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Like a Bridge over Colored
Water: A Mathematical Review
of The Rainbow Bridge:
Rainbows in Art, Myth, and
Science
Reviewed by John A. Adam

1360 NOTICES OF THE AMS VOLUME 49, NUMBER 11

The Rainbow Bridge: Rainbows in Art, Myth, and
Science
Raymond L. Lee Jr. and Alistair B. Fraser
Pennsylvania State University Press , 2001
393 pages, $65.00
ISBN 0-271-01977-8

This is a magnificent and scholarly book, exquis-
itely produced, and definitely not destined only
for the coffee table. It is multifaceted in character,

addressing rainbow-relevant as-
pects of mythology, religion,
the history of art, art criticism,
the history of optics, the theory
of color, the philosophy of sci-
ence, and advertising! The qual-
ity of the reproductions and
photographs is superb. The au-
thors are experts in meteoro-
logical optics, but their book
draws on many other subdisci-
plines. It is a challenge, there-
fore, to write a review about a
book that contains no equa-
tions or explicit mathematical
themes for what is primarily a
mathematical audience.
However, while the mathemat-

ical description of the rainbow may be hidden in this
book, it is nonetheless present. Clearly, such a re-
view runs the risk of giving a distorted picture of
what the book is about, both by “unfolding” the hid-
den mathematics and suppressing, to some extent,

other important and explicit themes: the connec-
tions with mythology, art, and science. To a de-
gree this is inevitable, if such a weighted metric is
to be used. Lee and Fraser are intent on exploring
bridges from the rainbow to all the places listed
above, and in the opinion of this reviewer they
have succeeded admirably. The serious reader will
glean much of value, and mathematicians in par-
ticular may benefit from the tantalizing hints of
mathematical structure hidden in the photographs
and graphics. Following an account of several
themes present in the book that I found particularly
appealing, some of the mathematical structure un-
derlying and supporting the bridge between the
rainbow and its optical description will be empha-
sized in this review.

I have included several direct quotations to 
illustrate both the writing style and the features of
the book that I found most intriguing. Frankly, 
I found some of the early chapters harder to 
appreciate than later ones. This is a reflection, no
doubt, of my own educational deficiencies in the
liberal arts; but upon completing the book, I was
moved to suggest to the chair of the art department
that it might be interesting to offer a team-taught
graduate seminar in art, using this book as a text.
He is now avidly reading my copy of the book.

The ten chapters combined trace the rainbow
bridge to “the gods” as a sign and symbol (“emblem
and enigma”); to the “growing tension between 
scientific and artistic images of the rainbow”;
through the inconsistencies of the Aristotelian 
description and beyond, to those of Descartes and
Newton, and the latter’s theory of color; to claims
of a new unity between the scientific and artistic

John A. Adam is professor of mathematics at Old Do-
minion University. His email address is jadam@odu.edu.
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enterprises; the evolution of scientific models of
the rainbow to relatively recent times; and the 
exploitation and commercialization of the rain-
bow. All these bridges, the authors claim, are united
by the human appreciation of the rainbow’s com-
pelling natural beauty. And who can disagree? An
appendix is provided (“a field guide to the rainbow”)
comprising nineteen basic questions about the rain-
bow, with nontechnical (but scientifically 
accurate) answers for the interested observer. 
This is followed by a set of chapter notes and a 
bibliography, both of which are very comprehensive.
The more technical scientific aspects of the distri-
bution of light within a rainbow are scattered lib-
erally throughout the latter half of the book; indeed,
the reader more interested in the scientific aspects
of the rainbow might wish to read the last five
chapters in parallel with the first five (as did I). The
technical aspects referred to are explained with
great clarity.

But what is a rainbow? Towards the end of this 
review, several mutually inexclusive but comple-
mentary levels of explanation will be noted, 
reflecting the fact that there is a great deal of
physics and mathematics behind one of nature’s
most awesome spectacles. At a more basic obser-
vational level, surely everyone can describe the 
colored arc of light we call a rainbow, we might 
suggest, certainly as far as the primary bow is con-
cerned. In principle, whenever there is a primary
rainbow, there is a larger and fainter secondary
bow. The primary (formed by light being refracted
twice and reflected once in raindrops) lies beneath
a fainter secondary bow (formed by an additional
reflection, and therefore fainter because of light loss)
which is not always easily seen. There are several
other things to look for: faint pastel fringes just be-
low the top of the primary bow (supernumerary
bows, of which more anon), the reversal of colors
in the secondary bow, the dark region between the
two bows, and the bright region below the primary
bow. This observational description, however, is
probably not one that is universally known; in 
some cultures it is considered unwise even to look
at a rainbow. Indeed, in many parts of the world,
it appears, merely pointing at a rainbow is consid-
ered to be a foolhardy act. Lee and Fraser state
that “getting jaundice, losing an eye, being struck
by lightning, or simply disappearing are among
the unsavory aftermaths of rainbow pointing.”

