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CLASSROOM NOTES 

EDITED BY MURRAY S. KLAMKIN 

This section contains brief notes which are essentially self-contained applications of mathematics that can 
be used in the classroom. New applications are preferred, but exemplary applications not well known or readily 
available are accepted. 

Both "modern" and "classical" applications are welcome, especially modern applications to current real 
world problems. 

Notes should be submitted to M. S. Klamkin, Department of Mathematics, University of Alberta, Edmonton, 
Alberta, Canada T6G 2G 1. 

ACTIVATOR-INHIBITOR CONTROL OF TISSUE GROWTH* 

JOHN A. ADAMt 

Abstract. This note develops a simple model for the competition between activator and inhibitor control 
mechanisms in one-dimensional tissue growth. The pedagogic usefulness of such a model is that it is easily 
accessible to undergraduate applied mathematicians and is suggestive of behavior known to occur in more 
realistic biological systems (e.g., some types of cancer). The limitations of the model are obvious and can 
provide a basis for discussion of the applicability of complementary levels of description in mathematical 
modeling. 

Key words. activator-inhibitor mechanisms, tissue growth, diffusion 

AMS(MOS) subject classification. 92A05 

In this note we examine the effect of competing activator-inhibitor control mech
anisms on tissue growth. The motivation for this problem arises from complementary 
levels of description for models of cancer growth [ 1 ]- [ 3] . This simple generalization of 
a one-dimensional model [ 4] is easily accessible to undergraduate students of applied 
mathematics, and has the advantage that it is suggestive of behavior known to occur in 
some realistic biological systems. This does not, of course, imply any more than the 
possibility that models suitably generalized to more realistic geometries and biology may 
be of value in describing observed tissue growth characteristics. We use the notation of 
Glass [ 4]. 

Consider a one-dimensional slab of "target tissue" embedded in "host tissue" of 
infinite extent. The host tissue is considered to be passive insofar as it is permeable to 
enzymes produced within the target tissue, and as the latter grows, the former offers no 
packing resistance to slow down or stop the growth of target tissue. We assume that two 
basic enzymes are produced at a uniform rate within the target tissue: the "inhibitor" 
has concentration C1 and production rate P 1 and the "activator" has concentration C2 

and production rate P2 • If A; and D; represent the respective depletion ( or decay) rates 
and diffusion coefficients of enzyme i ( i = 1 or 2) then under the assumption of diffusive 
equilibrium the C; satisfy equations of the form 

(1) 
d 2C; 

D; dx 2 -'X;C;=-P;S(x), 

* Received by the editors July 23, 1990; accepted for publication November 8, 1990. 
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where 

(2) 
S(x)= I, 

=0, 

I xi ;£L/2, 

lxl>L/2. 

Furthermore, we suppose that there exists a discontinuous switch-like mechanism 
governing the mitotic part of the cell cycle. If M(x) is a general mitotic rate and M 0 is 
the normal rate, then we consider the following concentration-dependent switches: 

(I) If C1 (x0 ) > 00 and C2(x0 ) < cp0 then M(x0 ) = 0, i.e., no mitosis. The quantities 
00 and ¢ 0 are threshold concentrations. 

(II) If C1 (x0 ) > 00 and C2(x0 ) > 'Po then M(Xo) = M<, where 0 ;£ M< < Mo 
( decelerated mitotic rate). 

(III) If C1 (x0 ) < 00 and C2(x0 ) < cp0 then M(xo) = Mo. 
(IV) lfC1 (x0 ) < 00 and C2(x0 ) > ¢ 0 then M(x0 ) = M> where M 0 < M> (accelerated 

mitotic rate). 
Glass solved system ( I ) and ( 2) for a single growth inhibitor with concentration C 

[ 4], i.e., no activator/ inhibitor interaction. Later, however, Shymko and Glass [ 5] did 
solve system (1) for point sources, i.e., S(x) oc f[C;]o(x - x;), i,j = l, 2. We are 
interested here in uniform production rates across the target tissue, and subsequent limiting 
tissue sizes. 

