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Atomic Layer Deposition of Nanolaminate Structures
of Alternating PbTe and PbSe Thermoelectric Films
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bApplied Research Center at Thomas Jefferson National Accelerator Laboratories, Newport News,
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For this study PbTe and PbSe thin film nanolaminates have been prepared on silicon substrates with native oxide by Atomic Layer De-
position (ALD) using lead(II)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (Pb(C11H19O2)2), (trimethylsilyl) telluride ((Me3Si)2Te)
and bis-(triethyl silyl) selane ((Et3Si)2Se) as ALD precursors for lead, tellurium and selenium. The experimental evidence revealed
the ALD growth of lead telluride and lead selenide followed the Vollmer-Weber island growth mode. We found a strong dependence
of the nucleation process on the temperature. In this paper, we present the optimized conditions for growing PbTe and PbSe thin
film nanolaminates within the ALD process window range of 170◦C to 210◦C and discuss an early nano-scale PbTe/PbSe bilayer
structure. Results of various physical characterizations techniques and analysis are reported.
© The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/),
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any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.014406jss]
All rights reserved.
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Lead chalcogenides such as PbTe, PbSe and PbS have attracted
considerable attention over the past few years because of their superior
optical, electrical and mechanical properties. The efficiency of a ther-
moelectric material is determined by the dimensionless thermoelectric
figure of merit, ZT = σS2T/κ, where S is the Seebeck coefficient, σ
is the electrical conductivity, and κ is the thermal conductivity.1 The
thermal conductivity actually is consisting from electron and phonon
contributions κ = κ e + κp.2 To improve upon the ZT, the Seebeck
coefficient and electrical conductivity must increase, whereas the ther-
mal conductivity κ must decrease. The ZT of the material is related to
the efficiency of the TE device,

η = γ
(1 + Z T )1/2 − 1

(1 + Z T )1/2 + Thot/Tcold

where γ is the Carnot efficiency and Thot and Tcold are temperatures
(in K) of the hot and cold side of the TE material.

By using ALD, such ZT improvement can be achieved, because it
is possible to modulate the materials properties at the nanoscale level,
which constitutes a low dimensional structure. The characteristics of
bulk materials are different from that of thin films for every material.
By ALD deposition of alternating PbTe and PbSe thin films we are
able to create superlattice (SL) structures. These structures may sig-
nificantly enhance ZT as the electrons were confined to move in two
dimensions. In addition, the improvement of ZT is resulted from the
fact that the interfaces between layers in the superlattice structures
could increase the phonon scattering and consequently decrease the
phonon thermal conductivity. Low dimensional material systems3–5

were shown to exhibit significantly higher ZT values than that in bulk
materials. In bulk thermoelectric materials the quantities S, σ, and
κ are interrelated in such a way as to make independent control of
these variables to increase ZT very difficult. However, this correla-
tion between S, σ, and κ is not maintained in materials with reduced
dimensionality, such as quantum wells (superlattices), quantum wires

∗Electrochemical Society Active Member.
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zE-mail: hbaumgar@odu.edu

and quantum dots, where introduction of a new variable (length scale)
permits decoupling of the aforementioned parameters and allows them
to be optimized simultaneously.

PbTe is a useful narrow bandgap thermoelectric material that
can operate at comparatively higher temperatures in the range of
600∼850 K due to its better chemical stability and high melting
point.6,7 PbTe and PbSe present a good choice for thermoelectric
energy harvesting devices, especially in the automobile sector and
power plants, if its thermoelectric efficiency ZT can be significantly
improved. The state-of-the-art power generation efficiency of ther-
moelectric devices is currently approximately 12%. The heat wasted
in many machines could thus be converted into useful renewable en-
ergy and thereby contribute to reducing global warming and reducing
pollution by saving gasoline in automobiles. Besides, this material
can also be used in infrared imaging applications or cooling devices.
Although various deposition techniques like Molecular Beam Epi-
taxy (MBE),8 Chemical Vapor Deposition (CVD),9 RF magnetron
sputtering,10 Pulsed Laser Deposition (PLD)11 and Electrochemical
ALD (E-ALD)12,13 have been applied in the past for thermoelectric
materials, very little is known about the potential of ALD synthesis
of PbTe and PbSe. ALD is considered a promising method to synthe-
size PbTe/PbSe nanolaminate structures. Atomic Layer Deposition
technology has numerous advantages over conventional thin film de-
position techniques. It can precisely control the film layer thickness,
the stoichiometry, the composition, the uniformity, and produce sharp
interfaces in nanolaminate structures. ALD is a self-limiting surface
saturating atomic layer reaction and can also be used to deposit con-
formal films onto very complex structures. In general ALD has been
shown to be able to generate reproducible and well-defined nanolam-
inate structures.14,15 In this study the relatively new thermal ALD
technology has been used for the first time for PbTe and PbSe thin
film synthesis.

