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An Introduction to the Time-Independent
Schrodinger Equation and Methods to Solve it

Vu Giang, The Department of Mathematics and Statistics, Old Dominion University
Alex Gnech, The Department of Physics, Old Dominion University

Abstract—The Time-Independent Schrodinger Equation
is a linear elliptic PDE that describes quantum-mechanical
systems. Its significance in the science of submicroscopic
phenomena, particularly quantum mechanics, is as central
as Newton’s laws of motion are to classical mechanics.
This study uses various methods, including novel neural
networks and finite difference schemes, to solve the one-
dimensional two-body equation.

Index Terms—deuteron, harmonic oscillator, ladder op-
erator, mathematical physics, Metropolis-Hastings, neu-
ral network, numerical methods, numerov, optimization,
partial differential equation, Schrodinger equation, finite
difference

I. INTRODUCTION

HEN one hears about quantum mechanics,

whether the layperson or a physics undergraduate
student, the typical consensus is this field of study
challenges many and is out of reach for others [4],
[12]. Hopefully, this article can give a more intuitive
understanding drawn from historical and mathematical
backgrounds. One article, [12] criticizes many textbooks
and professors introducing this subject unintuitively and
with no motivation for the students to hold on to it.
Relating quantum mechanics to something the student
may know of will allow for a quicker and deeper grasp
of the subject.

Generally, quantum mechanics describes with good
approximation microscopic phenomena. No theory or
field of study has been able to succinctly describe or
predict atomic behavior comparable to quantum me-
chanics. Some examples include quantum mechanics
explaining why pigments of leaves are the way they are,
explaining the rigidity of certain plastics or metals, or
making medical devices a possibility. The motivation to
do research in this field is to further the understanding of
natural phenomena and to develop innovative technology.

To gain a better understanding, the wave is introduced
with a look into history. Quantum physics’ creation
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is attributed to German physicist Max Planck, who
suggested that the energy emitted from a black body
is quantized. Essentially, energy is associated with the
emitted frequency through the equation £ = hf = %,
where E is the energy, h is the Planck constant, f is
the frequency of the oscillation, ¢ is the speed of light,
and A is the wavelength of the light. Then came Albert
Einstein, who wondered why electrons radiate energy in
quanta. He deduced that radiation was quantized into
particles called photons, each of which has a limit to
carry certain quanta of energy, explaining the results of
the photoelectric effect observed by Heinrich Hertz and
Wilhelm Hallwachs. When a constant beam of light hits
a surface, the atoms in the affected region are excited
by the photons hitting it by this transfer of energy from
the collision of the photon to the atom.

However, increasing the intensity of the beam does
not change the energy of the emitted photon, proving
that electrons in atoms have quantized energy. Later,
Arthur Compton performed an experiment outputting x-
ray scattering off electrons, which changes the wave-
lengths. Tying this phenomenon with the Planck relation,
he showed the particle nature of light (i.e. photons).
Louis de Broglie furthered this idea beyond radiation
to matter. He proposed that wave-particle duality is a
property of nature described mathematically by p = h/A
where p is the particle momentum and A is the associated
wavelength. The electron double-slit experiment results
showed the scattering of waves of the electron proving
de Broglie’s claim.

To start talking about quantum mechanics, it is worth-
while to consider the waves produced by a pebble
dropped into some water, as depicted in Fig. (1) and
(2).

Instead of looking at the damped wave, consider the
simplest wave:

sin(r)

S(?") = SQ ,

S(r) represents the displacement of the wave, while Sy
is the amplitude of the wave and r is the position of the
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Fig. 1: A 2D depiction of a wave y = e~ cos (37x).

Fig. 2: A 3D depiction of a wave
e~V 22 29? cog (34 /222 + 242).

A =

function. The function can be rewritten to be even more
general:

S(r,t) = Sosin (kr — wt)

where k is the wave number and w is the angular
frequency. Note that the phase velocity of the wave is
defined as v = w/k. Taking the second derivative of
the equation above concerning r and ¢ gives exactly the
wave equation.

