURAL with order relation ORD is a well-founded
set.

Proof: al) If it were true that X ORD X for some X in
NATURAL, then thers would bhe a sequence X = X0, X1,..., Xn
= X such that Xi+l = GCHC Xi)) For i = 1,2,...,n-1. So,
Xi+1 = BCHC Xi 3> = (3Xi + 13/2, and Xi < Xi+l. Thereforse,
by transitive property of ”"<” in NATURAL, X < X which is a
contradiction.

b) Suppose both Y ORD X and X ORD Y for some X, Y in
NATURAL. Then there are sequences X0 = X, X1,...,Xn = Y and
YO = ¥, Y1,...,¥m = X such that Xi+1l = G(H(Xi)) and

Yi+l = BGCHC(Yi)). Linking the tuwo sequences'we would

have X ORDO X, which is a contradiction. Thus, if Y ORD X
then NOTC(X ORD Y.

e) Transitivity is derived by an arguement similar toc bJ.
d) Suppose Al, A2,...,An,... is a sequence of elements in
NATURAL such that Ai+l1 ORD Ai. So, by the definition of
ORD, al.is odd. Suppose h > 0O is the position of the First

Zzero on the right in the binary expansion of Al;

80

thus A1l = (2 #» (h+1))*k + (2 ** h) -1 for some unique

k >= 0. Since, ORD is determined by successive applications
of B(H(x)) = (3x+1)/2, h applications of G(H(J)) leads to

(3 %% R)wpele + (3 #*#* Kh) -1, which is even. Since the
element on the right of ORD must be odd, the sequence abave

terminates. Thus all such "decreasing” sequences are finite.

61

APPENDIX B

OUR VERSION OF LIL

To Goguen (18863, LIL is a toonl For automated
support of the reusing and comnmecting of software
components and to provide a non-visible, internal tool
in a general program development environment. Our
goal is to apply this language to an Ada Language
System. In doing so we tried to make the language
closer in syntatic style to Ada, remove a few syntatic
inconsistancies in Goguen’s paper, and use more
descriptive identifiers in our examples. It is not
clear who would build and maintain Goguen’s version of
LIL in a programming environment. It is our intention
to make the programmer responsible for maintenance;
thus, this is our Jjustification for wusing a maore
Ada-like syntax that still is formal enough to support
graphical and natural language interfacss.

Goguen’'s LIL is used to make and support links
among software components without making reference to
the Ada language. Our version of LIL intimately and
visually links LIL theoriss with concrate Ada code. In
our design Ada generic specifications and initial
versions of implemsntations can be written dirsctly
from LIL generic packages. Like Goguen’s LIL, ”“makes”
can he produced by using dirsct ®views” from LIL to LIL

and from LIL to standard data types. Unlike Goguen, we

62

use "views” to link LIL theories with Ada subprograms,
thus making the creation of Ada instantiations a direct
consequence of the production of LIL “makes.”
Therefore, the Ada version of LIL involves the
programmer in maintaining and using the language so
that the " Ada environment becomes literally a two-lan-
guage system with Ada code as the deliverable product
while LIL is being enlarged and perfected within the

system.

	Generic Specifications in LIL and in Ada via Analogies
	Recommended Citation

	tmp.1704741200.pdf.F327G