The formal solution to ( 1 ) and ( 2) is 

(3) C;(x)=P; L: G(x-x')S(x')dx', 

where the Green's function 

(4) 
1 

G(x)= ,~exp(-a;lxl), 
2vD;h; 

where a; = YA;/ D;. 
The conditions implicit on C; ( x) are 

(i) C;(0) < oo, 
(ii) C1(0) = 0, 

(iii) lim C;(x) = 0, lxl - oo, 
(iv) C;(x), C(x) continuous at I xi = L/2. 

(These conditions do not all have to be imposed: (i) and (ii) are implied by (iii) 
and (iv).) 

(5) 

(6) 

The solutions are as follows: 
(a) I xi ;£ L/2, 

C;(x)=:;{ 1-(cosha;x)exp(-a;½)}· 

(b) I xi ~ L/2, 

C;(x) = :: ( sinh a;i) exp (-a; I xi). 

We note that 

p. 
C;(0) =~ { 1 -exp (-a;L/2)} 

A; 
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and 

(7) 
p. 

C;(I L/2 I)=-' {1-exp (-1X;L)}. 
2A; 

Define the following dimensionless quantities: 

(8a) 

(8b) 
P2 

n2 = 2A20o. 

Furthermore, define the following functions: 

(9a) f;(n;)=-ln --1 ( n; ) 
IX; n; - 1 

(n; > 1 ), 

(9b) g;(n;)=-ln --2 ( 2n; ) 
IX; 2n; - 1 ( n;>~)-

(Notethatg;(n;) = 2f;(2n;).) 
We consider various different states throughout the tissue. 

( i) M = 0 for all x E [ - L / 2, L / 2], i.e., no mitosis throughout the tissue 
(switch I). 

Since C; ( x) is a monotone decreasing function, we require the following conditions 
to hold simultaneously: C1 ( I L/2 I)> 00 and C2(0) < ¢ 0 • After a little algebra it follows 
that L must satisfy the condition 

(10) Ji (ni) < L <g2(n2). 

(11) 

(ii) M = M< for all x E [ - L/2, L/2] (switch II). We now require that 
C1(I L/21) > 0o and C2(I L/21) > <Po, 

L>max {f;(n;)}. 
i 

(iii) M = M 0 for all x E [ - L/2, L/2] (switch III). It is necessary that C1 (0) < 00 

and C2(0) < ¢ 0 , implying 

(12) L < min { g; ( n; ) } . 

(13) 

i 

(iv) M = M> for allxE [-L/2, L/2] (switch IV). This requires C1(0) < 00 and 
C2( I L/2 I)> <Po, i.e., 

We are now in the position to prove several lemmas. Let p = 1X2/21X1 and n; > 1. 
Then we have Lemma 1. 

LEMMA 1. Ji ( n) > g2 ( n) for all n > 1 and p ~ ½ . 
Proof. Since n / ( n - 1) > ( 2n / ( 2n - 1 ) ) 2, it follows from the nature of ln x, 

x > 0, that ln (n/(n - 1 )) > 2 ln (2n/(2n - 1 )), i.e.,.fi (n) > 2pg2(n), establishing the 
result. 

LEMMA 2. For any given p, 0 ~ p ~ ½, there exists a unique n = nc, 1 < nc < oo, 
such that Ji ( nc) = g2 ( nc). Equivalently, for any given n > 1, there exists a p = Pc < ½ 
such that Ji (n) = g2(n ). 
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Proof. We define h(n) = ln (2n/(2n - 1 ))/ln (n/(n - 1 )), n > 1. It is seen that 
limn .... 1 + h ( n) = 0 + and, using l'Hopital's rule, limn .... 00 h ( n) = ½ . Either h - ½ mono
tonically or h'(n) = 0 for at least one n > 1. After some algebra it can be shown that this 
latter result occurs if and only if 

[ ( 2n ) ( 2n - 2 ) ]n ( 2n - 1 ) 
2n - 1 2n - 1 2n - 2 = 1 

or 

(14) n In [ 1 - ( 2n ~ 1 ) 2 ] = In [ 1 - ( 2n ~ 1 ) ] . 