92S(r,t)

—gE = VViS(n) (1)
Also note that the cosine function describes a wave
shifted by some phase, so generalizing the above result
further, some complex variables are used to rewrite

S(r,t) as:
S(r,t) = Sye'lhr—«t) )
= Sp[cos (kr — wt) + isin (kr — wt)]
Recall that in quantum mechanics p = h/\, E = hf =
hw, and knowing that k = 27/\ we can rewrite the

wave number as k = 27p/h = p/h. Substituting it into
(2) gives:

U(rt) = Uoetler—Et)/n
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To match how the wave function is normally represented,
change S to ¥. Understanding that the subject of this
explanation is a non-relativistic free particle under a
plane wave, the total energy of a particle is given by
the kinetic energy E = p?/2m where m is the particle
or system mass. Using this fact, the wave equation (1)
now becomes
oY (r,t) h?

- _ e
ih T ZmV U(r,t). 3)

Keep in mind that only the first derivative with respect
to time appears on the right-hand side. If (3) is further
generalized, where the particle is under the influence of
some potential. Then (3) can be interpreted as £ =T +
V', where T is the kinetic energy and V' is the potential
energy. In (3), the right-hand side is the kinetic energy,
so adding the potential energy gives:
oY (r,t)

. R, :
ih=—s= = —5 VAU 1) + V(1) U(r1) @)

Thus, producing the general Schrodinger equation. Sim-
ilar derivations can be found in the following literatures
Refs. [3], [5], [7], [12], [17]. Other considerations are
important for the interpretation of quantum mechanics,
but for this paper, we will only remark on the meaning
of the wave function. We assume the Born Interpretation
of Quantum Mechanics. Practically, the wave function is
a density probability, meaning if there is a probability of
finding a particle within some interval the probability is
given by

P = / [T (r)|%dr = 1.
Q

For our discussion, this will be enough to begin the
discussion of solving the Schrédinger equation.

II. EXACT SOLUTION

Before solving the Schrodinger equation using the nu-
merical and neural network methods, we must establish
an exact solution to compare against. For simplicity,
we use the solution to the quantum harmonic oscillator.
Numerous ways exist to solve this problem, and the
chosen method uses the so-called ladder operators. Given
the Schrodinger equation (4), reducing the equation to
the 1-D case gives:

2
% —;—mv2\11(x,t) +V(z)¥(x,t)  (5)

From Eq. (4), it’s clear to see that the function ¥
is dependent on time. For this study (¢ = e "Ft/h)
this is how you pass from Eq. (4) to Eq. (7)), only the
time-independent type equation is considered. Therefore,
W will now only depend on z, and the derivative term

ih
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with respect to time is now a constant. In this field, this
derivative is seen as the energy, which we will see later.
Thus, this gives:

Zhd\Il(ac) _ _ﬁ d*V ()

dt 2m  dx?

+V(@)¥(z) (6

Now apply our potential, V (z) = mw?z? gives:

L dV(z) R dPU(x) 1,
ih = am a2 —|—§mw z*U(x) (7)

The ladder operator method was inspired by Griffith [6].
If we see the left-hand side as the energy then we can
rewrite the equation as follows:

BU() = g | (50 + ()| 0(a)

:2m i dr

.1 (hd 4, ; ;
Define a : x/%(i 4= T imwz). Since a is an operator,

it is not commutative. Then it follows that

1 [ hd )11
a_a+—2m{(idx) +(mwx)]+2hw
1 [ hd ] 1
a+a_—2m{(idx) +(mwx)]—2hw

= (a—ay — %hw)\ll(z) E¥(x)

= (ata_ + %hw)\lf(x) = E¥(x)

= a_ay —apa_ = hw

A proof of ay ¥(x) satisfying the Schrodinger equation
with energy E + hw is omitted but can be found in [6].
So, now we have a1 ¥(z) = F =+ fiw. What this means
is that each time the operator a acts on ¥ we get a
new energy level, and since we can never have negative
energy, there must be a lowest energy level meaning
a_Po(x) = 0, which is the ground state. Thus,

2= [ (1 i) o0

=0

- ﬁd\ll(x)_i T)mwx
- = J%(z dx ¥(z) )
:>d\1;:(va:) :_m;;x\y(x)

With this equation, we can integrate both sides with
respect to x.

Published by ODU Digital Commons, 2024
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Fig. 3: The groundstate wave function ¥, with

m and w = 1.
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Fig. 4: The respective potential for ¥y, V(z) = %mwx .

/d\z}jdx f/m;;x\Il(x)dx
= / \I]((;j)) :—%/xdaz
Ty

mw .2

= U(x)=Ae 2n "

= In|¥(z)|+C1 =— + Oy

mw .2

Therefore, Wo(x) = Age 2a%, is the groundstate

wave-function and the general solution is given by
mw .2 .