The historical descriptions are in places quite
breathtaking; we are invited to look over the shoul-
ders, as it were, of Descartes and Newton as they 
work through their respective accounts of the 
rainbow’s position and colors. While the color 
theory of Descartes was flawed, his geometric 
theory was not. Commenting on the latter, the 
authors point out that “Descartes’[s] seventeenth-
century analysis of the rainbow bears out Plato’s

great faith in observations simplified and clarified 
by the power of mathematics.” Newton, on the 
other hand, eschews Descartes’s cumbersome 
ray-tracing technique and “silently invokes his 
mathematical invention of the 1660s, differential
calculus, to specify the minimum deviation rays of
the primary and secondary rainbows.” Later in the
book Lee and Fraser remark that Aristotle and later
scientists in antiquity “constructed theories that pri-
marily describe natural phenomena in mathemati-
cal or geometric terms, with little or no concern for
physical mechanisms that might explain them.” This
contrast goes to the heart of the difference between
Aristotelian and mathematical modeling.

I was pleasantly surprised to learn that the Eng-
lish painter John Constable was quite an avid am-
ateur scientist: he was concerned that his paintings
of clouds and rainbows should accurately reflect
the science of the day, and he took great trouble
to acquaint himself with Newton’s theory of the
rainbow (many other details can be found in
pp. 80–7 of the book). In a similar vein, the writer
John Ruskin was a detailed observer of nature, his
goal being “that of transforming close observation
into faithful depiction of a purposeful, divinely
shaped nature.” The poet John Keats implies in his
Lamia that Newton’s natural philosophy destroys
the beauty of the rainbow (“There was an awful rain-
bow once in heaven: / We know her woof, her tex-
ture; she is given / In the dull catalog of common
things. / Philosophy will clip an Angel’s wings”).
Keats’s words reflected a continuing debate: did 
scientific knowledge facilitate or constrain poetic
descriptions of nature? His contemporary William
Wordsworth apparently held a
different opinion, for he wrote,
“The beauty in form of a plant
or an animal is not made less
but more apparent as a whole
by more accurate insight into
its constituent properties and
powers.”

In a subsection of Chapter 4
entitled “The Inescapable (and
Unapproachable) Bow”, the au-
thors address, amongst other
things, some common misper-
ceptions about rainbows. Just
as occurs when we contemplate
our visage in a mirror, what we
see is not an object, but an
image; near the end of the chap-
ter this rainbow image is beau-
tifully portrayed as “a mosaic of
sunlit rain.” Optically, the rain-
bow is located at infinity, even
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Figure 1. A sector illustrating the rainbow
configuration, including both a primary bow (on
the bottom) and a secondary bow (at the top).
The bright region is not shown to scale.
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Figure 2. A typical path through
a raindrop for a ray of light
contributing to the primary
rainbow, according to
geometrical optics.
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though the raindrops or droplets
sprayed from a garden hose are not.
To place the rainbow in the sky, note
that the antisolar point is 180◦ from the
Sun on a line through the head of the
observer. As will be noted below, rays
of sunlight are deviated from this line
(in a clockwise sense in Figure 2); the
ray of minimum deviation (sometimes
called the rainbow or Descartes ray) is
deviated by about 138◦ for the pri-
mary bow. Therefore there is a con-
centration of deviated rays near this
angle, and so for the observer the pri-
mary bow is an arc of a circle of radius
180◦− 138◦ = 42◦ centered on the an-
tisolar point. Thus the rainbow has a
fixed angular radius of about 42◦ de-
spite illusions (and allusions) to the
contrary. The corresponding angle for
the secondary bow is about 51◦ ,
though in each instance the angle
varies a little depending on the wave-
length of the light. Without this phe-
nomenon of dispersion there would be
only a “whitebow”!

It is perhaps an occupational hazard
for professional scientists and math-
ematicians to be a little frustrated by
incorrect depictions or explanations
of observable phenomena and mathe-
matical concepts in literature, art, the
media, etc. From the point of view of
an artist, however (Constable notwith-
standing), scientific accuracy is not
necessarily a prelude to artistic ex-
pression; indeed, to some it may be
considered a hindrance. Nevertheless,
we can identify perhaps with the au-
thors, who, in commenting on the
paintings of Frederic Church (in par-
ticular his Rainy Season in the Tropics),
write, “Like Constable, he in places

bends the unyielding rule that all shadows must be
radii to the bow (that is, they must converge on the
rainbow’s center).” The same rule applies to sun-
beams, should they be observable concurrently
with a rainbow.

