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ABSTRACT

IMPLEMENTATION OF ANALYTICAL FATIGUE MODELS INTO OPENSIM TO 
PREDICT THE EFFECTS OF FATIGUE ON ANTERIOR CRUCIATE

LIGAMENT LOADING

Michael A. Samaan 
Old Dominion University, 2014 

Director: Stacie I. Ringleb 
Co-Director: Sebastian Y. Bawab

The anterior cruciate ligament (ACL) provides stability to the knee joint while 

performing activities such as a side step cut. Neuromuscular fatigue, a reduction in 

muscle force producing capabilities, alters lower extremity mechanics while performing a 

side step cut and may increase the risk o f ACL injury, particularly in females. 

Musculoskeletal modeling allows for the measurement o f  muscle forces, which are 

difficult to measure in-vivo. Therefore, musculoskeletal modeling, may improve our 

understanding o f  the effects o f  neuromuscular fatigue on muscle force production and 

loading o f the ACL. Therefore, the purpose o f this study was to develop a 

musculoskeletal model which incorporated two analytical fatigue models by Tang et al 

(2005) and Xia et al (2008). These fatigue models were used to determine the effects of 

neuromuscular fatigue on muscle force production and ACL loading at various levels of 

fatigue (i.e. 10%, 25%, 50%, 75% and 90%) and were validated by comparing these 

results with experimental data. Six recreationally active females performed five 

anticipated side step cuts both before and after an isolated hamstrings fatigue protocol 

using the right lower extremity. Root mean square (RMS) differences were calculated 

between both fatigue models and the experimental hamstrings muscle force 1.91 N k g '1 

and 1.88 N k g 1, for RMSjang and RM Sxia, respectively. Despite similar R M S differences,



the Xia el al (2008) model was selected for analysis o f fatigue as this model utilized 

general input parameters. The total quadriceps and hamstrings muscle forces 

demonstrated significant decreases (p<0.05) as an effect o f fatigue yet the gastrocnemius 

muscle forces increased (p<0.05). Knee joint extension moment demonstrated significant 

increases (p<0.05) across all fatigue levels. Despite a reduction in hamstrings muscle 

force producing capabilities, peak ACL loading did not exhibit a significant increase 

(p>0.05) due to fatigue. The limited number o f participants in this study suggested an 

underpowered study and may help explain the lack of significance in various dependent 

variables including peak ACL loading. Using the model developed in this study can aid 

researchers in understanding the effects o f fatigue on risk o f ACL injury in order to 

develop better training programs in order to reduce the risk o f injury.
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CHAPTER 1

INTRODUCTION

Injury to the anterior cruciate ligament (ACL), one o f the 4 main ligaments o f  the 

human knee joint, can prevent participation in sporting activities [1] and increase risk of 

developing osteoarthritis [1, 2], Neuromuscular fatigue, a reduction in muscle force 

producing capabilities [3-6], is one o f many factors that contribute to an increased risk of 

non-contact ACL injury [7-10] particularly in females [7, 10, 11]. Neuromuscular fatigue 

alters lower extremity mechanics and increases ACL loading through an increase in 

anterior tibial translation [7, 8], anterior shear [7, 8] and rotational forces [12], 

Computational modeling allows for the measurement o f  muscle forces, which are 

difficult to measure in-vivo, thereby aiding researchers to understand the effects of 

neuromuscular fatigue on muscle force production. Analytical models were developed to 

improve understanding o f the effect of fatigue [6, 13-17] yet these models were not used 

to study dynamic, athletic maneuvers such as a side step cut. Implementation o f an 

analytical fatigue model into a dynamic simulation would aid researchers to better 

understand the effects o f fatigue on risk o f ACL injury.

1.1 Anterior Cruciate Ligament Injury

The human knee joint (Figure 1-1) is the largest jo in t in the human body 

consisting o f the femur, tibia, fibula and patella [18, 19], The ACL is one o f the 4 main 

ligaments o f the human knee joint. The ACL provides joint stability by limiting tibial 

translation, rotational translation and mediolateral movement [2, 12, 20], ACL injuries 

can cause extended disability and place athletes at a higher risk o f developing knee
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osteoarthritis as well as an increase in knee pain and instability [21, 22], Females are 2-5 

times more likely to rupture their ACL compared to males [21, 23] with 80% of these 

injuries occurring in a non-contact manner [24]. The cost o f treatment and rehabilitation 

associated with female ACL injury totals to an approximate $646 million annually [25], 

ACL injury causes a change in kinematic and loading patterns in the knee leading to an 

initial degeneration o f cartilage and eventually the onset o f osteoarthritis [2].

EOJTCMO* CWXJA'E 
LIGAMENT  ------

ANTBMO* MtNIX Q 
r i H O M l -----
LIGAMENT

A S t H O *  CAJCIATE 
“ ■“ LIGAMENT

Figure 1-1: Anterior view of human knee [26]

There are anatomical, hormonal parameters and biomechanical factors that may

result in an increase in the ACL injury rate in women [27], Anatomical parameters such 

as the Q angle [21] and the tibial plateau slope [28, 29] as well as hormonal parameters 

[25] may affect injury rates. Flowever, the contribution o f these parameters on risk o f 

injury is unclear [25], Females, compared to males, tended to land with a more extended 

and internally rotated lower extremity during an unanticipated side step cut [30]. It is 

unclear whether or not anatomical and hormonal parameters are modifiable [25]. 

However, biomechanical factors (i.e. lower extremity mechanics) are modifiable and 

have been studied considering the effects o f anticipation and other types o f 

neuromuscular perturbations [31-33]. Determining the effects o f  various perturbations
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(i.e. anticipation, fatigue, etc.) on the lower extremity may be a better method of 

understanding risk o f ACL injury in female athletes.

Females tend towards different muscle activation patterns in comparison to males 

while performing a side step cut but the results are not similar between studies [30, 34, 

35]. There are discrepancies between studies when it comes to quadriceps activity during 

a side step cut yet the results seem to be similar between studies when hamstrings activity 

is considered. Females exhibited a greater amount o f quadriceps activation throughout 

early deceleration and stance compared to males [30, 35] yet another study [34] found no 

differences in quadriceps activity between genders during a pre-activity phase (50ms 

prior to initial contact). Males demonstrated greater activity in the lateral hamstrings 

compared to the medial hamstrings while females do not exhibit this medial hamstrings 

imbalance [30, 34, 35],

One common shortcoming o f current biomechanical studies is that these studies 

are unable to account for the multi-factorial nature o f the ACL injury mechanism [36], 

This may be due to the limitations and differences in the methods used to study ACL 

injury(i.e. equipment, software, etc.) but also due to the difficulty associated with 

measuring particular physiological ( i.e. muscle forces, ACL loading, etc.) and 

anatomical parameters in-vivo [36], Musculoskeletal modeling methods can overcome the 

difficulties in studying knee jo int injury risk. Musculoskeletal modeling has been used to 

study injury risk factors and estimate ACL forces in side step cutting [32, 37], drop 

landings [38] and stop jumps [39-41].



4

1.2 Neuromuscular Fatigue

Neuromuscular fatigue, (referred to as fatigue from this point on), is defined as a 

decrease or lack in the ability to generate maximal muscle force or power occurring after 

the onset o f sustained physical activity [42-45] and limits maximal voluntary muscle 

force production [17]. Fatigue is an extrinsic factor that affects the musculoskeletal and 

neurologic systems [7], There is no single mechanism that can solely account for fatigue 

[46, 47] as the underlying physiological mechanisms in the decline o f muscle force are 

complex, multifactorial and task dependent [4, 5, 13,45, 47, 48] thereby making it 

difficult to represent fatigue analytically [6]. Fatigue is dependent on multiple factors 

which include the type and intensity o f exercise, the muscle groups involved, neural 

strategy, subject motivation and the physical environment in which the task is performed 

[5, 47]. Varying these fatigue dependent factors will stress different components (central 

and peripheral nervous systems) o f the neuromuscular system and therefore will 

influence the amount o f muscle fatigue within the system. The central nervous system 

(CNS) provides the central drive to maintain muscle activation o f the nerve-muscle 

complex within the peripheral nervous system (PNS) which controls the propagation o f 

action potentials. Prolonged stimulation o f isolated muscle, under anaerobic conditions, 

may result in a total loss o f  mechanical power despite the normal functioning o f the 

contractile elements o f  the muscle [3]. In other words, if  the CNS continuously provides 

adequate muscle activation yet the propagation o f action potentials within the PNS fails, 

then the force producing capabilities o f  the muscle fail [46]. It has been shown that 

fatigue due to high-intensity isometric exercise is associated with both central and 

peripheral factors [49], In order to truly understand the effects o f  fatigue, it would be
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ideal to measure fatigue during activity, as fatigue is a continuous rather than a failure- 

point phenomenon [48],

Alterations in lower extremity kinematics occur following neuromuscular 

fatigue [7, 9, 10, 33, 50-52], Fatigue altered lower extremity kinematics in a side step cut 

[9, 50], drop landings [10, 33, 51, 52] and stop-jump tasks [7, 53], An epidemiological 

study supported the notion that fatigue may be a predisposing factor responsible for the 

increased number o f injuries at the end o f games or halves in soccer [54], The effects of 

fatigue on side step cutting are conflicting [9, 50] and may be due to the varied methods 

used to induce fatigue [55], Specifically, sagittal plane alterations at the hip and knee at 

initial contact after fatigue were observed in one study [50], while fatigue caused an 

increase in hip, knee and ankle external rotation at initial contact, but had no effect on 

sagittal or frontal plane kinematics [9] in another. Agility drills, jum ps, squats and 

sprints to induce a short term fatigue protocol [7, 10, 33, 50, 51] while a long term fatigue 

protocol consisted o f sustained periods o f activity o f high intensity effort [9] in order to 

replicate a game-play environment and induce a general or functional type o f fatigue.

Previous studies [7, 9, 33, 50] have used general fatigue models to determine the 

effects o f fatigue on the lower extremity during dynamic maneuvers. General fatigue 

models do not allow for the determination o f how specific muscle groups may respond to 

fatigue and the overall contributions o f  these specific muscles to dynamic lower 

extremity control [56]. The hamstrings aid in dynamic control o f  tibial rotation[57] and 

therefore, isolated hamstrings fatigue may affect an athlete’s ability to perform a dynamic 

maneuver such as a side step cut. Larger variability in tibial rotation was displayed in 

females compared to males while performing a side step cut, which may increase the risk
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of ACL injury [58]. Significant increases in anterior tibial translation were caused by 

isolated hamstrings fatigue and may be associated with a reduction in muscle force 

producing capabilities [59]. Despite the numerous amounts o f studies performed on the 

effects o f fatigue on lower extremity kinematics, it is still unclear as to how fatigue 

contributes to noncontact ACL injuries [7].

1.2.1 Motor Unit Activation

Motor units consist o f a group o f muscle fibers that are innervated by the same 

motor neuron. The number o f muscle fibers controlled by a given motor neuron depends 

on the function o f that specific muscle. If a motor neuron is stimulated, a nerve impulse 

known as a motor unit action potential (MUAP) is generated. The MUAP is a propagated 

impulse, meaning that the amplitude o f the impulse remains the same as it travels down 

the axon to the neuromuscular junction. At the neuromuscular junction, the MUAP 

becomes a muscle action potential (MAP) traveling down through the muscle.

Externally, these two actions are indistinguishable. If the MAP exceeds a certain 

threshold it will result in depolarization o f the muscle cell membrane, releasing calcium 

ions and initiating the development o f the cross-bridging and shortening within the 

muscle sarcomere in an all or nothing type o f excitation [60]. This total process is 

referred to as excitation-contraction coupling. Traditionally, motor units are recruited in a 

particular order depending on the force that the neuromuscular system is required to 

produce. Depending on the type o f contraction, submaximal or maximal, a particular 

amount o f force to be produced will be determined by the neuromuscular system and will 

achieved by controlling the amount o f motor units that are recruited and the rates at 

which the motor units discharge action potentials [5, 61]. When fatigue occurs, the
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threshold required to trigger an action potential increases and the motor unit’s tendency 

to fire decreases. The motor unit will eventually reach a critical point where it can no 

longer be activated [17].

Each motor unit consists o f a particular fiber type with the same histochemical 

and biomechanical characteristics and when activated, the fibers contract synchronously 

and act in the same manner [17, 62], It was determined that the sequence o f recruitment 

is in the order o f threshold for activation and follows the recruitment pattern of: slow 

twitch fibers (type I), fast fatigue resistant fibers (type IIA) and fast fatigable fibers (type 

IIB). At the start o f a submaximal contraction, type I fibers are recruited first and 

possibly some type IIA fibers. As physical activity progresses, an additional number o f 

type II fibers are recruited and when the muscle is fatigued, all motor units would have 

been recruited [63]. Despite the existence o f a known motor unit recruitment pattern, it is 

possible that the recruitment pattern may be modified during a particular movement, in 

order to match the neural command to the continuously changing mechanical 

characteristics o f muscle [64].

Type I fibers are the most oxidative and contain only slow myosin, whereas the 

type II fibers are less oxidative and only contain fast myosin [65]. Type I fibers have a 

long twitch time, slow conduction and are fatigue-resistant. While the type IIB fibers 

have a short twitch time, high conduction velocity and fatigue rapidly. The type IIA 

fibers are an intermediate group as far its physiological characteristics are 

concerned [62],
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1.2.2 Hamstrings Muscle Composition

The hamstrings muscle group consists o f the semimembranosus, semitendinosus 

and biceps femoris. The hamstrings are a two joint muscle group, spanning the hip and 

knee joints. The hamstrings are responsible for the simultaneous flexion of the leg at the 

knee joint and extension o f the thigh at the hip [66], The biceps femoris is composed of 

approximately 44.1 -  66.9% type I fibers [67, 68] and 26.8 -  59.2% type II fibers. The 

semitendinosus contains approximately 54.6 -  60.4% type II fibers while the 

semimembranosus contains approximately 50.5 -  51% type II fibers [69]. The 

composition of type II muscle fibers within in the semitendinosus was significantly 

different between the proximal and distal sites o f the muscle [69].