U, (x) = Ap(ay)”e 2n® . Now, to determine the

energy, we substitute the groundstate wavefunction to
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(ara— + 2hw)¥(z) = E¥(z). Solving for E gives:

(ata— + %hw)\l’o(x) = E¥y(z)
= ara_To(z) + %hw‘lfo(x) = EUy(z)

— al(0) + %MJO(J;) — ()

hw
:}E:—
2

Thus, giving the groundstate energy Ey, = %w The
general solution for E is E,, = (n + 3)hw. With this,
we now have a way to determine the accuracy of the
numerical models.

III. FINITE DIFFERENCES

Until now, we have solved the Schrddinger equa-
tion without any context for the scale we are working
with. The three necessary units of measure are energy,
mass, and position, particularly, energy is measured in
mega-electron-volts (MeV), the position is calculated in
Fermi’s, and mass is represented as atomic mass units
(amu).

#  Units #  SI Units
1 MeV 1.60218«10°13 J
2.0135 amu 3.343 10727 kg
1 Fermi 1%x1071 m

Fig. 5: Conversion of units used in this study to SI units

The system of interest is the deuteron, specifically the
interaction between the proton and neutron, with that Eq.

N
a

® P
1 2 3
H H H

Fig. 6: The image to the left is the depiction of a typical
hydrogen atom; followed by the deuteron, a hydrogen
nucleus with an added neutron particle; and finally, the
triton atom, which is a hydrogen nucleus with two added
neutron particles being the heaviest hydrogen atom to
exist.
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(6), can be rearranged in the following manner:

2 2 T
EV(z) = —;—mdi(z ) + V(x)¥(x)
— 0= 2 TMD | (viw) - Byuc
— DD e v =0 ®

Since Eq. (8) is of the form % + K(x)y(z) = 0
finite difference can be applied to find the energy of the
system. Before performing the finite difference, some
parameters are established as seen in Fig. (7) and (8).
For this particular system, the potential to be solved is
V(z) = —60e~(@/165)°  Now, suppose a, b are defined

—0 oL

Fig. 7: An arbitrary domain in an interval [a,b] with
evenly discretized grids.

D ' EEN
¥ ,

v
L

Fig. 8: With the respective discretization, L := b —
a, Az := L/N where a chosen N determines the
fineness of the grid.

as follows: a := xg where a + Az := 21 —
a+n*Ax = x,. Using this definition ¥,, := ¥(x,,). If
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¥ (z) is the nth derivative, a Taylor series expansion
is expanded around V,, 1, V,,_; as follows:

(1) Ax? (o)
Az . Axt
Az” 13) AT @)
+ e U (z) + 24\1' () + ...
.2
U,y = W(z) — Ax¥ D (z) + AT“W) ()
Ax3 Axt

_ =2 g® = g®
5 U (z) + 24\11 () + ...

Wyt + Uy =20(2) + Az20? ()
Azt

+ vx11<4>(gc) +0(Az®)

Rearranging the last equation ¥,,; + ¥,,_; produces
the scheme for the second-order derivative of the
Schrodinger equation.

\I/n—l — 2‘1’(1‘) + \I/n+1 AIQ
Az? 12

\11(2)(.73) =
+ O(Az?)

W (z)

Essentially, what we get is the 4th-order Runge-Kutta
(RK4) framework to solve the Schrodinger Equation.
And, due to the nature of the equation, we can achieve a
higher order accuracy by having a scheme that involves
the 4th derivative.

Az? d?
12 dz?

Acting on the Schrodinger Equation with 1+
gives:

Ax? d | ) @)
Az Ax? 2
S @ 4 2T Y g )0) =
1 + g gz (K@) =0

Substituting ¥(?) + Al—flll(‘l) back into the RK4 scheme
from before produces:

\I/n,1 — 2\If(x) + \Ifn+1
Az?

22 42
+%%(K(x)\ll($)) +0(Az?)

0=

After some rearranging, the equation becomes:

U, 1 —20(x) + VU, = Az’ K (2)¥(x)
Azt 2
ﬁ@(K(x)\P(x)) + 0(Ax%)

Previously, it was shown for a function f(?)(z) the finite
difference scheme is given by %W. Substitute

Published by ODU Digital Commons, 2024

this for the K (z)U(x) term, and the result for the 6th
order Numerov method follows.