Experimental

The PbTe films were grown on a Si (100) wafer covered
with native oxide by ALD using lead(II)bis(2,2,6,6-tetramethyl-
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Table I. Experimental details of process development for ALD PbTe films. Samples indicated with * have been analyzed by SEM, TEM, XRD
and/or EDS.

Sample Precursor Temp. Pulse time Precursor Temp. Pulse time Dep. Temp. # of ALD
# Te Precursor (◦C) (s) Pb Precursor (◦C) (s) (◦C) Cycles

PbTe-1 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 150 500
PbTe-2 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 500
PbTe-3 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 210 500
PbTe-4 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 230 500
PbTe-5 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 250 500
PbTe-6 (Me3Si)2Te 40 0.03 Pb(C11H19O2)2 140 0.5 170 500
PbTe-7 (Me3Si)2Te 40 0.01 Pb(C11H19O2)2 140 0.5 170 500
PbTe-8 (Me3Si)2Te 40 0.1 Pb(C11H19O2)2 140 0.5 170 500
PbTe-9* (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 700

PbTe-10* (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 2000
PbTe-11* (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 3000
PbTe-12 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 5000
PbTe-13 (Me3Si)2Te 40 0.02 Pb(C11H19O2)2 140 0.5 170 9000

3,5-heptanedionato) (Pb(C11H19O2)2) and (trimethylsilyl) telluride
((Me3Si)2Te) as precursors for lead and telluride respectively.
PbSe films were grown by using lead (II) bis(2,2,6,6-tetramethyl-
3,5-heptanedionato) (Pb(C11H19O2)2) and bis-(triethyl silyl) selane
((Et3Si)2Se) as precursors for lead and selenide respectively. The na-
tive oxide surface was exposed to H2O vapor before ALD PbTe or
PbSe thin film deposition to ensure a hydroxyl group (OH−) termi-
nated native oxide surface, which aids the reproducible chemisorption
of the ALD precursor compounds. The ALD experiments were carried
out by thermal ALD in a cross-flow reactor from Cambridge Nanotech.
For our experiments, 20 sccm N2 was used as a carrier gas for the pre-
cursors. This carrier gas flow enabled proper transport of precursors
from the precursor cylinder to the reaction chamber. The growth tem-
perature during ALD varied at a range from 150◦C to 250◦C. The
lead precursor was volatilized at a temperature of 140◦C and the Te
precursor was heated at 40◦C. The Se precursor was not heated as it
had enough vapor pressure at room temperature. The chamber base
pressure was kept at 40 mTorr. The ALD PbTe and PbSe film samples
are listed in Table I and Table II, respectively. Table I shows the range
of the experimental ALD parameter settings for PbTe thin film de-
position that were systematically varied and compared for this study.
Table II shows the same for PbSe films.

Several physical characterization techniques have been employed
to determine the ALD PbTe and PbSe thin film characteristics. The
crystal structure and phase purity of samples of PbTe and PbSe films
were analyzed by X-ray diffraction (XRD). The film morphology and
structure of the products were determined by field emission scanning
electron microscopy (FE-SEM) and scanning transmission electron
microscopy (S TEM). The TEM characterization was performed on
a FEI Titan 80–300 aberration corrected microscope at an operating
voltage of 300 kV. Lamellae for the TEM studies were prepared using a

focused ion beam (FIB) system (FEI Strata 400S). The samples were
covered with carbon deposition before the FIB milling. Elemental
mapping was carried out in STEM mode with an energy-dispersive
X-ray detector.