Muscles that require faster action or phasic activity have a higher percent o f type 

II fibers [68]. The amount of force that a muscle can produce is proportional to the fiber 

type content thereby suggesting the high type II fiber content in the hamstrings is 

evidence that the hamstrings must be capable o f producing large amounts o f force [69], 

The physiological cross-sectional area (PCSA) o f a muscle is directly related to the 

amount o f  tension or force a muscle is able to produce [70]. The PCSA o f the hamstrings 

muscle group, consisting of the semitendinosus, semimembranosus and both the long and 

short heads o f the biceps femoris, is approximately 41 cm2. The PCSA o f the hamstrings 

muscle group is approximately 60% less than that o f the quadriceps [70], The reduced 

PCSA o f the hamstrings, in relation to the quadriceps, means that the hamstrings produce 

a smaller amount o f force than the quadriceps.
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1.3 Fatigue Models

Muscle models that incorporate fatigue may help researchers to better understand 

the effects o f fatigue on injury mechanisms and in turn may lead to better injury 

prevention and training programs [16]. Muscle fatigue models capable o f quantifying 

isometric fatiguing contractions [13, 16] as well as dynamic fatigue [6, 14] were 

developed, yet an experimentally validated model that can predict force and motion both 

prior to and during a non-isometric contraction has yet to be developed [15]. The current 

issue in fatigue modeling involves the difficulty in quantifying the multi-factorial nature 

o f fatigue during a particular exercise or activity [48]. Two o f the current fatigue models 

require numerous physiological inputs (i.e. muscle contraction velocities, metabolite 

levels, etc.) [13, 71] that need to be determined from other experiments. It is difficult to 

achieve accuracy in determining these parameters and therefore these models may not 

provide a satisfactory prediction o f force.

An analytical model was developed by Tang et al  [16] to predict the effect o f 

fatigue on muscle force under arbitrary conditions o f activation (a). This model 

incorporated differential equations into H ill’s muscle model [72], a three element model 

consisting o f a contractile element and two non-linear spring elements. The differential 

equations were used to determine the fatigue, recovery and endurance properties of 

skeletal muscle. Fatigue, recovery and endurance were all used to determine the fitness 

function, which quantified the overall effects o f fatigue on the muscle over a pre-defined 

time period. Tang’s model was validated numerically using previous experimental data 

[13]. This fatigue model was also implemented into a finite element model to validate 

experimental data on a frog gastrocnemius muscle [44], The proximal end of a frog
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gastrocnemius muscle was fixed while a lOg load was applied to the Achilles tendon. A 

cyclic activation (0.25Hz, 50 duty cycle) was applied to the frog muscle to simulate 

muscle deformation. Force and strain data were recorded using a force transducer and 

two digital cameras, respectively in order to quantify the effects o f fatigue on muscle 

stresses and strains. Replicating this experimental setup in a finite element model, the 

Tang et al fatigue model [16, 44] provided a reasonable prediction o f the effects o f 

fatigue, when compared to the experimental data, on 3-dimensional stresses and strains in 

the frog gastrocnemius muscle.

Both the endurance and fatigue parameters are functions o f activation. The fatigue 

function was determined using the fatigue vs. time curve. Curve fitting methods are used 

to determine the fatigue function from the fatigue vs. time curve. The model also 

assumed the fatigue trend with respect to time is similar for both an arbitrary submaximal 

activation and a maximal activation (Figure 1-2). Therefore, the fatigue rate under 

arbitrary activation can be also assumed to be equal to the fatigue rate under constant 

activation. The fatigue rate for skeletal muscle is usually dependent on the current 

fatigue level and the fatigue history [44]. The endurance function proposed by Tang et al 

[16] (equation 1) was determined by fitting a curve to the number o f active motor units 

vs. time data provided by Liu et al [17]. The exponent o f 2.4, used in the endurance 

function, is a ratio between the fatigue velocities o f the muscle under submaximal and 

maximal activations [73].

0 (a )  =  a 24 (1)

where a  is the muscle activation. The endurance function was also referred to as a time 

stretch ratio and must satisfy the following conditions [16]:
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0 <  0 (a )  <  1 ,0 (a  =  1) =  1 ,0 (a  =  0) =  0 (2)

Recovery was also a function o f activation and was determined from the recovery 

vs. time curve. Tang’s model assumed that a muscle recovers when there was no 

activation. The period o f recovery allowed the muscle to rest and to recover its ability to 

maximally shorten. The recovery curve was determined by measuring maximal output 

force o f a muscle in very short intervals from a state o f  complete fatigue to no 

fatigue [16, 44].

1
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Figure 1-2: Fatigue curves under maximal activation and submaximal 
activation [16]

Using the values o f fatigue and endurance, a fitness function was determined and 

used to describe the effects o f fatigue (a > 0) on the muscle over a specified time period. 

Similarly, the recovery function was used to determine a fitness function that 

incorporated the effects o f muscle recovery (a = 0) on overall muscle capabilities. When 

the fitness level or maximal output force was equal to one the muscle had no fatigue. On 

the other hand, if  the fitness level or maximal output was equal to zero then the muscle 

was assumed to be completely fatigued. The fitness function was calculated using a 

finite difference method (equation 3).
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t+At f i t n e s s  =  f i t n e s s  +  d ( t+Ata ) x  ( t+Atf a t i g u e  — 1 f a t i g u e ) ;  w hen  a  > 0

t+Atf i t n e s s  =  t f i t n e s s  +  ( t+Atr e c o v e r y  — tr e c o v e r y ); w hen  a  =  0 (3)

Tang’s model was validated in-vitro for a frog gastrocnemius muscle [44], where 

the fatigue and recovery curves were adopted from previously published muscle force vs. 

time data [45]. Tang’s model was versatile in its ability to accurately predict the effects of 

fatigue on skeletal muscle [44] under an isometric activation pattern. However, both the 

fitness and recovery functions were pre-determined from experimental data in order to 

accurately predict the effects o f fatigue.

Another analytical model developed by Liu et al [17] is capable o f predicting the 

effects o f fatigue for both simple and complex tasks at various intensities using a minimal 

number o f  pre-determined inputs. The model developed by Liu et al [17] used a dynamic 

framework to understand muscle activation, fatigue and recovery. The model required the 

determination o f fatigue (F) and recovery (R ) factors that are used to solve a set of 

equations in order to describe the behavior o f muscles as a group o f motor units under 

voluntary activation [17]. Both F and R  are constant values across time for activities that 

last seconds to several minutes. The values o f F and R are combinations o f the various 

fatigue and recovery factors for each o f  the different muscle fiber types found within a 

particular muscle [17].

The model developed b y  Xia et al [6], a modified version o f the Liu et al [17] 

fatigue model, uses a three-compartment fatigue model which includes activated (MA), 

fatigued (Mp) and resting (M r) motor units (Figure 1-3). The muscle force generated by
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the motor unit pool is proportional to the size o f the activated motor unit pool. The initial 

conditions (t = 0) o f this model are M A, M f and M r are equal to 0, 0 and 100% 

respectively [6]. In other words, at time equals 0, there are 0 motor units activated or 

fatigued and all motor units are at rest. This system assumes a unit-less measure of 

muscle force in percent o f  maximum voluntary contraction (%MVC). The activated, 

fatigued and resting motor units are calculated at finite time intervals (equation 4).

ff V,. . . . .  . . .  . tstQpMtf
»V„> • •" *

Figure 1-3: Compartmental model representing the dynamic behavior of muscle 
motor units [6]

dMA
- ^ =  C { t ) - F x M A

dMp
— — — F x  Ma — R x  MF 

d t

- C ( t ) + R x M p  (4)
d t

The compartment model used fatigue and recovery factors similar to that o f Liu et 

al  [17] but also incorporated a bidirectional, time-varying proportional controller, C(t). 

C(t) was modeled as a bounded proportional controller (Eq. 5) that is dependent on
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whether or not the Ma is able to achieve the required muscle force or target load (TL) and 

the availability o f M r [6], The functions used to determine controller, C(t), also include 

muscle force development (L d) and force relaxation (L r) factors. The fatigue model is 

relatively insensitive to the values o f  muscle force development and force relaxation and 

therefore the values o f LD and Lr were set to be the same arbitrary values [6],

Residual capacity (RC) was used to describe the remaining muscle strength 

capability due to fatigue (equation 6). A value o f 0% indicates no strength reserve (not 

physiologically possible) and a value o f 100% indicates a state o f  full strength. The RC 

parameter can be used as a multiplier to determine the decayed maximum strength 

capabilities. Similar to Liu et al [17], brain effort (BE) was incorporated into this fatigue 

model (equation 7) and is understood to be the central drive that is necessary to perform a 

task or a simple estimate o f perceived exertion [6],

I f  Ma > TL and  MR > TL — MA, C(t)  =  LD x (TL -  MA)

I f  Ma < T L  an d  MR < T L  — MA,C ( t ) =  LD x  MR

I f  Ma > TL, C(t) = Lr x  (TL -  Ma ) (5)

R C (t) =  Ma + Mr = 100%  -  Mf (6)

TL
I f  TL < RC, BE = — x  100%

I f T L  > RC,BE  =  100% (7)
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The fatigue (F) and recovery (R) parameters for individual joint regions (i.e. 

ankle, knee, trunk, shoulder and elbow) as well as a general set o f  F and R parameters 

were determined via a global optimization search strategy [74] and validated against 

existing task-intensity endurance-time (ET) relationships [75] for task intensities from 

10% to 90% in increments o f 10% using the Xia et al fatigue model [6], Once a set o f 

optimal F and R parameters were determined and validated, the fatigue model developed 

by Xia et al [6] using these validated F and R parameters, was tested for 9 different task 

intensities ranging from 15% to 95% in increments o f 10%. Minor differences were 

observed between the ET between the different joint regions and task intensities as 

compared to previously published joint region ETs by Frey Law and Avin [75], A 

sensitivity analysis was performed on the F and R values in order to determine the effects 

o f changes in these two parameters on the fatigue model [6] outputs. It was determined 

that the F parameter had the largest influence on the task intensity-ET relationship as the 

changes in F altered the inflection points o f the intensity-ET curves, particularly at the 

lower intensity levels. The R parameter had minimal influence on the task intensity-ET 

relationship as the changes in R influenced the spread o f ETs at the lower intensity 

levels [74], The overall effects o f the sensitivity analysis on the Xia et al model [6] were 

displayed in figure 1-4.

Using various isometric loading conditions and observing the ET and %MVC 

relationships the model developed by Xia et al [6] was able to produce results similar to 

previously published ET curves [76] for static endurance tasks. Despite being validated 

for sustained isometric contractions [6, 74] this model may not directly translate to other 

tasks conditions (i.e. isometric tasks with intermittent rest intervals or dynamic
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contractions) and further work is needed to understand whether or not this model can 

predict the effects of fatigue during non-isometric activations [74].
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Figure 1-4: The effects of varying the: A) fatigue parameter and B) recovery 
parameter values on the task intensity-endurance time relationship [74]

The model developed by Xia et al [6] has the capability o f  predicting the effects 

o f fatigue at the joint level [6, 74], An advantage o f  using the model developed by Xia et 

al [6] is that the F and R coefficients have already been determined for various joints 

[74], The RC in this model was similar to the fitness equation in Tang et al [ 16, 44] in 

that they both describe the effect o f fatigue on the m uscle’s ability to contract. Another 

advantage o f the model developed by Xia et al [6] is that a simplified estimate of 

perceived exertion, BE, can be obtained in real-time. Both the models developed by 

Tang et al [16] and Xia et al [6] incorporate the Hill-type muscle model [72], which
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accounts for the dynamic force producing capabilities o f a muscle and are therefore able 

to predict physiologically relevant muscle forces. Despite their positive attributes, both 

the Tang et al [16] and Xia et al [6] models have not been validated for dynamic types of 

activation which are evident in most athletic maneuvers such as a side step cut [6, 16,

74]. However, these two models provide a simplistic approach to understanding and 

analytically modeling the effects o f fatigue on the force production capabilities o f a 

muscle. Therefore, the application o f these models into a dynamic model o f  fatigue 

should be investigated.

1.4 Musculoskeletal Modeling

Musculoskeletal models are developed to predict specific phenomena that may be 

too costly or difficult to investigate in-situ and may also be used as tools where it is 

impossible to perform certain experiments due to ethical or safety reasons [77]. The use 

o f  musculoskeletal models usually includes some sort o f validation, indirect or direct. 

Indirect validation consists o f comparing one’s results to those o f another study whereas 

direct validation consists o f  comparing one’s results to a previously collected data set. It 

is difficult to directly validate a model as many o f the parameters that are studied using a 

model are difficult to measure in-vivo and therefore, researchers use more o f an indirect 

validation and focus on other variables in the model that are easier to measure 

experimentally [77],

Advances in technology have increased the types o f modeling techniques 

available for use in research o f lower extremity kinematics and risk o f injury. One 

method o f biomechanical analyses used to study joint forces and moments is inverse 

dynamics. Despite the vast amounts o f information that can be obtained through inverse
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dynamics analyses, it is difficult to determine the function or dysfunction of individual 

muscles and establish a cause-effect relationship from kinematic or kinetic data alone 

[78-80]. Dynamic simulations using forward dynamics provide a means o f understanding 

the mechanics o f locomotion that is not possible with motion analysis and inverse 

dynamics alone in understanding novel and hypothetical movements [78, 81]. Through 

the use o f forward dynamics simulations, the effects o f various neuromuscular 

conditions, pathologies, athletic performance, etc. on muscle, jo int forces and kinematics 

can be estimated.