(2 SACK (1) W(x) — (1+ 502K, )T,y

V1 =
1 1+ %AJ)QKH_;'J

+0(Az®)
We proceed with the method from both the right and
left boundary, which will meet at an arbitrary point M.
vt = \Ianrl
(2 - %AJ}QKn)\I/n - (1 + %szKn—l)\Iln—l
14+ %Alekn_»rl

(2 — %A$2Kn)\1/n — (1 + %AI’QKTHJ)\IMHJ
1 + %A:ﬁkn_l

+ O(Az%)

With this specific potential applied to the equation, the
conditions considered are:

T(0) =0, V(Az)= Az,
U(b=20)=e "0 W(20 — Az) = e F*(20-42)

Where k is fixed by the Schrodinger Equation, k2 =
2mFE /h?, and any two arbitrary energies can be chosen
for the model, which acts as a sort of guess, and a
specific value was chosen to aid the convergence rate
of the model.

E(0) = —5, E(1) = —5.005

We note that a specific meeting point M was also chosen
for convergence reasons. The parameter indicates the
iteration in which we performed the Numerov method.
For N = 1000, after ten iterations, our solution con-
verges to an energy E' = —2.29 MeV with a tolerance of
4.889E—13(| Ey, step — En—1 siep), but the wave function
looks wrong.

Before we compute the integral, we need to take care
of the discontinuity at the meeting point M since U is
continuous. We know that

‘I’(JJM) ~ AT

F(zp) ~ BU_

= ¥, = %\I/_ at M. Where ¥ is denoted as follows:

\if o {\IjJr(xl)a
\ij(xi%

0<i<M
1> M
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0.0 25 5.0 75 10.0 125 15.0 17.5 20.0
x

Fig. 9: Before matching at the meeting point M = 300.

0 2 a 6 8
Iterations
Fig. 10: The plot showing the convergence of the energy
for each iteration.

We also use this quantity to find the energy for the next
step, as the first two energies serve as a guess. Define
A as follows:

A v (M) B v (M
Ty (M) V(M
— Plfi(MﬂFl)i\Pi(M)

where W/, . Using this relation-
ship, new energies can be calculated for the next steps
as follows since we now have two guess energies:

A — Ay

" T E-EL

= y— A, =m(z - E;)
y=m(x — E;) + A,

= Eiq1=-Ai/m+E;

After iterating the Numerov method, the algorithm con-
verges to the energy previously discussed as seen in Fig
(10). So we take points produced from W:

https://digitalcommons.odu.edu/ourj/vol11/iss1/3
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and use the Trapezoid method to integrate the new
function. What we get is as follows:

/ |\I/|2 (xz)+\11(

2
Finally, to get the wavefunction W, which we desire, we
divide ¥ by c producing the following result W Je=
fulfilling the normalization condition. Generally, when

))Ax 5

=C

0.040
0.035 A
0.030 .
0.025 A

2 0.020 .
0.015 A ®
0.010 A .

0.005 4 .

0.000 +

T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
X

Fig. 11: The first 20 points of V.

0.040 /'
0.035 /

0.030 4 /

0.025
> 0.020 4
0.015 A
0.010 A

0.005 4

0.0001 &

T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
X

Fig. 12: The first 20 points of ¥ applying the Trapezoid
method.

solving a quantum mechanical system, a normalizing
proceedure must be fulfilled, namely

/Q\\I/(x) 2 _

When comparing to experimental data, we see that
the ground state energy of the deuteron with the given
potential has a |%-error| < 1. Similarly, when using this
method to solve the harmonic oscillator problem, we get
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0.30

—— Numerov
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Fig. 13: Normalized ¥ for the deuteron.

=}

7 — Vix)

~104

—20 4

Vix)

—40 4

—50 4

—60 4

T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 200
X

Fig. 14: Respective potential V(z) = —60e~(#/165)°,

a similar accuracy with an energy of 3.262 MeV using
the parameters w,m = 1 compared to the theoretical
value of 3.291 MeV.

IV. NEURAL NETWORKS

We take advantage of the fact that Feed Forward Neu-
ral Networks(FNN)/Artificial Neural Networks(ANN)
are universal approximators of any equation or system
[9]. There are two steps for the neural network method.
First, even before performing the forward propagation,
the Metropolis- Hastings algorithm, which is a Markov
Chain-Monte Carlo method [13], randomly samples from
a probability distribution similar to ¥ and produces the
trial wave function U* which as more sampling occurs,
U — 0.