Results and Discussion

The deposition of PbTe and PbSe thin film nanolaminates was
carried over a wide range of temperatures on the Si (100) wafer covered
with native oxide. The reaction involved between the precursors for
PbTe is shown below:16

Pb(C11H19O2)2 (g)+(Me3Si)2Te (g)=PbTe (s)+2Me3SiC11H19O2(g)

Pb(C11H19O2)2 (g)+(Et3Si)2Se (g)=PbSe (s)+2Et3SiC11H19O2(g)

In our study, deposition temperatures from below 150◦C to 250◦C
were investigated and an ALD process window was established for
PbTe. The various ALD pulse durations for these experiments are pro-
vided in Table I. In order to experimentally establish the ALD process
window numerous ALD PbTe films deposited at different tempera-
tures starting below 150◦C, 170◦C, 190◦C, 210◦C, 230◦C and 250◦C
were studied by FE-SEM to study the resulting crystallization quality
and film morphologies. At very low temperatures below 150◦C, no
film deposition at all was observed and thus establishes the process
cliff at the lower temperature end. This is attributed to the precur-
sor molecules not having sufficient energy to interact and chemisorb
with the substrate surface. The PbTe thin film coverage diminishes
significantly with increasing ALD deposition temperature. This effect
is especially apparent for the highest ALD deposition temperature at
250◦C, where practically no PbTe film was detected but only a few iso-
lated PbTe islands were remaining. At high surface temperatures over
210◦C, this loss in PbTe material may be either due to decomposition

Table II. Experimental details of process development for ALD PbSe films.

Sample Precursor Temp. Pulse time Precursor Temp. Pulse time Dep. Temp. # of ALD
# Se Precursor (◦C) (s) Pb Precursor (◦C) (s) (◦C) Cycles

PbSe-1 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 150 500
PbSe-2 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 170 500
PbSe-3 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 190 500
PbSe-4 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 210 500
PbSe-5 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 230 500
PbSe-6 (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 250 500
PbSe-7 (Et3Si)2Se 25 0.01 Pb(C11H19O2)2 140 0.5 170 500
PbSe-8 (Et3Si)2Se 25 0.04 Pb(C11H19O2)2 140 0.5 170 500
PbSe-9* (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 170 1000

PbSe-10* (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 170 2000
PbSe-11* (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 170 4000
PbSe-12* (Et3Si)2Se 25 0.03 Pb(C11H19O2)2 140 0.5 170 6000
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Figure 1. FE-SEM images of surface morphology of ALD thin films synthesized at 170◦C for (a) 700 cycles (sample # PbTe-9), (b) 3000 cycles (sample #
PbTe-11), (c) 1000 cycles (sample # PbSe-9), and (d) 4000 cycles (sample # PbSe-11). Sample numbers are indicated by * in Tables I and II.

or desorption of the ALD precursor. Based on numerous experimental
ALD runs, it was observed that the optimum temperature range for
the process window was from 170◦C to 190◦C, where a stable ALD
growth rate of 0.25 Å/ cycle was achieved. At this temperature, good
nucleation and smoother surfaces were obtained with good overall
coverage. Also different precursor pulse times were investigated and
finally the optimum pulse time was chosen by studying the ALD film
morphologies from Field Emission SEM images obtained. Some of
the representative FE-SEM images obtained for the PbTe and PbSe
thin films are shown in Figure 1.