1.4.1 Uses of Musculoskeletal Modeling in the Knee

The knee is a complex joint and was studied using various methods of 

musculoskeletal modeling ranging from finite element modeling [82, 83] to multi-body 

modeling [40, 84, 85], OpenSim (SimTK, Stanford, CA) is an open-source 

musculoskeletal modeling software that allows for simulation o f  various dynamic tasks 

and calculations o f various parameters through the use o f inverse dynamics, inverse 

kinematics and forward dynamics [80], OpenSim was used to understand the effects o f 

various dynamic maneuvers on the ACL strains and loads [37, 40, 86, 87] as well as the 

effects o f these maneuvers on joint mechanics and the risk o f ACL injury [88, 89],

It is important for fatigue to be considered in the formulation o f musculoskeletal 

models that analyze dynamic motions while requiring large amounts o f muscular activity 

because fatigue was shown to alter lower extremity mechanics during athletic maneuvers 

and may increase risk o f injury [7, 9, 33, 50]. However, many multi-body models do not 

consider the effects o f  fatigue in their determination o f muscle forces [90]. Multi-body 

models that incorporate fatigue were developed [90, 91], yet they did not directly validate
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the effects o f fatigue on muscle force production through experimental trials [91]. The 

muscle fatigue model developed by Xia et al [6] was incorporated into an inverse 

dynamic analysis o f  the elbow joint in which a prescribed motion was applied to the joint. 

An increase in the number o f activated motor units was required as muscular force 

production had decreased over time in order to maintain the desired joint motion over a 

prolonged period o f time (~80 seconds) [90], Although the fatigue model was 

successfully applied to a multi-body model, knowing whether or not the fatigue model is 

able to accurately predict the effects o f  muscular fatigue for a non-isometric or dynamic 

activation pattern is still unknown.

1.5 Specific Aims

Two analytical models, Xia et al [6] and Tang et al [16], can predict the effects of 

fatigue using a minimal number o f non-physiologic inputs. Incorporating an analytical 

model, to predict the effects o f fatigue, during a dynamic task such as a side step cut 

would aid researchers in understanding the effects o f fatigue on risk o f  injury. Therefore, 

this study had three specific aims to address the gaps within the literature surrounding the 

effects o f muscle fatigue on risk o f ACL injury.

Aim 1: Develop and validate a 29 degree o f freedom musculoskeletal model 

which incorporates analytical models that can be used to estimate the effects of 

neuromuscular fatigue.

The first aim o f this study will be to investigate the effects of fatigue on the lower 

extremity during a side step cut through development and validation o f a dynamic 

simulation using OpenSim [80], Recreationally active females will be asked to perform 

the side step cut both before and after fatigue while kinematic, kinetic and
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electromyography (EMG) data are collected. Isolated fatigue o f the hamstrings will be 

induced through a modification o f an established isometric fatigue protocol [92], The pre­

fatigue in-vivo data will be used as the inputs to the dynamic simulation. Analytical 

fatigue models [6, 16] will be implemented into the dynamic simulations in order to 

assess the ability o f these models to predict the effects o f fatigue on the lower extremity. 

The results o f the analytical fatigue models will be compared to the post-fatigue 

experimental data. In addition, one analytical model will be determined as the model that 

best estimates the effects o f fatigue for this application.

Hypothesis 1: The Tang et al [16] analytical model will be able to best predict the 

effects o f fatigue as it includes more subject specific parameters.

Aim 2: Determine the effects o f various levels o f fatigue on lower extremity 

muscle forces.

The second aim o f this study will be to determine the effects o f various levels of 

fatigue on lower extremity muscle force production. Forward dynamic simulations will 

be used to determine the effects o f various levels o f fatigue (i.e. 10%, 25%, 50%, 75% 

and 90%) and compare these muscle forces to the pre-fatigue muscle force data.

Hypothesis 2: Hamstrings muscle force producing capabilities will decrease as 

fatigue levels increase.

Aim 3: Determine the effects o f various levels o f fatigue on ACL load.

The third aim of this project is to determine the ACL loading at various levels of 

fatigue (i.e. 10%, 25%, 50%, 75% and 90%).

Hypothesis 3: Peak ACL load will increase as fatigue levels increase.
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1.6 Assumptions of the Study

1. The participant’s starting approach to the side step cut is similar for both the pre- 

and post-fatigue trials.

2. The residual effects o f hamstrings fatigue in other muscle groups (quadriceps, 

gastrocnemius, etc.) are minimal.

3. The musculoskeletal models used to calculate muscle forces and ACL loads will 

provide accurate estimations o f the participant’s anatomical and physiological 

systems.

4. The planar knee model used in the musculoskeletal models with a posterior tibial 

slope o f 0° will provide an accurate estimate o f  knee joint contact forces and 

ACL loads.
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CHAPTER 2 

METHODS

The effects o f an isolated hamstrings fatigue protocol was analyzed using a 

musculoskeletal modeling approach. Kinematic, kinetic and electromyography (EMG) 

data were collected on six healthy, recreationally active females while performing an 

anticipated side step cut using the right lower extremity both pre- and post-fatigue. The 

processed kinematic, kinetic and EMG data were used as inputs into a dynamic 

musculoskeletal simulation using OpenSim [80], Both the Tang et al [16] and Xia et al 

[6] analytical fatigue models were implemented into OpenSim [80] via custom external 

MATLAB (The Mathworks, Natick, MA) routines.

Various tools within the OpenSim [80] software were used to determine muscle 

and joint contact forces for each individual participant while performing the side step cut. 

A 29 degree o f freedom (DOF) model was created for each participant and the right 

lower extremity muscle forces as well as the knee joint contact forces were determined at 

various levels o f neuromuscular fatigue. The muscle and joint contact force data were 

used to calculate ACL loading for that particular participant.

2.1 Participants

This study recruited six healthy, recreationally active females with an age, height 

and mass o f 22.1 ±2.9 years, 1.67±0.04m and 62.8±7.3kg, respectively. Recreationally 

active was defined as participating in activities involving running and cutting (i.e. soccer, 

basketball, tennis, etc.) for a minimum o f 30 minutes at least 3 times a week. A 

background questionnaire was administered to each participant to assess previous injuries
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and health status. This study was approved by the Old Dominion University Institutional 

Review Board. Written informed consent was obtained from each participant prior to 

data collection. Volunteers were accepted for this study if they did not have any type of 

lower extremity injury within 6 months prior to participation and have not had any lower 

extremity surgical reconstruction. A total o f 14 participants were recruited for the study 

yet two participants were unable to complete the study due to physical complications and 

data from six participants were not used to due experimental protocol issues.

The data collection process o f this study consisted o f 2 separate sessions with a 

minimum and maximum o f 7 days and 21 days, respectively, between each testing 

session. There were no restrictions placed on subject activity between testing sessions. 

All testing sessions took place in the Neuromechanics Laboratory at Old Dominion 

University. The first testing session determined the fatigue and recovery coefficients 

needed for the Tang et al [16] fatigue model. The second testing session included 

collection o f in-vivo kinematics, kinetics and electromyography while performing the 

side step cutting task for both the pre-fatigue and post-fatigue conditions. Each o f the 

above testing sessions were conducted for the right lower extremity o f each participant in 

the study. Upon completion o f data collection, the data were processed and implemented 

into a dynamic simulation o f an anticipated side step cut using OpenSim [80]. Each 

simulation included the fatigue models o f  Tang et al [16] and Xia et al [6].

2.2 Experimental Protocol

2.2.1 Test Session 1: Determination of Fatigue and Recovery Protocol

Each participant underwent an isolated hamstrings fatigue protocol in order to 

determine the fatigue and recovery parameters for the hamstrings muscles. There are
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many types o f protocols that have been used to induce isolated muscle fatigue [92-98]. 

Some fatigue protocols require the participant to perform submaximal contractions for a 

prescribed amount o f time [93], while others require the participant to perform a set 

number o f maximal contractions for a particular time period [95]. Other fatigue protocols 

require the participant to produce a required load and consider the participant fatigued 

when they are either not able to hold that pre-determined load for a certain time [94], 

while others consider the participant fatigued when he/she are not able to perform a 

certain number o f  consecutive contractions at the particular load [92, 96-98]. Studies 

have tracked recovery o f muscle groups for several minutes [99-101], hours [3] and even 

days [102] after inducing fatigue.

Participants were provided a 10-minute warm-up period on a stationary bicycle 

followed by self-directed stretching. The participant was seated with their hips and knees 

flexed to 90°. Velcro straps across the torso, waist and both thighs (just proximal to the 

femoral epicondyles) in order to prevent any compensating motion. The fatigue protocol 

was induced using a modified portable fixed dynamometer system (Figure 2-1) [103].

The modified portable fixed dynamometer system included a load cell, in which one end 

was attached to the proximal end o f the malleoli via an ankle strap and the other end was 

attached to a wall mount. The electrical signal produced by the load cell was processed 

and displayed in real-time using the Evaluator Software System (BTE Technologies, 

Hanover, MD). Participants completed a set o f three -  5 second maximum voluntary 

isometric contractions (MVIC), where each repetition was separated by a 30 second rest 

period. The maximum o f the three MVICs was selected as the baseline MVIC. After 

completing the 3 MVICs, each participant was given a 2 minute rest period. Following



the rest period, each participant underwent continuous 5 second MVICs, followed by a 2 

second rest period, until 3 consecutive contractions fell below 25% of the subject’s 

baseline MVIC. Verbal encouragement was provided during the fatigue protocol in order 

to motivate the participant to continuously produce maximal hamstrings muscle force. 

The protocol that was used is a modification o f a previously developed isometric fatigue 

protocol by Bizid et al [92], Originally, the fatigue protocol [92] was used to induce 

quadriceps muscle fatigue, through maximal isometric contraction, where the force 

output o f the three consecutive repetitions fell below 50% o f the measured peak force 

[96, 98],

Figure 2-1: The portable fixed dynamometer system [103] that was modified in 
order to induce fatigue and track recovery

A pilot study, consisting o f 5 male recreationally active males with an age, height 

and mass o f 27.4±5.07years, 1.753±0.09meters and 81.1±41.5kg, respectively, was 

performed in order to determine the fatigue and recovery protocol criterion. The 

observations from the pilot study suggested that each participant be fatigued to 25% o f
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the baseline MVIC. In addition, recovery was tracked for at least 30 minutes and until the 

participant’s maximal effort contraction was at least 80% o f the baseline MVIC. A cut­

off value o f 350 maximal effort contractions during the fatigue protocol was used in order 

to standardize the number o f contractions for each participant. Recovery o f the 

hamstrings muscle was tracked for no more than 60 minutes. In addition, verbal 

encouragement was provided during the recovery protocol.

The recovery curve was generally determined by measuring maximal effort 

contractions from a state o f  total fatigue to no fatigue [16] after fatigue has been induced. 

Therefore, in order to track recovery o f the hamstrings muscle group, the participant was 

asked to produce maximum effort contractions at the following time periods: 30 seconds, 

60 seconds, 90 seconds, 2 minutes, 3 minutes, 4 minutes and in 2 minute periods for at 

least 30 minutes immediately after the fatigue criteria have been met and until the 

participant’s maximal effort contraction was equal to 80% o f the MVIC measured prior 

to the onset o f  the fatigue protocol. Recovery o f the hamstrings muscle was tracked for 

no more than 60 minutes. Once the fatigue and recovery portions o f the data collection 

were completed, the participants were given an opportunity to practice the side step cut.

2.2.3 Test Session 2: In-vivo data collection

The second testing session occurred at least 7 days but no more than 21 days after 

the second testing session to allow for adequate recovery time from the effects o f testing 

session 1. Following a 10 minute warm-up on a stationary bicycle and self-directed 

stretching, EMG electrodes were applied to the vastus medialis oblique (VMO), vastus 

lateralis (VL), rectus femoris (RF), medial hamstrings(MH), lateral hamstrings(LH), the 

medial head o f the gastrocnemius (MG), the lateral head of the gastrocnemius (LG) and
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the tibialis anterior (TA) o f the right leg. All electrodes were placed according to the 

Surface Electromyography for the Non-Invasive Assessment of Muscles (SEN1AM) 

recommendations [104] by locating specified landmarks for the aforementioned muscles. 

All electrode sites were abraded and cleaned with alcohol wipes prior to electrode 

placement. EMG data were collected at 2000Hz using a Delsys Trigno Wireless system 

(Delsys Inc., Boston, MA) with electrodes that were single differential, pre-amplified, 

composed o f 99.9% silver and had a contact area o f 5mm . All electrodes were attached 

using an adhesive skin interface specifically designed for these electrodes.

Seventy four light-reflecting skin markers with a diameter o f 12.7mm were placed 

bilaterally on each participant. The markers that were used for the calibration trials 

(calibration markers) included the acromion processes, medial and lateral humeral 

epicondyles, ulnar and radial styloid processes, iliac crests, greater trochanters, medial 

and lateral femoral epicondyles, medial and lateral malleoli, the head o f the first distal 

phalanges, and the fifth metatarsal heads. Custom made rigid plates with four markers 

(Appendix J) were attached to the thoracic spine, pelvis, bilateral upper arms, forearms, 

thighs, shanks and heels o f  the shoes. Marker trajectories were collected at 200 Hz with 

an 8 camera Vicon motion capture system (Vicon Motion Systems Ltd., Oxford,

England) and ground reaction force (GRF) were collected synchronously at 2000 Hz with 

Bertec force plates (Bertec Corporation, Columbus, OH, USA).