By the middle of the eighteenth century, the
contributions of Descartes and Newton notwith-
standing, observations of supernumerary bows
were a persistent reminder of the inadequacy of cur-
rent theories of the rainbow. As Lee and Fraser so
pointedly remark, “One common reaction to being
confronted with the unexplained is to label it in-
explicable.” This led to these troubling features
being labeled spurious; hence the unfortunate ad-
dition of the adjective supernumerary to the rain-
bow phenomenon. Now it is known that such bows
“are an integral part of the rainbow, not a vexing
corruption of it”; an appropriate, though possibly
unintended, mathematical pun (see below). By fo-
cusing attention on the light wavefronts incident
on a spherical drop rather than on the rays normal
to them, it is easier to appreciate the self-interfer-
ence of such a wave as it becomes “folded” onto
itself as a result of refraction and reflection within
the drop. This is readily seen from Figures 8.7 and
8.9 in the book (see Figures 5 and 6 here), from
which the true extent of the rainbow is revealed:
the primary rainbow is in fact the first interference
maximum, the second and third maxima being the
first and second supernumerary bows respectively
(and so on).

The angular spacing of these bands depends on
the size of the droplets producing them. The width
of individual bands and the spacing between them
decreases as the drops get larger. If drops of many
different sizes are present, these supernumerary
arcs tend to overlap somewhat and smear out what
would have been obvious interference bands for
droplets of uniform size. This is why these pale blue
or pink or green bands are then most noticeable near
the top of the rainbow: it is the near-sphericity of
the smaller drops that enable them to contribute
to this part of the bow; larger drops are distorted
from sphericity by the aerodynamic forces acting
upon them. Nearer the horizon a wide range of
drop size contributes to the bow, but at the same
time it tends to blur the interference bands. In
principle, similar interference effects also occur
above the secondary rainbow, though they are very
rare, for reasons discussed in the penultimate chap-
ter. Lee and Fraser summarize the importance of
spurious bows with typical metaphorical creativity:
“Thus the supernumerary rainbows proved to be the

Figure 3. The paths of
several rays of light

impinging upon a
raindrop with different

angles of incidence.
Such rays contribute to

the primary rainbow.
The ray of minimum

deviation (the rainbow
ray) is the darkest line.

Figure 4. The ray paths
for the secondary

rainbow, similar to
Figure 3 above. Again,

the ray of minimum
deviation is the darkest

line. 

Graph of the Airy function Ai(x), which is a solution of the differential equation y′′ + xy = 0 .  Below, according to
Airy's theory, illumination is proportional to Ai(x)2, simulating a monochromatic bow along with several

supernumerary bows.

y = Ai(x)
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midwife that delivered the wave theory of light to
its place of dominance in the nineteenth century.”

It is important to recognize that, not only were
the Cartesian and Newtonian theories unable to
account for the presence of supernumerary bows,
but also they both predicted an abrupt transition
between regions of illumination and shadow (as at
the edges of Alexander’s dark band, when only
rays giving rise to the primary and secondary bows
are considered). In the wave theory of light such
sharp boundaries are softened by diffraction, 
which occurs when the normal interference pattern
responsible for rectilinear propagation of light is
distorted in some way. Diffraction effects are par-
ticularly prevalent in the vicinity of caustics. In
1835 Potter showed that the rainbow ray may be
interpreted as a caustic, i.e., the envelope of the sys-
tem of rays constituting the rainbow. The word
caustic means burning, and caustics are associated
with regions of high-intensity illumination (with
geometrical optics predicting an infinite intensity
there). Thus the rainbow problem is essentially
that of determining the intensity of (scattered) light
in the neighborhood of a caustic.

This was exactly what Airy attempted to do 
several years later in 1838. The principle behind
Airy’s approach was established by Huygens in the
seventeenth century: Huygens’s principle regards
every point of a wavefront as a secondary source
of waves, which in turn defines a new wavefront and
hence determines the subsequent propagation of
the wave. As pointed out by Nussenzveig [9], Airy
reasoned that if one knew the amplitude distribu-
tion of the waves along any complete wavefront in
a raindrop, the distribution at any other point could

be determined by Huygens’s principle. Airy chose
as his starting point a wavefront surface inside the
raindrop, the surface being orthogonal to all the rays
that constitute the primary bow; this surface has
a point of inflection wherever it intersects the ray
of minimum deviation, the “rainbow ray”. Using
the standard assumptions of diffraction theory,
he formulated the local intensity of scattered light
in terms of a “rainbow integral”, subsequently re-
named the Airy integral in his honor; it is related
to the now familiar Airy function. It is analogous
to the Fresnel integrals which also arise in diffrac-
tion theory. There are several equivalent repre-
sentations of the Airy integral in the literature; 
following the form used by Nussenzveig [10], we
write it as

(1) Ai(C) = (31/3π−1)
∫∞

0
cos(t3 + 31/3Ct)dt.