As seen from the FE-SEM images of Figure 2, the surface cov-
erage improves with an increase in the number of cycles. It is also
clear from the images obtained that the growth does not follow the
classical growth mode of monolayer upon monolayer which is nor-
mally expected from ALD but follows an island growth mode. The
appearance of Volmer-Weber growth mode instead of Frank-Van der
Merwe can be primarily attributed to dominant atom-to-atom interac-
tion and to the presence of unevenly distributed nucleation sites on the

native oxide and the elevated ALD temperature that causes polycrys-
talline ALD PbTe and PbSe deposition instead of amorphous films.
These nucleation sites may be dangling bonds or microscopic surface
defects. The Volmer-Weber mode is accompanied by heterogeneous
nucleation where atom-to-atom interaction dominates over atom-to-
surface interaction. As this process gets repeated over and over for
every ALD cycle, the islands grow in size with the smaller islands
getting consumed by the bigger ones and they finally conglomerate
to form clusters.17 Finally, as the island conglomerates grow large
enough, they cover the entire substrate surface in a randomly oriented
polycrystalline structure. This phenomenon can be clearly understood
by observing the images shown in Figure 1. It is noted that the four big
grains visible in Figure 1c are uncharacterized defects, which are not
representative. The cross-sectional FE-SEM images shown in Figure 2
further prove this concept and a growth rate of ∼0.25 Å/cycle has
been deduced for PbTe. It was also observed that ALD PbSe films
grew at a faster growth rate and exhibit a better surface coverage with
higher nucleation density compared to the ALD PbTe case. The island

Figure 2. FE-SEM micrograph showing a cross-sectional view of cleavage side of ALD at 170◦C; (a) 3000 cycles (sample # PbTe-11, Table I), and (b) 4000
cycles (sample # PbSe-12, Table II).
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Figure 3. TEM cross-sectional images of ALD deposited PbTe film (sample # PbTe-9, Table I); (a) low magnification overview of the film, nucleating in a
Volmer-Weber type of island growth mode, and (b) high resolution microstructure of individual PbTe crystallite.

growth mode facilitates growth of quantum dot superlattice structures
of alternative PbSeTe/PbSe. The reduced dimensional structures could
greatly improve the thermoelectric ZT due to the effects of confine-
ment on the electronic density of state and enhancement of the phonon
scattering at multiple interface boundaries.

The TEM images obtained for PbTe thin films help us in under-
standing the microstructure of the PbTe ALD films and the interface
with Si substrate. It gives an idea about the structure, texture and
crystalline information of the thin film. Figure 3a and 3b show the
TEM cross-sectional images of ALD PbTe crystallites nucleated on
the Si substrates. These TEM images further revealed that the dom-
inant growth mode of PbTe films follows the Volmer-Weber island
growth. This growth mechanism eventually results in the formation of
numerous isolated PbTe crystallites. The TEM cross-sectional micro-
graphs delineating the polycrystalline texture of the synthesized PbTe
demonstrate that the ALD growth temperature of 170◦C lies above
the crystallization temperature of PbTe.

To determine the crystal structure, grain size and stoichiometry,
additional characterizations like X-ray Diffraction (XRD) and Energy
Dispersive Spectroscopy (EDS) were performed for the ALD PbTe
and PbSe films. Figure 4 shows the X-ray diffraction patterns of ALD

Figure 4. X-ray diffraction patterns of ALD (a) PbTe thin films for 2000
cycles (sample # PbTe-10) and PbSe thin films for 6000 cycles (sample #
PbSe-13) prepared at 170◦C, respectively.

(a) PbTe thin films for 2000 cycles and PbSe thin films for 6000 cy-
cles prepared at 170◦C, respectively. The XRD pattern proves that both
PbTe and PbSe films have face-centered cubic (FCC) crystal structure.
XRD measurements show that the growth direction is predominantly
along the cubic (200) crystallographic orientation although other ori-
entations are also present. This is due to the lower interface energy
along the (200) direction when compared to the others. It can also be
observed that the peak intensity in XRD becomes sharp and strong
especially along (200) orientation, this is attribute to that highly crys-
talline structure can be obtained with longer heating time and higher
number of cycles. The lattice parameter of the ALD PbTe thin films
were calculated using the formula 1/d2 = (h2 + k2 + l2)/a2, where
d is the interplanar distance, h, k, and l are the Miller Indices, and a
is the lattice parameter. Based on the (200) crystallographic planes,
the lattice parameter is a = 6.440 Å, which closely matches the ref-
erence value of a = 6.438 nm. The lattice parameter of the ALD
PbSe films is a = 6.126 Å (the reference value of a = 6.128 Å for
PbSe).