After all EMG electrodes and markers were attached, a standing calibration trial 

was collected. After performing the calibration trial, the participants were allowed to 

practice the side step cut until they felt comfortable with the task. After the practice 

period, the participants were asked to complete 5 anticipated side step cutting tasks [58],
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The approach speed o f the participants were controlled to be 3.8 -  4.2 m s '1. This speed 

range was selected as it was determined that a speed o f 4 m s '1 is ideal for investigating 

knee loading mechanisms during side step cuts in females [105]. A Brower timing 

system (Brower Timing Systems, Draper, UT) was used to control the approach speed. 

Participants were instructed to strike the force plate with their right foot and cut to the 

contralateral side at a 45° angle. Participants completed 5 successful trials o f the 

anticipated cutting task (pre-fatigue cuts). A trial was deemed successful if  the 

participant maintained the approach speed, if  the participant’s entire right foot made 

contact with the force plate and the maneuver was performed correctly by maintaining a 

45° angle upon propulsion from the force plate (Figure 2-2). If a trial was deemed 

unsuccessful, the participants performed that particular trial again. After completion of 

the first five side step cuts, the participants underwent the same fatigue protocol as 

described above, where the hamstrings MVIC were reduced by 75%. Once the fatigue 

protocol was completed, the participants performed another set o f  five side step cuts 

(post-fatigue cuts).
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Figure 2-2: Schematic of the experimental setup used to perform the side step cuts 

2.3 Data Reduction

All raw three dimensional data and GRF data for the side step cutting trials were 

filtered using a fourth order, zero lag, Butterworth filter with cutoff frequencies o f 6 Hz 

and 50 Hz, respectively. A kinematic model composed o f twelve skeletal segments 

(trunk, pelvis, bilateral upper-arms, forearms, thighs, shanks and feet) was created using 

Visual 3D software (5.00.31, C-Motion Inc., Rockville, MD). Hip joint centers were 

placed at one-quarter o f the distance from the ipsolateral to the contralateral greater 

trochanter [106]. Knee joint centers were defined as the midpoint between the medial 

and lateral knee femoral epicondyles and ankle joint centers were defined as the midpoint 

between the medial and lateral malleoli markers. The elbow joint centers were defined as 

the midpoint between the medial and lateral humeral epicondyle markers. The wrist joint 

centers were defined as the midpoint between the ulnar and radial styloid processes. The 

shoulder joint centers were defined as a 2cm vertical shift from the acromion processes.
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The segment coordinate systems were defined to describe position and orientation o f each 

segment using an unweighted least squares procedure [107], Joint angles were 

determined using an inverse kinematics algorithm that minimizes the effect o f the soft 

tissue and measurement error in the experimentally measured marker positions [108],

All raw EMG data were high pass filtered using a 30 Hz zero-lag, 4th order, 

recursive Butterworth filter, then full-wave rectified and low-pass filtered using a 6 Hz 

zero-lag 4th order, recursive Butterworth filter [109], All EMG data for the side step cut 

trials were normalized by the maximum recorded signal for that particular muscle over 

the entire trial so that muscle activity was normalized from zero to one.

Equations for the fatigue and recovery o f the hamstrings muscle group were 

determined for the Tang et al [16] model using the fatigue and recovery data obtained in 

session 1 and the fatigue data obtained in session 2. The fatigue and recovery equations 

for each participant were determined by curve fitting the normalized force data using the 

Levenberg-Marquardt method [110]. The fatigue and recovery equations were 

approximated using exponential equations o f the form y  =  ae^bt\  where a and b were 

the coefficients determined by the Levenberg-Marquardt method and t  was time.

2.4 Musculoskeletal Model

OpenSim v3.1 was used to simulate all side step cutting trials [80]. A twelve 

segment, 29 degree o f freedom (DOF) musculoskeletal model, modified from a previous 

musculoskeletal model [111], was created for each participant and used to create 

computer simulations o f the side step cutting tasks. A full body musculoskeletal model 

[111] was modified in order to simulate the side step cutting task. The pelvis includes 6 

DOFs (i.e. 3 translations and 3 rotations). Both hip joints were modeled using as a ball
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and socket joints (3 DOF), the right knee was modeled using 3 DOFs (i.e. 

flexion/extension, adduction/abduction, internal/external rotation) while the left knee was 

modeled as a 1 DOF revolute joint. Tibiofemoral translations were defined according to 

the knee extensor mechanism proposed by Yamaguchi el a! [112]. Both the right and left 

ankles were modeled as a 1 DOF o f freedom revolute joints [113]. Lumbar motion was 

modeled as a 3 DOF ball and socket joint [114]. Each arm consisted o f 4 DOFs; the 

shoulder was modeled as a ball and socket joint (3 DOFs) [115] and the elbow was 

modeled as a revolute joint (1 DOF). Each model was scaled using experimentally 

measured markers that were placed on anatomical landmarks. The anatomical landmarks 

used for model scaling were the acromioclavicular, elbow, wrist, hip, knee and ankle 

joints.

The right leg o f the model was actuated by 43 muscles [113, 116, 117] while the 

left leg and upper body (torso and arms) were driven by torque actuators. Each o f the 

muscles used were modeled as a three-element muscle in series [118]. Previously 

reported optimal muscle fiber lengths (7™) and pennation angles (a) o f the muscles in the 

model were used [116]. Each individual muscle was composed o f a variety o f  both slow 

and fast twitch fibers. Therefore, maximum shortening velocity (v%{ax) o f all muscles in 

the model was assumed to be 10 I™ • s -1 to model the presence o f mixed fiber types 

within the muscles o f the body [118]. The delay between muscle excitation and 

activation was modeled as a first-order process using values o f  10 and 40 milliseconds for 

activation and deactivation, respectively [118]. The equilibrium musculoskeletal model 

incorporated the damped equilibrium musculotendon model [119]. Musculotendon 

actuators consisted o f an active contractile element connected in series to a passive elastic
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element and an elastic tendon yet singularities in the normalized muscle velocity were 

encountered [119]. The damped equilibrium musculotendon model eliminated 

singularities in normalized muscle velocity by limiting the maximum pennation angle of 

the muscle and adding a damper in parallel to the contractile element o f the equilibrium 

musculoskeletal model. Since the damped equilibrium musculotendon model was free of 

singularities, it generated similar force profiles as previously implemented 

musculotendon models and performed these computations in a fraction o f the time [119].

In order to accurately track the participant’s motion, joint moments were needed 

and these joint moments were calculated using a residual reduction algorithm (RRA)

[80]. The RRA algorithm reduced the amount o f error or difference between the 

experimental and model marker trajectories by applying a set o f  non-physical external 

forces and moments (i.e., residuals) to a body (e.g., pelvis) [120], These residuals were 

averaged over the entire duration o f  the movement and the algorithm recommended 

changes in the model mass properties and slightly adjusted the joint kinematics so that the 

average value o f the residuals throughout the movement was reduced. An external 

optimization routine using the particle swarm optimization (PSO) [121] was used to 

determine the optimal input parameters that would produce a simulation that closely 

tracks the experimental data with minimal residuals.

The particle swarm optimization (PSO) methodology was used to solve non-linear 

functions by implementing a defined swarm size o f 35 in which the optimal solution o f 

this initial swarm was used to determine the next set o f given inputs that were used to 

solve the nonlinear function until an optimal solution was determined [121]. The PSO 

optimization routine was used to determine the weighting factors (wq) o f each o f the 29
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degrees o f  freedom of the musculoskeletal model through a minimization o f the 

difference in error between the experimental and model kinematic trajectories. More 

specifically, the objective function (equation 8) was used to determine a set o f weighting 

factors that minimized the cube root-mean-square (rms) error between the experimental 

and simulated kinematics (qerr) o f the pelvis, with rms error values for the kinematic (W K) 

and residuals (W L), cubed rms o f the qerrover the remaining DOFs (nq) and cubed rms 

magnitude o f the residuals (R) [8, 37].

+ i  ( ^ )  + 1  ( = I B + 1  ( ™  <*<»■ (8)
» =  1 i  — 7  '  IV /  i - n n - 9  V L  '  i =  1

mm

Computed muscle control (CMC) was used to compute muscle forces that were 

required to track the kinematics produced by RRA o f the side step cutting tasks [122,

123] using a closed loop system. The experimental EMG data were used to constrain the 

CMC excitation profiles. EMG data for the vastus lateralis, rectus femoris, vastus 

medialis, tibialis anterior, lateral hamstrings, medial hamstrings, lateral and medial 

gastrocnemii muscles were used to limit the excitation profiles o f these same muscles 

within the musculoskeletal model. CMC used a static optimization problem [124] to 

resolve muscle activation redundancies by minimizing the sum o f the squares o f the 

muscle activations. Both muscle activation and contraction dynamics were accounted for 

in the static optimization [118]. In addition to computing muscle forces, CMC computed 

jo int kinematics that closely resembled those produced by RRA. CMC was performed 

for all o f the experimental pre- and post-fatigue trials. The default isometric strengths of 

the hamstrings muscles in the OpenSim model were reduced by 75% in order to replicate 

the experimental protocol for the post-fatigue trials.
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Upon completion o f CMC, the pre-fatigue CMC excitation profiles were used as 

inputs into both fatigue models in order to predict excitation profiles in which a level of 

10%, 25%, 50%, 75% and 90% fatigue were induced by the analytical models. The 

analytical fatigue models were used in order to determine the effects o f fatigue while 

performing the side step cut. While performing a side step cut, the hamstrings muscles 

do not experience any significant amount o f  recovery (i.e. activation > 0) as the side step 

cut is a dynamic maneuver. Therefore, the participant specific fatigue equations, 

determined from the experimental force vs. time data, from session 2 were used as inputs 

into the Tang et al [16] model. The participant specific fatigue equations from session 2 

were used as this was the muscle force profile during the day o f in-vivo data collection. 

Unlike the Tang et al [16] model, the Xia et al [6] model did not require any subject 

specific parameters.

Forward dynamics (FD) simulations were performed using both fatigue models.

In contrast to CMC, forward dynamics (FD) used an open-loop system to determine joint 

kinematics, kinetics and muscle forces. The outputs o f CMC (i.e. joint kinematics and 

muscle excitations) were used as inputs into the forward dynamics simulations, in which 

the simulations apply the respective fatigued muscle excitation profiles to the model 

without any type o f feedback or correction mechanism. A total o f  10 FD simulations 

were produced for each fatigue condition consisting o f five trials for each o f the two 

fatigue models. Each fatigue model was run from 20ms prior to initial contact and up to 

50ms after initial contact as this is the time period in which non-contact ACL injuries 

were observed to occur [125], The default isometric strengths o f the hamstrings muscles 

were reduced in order to replicate the various levels o f fatigue. Muscle forces were
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determined using FD and used to determine joint contact forces and moments. The 

workflow used in the musculoskeletal modeling portion o f this study is displayed in 

figure J-l.

2.4.1 Determination of Anterior Cruciate Ligament Loading

ACL loading was estimated using methods similar to previous studies [37-39, 86], 

in which total ACL load (ACLTotai) was calculated as the summation o f the sagittal plane 

(ACLs), transverse plane (ACLT) and frontal plane (ACLF) loading (equation 9):

A C L Totai =  AC LS +  A C L T -I- ACLp  ^

The sagittal plane loading o f the ACL was calculated using equation 10 [38, 86] 

in which the tibiofemoral contact force (FTf) was calculated from the net axial knee joint 

reaction (FAxiai), patellar (FPat), hamstrings (Fnams) and gastrocnemius (FGas) forces. The 

patellar force was the summation o f all o f the quadriceps muscle force estimates. The 

tibial slope (cptf) was assumed to be zero degrees in order to match the OpenSim knee 

model. The patellar, hamstrings and gastrocnemius tendon angles were accounted for 

within the muscle force calculations from FD and therefore equation 10 was simplified as 

shown in equation 11. The anteroposterior ligamentous forces (F ug) were calculated 

from the net anteroposterior knee joint reaction force (FAp) (equation 12). Similar to the 

equation used to determine the tibiofemoral contact force, equation 12 was simplified 

into equation 13.
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FAxial ~  F t F ' COS(pTF F p a t  ' c OS(P P a t  ^W ams ' COS^Pnam s F q us  ' COS(PGa.S
(1 0 )

FAxial Fjf  FPat Ff]ams Fqus

Fap ~  Ftf ■ sin(pTF 4- Fpat ■ sin(ppat F^ams ■ siTi(p^aTns +  Fug

Fap Fpat FHams +  Fug

( ID

( 12)

(13)

The sagittal plane ACL force, ACLs, was estimated, using equation 14, as a 

proportion o f the FLig using previous cadaveric knee measurements [8, 12, 37, 126]. In 

equation 14, the ACL load for an applied F ug o f 100N (F ioon) [12] and the ACL load 

without an applied anterior force (F0) [126] were both functions o f  knee flexion (0Knee) 

and were used to determine the ACLs-

A CLS = Fl°°N<idKnef 0 ~N  F° (g*nee) FLig + F0(8Knee) (14)

ACLf and ACLr were estimated as a function o f their respective joint moment 

and the knee flexion angle, as suggested by previous studies [12, 126] and displayed in 

equations 15 -  18.