Clearly this cannot occur for n > 1, since ( 14) implies n < 1. Thus h is monotone 
increasing (see Fig. 1 ). Therefore, for p < ½ there is a unique n = nc such that 
h(nc) = p, i.e., 

(15) 

Hence we have the following corollary. 
COROLLARY 1. For each p < ½ there exists a unique n = nc > 1 such that 

h(nc) > pfor n > nc, and h(nc) < pfor 1 < n < nc. That is, g2 (n) > fi(n)for n > nc, 
and gz(n) <Ji (n)for 1 < n < nc. 

From equations ( 10) and ( 13) this signifies that if n is induced to change through 
the value nc, the tissue growth may change from zero mitotic rate to M>, or vice versa. 
That is, the graphs offt(n,) and g2(n2 ), plotted against the same independent variable 
n, = n2 = n, actually intersect and cross for p < ½, i.e., for a2 < a 1 , at n = nc (see 
Fig. 2). 

Figure 2 depicts the graph of g2(n2 } superimposed on the graph of ft (ni). This 
provides a convenient description of the regions of the ft - n1 andg2 - n2 graphs wherein 
growth characteristics corresponding to (10) and (13) may occur. Sincefi(n)/h(n) = 
a 2 / a 1 = 2p, we are in a position to describe condition (11) graphically, in a similar 
fashion. Thus, for p > ½, L > h(n2 ) for M = M< throughout the tissue. For p < ½, 
L > fi(ni). Condition (12) can be similarly described. 

Clearly the most interesting implication for a biological context is that this model 
( highly simplified though it is) indicates that a change may occur from no mitotic activity 
in [ - L/2, L/2] to accelerated mitosis in [ - L/2, L/2] ( or vice versa) as n1 and n2 change 
appropriately through nc for p <½.(These changes inn; may occur as a result of internal 
or external factors affecting the state of the tissue-it is beyond the scope of this note to 

h(n) 

,;, ··········:··· ........................................................ . 

FIG. I. The function h(n) = In (2n/(2n - I )/In (n/(n - I)) for n > I. 
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FIG. 2. Composite representation of fi(n) and g2(n)for p = a2/2a1 < ½. 

speculate further.) For given p < ½, this critical value of n, nc, may be found from 
equation ( 15 ) . Note that this behavior change is not the same as that discussed by Glass 
[ 4], in which there is only inhibitor present and the transition from "stable" to "unstable" 
tissue growth occurs at n = 1 ( where the expression for Ji is undefined). 

REFERENCES 

[ 1 ] J. A. ADAM, On complementary levels of description in applied mathematics. II. Mathematical models in 
cancer biology, Intemat. J. Math. Ed. Sci. Tech., 19 ( 1988), pp. 519-535. 

[2] --, A simplified mathematical model of tumor growth, Math. Biosci., 81 ( 1986), pp. 229-244. 
[3] S. A. MAGGELAKIS AND J. A. ADAM, A mathematical model of solid tumor growth by diffusion, Math. 

Comput. Modelling, 13 ( 1990), pp. 23-38. 
[ 4] L. GLASS, Instability and mitotic patterns in tissue growth, J. Dynamical Systems Meas. Control, 95 ( 1973 ), 

pp. 324-327. 
[5] R. M. SHYMK0 AND L. GLASS, Spatial switching in chemical reactions and heterogeneous catalysis, J. 

Chem. Phys., 60 ( 1974 ), pp. 835-841. 


	Old Dominion University
	ODU Digital Commons
	1991

	Activator-Inhibitor Control of Tissue Growth
	John A. Adam
	Repository Citation
	Original Publication Citation


	Activator–Inhibitor Control of Tissue Growth | SIAM Review | Vol. 33, No. 3 | Society for Industrial and Applied Mathematics