Figure 5 shows the results of high-angle annular dark-field
(HAADF)-scanning transmission electron microscopy image with the
corresponding elemental maps through an energy-dispersive spec-
trometer (EDS) for Pb and Se of PbSe ALD films and for Pb and
Te of PbTe ALD films. It is observed that both Pb and Se sig-
nals are detected. It also reveals that the elemental distribution is
uniform through the whole cross-section in the samples of PbSe
and PbTe films as shown in Figure 5. STEM-EDS elemental map-
ping and EDS spectra measurement demonstrate that PbSe and PbTe
thin films were successfully synthesized by atomic layer deposition
technology.

All these characterizations confirm the formation of PbTe thin
films by atomic layer deposition. PbSe thin films also have almost
the same characteristics. The complete physical characterization for
PbSe and the nanolaminate superlattice structure is work in progress.
However, we have experimentally demonstrated the feasibility of the
basic unit cell of superlattice structures by growing double layers
of alternating PbTe and PbSe ALD films. In our experiments we
have grown superlattice structures with 5000 ALD cycles of PbTe
and another 4000 cycles of PbSe on top of it. Figure 6 provides
proof of concept that nanolaminate superlattice structures with com-
plete coverage of the underlying substrate are feasible. In the fu-
ture this can be repeated n-times for the fabrication of thermoelectric
devices.

Figure 7 shows the HAADF-STEM image with the corresponding
EDS elemental maps for Pb, Te and Se of PbTe/PbSe ALD nanolam-
inates. The cross-sectional EDS elemental maps prove we succeeded
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Figure 5. HAADF-STEM image and the corresponding EDS elemental maps
of Pb, Se and Te from individual films of ALD PbTe and ALD PbSe. The
orange window marks the area mapped and the yellow window represents the
drift correction are used.

in growing a distinct second layer of PbSe on top of the first layer
composed of PbTe, constituting the basic unit cell of a thermoelectric
nanolaminate structure by growing a double layer of alternating PbTe
and PbSe ALD films. It also reveals that the elemental distribution is
uniform through the whole cross-section in the samples. STEM-EDS
elemental mapping demonstrates that PbSe covers PbTe nanolami-
nates uniformly and is according to the deposition conditions. Large
scale thermoelectric nanolaminate structures comprised of PbTe/PbSe
can be fabricated by ALD synthesis repeating n-times basic double
layer unit cell described in Figure 7.

Figure 7. HAADF-STEM image and the corresponding EDS elemental maps
of Pb, Se and Te from the PbTe/PbSe clearly delineates two distinct layers of
a basic nanolaminate composite with ALD PbSe on top of ALD PbTe. The
orange window marks the area mapped and the yellow window represents the
drift correction are used.

Conclusion

In conclusion, we have successfully performed ALD growth ex-
periments of PbTe and PbSe nanolaminates on Si substrates covered
with native oxide and established the basic unit cell of nanolaminate
structures by growing these two compounds on top of each other.
Our work on PbTe and PbSe revealed a deviation from the classic
layer-by-layer ALD growth. During the nucleation phase, lasting at
least a few hundred cycles, the individual ALD PbTe and PbSe thin
films establish a Volmer-Weber type of island growth pattern. The
optimized ALD deposition temperature window appears to lie in the
range of 170◦C to 210◦C for PbTe and PbSe, which produced relatively
smoother polycrystalline thin films of both the compounds.

In addition, we have identified the considerable surface texture
roughness resulting from Volmer-Weber island growth mode. Thus
PbTe and PbSe nanolaminates have the potential to serve in thermo-
electric applications if further optimized. More research and devel-
opment is needed for process optimization to achieve smoother ALD
films and good surface coverage with lower number of deposition cy-
cles. Progress is being made to obtain better thermoelectric efficien-
cies by decreasing the thermal conductivity κ and achieving promising
Seebeck measurements. This can contribute to energy savings glob-
ally if translated into energy harvesting thermoelectric devices in the
future.
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