For adduction moments (MAd):

ACLf = (—7.5003e-ao41M/1D) • 6Knee (15)

For abduction moments (MAb):
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ACLf = (3 .8 0 5 4 e~ °oolMj4B) • 0Knee (16)

For internal rotation moments (M ir ) :

ACLj =  (—27.57e'~0045M,B) • 0Knee 

For external rotation moments (M Er):

(17)

ACLt = (8 .6 4 8 5 e -°  032MBB) • 0Knee (18)

2.5 Data Analysis

2.5.1 Validation of the Analytical Fatigue Models

The hamstrings muscle group within the OpenSim model consisted o f 4 muscles, 

the biceps femoris long head (BFUH), biceps femoris short head (BFSH), 

semimembranosus (S M ) and the semitendinosus (ST). The muscle forces for each o f the 

four combined hamstrings muscles were determined for both the post-fatigue 

experimental data and the fatigue model data using an initial condition o f 75% fatigue 

from 20ms prior to initial contact up to 50ms after initial contact. The post-fatigue 

experimental hamstrings muscle force data were compared to the hamstrings muscle 

forces o f each of the fatigue models through the determination o f the total root mean 

square (R M S ) difference. RMSjang represented the R M S difference between the 

experimental data and the Tang model hamstrings forces. RM Sxia represented the R M S  

difference between the experimental data and the Xia model hamstrings forces. Once the 

model was validated, one fatigue model was selected as the model that best estimates the 

effects o f hamstrings fatigue. This was done by selecting the model with the lowest total 

R M S value, assuming that one or more model produced reasonable R M S differences.
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In addition, the numbers o f contractions to fatigue as well as the baseline MVIC 

values during the fatigue protocol from sessions one and two were analyzed in order to 

determine the differences in maximal voluntary isometric contraction force and the 

number o f trials required to achieve 75% hamstrings muscle fatigue. These variables 

were compared using a paired t-test, where alpha was set a priori at the 0.05 level. The 

statistical analysis was conducted using Microsoft Excel 2010 (Microsoft Inc., Redmond, 

WA).

2.5.2 Determination of Lower Extremity Kinematics, Kinetics and ACL

Loading Across Various Levels of Fatigue

The selected fatigue model was used to test the effects o f various levels of 

hamstrings fatigue on muscle force production, knee joint contact forces, lower extremity 

kinematics, knee jo int moments and ACL loading from 20ms prior to initial contact up to 

50ms after initial contact. The effects o f  fatigue on muscle force production, knee joint 

contact forces, lower extremity kinematics, knee joint moments and ACL loading were 

analyzed similar to previous studies [8, 37], Peak ACLjotai was determined for each 

subject at each level o f fatigue and compared across all fatigue levels. In addition, the 

planar components o f the ACLiotai, the total quadriceps, hamstrings, gastrocnemius 

muscle forces, knee joint contact forces and knee joint moments at peak ACLTotai were 

compared across all fatigue levels. All o f  the dependent variables were compared using 

repeated measures ANOVA, where alpha was set a priori at the 0.05 level. Effect sizes 

were reported as partial eta squared (q^) where a small, medium and large effect sizes

were classified as 0.02, 0.13 and 0.26, respectively. The statistical analyses were 

conducted using SPSS Statistics (v21, IBM Corporation, Armonk, NY).



39

CHAPTER 3 

RESULTS

Experimental kinematic data were compared to the torque-driven kinematics 

estimated by R R A , by determining the average R M S differences in the residual forces 

and torques as well as all 29 degrees o f freedom o f the musculoskeletal models [8, 37], 

The R R A  kinematic data were also compared to the muscle-actuated kinematics 

produced by C M C . The R M S differences between both fatigue models and the 

experimental hamstrings muscle force were 1.91 N kg"1 and 1.88 N kg '1, for RMStang and 

RM Sxia, respectively. Lower extremity kinematics predicted by the Xia et al [6] fatigue 

model were compared to the experimental post fatigue kinematic data in order to assess 

this fatigue m odel’s ability to estimate kinematic data. R M S differences between the 

post-fatigue experimental and Xia fatigue model predicted kinematic data ranged from 

0.74°- 11.8°.

Although peak A C L Totai increased with fatigue these changes in peak ACLjotai 

were not significantly affected by hamstrings fatigue. Similarly, all three planar 

components o f  A C L  loading experienced non-significant changes as an effect o f fatigue. 

Total quadriceps, hamstrings and gastrocnemius muscle forces experienced significant 

differences due to fatigue. Knee joint extension moments were significantly increased 

due to fatigue. Hip joint sagittal and frontal plane rotations, knee joint sagittal and 

transverse rotations as well as ankle joint sagittal plane rotation, predicted by the Xia et al 

[6] model, experienced significant changes due to fatigue.
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3.1 Experimental and Computed Data

The experimental kinematic data were compared to the RRA computed kinematic 

data for the lumbar, pelvis and right lower extremity (Figures 3-1 and 3-2). The mean 

RMS differences over a time frame o f 20ms prior to and 50ms after initial contact for 

both the pre- and post-fatigue kinematic tracking had an average RMS difference of 

1.51°, 0.77° and 0.16°, respectively (Table A -l). Average RMS differences between the 

RRA and CMC kinematic data at the lumbar, pelvis and right lower extremity were 

tracked with an average RMS difference o f 0.16°, 0.13° and 1.41°, respectively (Table 

A-2). Experimental pre-fatigue EMG data (Figure 3-3) for the VL, RF, VMO, TA, MFI, 

LH and MG are compared to EMG data o f a previous study [127].
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Figure 3-1: Mean pre-fatigue experimental (solid line) and RRA computed (dashed 
line) kinematics for the anticipated cutting task
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Figure 3-3: Experimental EMG data (dashed line) compared to EMG data collected 
by Neptune etal. (127) (shaded area) for an anticipated cutting task

3.2 Analytical Fatigue Model Validation

The number o f repetitions needed to achieve hamstrings fatigue as well as the 

maximal contraction force in testing sessions 1 and 2 were analyzed using t-tests, where 

alpha was set a priori at the 0.05 level. In the first testing session, the group achieved an 

average o f 251±127 repetitions while in the second testing session the group achieved an 

average o f 70±51 repetitions. The overall number o f repetitions needed to achieve 

hamstrings fatigue were found to be significantly different (p<0.01). The overall
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maximal contraction force between testing session one (49.7±11.1 lbs.) and testing 

session two (39.9±9.96 lbs.) were similar (p>0.05). Fatigue and recovery curves from 

sessions one and two are presented in Appendix B.

The hamstrings muscle forces produced by the Tang et al [16] and Xia et al [6] 

fatigue models at an initial level o f  75% fatigue were compared to the experimental post­

fatigue hamstrings muscle force data. The total R M S differences between both the Tang 

(RM Sjang) and Xia (R M S Xia) fatigue models and the post-fatigue experimental data were 

calculated and used to determine the fatigue model that more closely predicts fatigued 

behavior. The total RMSjang and RM Sxia values were 1.91 N k g ’1 and 1.88 N kg '1, 

respectively (Table 3-1). The Xia fatigue model produced the most similar hamstrings 

forces when compared to the experimental data. Therefore, for this study, the Xia fatigue 

model was selected to estimate the effects o f fatigue. The force predicted by both fatigue 

models as well as the experimental data o f each o f the muscles within the hamstrings 

group were plotted (Figures C-l -  C-4). The semitendinosus and semimembranosus 

demonstrated the smallest (0.14 N k g 1) and largest (0.86 N k g 1) R M S differences, 

respectively, when compared to the experimental data. Post-fatigue experimental 

kinematic data were compared to the kinematic data produced by the Xia fatigue model 

(Table 3-2). R M S differences ranged from 0.74° - 11.8° with knee adduction/abduction 

and hip flexion extension demonstrating the smallest and largest R M S differences, 

respectively.
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Table 3-1: The muscle forces (N-kg'1) of each of the hamstrings muscle 
(meanist.dev.) of the experimental data were compared to those forces predicted by 
the Tang and Xia fatigue models at the 75% fatigue level. The RMS difference was 
calculated between the post-fatigue experimental and fatigue model muscle forces.

Pre-
Fatigue

Post-
Fatigue

Tang Xia RMSyang R M Sxia

Biceps Femoris 13.1±3.86 3.22±0.80 3.51±0.70 3.23±0.97 0.36 0.18
Long Head

Biceps Femoris 10.0±1.71 2.49±0.45 0.329±0.20 0.64±0.28 0.38 0.70
Short Head

Semimembranosus 12.6±7.25 2.63±1.48 3.70±1.53 3.46±1.71 1.07 0.86

Semitendinosus 5.37±1.79 1.27±0.39 1.26±0.45 1.22±0.51 0.10 0.14

Total 1.91 1.88

Table 3-2: Post fatigue lower extremity kinematics (degrees) are compared 
(mean±st.dev.) to the kinematics produced by the Xia fatigue model. RMS 
differences were calculated for each degree of freedom.

Post-Fatigue Xia Fatigue Model RMS Difference

Hip

Flexion/Extension 40.2±0.17 52.0±0.97 11.8

Adduction/Abduction -5.61±1.25 -8.74±1.02 3.85

Rotation 8.90±2.44 8.26±0.83 1.86

Knee

Flexion/Extension -32.2±8.33 -30.9±2.80 5.67

Adduction/Abduction -3.18±0.41 -2.48±0.24 0.74

Rotation -0.27±3.69 -0.26±4.46 0.77

Ankle Dorsi/Plantarflexion -5.71±2.67 -5.36±2.04 0.79
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3.3 Analytical Fatigue Model Testing

The Xia et at [6] fatigue model was used to test the effects o f various levels o f 

hamstrings fatigue on total muscle force production and peak A C L  load. The total 

quadriceps (Figure 3-4), hamstrings (Figure 3-5) and gastrocnemius (Figure 3-6) muscle 

forces were significantly altered (p< 0.05) due to various levels o f hamstrings fatigue 

(Table 3-3). The force output o f each individual hamstrings muscle significantly 

decreased as an effect o f fatigue (Table 3-4). The timing o f  the peak ACLT0tai loading did 

not significantly differ as hamstrings fatigue increased (Table 3-5). Although peak 

ACLjotai loading (Figure 3-7) increased, these changes were similar (p>0.05) across all 

fatigue levels despite a moderate effect size (i]p =  0.19). The changes in all three planar 

components o f  A C L  loading (Figures D -l — D-3) were similar across all fatigue levels 

(p>0.05). The peak A C L Totai loading across the analyzed time frame increased by 2.2% 

(0.19 N kg '1) at the 90% fatigue level. Both the ACLs and ACLf loading decreased by 

1.7% (0.11 N kg '1) and 6.1% (0.08 N k g 1), respectively, at the 90% fatigue level. The 

ACLt  loading increased by 54.1% (0.39 N kg '1) at the 90% fatigue level

Tibiofemoral contact forces (Figures F-l -  F-2) at peak ACLjotai loading 

did not exhibit any significant effects (p>0.05) due to fatigue (Table 3-6). Sagittal plane 

knee extension moment demonstrated significant increases (p<0.001) due to hamstrings 

fatigue. Hip flexion and abduction as well as knee extension and internal rotation 

exhibited significant increases due to fatigue (Table 3-7). Ankle sagittal plane rotation 

demonstrated a main effect due to fatigue (p=0.04) yet post-hoc analyses did not reveal 

significant changes between fatigue levels. The partial eta squared value (r\p = 0 .19) 

obtained from the repeated measures ANOVA performed on the peak ACLjotai data was
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used to perform a post-hoc power analysis o f this study. The power o f this study was 

determined to be 53% and therefore, it is suggested that this current study is unpowered.