Published by ODU Digital Commons, 2024

Numerov

0.20 4 — Exact

0.15 -

0.10

0.05

0.00

T T T T T T T T T
—20 =15 -10 =5 0 5 10 15 20

Fig. 15: The ¥ produced by the Numerov Method com-
pared to the exact solution for the Harmonic Oscillator.
The reason for the overshoot is likely due to the method
over compensating for the energy when we don’t have
the same result as the exact solution.

A. Metropolis-Hastings

The burnout period for the Markov Chain to approach
the desired stationary state is about 50% — 60% of the
total N samples taken, and the remaining samples are
used in the Metropolis-Hastings algorithm. When the
stationary state is reached, a desirable property arises
where the Markov Chain is reversible. This means that
the probability of a certain sample times the probability
approaching a new sample is equal to the probability
of the new sample times the probability from the new
sample approaching the original sample. We did not
prove the existence of stationary distributions, and only
experimentally tested to see if the Markov Chain con-
verged to some distribution.

P(0s) - T(0s — 07) = P(05) - T(0, — 0,)  (9)
(10)

The Detailed Balance principle is the premise for the
Reversible Markov Chain. In the above equation (9), P
indicates the probability and T is a different notation
used to represent the probability of transition from one
sample to another sample.

For this study, the variables sampled are the various
positions at which the deuteron is located. The other ob-
ject also being sampled is the movement of the particles
to a new position. These moving samples are “walkers,”
named this way because there is a certain probability
for their movement closer to or further away from the
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mean of the wave function. In this analysis, we assigned
400 walkers to various positions and sampled them until
achieving a stationary state. Observe that the distance
at which the particles move is based on a Gaussian
distribution. These sampled data are not used until a
stationary state is reached. After this burn-in period,
we now use these artificially produced samples in the
Metropolis-Hastings algorithm, to apply to the Monte-
Carlo simulation. This approximates the probability us-
ing another Gaussian distribution that covers VU for faster
convergence.
The Gaussian which the sample is subjected to is:

2 .
G(.’IJ) = E@ /2

To ensure that a somewhat true random sampling occurs,

Deuteron

Nucleus

Fig. 16: This figure shows the representation of the
modeled isotope. For the Metropolis-Hastings algorithm,
there will be 400 different walkers moving around the
nucleus, and the probabilities of these walkers are later
sampled. A separate Gaussian distribution is indepen-
dently used for the distance and direction to determine
the new position. Consider the proton-neutron system,
where it is calculated together as a single particle using
a relative position.

only every ten samples of the relative position of the
particles are used in the Metropolis-Hastings algorithm.
Once a cycle of this algorithm is performed, the position
is then inputted into the neural network.

Now, moving to the explaination of the neural net-
works, for clarity, an explanation of the loss function
is done first. Recall the Schrodinger equation Eq. (4) is
written as follows:

oY (r,t) h?

: _ e
ih ETa va U(r,t)+ V(r,t)¥(rt)

https://digitalcommons.odu.edu/ourj/vol11/iss1/3
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The Hamiltonian operator is defined like this:

~ h2 9
H:=——Y Vir,t
2m + V()

where it acts on the object to the right of it. This means
that the equation can be rewritten as follows, with the
interpretation that the left hand side represents the energy
eigenvalue of the equation.
EV = HV
HY
= EF=—
v
v* HU

R
U*HU
|w|2
In Bra-Ket notation, it is written as:

(V|H|W)
(Vo)
Since the W is inherently a probability, the sum of all of
its values will give the approximated value of the energy.

E = (11)

U*HU
E=—"—
| W2
— N/ ‘\IJ|2 @ s
Q fo ¥z W
HU
= — (12)
repP v

This quantity (11) will be used as the loss function in
the neural network to solve for (9).

B. Feedforward Neural Network Architecture

We utilized a feedforward neural network with an
input layer consisting of 3 nodes, two hidden layers,
each comprising 16 nodes, and a single output node.
The activation function used in the hidden layers is the
hyperbolic tangent (tanh) function, and the output layer
uses a linear activation function suitable for regression
tasks. We took inspiration from [11] and modeled the
ANN to solve the deuteron.

