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Figure 13 shows the SSIM maps, which further corroborate that the HCM, FSDAF, and STARFM
all have better performance than bicubic.

Figure 13. SSIM maps of the Runway scenario using different methods. (a–d) are the maps for STARFM,
FSDAF, HCM, and bicubic, respectively.

4. Discussion

The study in this paper is important because Planet images are collected using CubeSat’s and
have more frequent revisit times, as compared to the WV images. However, the resolution of Planet
is worse than that of WV images. The methods described in this paper can generate a high spatial
resolution and high temporal resolution image series by fusing the two satellite images and will have
many important applications, including border monitoring, damage assessment, etc. Decision makers
can perform accurate situation assessment based on the fused data.

Although there are quite a few fusion studies on MODIS and Landsat images, no one has carried
out a fusion study for Planet and WV images to the best of our knowledge. We presented three
approaches to fusing the Planet and WV images. The approaches are representative algorithms in the
literature. STARFM is well-known in the fusion of MODIS and Landsat. FSDAF incorporates clustering
information to assist the prediction process, but requires more computations. HCM is a relatively
simple and efficient algorithm for prediction. Based on the experimental results on three scenarios
near a US-Mexico border area, the improvement of the three fusion approaches over the original Planet
images is significant. In particular, the PSNR gains are close to 3 dB (Tables 5–7) for some of the three
scenarios. Other performance metrics such as AD, RMSE, SAM, SSIM, Q2N, ERGAS, and CC all
show significant improvement over the baseline (bicubic). In addition to the above metrics, we also
generated SSIM index maps (Figures 7, 10 and 13), which also show significant visual improvement of
the results from HCM, FSDAF, and STARFM over that of the bicubic method. We can also visually see
that the prediction images from all of the algorithms can reveal some fine textures that are missing in
the Planet images. Moreover, as can be seen from Figures 6, 9 and 12, the fused images have much
better visual quality than the original Planet images.
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It is also worth to mention that, from the results in Section 3, one can observe that none of the
three methods can perform well under all scenarios. It is therefore important to have a library of
algorithms for image fusion. The best algorithm should be selected for a given application.

Since the Planet images are top of atmosphere radiance (TOAR), we opted to work in radiance domain
by also using WV-2 images (TOAR). The two types of images indeed have magnitude differences in
the radiance domain. To overcome this, we carried out some preprocessing. In pansharpening papers,
a common practice has been widely used, which is to apply histogram matching [16,17] between
pan band and the multispectral bands. Here, we adopted a similar strategy in order to work directly
in radiance domain. The idea is actually very simple. We used W1 as the reference and applied
histogram matching to P1 and P2 so that P1 and P2 are matched to W1. Since W1 and W2 are collected
at the same time of the day with the same altitude (the Worldview satellite flies over the same area at
roughly the same time of the day), they have roughly the same radiance. We then learn the mapping
between the adjusted P1 and P2. Finally, we perform the mapping from W1 to W2 by using the learned
mapping earlier.

It should be noted that, even if we work directly in the reflectance domain, there is no guarantee
that the reflectance values between the Planet and Worldview images will be the same. We may
still need to perform some histogram matching after atmospheric compensation. This is because the
atmospheric compensation procedures in generating the Worldview reflectance images are proprietary.
Digital Globe has a proprietary software known as GBDX (https://gbdxdocs.digitalglobe.com/docs/
advanced-image-preprocessor), which contains atmospheric compensation algorithms. If we use
FLAASH in ENVI to generate reflectance images for Planet, the two sets of reflectance images resulting
from different atmospheric compensation algorithms may still be slightly different and hence histogram
matching may still be required after atmospheric compensation.

Because Worldview images are not collected at nadir for most of the images, the registration and
alignment with Planet images should be done carefully. In this research, we performed the alignment
manually. One future direction is to develop an automated alignment program that will significantly
reduce manual labor.

The image compatibility issue between different satellite images together with the image alignment
issue require more in depth studies in the future. The image alignment is non-trivial. Here, our goal is
on image fusion algorithm assessment where we assume that the registration is done and the images
(regardless whether they are radiance or reflectance) have similar histograms.

Another direction is to apply the high temporal high spatial resolution images to some applications
such as damage assessment due to flooding, fire, hurricane, tsunami, etc.

5. Conclusions

In this paper, we applied three spatiotemporal data fusion approaches for forward predicting
images with high spatial and high temporal resolutions from Planet and WV images. The performance
of the three approaches is comparable using actual WV and Planet images. Compared to other fusion
approaches such as STAARCH and ESTARFM, the methods tested in this study do not require two pairs
of Planet and WV images and are more appropriate for forward prediction.
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