Table 3-3: Descriptive statistics (mean±st.dev.) for the total quadriceps, hamstrings and gastrocnemius muscle forces (IV kg'1) 
for various fatigue levels

Pre-Fatigue 10% Fatigue 25% Fatigue 50% Fatigue 75% Fatigue 90% Fatigue p-value

Quadriceps
Hamstrings1

Gastrocnemius

117.1±11.5 
26.8±5.63 
12.9±12.3

114.6±11.1* 
23.3±3.01 
13.7±12.3*

115.6±17.1
19.4±2.55
15.7±11.9

108.2±16.4C
13.6±2.33

18.0±11.8*’bc

98.9±15.5“'t>cd
7.19±1.97

20.5±12.0a'bcd

93.0±15.3*
2.91±1.15
21.8±12.2*

<0.001
<0.001
<0.001

0.70
0.91
0.63

a indicates muscle force is significantly different compared to pre-fatigue level (p<0.05) 
b indicates muscle force is significantly different compared to 10% fatigue (p<0.05) 
c indicates muscle force is significantly different compared to 25% fatigue (p<0.05) 
d indicates muscle force is significantly different compared to 50% fatigue (p<0.05)
e indicates muscle force is significantly different compared to pre-fatigue and all other fatigue levels (p<0.05) 
f  indicates all muscle forces are significantly different compared to each other (p<0.05)

Table 3-4: Average (meanest.dev.) hamstrings muscle forces (N k g1) for various fatigue levels

Pre- 10% 25% Fatigue 50% Fatisue 75% Fatigue 90% p-\alue n5
Fatigue Fatigue Fatiaue

Biceps Femoris 8.78±3.80 8.14±3.38a 6.38±2.35 4.4i±1.42aJ>c 2.13±0.58a>cd 0.77±0.19e <0.001 0.82
Long Head

5.54±0.88a'b 3.16±0.36a‘bc 1.19±0.21!LbcdBiceps Femoris 8.25±1.98 7.l2±1.50a 0.37±0.09e <0.001 0.94
Short Head

1.46±0.93*bcdSemimembranosus 4.47±2.74 4.36±2.79 3.44±2.40 2.69±1.89c 0.58±0.36* <0.001 0.65
Semitendinosus 3.32il.21 2.96±1.05a 2.29±0.78a’b 1.48±0.52a-bc 0.70±0.27ibcd 0.26±0.11e <0.001 0.88

a indicates muscle force is significantly different compared to pre-fatigue (p<0.05) 
b indicates muscle force is significantly different compared to 10% fatigue (p<0.05) 
c indicates muscle force is significantly different compared to 25% fatigue (p<0.05) 
d indicates muscle force is significantly different compared to 50% fatigue (p<0.05)
e indicates muscle force is significantly different compared to pre-fatigue and all other fatigue levels (p<0.05)
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Table 3-5: Group average (mean±st.dev.) time, sagittal (ACLs), frontal (ACLf) and transverse (ACLt) load values at peak 
ACLxotai load

Pre-
Fatigue

10%
Fatigue

25%
Fatieue

50%
Fatieue

75%
Fatieue

90%
Fatigue

p-value 4

Peak AC'Liotai time (ms) 37.8±13.6 37.8*13.6 41.1*13.6 41.4*13.8 41.4*13.8 41.4*13.8 0.41 0.17
Peak ACLxotai (N-kg ) 8.38*2.65 

Planar ACL Components (N*kg4)
8.39=2.66 8.39*2.66 8.47*2.76 8.54*2.87 8.57*2.94 0.33 0.19

ACLs 6.34*2.06 6.31=2.10 6.49*2.30 6.37*2.39 6.28*2.48 6.23*2.53 0.83 0.07
ACLf 1.31*1.38 1.36*1.38 1.03*0.40 1.14*0.32 1.19*0.13 1.23*0.15 0.96 0.03
ACLt 0.72*0.47 0.72*0.47 0.86=0.42 0.96*0.53 1.06*0.78 1.11*0.96 0.54 0.14

Table 3-6: Effects of fatigue on average (mean±st.dev.) tibiofemoral contact forces and knee joint moments at peak 
ACLxotai load

Pre-Fatigue 10% Fatigue 25% Fatigue 50% Fatigue 75% Fatigue 90% Fatigue p-value 4
Tibiofemoral Contact Forces (N*k g1)

Shear -7.25*1.97 -7.11*1.99 -7.70*2.66 -7.33*2.69 -6.98 ±2.69 -6.79*2.69 0.69 0.10
Compressive 2.06*4.0 2.07*3.94 3.37*4.79 3.59*4.87 3.82*4.97 3.97*5.04 0.29 0.20

Knee Joint Moments (Nnrkg'1)
Sagittal 1.96*1.06 2.06*1.08* 2.56*0.88 2.81*0.9 7C 3.03*1.06“  d 3.15*1.11* 0.001 0.56
Frontal -0.25*0.70 -0.25*0.70 -0.37*0.45 -0.36*0.44 -0.40*0.42 -0.42*0.39 0.29 0.20

Transverse -0.09*0.18 -0.08*0.17 -0.15*0.14 -0.15*0.16 -0.15*0.18 -0.15*0.19 0.86 0.06
a indicates joint moment is significantly different compared to pre-fatigue (p<0.05) 
b indicates joint moment is significantly different compared to 10% fatigue (p<0.05) 
c indicates joint moment is significantly different compared to 25% fatigue (p<0.05) 
d indicates joint moment is significantly different compared to 50% fatigue (p<0.05)
e indicates joint moment is significantly different compared to pre-fatigue and all other fatigue levels (p<0.05)

C/i



Table 3-7: Xia fatigue model average (mean±st.dev.) predicted kinematics (degrees) for the hip, knee and ankle joints at peak 
AC'L load. Positive joint angles represent hip flexion, adduction and internal rotation; knee flexion, adduction and internal 
rotation; and ankle dorsiflexion

Pre-Fatigue 10% Fatigue 25% Fatigue 50% Fatigue 75% Fatigue 90% Fatigue p-value n i
Hip

Sagittalf 49.3±17.0 49.7il7.1 50.6il7.5 51.9il7.9 53.3il8.4 54.2±18.7 <0.001 0 74
Frontal -9.44±5.32 -9.57i5.301 -10.0 i5.50 -I0.4i5.41^ -10.7i5.251’'wi -10.9i5.19* <0.001 0.67

Transverse 8.62±16.5 8.65±16.5 8.30il5.7 8.40il5.7 8.54il5.7 8.62il5.7 0.76 0.09
Knee

-34.3i4.85lbc"1Sagittal -44.1±7.36 -42.6i6.861 -41.6i7.17 -37.8i5.93lbc -32.4i4.43* <0.001 0.79
Frontal -3.28±6.14 -3.16i6.01 -3.11i5.93 -2.95i5.62 -2.93i5.30 -2.96i5.12 0.88 0.064

Transverse 4.09±3.91 4.28i3.861 4.79i3.761 5.26i3.581'bc 5.62i3.48ibcJ 5.81i3.46* <0.001 0.78
Ankle

Sagittal -4.82±10.3 -4.77il0.3 -4.27il0.6 -4.13il0.6 -4.08il0.7 -4.06il0.7 0.04 0.35
a indicates rotation is significantly different compared to pre-fatigue (p<0.05) 
b indicates rotation is significantly different compared to 10% fatigue (p<0.05) 
c indicates rotation is significantly different compared to 25% fatigue (p<0.05) 
d indicates rotation is significantly different compared to 50% fatigue (p<0.05)
e indicates rotation is significantly different compared to pre-fatigue and all other fatigue levels (p<0.05) 
f  indicates all rotations are significantly different when compared to pre-fatigue and all other fatigue levels(p<0.05)

IT.4̂
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CHAPTER 4 

DISCUSSION

Two analytical fatigue models were implemented into a 29 DOF musculoskeletal 

model and validated using experimental data. It was hypothesized that the Tang et al

[16] model would better estimate the effects o f fatigue due to the subject specific nature 

o f the analytical model. The second purpose o f this study was to determine the effects of 

various levels o f hamstrings fatigue on lower extremity muscle forces. The second 

hypothesis stated hamstrings force producing capabilities would decrease as hamstrings 

fatigue increased. The third purpose o f this study was to determine the effects o f various 

levels o f hamstrings fatigue on ACL load. It was hypothesized that peak ACL load 

would increase as hamstrings fatigue increased.

4.1 Comparison of Analytical Fatigue Models

The analytical fatigue models by Tang et al [16] and Xia et al [6] were compared 

to the experimental muscle force data in order to determine which analytical fatigue 

model was the most accurate. The Xia et al [6] and Tang et al [ 16] models produced 

similar RMS differences compared to the experimental kinematics at 1.88 N kg '1 and 

1.91 N k g '1, respectively. Therefore, the Xia et al [6] model was chosen to test the 

effects o f fatigue due to its ease o f use (i.e. general fatigue and recovery paramters). 

While the Xia et al [6] model was chosen, the similar RMS difference observed with the 

Tang et al [16] model suggests that both models have similar abilities in estimating the 

effects o f fatigue and further analysis o f  both models with a larger sample size is 

recommended.
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Lower extremity kinematic data produced by the Xia et al [6] model were 

compared to the post-fatigue experimental kinematic data by determining the RMS 

differences between the experimental and fatigue model estimated kinematic data. Knee 

sagittal plane rotation demonstrated an RMS difference o f 5.67° when compared to the 

post-fatigue experimental data. Both the knee frontal and transverse plane rotations 

demonstrated RMS differences o f less than 1°. Both heads o f the gastrocnemius, 

sartorius and gracilis muscles are considered the most important muscles in knee flexion 

while performing long-range, fast types o f movements [128]. In this study, the sartorius 

and gracilis muscle activations were not constrained using experimental EMG data, as 

was done with the hamstrings and gastrocnemius muscles and may therefore account for 

the large differences in knee sagittal plane rotation.

The muscle forces and kinematics predicted, in this study, by the Xia et a l [6] 

model provided an estimation o f the effects o f fatigue for a complex task, such as the side 

step cut, at a known level o f fatigue. The Xia et al [6] fatigue model was previously 

validated for isometric tasks at various loading conditions and was used to estimate the 

effects o f peripheral fatigue. Athletic activities, which involve landing, running, etc., 

may induce central fatigue in addition to peripheral fatigue [129], The isolated 

hamstrings fatigue protocol used in this study may have induced central fatigue within 

the participants as voluntary force generation can be limited due to inhibitory effects 

within the central nervous system [130-132] despite strong verbal encouragement [43], 

Central fatigue may affect knee dynamics by increasing the chance o f errors in placement 

o f  the lower extremity upon landing, as knee valgus loading was found to be dependent 

on lower extremity position at initial contact [133]. Estimation o f  central fatigue was not
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included in the Xia et aI [6] fatigue model when estimating muscle forces and the results 

in this study may be limited by the lack o f estimation o f central fatigue.

4.2 Muscle Force Estimations

Estimations o f in-vivo muscle forces are difficult to perform yet the use of 

musculoskeletal modeling software provides an ability to estimate muscle forces under 

various conditions. Quadriceps, hamstrings and gastrocnemius muscle forces were 

estimated under various levels o f hamstrings fatigue while performing the side step cut. 

Hamstrings muscle force production exhibited significant decreases as an effect o f 

fatigue and confirmed the hypothesis o f aim two. Hamstrings muscle force decreased by 

89% (23.8 N kg '1) at the 90% fatigue level. The role o f  the knee stabilizers (i.e. 

quadriceps, hamstrings and gastrocnemius) and the torque generating abilities o f these 

muscle play an important role in injury prevention [134], Large decreases in hamstrings 

muscle forces, predicted by the Xia et al [6] model, may suggest that hamstrings fatigue 

decreases knee joint stability [59, 134] as one function o f the hamstrings muscle is to 

prevent tibial rotation [57] and translation [59], The decreased hamstrings muscle 

activation during this time period may suggest a reduction in force producing capabilities 

and may place the hamstrings muscle at a mechanical disadvantage (i.e. decrease in knee 

stability) during a side step cut. Decreased hamstrings muscle force may increase 

anterior tibial translation [59, 137] and shear loading o f the ACL [59], which may 

increase the risk o f  ACL injury as fatigue levels increase [135, 136].

The quadriceps muscle group experienced significant decreases in force 

producing capabilities. Quadriceps muscle force decreased by 20.5% (24.1 N kg '1) at the 

90% fatigue level. An overall decrease in hamstrings muscle force, as demonstrated by
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the participants in this study, may reduce the force needed by the quadriceps muscle to 

extend the knee joint, in order to perform the side step cut as the knee extensors are used 

to eccentrically decelerate the body’s center o f mass upon landing [127]. The quadriceps 

muscle activation, prior to initial contact and throughout the braking phase o f the side 

step cut, was found to be higher than that o f the hamstrings muscle activation [135, 136], 

Despite a decrease in the hamstrings to quadriceps ratio, the quadriceps may still produce 

a large enough force to cause an increase in the anterior shear force as the fatigued 

hamstrings muscle is unable to produce a posterior shear force on the tibia [7] and 

therefore, the hamstrings muscle is unable to counteract the quadriceps muscle force and 

prevent excess tibial translation.

The gastrocnemius muscle demonstrated a significant increase in force production 

across multiple levels o f fatigue. Gastrocnemius muscle force increased by 69%

(8.9 N k g '1) at the 90% fatigue level. The gastrocnemius acts as a secondary knee flexor 

and contributes to knee joint stability [138], Therefore, an increase in gastrocnemius 

muscle force may suggest a compensatory mechanism for knee jo int stability, thereby 

attempting to reduce the effects o f hamstrings fatigue on knee jo in t stability and 

ACL load.

4.3 ACL Load Estimations

The time point at which peak ACLiotai loading occurs was similar across the 

various fatigue levels. Peak ACLjotai loading did not demonstrate significant increases as 

an effect o f hamstrings fatigue, thereby nullifying the hypothesis o f aim 3 with the 

current sample size. The sagittal, frontal and transverse A C L  loading contributed 73%, 

14% and 13%, respectively, to the peak ACLjotai loading at the 90% fatigue level.
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Significant increases in peak ACL load, sagittal and frontal plane ACL load were 

exhibited by recreationally active female athletes while performing an anticipated side 

step cut after submaximal hamstrings fatigue [8]. Peak, sagittal and transverse plane 

ACL loads [8] were similar to the present study, yet the frontal plane ACL loads were 

different (Table 4-1).

Table 4-1: Peak and planar ACL loads (IN-kg'1) obtained in this study compared to 
those by Weinhandl et al [8] at 75% hamstrings muscle fatigue. The planar 
components of the ACL load were determined at the time point when peak ACL 
load occurred.

Current Study Weinhandl et al [8]

Peak ACL Load 8.54±2.87 13.3±3.5

Sagittal Plane ACL Load 6.28±2.48 8.82±3.03

Frontal Plane ACL Load 1.19±0.13 3.39±0.88

Transverse Plane ACL Load 1.06±0.78 1.10±0.48

Similarities and differences existed between both the experimental and 

computational modeling aspects o f the present study and the study by 

Weinhandl et a l [8]. The participants in this study shared similar athletic profiles, 

performed the anticipated side step cut at a similar speed and were subjected to a similar 

level o f submaximal hamstrings fatigue (75% fatigue) as the athletes in the Weinhandl et 

al [8] study. The present study used an isometric hamstrings fatigue protocol while the 

Weinhandl et a l [8] study used an isokinetic hamstrings fatigue protocol and may elicit 

different effects on the hamstrings muscle force producing capabilities. Differences in 

neural signals exist between concentric and isometric endurance protocols [139].
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Specifically, integrated EMG (IEMG) during the isometric protocol decreased yet the 

IEMG signal was maintained or increased during the concentric protocol when compared 

to the pre-fatigue state [139], Thereby, suggesting a decrease [47] and increase [140], in 

the isometric and concentric neural drive to peripheral muscle, respectively. The 

musculoskeletal models developed in this study used generic maximum isometric 

strengths whereas the models used in the Weinhandl et al [8] study used subject specific 

strength parameters. Six participants were used in this study, 17 participants were used in 

the Weinhandl et al [8] study. In this study, experimental EMG data were used as inputs 

to the analytical fatigue model in order to estimate “fatigued” activations which were 

used to constrain activations o f the hamstrings muscles in the musculoskeletal models. 