1) Forward Pass: The mathematical formulation of
the forward pass is as follows:

a) Input Layer to Hidden Layer 1: Let x be the
input vector with three elements, WO be the weight
matrix of size 16 x 3, and b) be the bias vector of size
16 for the first hidden layer. The input to the first hidden
layer is computed as:

2D — Wy L pM
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Applying the tanh activation function gives:
aV = tanh(z)

b) Hidden Layer 1 to Hidden Layer 2: Let W)
be the weight matrix of size 16 x 16 and b(® be the
bias vector of size 16 for the second hidden layer. The
input to the second hidden layer is:

2z = W@ L p3@
Applying the tanh activation function gives:
a® = tanh(z®)

¢) Hidden Layer 2 to Output Layer: Let W®) be
the weight matrix of size 1 x 16 and b(®) be the bias for
the output layer. The input to the output layer is:

2B W ®a® L p®

The output, assuming a linear activation function for
regression, is:
§= 53

2) Loss Function: The loss function used is the
minimization of Eq. (11) the energy/expectation value
itself, defined as:

1} H|W©
[ = B — min SZvW)H[Tv (W)
W (Uy (W)[Py (W))
where W are the weights of the neural networks and ¥y,
is the variational wave function.

C. Backward Pass

To perform backward propagation, we compute the
gradients of the loss function with respect to the weights
and biases. Essentially, what happens is we optimize
the gradients with respects to the weights W) n =
{1,2,3} to minimize the energy i.e.

. oL .
Find W BN mV[I/IlE

Bear in mind, that we cannot compute every single
derivative as that would be computationally expensive, so
in this analysis, we use the ADAM Optimizer to compute
and optimize the gradients stochastically. The weights in
the hidden layer are optimized to minimize the energy
every time the neural network is backpropagated.

D. ADAM Optimizer

The ADAM optimizer was used to update the network
parameters. ADAM combines the benefits of RMSProp
and Momentum [10] by maintaining an exponentially
decaying average of past gradients (m) and past squared
gradients (v).

For each parameter 6:

Published by ODU Digital Commons, 2024

a) Initialization:

my = 0, Ve = 0
Br=0.9, B2=0.999, e=10"%  « = learning rate
b) Update at time step t: Compute gradients:
_oc
9= 0

Update biased first-moment estimate:

my = Bimu—1 + (1 — B1)ge

Update biased second-moment estimate:

v = Bavi1 + (1= B2)gi
Correct bias in the first moment:
C1-p
Correct bias in the second moment:
- 1-p8

my

Ut

Update parameters:

E. Results

We applied the neural network onto the deuteron
with the same potential Fig. (14) as described in the
previous section. After running the neural networks for
400 iterations with a learning rate of @ = 1 % 1074
we can see the energy decreases and is minimized by
the optimizer, as seen in Fig. (17). It converges to

54 Wann

200 400 600 800 1000 1200 1400 1600
Optimization step

Fig. 17: The energy computed after each iteration.

around —2.266 MeV with a percent error that is |%-error
| = 1.04. To produce the wave function, since the model
stochastically samples the position of the deuteron, we
use the sampled data and produced a distribution of the
measured positions of the particles. This distribution is
the wave function as in Fig. (19).
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Fig. 18: A histogram showing the position sampled as
a distribution of the deuteron, compared to the wave
function computed from the finite difference.

—— Numerov

0.25 A ANN

0.20

3> 0.1519

0.10 A

0.05

0.00

0 10 20 30 40 50 60 70 80

X
Fig. 19: A histogram showing the position sampled
as a distribution of deuteron, compared to the wave
function computed from the finite difference for 40
Fermi’s showing increased accuracy of the model.

V. CONCLUSION

In this article, we compared three ways to analyze the
Schrodinger equation and applied different potentials.
The trend for each model is that it shows an increased
capability compared to the previous model. The
analytical method is limited to certain problems
compared to the Numerov method with an increased
ability to solve a larger array of systems by taking
advantage of the computing power of modern computers.
Ultimately, we see neural networks can solve even more
difficult problems by utilizing artificial intelligence
algorithms to solve problems in which finite difference
is weak, such as many-body problems.

https://digitalcommons.odu.edu/ourj/vol11/iss1/3
DOI: https://doi.org/10.25778/9dd7-vn32
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Fig. 20: A histogram of the harmonic oscillator using
the neural networks.

In our analysis, we solved a two-body problem
with the neural network and still achieved a relatively
accurate energy compared to the exact and experimental
solutions. The wave functions maintained a shape
similar to that of the actual ¥ as well. What is also
noteworthy is that the neural network was able to solve
the Schrodinger equation with only the information
provided from the Hamiltonian. This shows how
much information is retained in this operator and
that by taking advantage of it, an even more accurate
and stable model can solve even more difficult problems.

We want to note that the ADAM optimizer used
in this paper is a more general algorithm that can be
swapped for the stochastic reconfiguration method to
handle the complexities of the Schrédinger equation
[15]. We did not account for all three dimensions,
spin, and asymmetry of the particles to name a few of
the properties that the neural network and stochastic
reconfiguration are capable of. Because of the design
of the problem in this analysis, the symmetry of the
particles was accounted and it was not necessary to
consider. The deuteron was solved radially making the
system symmetrical to begin with.

Future directions for this analysis are implementing
more appropriate optimizers for the problem such as
the aforementioned stochastic reconfiguration method
[11], [14]. An even more efficient method is the
so-called Hessian accelerated stochastic reconfiguration
method [2]. Extensions of this investigation can also
include analyzing the convergence, stability, and also
higher energy states of our methods and models. These

10
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methods can also be applied to solve a wider array of
problems that are at the intersection of interdisciplinary
studies such as physics, biology, chemistry, etc. [1],
[8], [16], [18]. To achieve an even more accurate and
faster convergence of our solution, the implementation
of physics-informed neural networks can also be used.
This idea builds physics facts into the neural network
model to assist the propagation of the weights and allow
for the optimizers to minimize the loss functions more
efficiently.
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APPENDIX
A. Momentum Optimizer

The Momentum optimizer is designed to accelerate the
gradient descent algorithm by accumulating a velocity
vector in directions of persistent reduction in the loss
function. This helps to dampen oscillations and speed
up convergence.

a) Mathematical Formulation: Given a parameter
6, the gradient of the loss function £ with respect to 6
at time step ¢ is denoted as gy = Vo L(6;).
The Momentum update rule is defined as:

vy = B + (1 — B) gy

0y = 0,1 — avy

where:

o v, is the velocity at time step ¢.
e [ is the momentum coefficient (typically 5 = 0.9).
e « is the learning rate.

The term v, acts as an aggregate of past gradients,
allowing the optimizer to maintain the direction of
previous gradients while smoothing out noise.

B. RMSProp Optimizer

RMSProp (Root Mean Square Propagation) is an
adaptive learning rate method that aims to resolve the
issue of diminishing learning rates in the Adagrad algo-
rithm by maintaining a moving average of the squared
gradients.

a) Mathematical Formulation: For a parameter 0,
the gradient at time step ¢ is g = Vo L(6;).
The RMSProp update rule is:

E[¢’): = BE[g°]i—1 + (1 — B)g}

«Q
P —
t t E[gz]t+€t

where:
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o E[g?]; is the exponentially decaying average of past

squared gradients.

o [ is the decay rate (typically 5 = 0.9).

e « is the learning rate.

e ¢ is a small constant to prevent division by zero

(typically e = 1079).

RMSProp adjusts the learning rate for each parameter
individually based on the historical magnitudes of gradi-
ents, which allows for larger updates for infrequent and
smaller updates for frequent parameters.

C. Combining Momentum and RMSProp: ADAM Opti- o A

mizer 0
The ADAM (Adaptive Moment Estimation) optimizer
combines the advantages of both Momentum and RM- (@
SProp. It maintains an exponentially decaying average of
past gradients (m;) and past squared gradients (v;), and
computes bias-corrected estimates to adapt the learning
rate for each parameter.
The update rules for ADAM are provided in the main
methods section of this document. R
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D. Note on the Numerov Method and usage of units (b)

There is a different variation of the Numerov Method
that instead of computing the energy as described above,
the guess energy is iteratively reduced to a point where
the boundary conditions are met. There is no matching in g
this variation instead, the left boundary is fixed to 0 for
the harmonic oscillator potential and the right boundary
is measured till lim, ,. ¥(z) = 0. The following
figures shows this phenomena. R

For simplicity and proof of concept, the the harmonic
oscillator used 1 as a simple parameter to achieve the
result presented here for both the mass and frequency.
The MeV-s reduced Planck constant was used for the
harmonic oscillator and the units used for the deuteron
were MeV for mass, MeV-Fermi for the reduced Planck
constant, Fermi for distance, and MeV for energy. Actual £ ooe
quantities of the hydrogen isotope was used for the
Numerov method and Neural Networks. N

(d)

Fig. 21: As the energy gets closer and closer to the true
value, the right boundary gets closer to 0.

obability density function
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