Excitations o f the hamstrings muscles were not constrained in the previous study [8] 

when developing their musculoskeletal models. Using EMG data to constrain the 

excitation profiles o f the hamstrings muscles may help provide a more accurate estimate 

o f the timing and intensity o f hamstrings muscle activations while performing the side 

step cut. In addition, the study by Weinhandl et al [8] reduced the hamstrings muscle 

maximum isometric strengths o f their musculoskeletal models in order to represent a 

fatigued state. Finally, the posterior tibial slope used in this study to calculate ACL load 

was 0° and was different than the posterior tibial slope o f 8.5° used in previous studies [8, 

37, 38, 86], A sensitivity analysis where the posterior tibial slope was varied 

incrementally was found to have a large influence on ACL loading [130], Specifically, 

increases in posterior tibial slope increased the ACL loading while decreases in posterior 

tibial slope decreased ACL loading [130], This difference in posterior tibial slope may
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cause a difference in ACL loading estimations between this study and the Weinhandl et 

al [8] study.

4.4 Knee Joint Kinematics and Kinetics

Tibiofemoral shear contact force was not significantly affected by hamstrings 

fatigue. If  an increase in the shear contact force at peak ACL jotai occurred in this study, it 

could be suggested that more o f an anterior force on the tibia was applied, thereby 

placing a larger amount o f  stress on the ACL. The hamstrings muscle acts on the tibia by 

providing a posterior shear force in order to prevent anterior translation [7], Shear 

tibiofemoral contact force decreased as an effect o f  hamstrings fatigue and led to an 

increase in sagittal plane ACL loading [8]. These differences in tibiofemoral contact 

forces may be due to the use o f different posterior tibial slopes (0° vs. 8.5°) between this 

study and the Weinhandl et al [8] study. Chappell et al [7] suggested that fatigue of the 

hamstrings muscle reduces the angle between the hamstrings and tibia, thereby increasing 

anterior shear force. Despite a decrease in quadriceps muscle force, the quadriceps 

muscle may have produced an increase in the anterior shear force as the quadriceps 

muscle is producing a large enough force to cause anterior tibial translation. The athletes 

in this study exhibited a decrease in knee flexion, due to fatigue, which may suggest an 

increase in ACL loading [141, 142], An increase in the gastrocnemius muscle force, as 

fatigue levels increased, may suggest a compensatory mechanism for the fatigued 

hamstrings muscle. The increased gastrocnemius muscle force provided additional joint 

stability, limited anterior shear force and tibial translation despite fatigue and thereby 

decreased the sagittal plane ACL load.
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Frontal plane ACL loading did not demonstrate significant effects due to 

hamstrings fatigue. Conversely, frontal plane ACL loading significantly increased as an 

effect o f hamstrings fatigue and was due to an increase in the knee abduction moment at 

peak total ACL loading in a previous study [8]. In the present study, the knee abduction 

moment did not increase due to fatigue, unlike previous studies which suggest an increase 

in knee abduction moment may increase frontal plane ACL loading [7, 8, 143], 

Additionally, the participants in this study, similar to previous studies [33, 50, 55], 

demonstrated increased knee extension and internal rotation [33, 50, 55] as an effect o f 

fatigue. An increase in knee extension and internal rotation lead to a more erect and 

internally rotated lower extremity and have been suggested to increase ACL loading [7, 

12]. Despite the similarities, it is difficult to compare the results o f this study to previous 

studies as previous studies that analyzed the effects o f fatigue on side step cutting [33, 50, 

55] used a general fatigue model compared to the isolated fatigue model used in this 

study. General fatigue o f the knee joint was found to significantly alter joint 

proprioception without a reduction in torque producing capabilities o f the knee extensors 

and flexors yet local fatigue demonstrated the opposite effect on the knee joint [144],

The torque producing capabilities o f  the hamstrings muscle, in this study, were reduced 

as the hamstrings muscle force was decreased as an effect o f fatigue. Also, ankle joint 

sagittal plane rotations demonstrated a significant main effect o f fatigue yet the post-hoc 

analyses did not exhibit any significant differences due to the current study being 

unpowered. Peak ACL loading data from Weinhandl et al [8] was used to perform a 

power analysis which revealed that a minimum of 11 participants were needed in order to 

obtain a power of 80% in this study.
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4.5 Limitations

The experimental limitations o f this study involved the protocol used to induce 

fatigue, the use o f an anticipated cutting task, recreational athletes and a minimal number 

o f subjects. An isokinetic hamstrings fatigue protocol, as used in a previous study [8], 

may better represent the type o f fatigue and muscle activations that are present in an 

athletic event (i.e. soccer, basketball, etc.). An isometric protocol was chosen as to limit 

the effects o f residual fatigue on the surrounding musculature o f the lower extremity. 

Additionally, this study required a precise measurement o f hamstrings force producing 

capabilities in order to predict the effects o f fatigue and therefore, an isometric protocol 

provided the best approach to obtaining these precise force measurements. An 

anticipated side step cut was used in this study as to limit the number o f variables 

involved in the effects o f  hamstrings muscle fatigue yet the anticipated task may not 

closely simulate an athletic competition and cause differences in results between studies. 

Task anticipation had different effects on lower extremity mechanics [31, 33] and when 

combined with fatigue, unanticipated tasks had a more pronounced effect on lower 

extremity mechanics [33], Therefore, additional studies should be performed to 

understand the effects o f fatigue on task anticipation. The athletes used in this study were 

recreational athletes and may exhibit differences in lower extremity loading patterns 

compared to more experienced (i.e. collegiate, etc.) athletes. Experience level was found 

to directly correspond to a lower degree o f knee joint variability and may have a large 

impact on ACL injury risk during side step cutting [58], Six participants were used in 

this study and did not provide an adequate subject pool to determine accurate effects o f 

fatigue on ACL loading, as a post-hoc power analysis revealed a power o f approximately
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50% in the current study. In the future, similar studies should be performed using a 

larger number o f participants, a more experienced athletic population and an isokinetic 

fatigue protocol in order to estimate the effects o f fatigue on ACL loading. In addition, 

the fatigue models could be tested for use in estimating the effects o f a generalized 

fatigue protocol. Current research [7, 9, 10, 33, 50, 51, 55] use general fatigue protocols, 

in order to replicate the types o f fatigue that an athlete may be exposed to during an 

athletic event and it may be beneficial to determine whether or not the Xia et al [6] and 

Tang et al [16] are capable o f estimating the effects o f a more generalized fatigue 

protocol.

Physiological inputs used in determining muscle forces and ACL loading within 

the musculoskeletal models may have affected the results o f this study. This study used a 

posterior tibial slope o f 0° compared to other studies that used a slope o f 8.5° [8, 38, 86, 

145], In the future, subject-specific geometry obtained from medical imaging techniques 

should be incorporated into a similar musculoskeletal model to determine the effects o f 

fatigue on ACL loading. Subject-specific geometry will allow for a better representation 

o f  the posterior tibial slope and a more accurate estimation o f ACL loading.

Additionally, subject-specific isokinetic strength values should be used to scale the 

default maximum isometric muscle forces o f the musculoskeletal models similar to 

Weinhandl et al [8, 145] as these strength values may affect the estimation o f muscle 

forces and ACL loading. The maximum isometric forces o f  the muscles within the 

musculoskeletal model are based off o f a cadaveric data set [70] and therefore, may have 

affected the accuracy o f the analytical fatigue models in estimating the forces o f fatigue.
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Both the Xia et al [6] and Tang et al [16] fatigue models were validated for 

isometric tasks yet were used in this study to estimate the effects o f fatigue during a 

dynamic task. Further studies should be conducted in order understand and possibly 

validate the use o f these analytical models to estimate the effects o f fatigue during 

dynamic tasks. The Xia et al [6] model incorporated generic parameters, based upon 

previous work [74], in order to estimate the effects o f fatigue while the Tang et al [16] 

model required subject specific parameters (i.e. fatigue and recovery curves) and 

therefore, due to its subject specific nature, the Tang et at [16] model may be prone to 

variability in estimation o f the effects o f  fatigue. In this study, the fatigue curve from the 

second testing session was used rather than the fatigue curve determined in the first 

testing session as the overall maximal voluntary isometric contraction force o f the 

hamstrings muscle o f  the group were similar between both testing sessions. Future 

studies should be performed to determine the inter-day variability in determination o f 

fatigue and recovery parameters o f the hamstrings muscle. The variability between the 

use o f fatigue and recovery curves from different testing sessions should be studied as it 

will help determine the sensitivity o f  the analytical fatigue models. In addition, future 

studies should compare the estimations o f  ACL loading between both fatigue models.

4.6 Future Work

The use o f an analytical fatigue model, similar to this study, to study various 

athletic maneuvers (i.e. drop-landings, stop-jumps, crossover cuts, etc.) may aid 

researchers in better understanding the effects o f  fatigue on risk o f  ACL injury in both 

healthy and previously injured populations. Repeat ACL rupture after reconstruction 

occurred in 12% o f patients over a five year follow-up period [146]. ACL reconstructed
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individuals, when compared to a healthy population, demonstrated significant decreases 

in the peak external flexion moment (net quadriceps moment) during jogging and cutting 

yet there were no differences in the peak external extension moment (net hamstrings 

moment) [147], With a risk o f rupturing the ACL graft, it is important to understand the 

mechanisms that may increase the risk o f a repeat injury in the reconstructed knee, 

particularly in athletes that perform dynamic tasks such as a side step cut. People with 

patellofemoral pain (PFP) exhibit differences in the recruitment o f  the quadriceps 

muscles [148, 149] and exhibit different lower extremity mechanics when fatigued 

compared to a healthy population [150], Using the model developed in this study, may 

help researchers understand the effects o f  fatigue on PFP and develop better methods of 

training and rehabilitation for athletes that experience PFP and wish to perform at high 

levels o f activity.
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CHAPTER 5 

CONCLUSION

The Xia et al [6] analytical fatigue model provided an estimation o f the effects of 

hamstrings fatigue on lower extremity muscle forces and ACL loading in a group of 

recreationally active females. The results o f this study, similar to previous studies [8,

10], suggest that hamstrings fatigue reduces the force producing capabilities o f the 

hamstrings muscle group, alters loading patterns within the knee joint and may lead to an 

increased risk o f injury. Participants appeared to compensate for the reduced hamstrings 

force producing capabilities by reducing quadriceps and increasing gastrocnemius muscle 

force production. The results in this study can be improved upon by using subject- 

specific parameters for maximal isometric muscle forces and recruiting a larger number 

o f participants in order to obtain a better estimation o f fatigued muscle forces and ACL 

loading. Using the model developed in this study can aid researchers in understanding the 

effects o f fatigue on risk o f ACL injury in order to develop better training programs in 

order to reduce the risk o f injury.
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Appendix A: Kinematic and Kinetic Data Root Mean Square Differences

Table A-l: Average root mean square differences (mean±st.dev.) between the 
experimental and RRA produced kinematics for the pelvis, right lower extremity 
and lumbar

Pre-Fatigue Post-Fatigue
Residual Forces (N)

Fx 3.63±1.45 4.97±2.74
Fy 4.73±2.74 3.63±3.07
Fz 3.22±2.90 2.34±1.53

Residual Moments (Nm)
Mx 11.2±5.98 7.08±2.90
My 21.1±8.65 14.1±6.52
Mz 15.7±4.60 16.0±5.79

Pelvic Translations (mm)
Tx 0.39±0.23 0.31±0.06
Ty 0.68±0.28 0.61±0.25
Tz 0.38±0.35 0.34±0.18

Pelvic Rotations (deg.)
Tilt 0.37±0.26 0.25±0.08
List 0.38±0.17 0.36±0.18
Rotation 0.77±0.68 0.42±0.38

Right Hip (deg.)
Flexion 0.14±0.05 0.15±0.06
Adduction 0.16±0.10 0.11 ±0.06
Rotation 0.02±0.01 0.03±0.02

Right Knee (deg.)
Flexion 0.08±0.05 0.06±0.01
Adduction 0.03±0.02 0.07±0.06
Rotation 0.05±0.04 0.06±0.08

Right Ankle (deg.)
Dorsiflexion 0.06±0.03 0.05±0.02

Lumbar Rotations (deg.)
Extension 0.98±0.58 0.87±0.37
Bending 0.73±0.67 1.07±0.55
Rotation 1.51±0.92 0.92±0.39
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Table A-2: Average root mean square differences (mean±st.dev.) between the RRA 
and CMC produced kinematics for the pelvis, right lower extremity and lumbar

Pre-Fatigue Post-Fatigue
Pelvic Translations (mm)

Tx 0.010 0.009
Ty 0.019 0.009
Tz 0.007 0.01

Pelvic Rotations (deg.)
Tilt 0.13 0.06
List 0.12 0.10
Rotation 0.03 0.05

Right Hip (deg.)
Flexion 0.12 0.11
Adduction 0.10 0.07
Rotation 0.28 0.36

Right Knee (deg.)
Flexion 0.29 0.25
Adduction 0.33 0.44
Rotation 1.41 1.37

Right Ankle (deg.)
Dorsiflexion 0.42 0.34

Lumbar Rotations (deg.)
Extension 0.15 0.07
Bending 0.16 0.13
Rotation 0.03 0.04
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Appendix B: Fatigue and Recovery Data
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Figure B-l: Normalized force values during the fatigue protocol for testing session 1
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Figure B-2: Normalized force values during recovery protocol for testing session 1
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Figure B-3: Normalized force values during fatigue protocol for testing session 2

Table B-l: Fatigue and recovery coefficients, used in the Tang etal  [16] fatigue 
model, from testing sessions 1 and 2, with fatigue and recovery equations in the 
form of y=aebt, where t represents time

Testing Session 1_______________Testing Session 2
Fatigue Curve Recovery Curve Fatigue Curve
a b a b a b

SI 0.7702 -0.0003147 0.4362 0.000373 1.044 -0.013
S2 0.3949 -0.0002 0.5174 0.000144 0.7825 -0.003
S3 0.5106 -0.000149 0.4624 0.000373 0.7873 -0.006
S4 0.5459 -0.00024 0.4967 0.000327 0.6285 -0.001
S5 0.7704 -0.001749 0.3498 0.000473 0.8835 -0.005
S6 0.6517 -0.000374 04282 0.000182 0.6322 -0.001
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Appendix C: Experimental and Fatigue Model Hamstrings Muscle Forces
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Figure C-l: Experimental post-fatigue Biceps Femoris Long Head muscle force data 
is compared to the predicted muscle force data by the Tang and Xia fatigue models 
using the 95% confidence interval of the experimental data.
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Figure C-2: Experimental post-fatigue Biceps Femoris Short Head muscle force
data is compared to the predicted muscle force data by the Tang and Xia fatigue
models using the 95% confidence interval of the experimental data.
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Figure C-3: Experimental post-fatigue Semimembranosus muscle force data is
compared to the predicted muscle force data by the Tang and Xia fatigue models
using the 95% confidence interval of the experimental data.
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Figure C-4: Experimental post-fatigue Semitendinosus muscle force data is
compared to the predicted muscle force data by the Tang and Xia fatigue models
using the 95% confidence interval of the experimental data.
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Appendix D: Planar ACL Loading at Various Levels of Hamstrings Fatigue
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Figure D-l: Group average sagittal plane ACL loading across all fatigue levels
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Figure D-2: Group average transverse plane ACL loading across all fatigue levels
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Figure D-3: Group average frontal plane ACL loading across all fatigue levels
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Appendix E: ACL Loading Patterns at Various Levels of Hamstrings Fatigue
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Figure E - l: Group average ACL loading for the pre-fatigue condition
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Figure E-3: Group average ACL loading for the 25% hamstrings fatigue level
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Figure E-4: Group average ACL loading for the 50% hamstrings fatigue level
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Figure E-5: Group average ACL loading for the 75% hamstrings fatigue level
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Figure E-6: Group average ACL loading for the 90% hamstrings fatigue level
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Appendix F: Xia Fatigue Model Predicted Tibiofemoral Contact Forces at Various

Levels of Hamstrings Fatigue

4 0*20

8
Time(ms)

■0% Fa t  

■10%  Fat 

- 2 5 %  Fat  

■ 50%  Fat  

■ 75%  Fa t  

* 9 0 %  Fat

Figure F-l: Shear contact force across various levels of hamstrings fatigue.
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Figure F-2: Compressive force across various levels of hamstrings fatigue
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Appendix G: Xia Fatigue Model Predicted Joint Moments at Various Levels of

Hamstrings Fatigue
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Figure G -l: Hip sagittal plane moment where positive and negative values indicate 
hip flexion and extension moments, respectively.
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Figure G-2: Hip frontal plane moment, where positive and negative values indicate
hip adduction and abduction moments, respectively.



100

0.2

0 . 1 5

-20 -10 10 20 4 0 5 0

- 0 . 0 5

- 0.1

■0% Fa t  

■ 1 0 %  Fat 

- 2 5 %  Fat 

• 5 0 %  Fa t  

- 7 5 %  Fa t  

- 9 0 %  Fa t

- 0 . 1 5
Time(ms)

Figure G-3: Hip transverse plane moment, where positive and negative values
indicate hip internal and external rotation moments, respectively.
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Figure G-4: Knee sagittal plane moment, where positive and negative values
indicate knee extension and flexion moments, respectively.
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Figure G-5: Knee frontal plane moment, where positive and negative values indicate
knee adduction and abduction moments, respectively.
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Figure G-6: Knee transverse plane moment, where positive and negative values
indicate knee internal and external rotation moments, respectively.
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Figure G-7: Ankle sagittal plane moment, where positive and negative values 
indicate ankle dorsiflexion and plantarflexion moments, respectively.
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Appendix H: Xia Fatigue Model Predicted Joint Kinematics at Various Levels of

Hamstrings Fatigue
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Figure H-l: Hip sagittal plane rotation, where positive and negative values indicate 
hip flexion and extension, respectively.
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Figure H-2: Hip frontal plane rotation, where positive and negative values indicate
hip adduction and abduction, respectively.
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Figure H-3: Hip transverse plane rotation, where positive and negative values
indicate hip internal and external rotation, respectively.
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Figure H-4: Knee sagittal plane rotation, where positive and negative values indicate
knee extension and flexion, respectively.
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Figure H-5: Knee frontal plane rotation, where positive and negative values indicate
knee adduction and abduction, respectively.
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Figure H-6: Knee transverse plane rotation, where positive and negative values
indicate knee internal and external rotation, respectively.
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Figure H-7: Ankle sagittal plane rotation, where positive and negative values 
indicate ankle dorsiflexion and plantarflexion, respectively.
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Appendix I: Upper Extremity Marker Plates
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Figure 1-1: Custom designed rigid marker plates for the humerus, where the listed 
dimensions are in inches.
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Figure 1-2: Custom designed rigid marker plates for the forearm, where the listed 
dimensions are in inches.
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Appendix K: ACL Loading of Each Participant
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Figure K -l: Total ACL loading for participant one
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Figure K-2: Total ACL loading for participant two
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Figure K-3: Total ACL loading for participant three
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Figure K-4: Total ACL loading for participant four
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Figure K-5: Total ACL loading for participant five
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Figure K-6: Total ACL loading for participant six
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Appendix L: Informed Consent Document

INFORMED CONSENT DOCUMENT

OLD DOMINION UNIVERSITY 

PROJECT TITLE: The effects o f Isolated hamstrings fatigue on the lower extremity

iNTRppuguaa
The purposes of this form are to give you information that may affect your decision whether to say YES or NO to 
participation in this research, and to record the consent of those who say YES This study will take place in the Motion 
Analysis Laboratory at Old Dominion University m the Student Recreation Center in room 1007

RESEARCHERS
R esponsble Pnncpai Investigator
Stacie I Rmgieb, PhD Dept of Mechanical and Aerospace Engineering. Frank Batten College of Engineering 

investigators
Michael Samaan, MS and Sebastian Bawab. PhD. Department of Mechanical and Aerospace Engmeenng 
Joshua Wemhandl. PhD, Department of Human Movement Sciences 
Matthew Hoch, PhD. School of Physical Therapy and Athletic Training

DESCRIPTION OF RESEARCH STUOY
Several studies have been conducted looking into the effects of neuromuscular fatigue on Ihe knee joint There are 
various explanations a s  to the differences m the motion of the knee caused by fatigue but no conclusions have been 
made

If you decide to participate, then you will join a study involving research of the motion of the knee and how fatigue affects 
the motion cf the joint If you say YES. then you will be asked to participate in 3 separate sessions each lasting 
approximately 2 hours at the Neuromechanics Laboratory in the Student Recreation Center (room 1007) Approximately 
40 subjects will be participating in this study

The first testing session will occur in the Neuromechanics Laboratory Dunng the first session, you will undergo a  protocol 
that wilt fatigue your hamstnng m uscles Prior to engaging in the fatigue protocol, you will be allowed a 10-minute warm­
up on the stationary txke followed by self-directed stretching After the fatigue protocol is completed, you will be asked to 
produce a maximal voluntary contraction at the following time points: 0 minutes (immediately after fatigue), 2 minutes, 5 
minutes. 10 minutes. 15 minutes and 20 minutes After explanation of the sidestep cutting task, you will also be aiiowed to 
practice the sidestep cutting task using your right leg. until you are comfortable with the maneuver The sidestep cutting 
task will consist of a  running approach, step with one foot on the force plate and cut to the opposite Side of the foot 
touching the force plate

You wit report to the Neuromechanics Laboratory for the second testing session You will be asked to be perform S 
anticipated sidestep cuts using the right leg Pnor to testing, you will be allowed a  ‘ 0-mmute warm-up on the stationary 
bike followed by self-directed stretching Next, reflective balis wit be attached to both of your tegs to measure the motion 
of your bones and sensors will be placed over som e erf your leg muscles to record their activity After explanation of the 
sidestep c u t you will have another opportunity to practice the sidestep cut until you feel comfortable with the maneuver 
Next, you will undergo the sam e fatigue protocol, a s  was completed in the first testing session, m order to fatigue your 
hamstnng muscles. Upon completion of the fatigue task, you will be asked to perform an additional S anticipated sidestep 
cuts using the nght leg

The third testing session will take place in the Neuromechanics Laboratory at least 48 hours after and at the sam e Im e as 
the second testing session You will be asked perform maximal voluntary contractions at the hip. knee and ankle joints m 
order to determine lower limb strength values You will be asked to complete 3 sets of 3 repetitions for each strength test 
for a  total erf 24 sets

EXCLUSIONARY CRITERIA
You will not be eligible to participate if you have had any lower extremity iri|unes in the past 6 months To the best of your 
knowledge, you should not have any other lower limb injuries that would keep you from participating in th s  study

RISKS AND BENEFITS
RiSKS If you decide to participate in this study then you may face a nsk of temporary skin irritation due to the tape and 
glue that is used to affix the markers and electrodes to the body. The potential nsks to the subjects in this study include 
muscle pain and muscle soreness from the cutting task and fatigue protocol There is also a nsk of ankle sprang and
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knee injury during the cikttng task, which is simitar to the risk you wouk) expenence4 pi ay mg a  soccer game Muscle pain 
and musde soreness can be compared as the same sensation you might have after wo'kout

Also an personal information provided for the study will be kept confidential The researcher ineo to reduce these nsks by 
removing ail linking identifiers And as wttn any research, there is some possibility that you may be subject to nsks that 
have not yet been identfied

BENEFITS There are no mam benehts to you for participating m this study Your benefit lo others, for participating in this 
study, will allow the researchers to understand the effects of hamstrings fatigue on the motion of the knee 
This knowledge will be used to better understand the causes of non-contact ACl injury

COSTS ANO PAYMENTS
You will be placed in a drawing for a $50 gi't card tor participating in this study 

NEW INFORMATION
If the researchers find new information dunng this study that would reasonably change your decision about participating 
than they wili give it to you

CONFIDENTIALITY
The researchers will take reasonable steps to keep private information such as questionnaires medical history and 
laboratory findings, confidential If applicable the researchers will remove identifiers from the information pnor to its 
processing The results of this study may be used m reports presentations, and publications but the researcher will not 
identify you Of course, your records may be subpoenaed by court order or inspected by government bodies with 
oversight authonty

WITHDRAWAL PRIVILEGE
It is OK for you to say NO Even if you say YES now. you are free to say NO later and walk away or withdraw from the 
study -  at any time Your decision will not affect your relationship with Old Dominion University, or otherwise cause a loss 
of benefits to which you might otherwise be entitled

COMPENSATION FOR ILLNESS AND INJURY
If you say YES then your consent w this document does not waive any of your legal nghts However in the event of 
harm or injury arising from this study, neither Old Dominion University nor the researchers are able to give you any 
money, insurance coverage, free medical care or any other compensation for such injury In the event that you suffer 
injury as a result of participation in any research project, you may contact Dr Stacie Ringleb at 757-883-5934 or Dr 
George Maihrfer the current IRB chair at 757-683-4520 at Old Dominion University who will be glad to review the matter 
with you

VOLUNTARY CONSENT
By signing this form, you are saying several things You are saying that you have read this form or have had it read lo 
you that you are satisfied that you understand this form the research study, and its risks and benefits The researchers 
should have answered any questions you may have had about the research. If you have any questions later on then the 
researchers should be able to answer them

Dr Stacie Ringleb 757-683-5934

If at any time you feel pressured to participate, or if you have any questions about your nghts or this form, then you should 
call Dr George Maihafer, the current IRB chair, at 757-683-4520. or the Old Dominion University Office of Research, at 
757-683-3460

And importantly, by signing below, you are telhng the researcher YES. that you agree to participate in this study The 
researcher should give you a copy of this form for your records

Subject's Printed Name 6  Signature Oats

INVESTIGATOR'S STATEMENT
I certify that I have explained to this subject the nature and purpose of this research, including benefits, nsks. costs and 
any experimental procedures I have descnbed tne nghts and protections afforded to human subjects and have done 
nothing to pressure, coerce or faisely entice this subject into participating I am aware of my obkgations under state and 
federal laws and promise compliance I have answered the subject's questions and have encouraged him/her to ask 
additional questions at any time dunng the course of this study i have witnessed the above signature/s) on this consent 
form ,------------------------------------------------------------------------I

Investigator's Printed Name 8  Signature____________________________________  |__________ Date
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