While the argument of the Airy function is ar-
bitrary at this point, C refers to the set of control
space parameters in the discussion below on dif-
fraction catastrophes. In this case it represents 
the deviation or scattering angle coordinate. One
severe limitation of the Airy theory for the optical
rainbow is that the amplitude distribution along 
the initial wavefront is unknown: based on certain
assumptions it has to be guessed. There is a nat-
ural and fundamental parameter, the size para-
meter, β , which is useful in determining the domain
of validity of the Airy approximation; it is defined
as the ratio of the droplet circumference to the
wavelength η of light. In terms of the wavenum-
ber k this is

Figure 5. A wavefront version of Figure 3
illustrating the constructive and destructive
interference patterns of the light as it interacts
with a raindrop. The width of each band of color is
relatively narrow, resulting in fairly pure rainbow
colors. The primary rainbow and the first two
supernumerary bows are identified here. 
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Figure 6. Similar to Figure 5, but for a much smaller
cloud droplet. The resulting bands of color are so broad
that additive color mixing produces a whitish
“cloudbow”.
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β = 2πa
η

≡ ka,

a being the droplet radius. Typically, for sizes
ranging from fog droplets to large raindrops, β
ranges from about one hundred to several thou-
sand. Airy’s approximation is a good one only for
β 	 5000 and for angles sufficiently close to that
of the rainbow ray. In light of these remarks it is
perhaps surprising that an exact solution does
exist for the rainbow problem, as indicated below.

In the epilogue to the final chapter of the book, one
subsection is entitled “Airy’s Rainbow Theory: The
Incomplete ‘Complete’ Answer”. This theory did go
beyond the models of the day in that it quantified the
dependence upon the raindrop size of (i) the rain-
bow’s angular width, (ii) its angular radius, and 
(iii) the spacing of the supernumeraries. Also, un-
like the models of Descartes and Newton, Airy’s 
predicted a nonzero distribution of light intensity 
in Alexander’s dark band and a finite intensity at the
angle of minimum deviation (as noted above, the
earlier theories predicted an infinite intensity there).
However, spurred on by Maxwell’s recognition that
light is part of the electromagnetic spectrum and
the subsequent publication of his mathematical 
treatise on electromagnetic waves, several mathe-
matical physicists sought a more complete theory
of scattering, because it had been demonstrated by
then that the Airy theory failed to predict precisely
the angular position of many laboratory-generated
rainbows. Among them were the German physicist
Gustav Mie,1 who published a paper in 1908 on the
scattering of light by homogeneous spheres in a 
homogeneous medium, and Peter Debye, who 
independently developed a similar theory for the
scattering of electromagnetic waves by spheres. Mie’s
theory was intended to explain the colors exhibited
by colloidally dispersed metal particles, whereas 
Debye’s work, based on his 1908 thesis, dealt with
the problem of light pressure on a spherical particle.
The resulting body of knowledge is usually referred
to as Mie theory, and typical computations based on
it are formidable compared with those based on Airy
theory, unless the drop size is sufficiently small. A
similar (but nonelectromagnetic) formulation arises

in the scattering of sound waves by an impenetrable
sphere, studied by Lord Rayleigh and others in the
nineteenth century [6].

Mie theory is based on the solution of Maxwell’s
equations of electromagnetic theory for a mono-
chromatic plane wave from infinity incident upon a
homogeneous isotropic sphere of radius a. The sur-
rounding medium is transparent (as the sphere may
be), homogeneous, and isotropic. The incident wave
induces forced oscillations of both free and bound
charges in synchrony with the applied field, and this
induces a secondary electric and magnetic field, 
each of which has components inside and outside 
the sphere. Of crucial importance in the theory are
the scattering amplitudes (Sj (k,θ), j = 1,2) for the
two independent polarizations, θ being the angular
variable; these amplitudes can be expressed as an
infinite sum called a partial-wave expansion. Each
term (or partial wave) in the expansion is defined in
terms of combinations of Legendre functions 
of the first kind, Riccati-Bessel functions, and 
Riccati-Hankel functions (the latter two being rather 
simply related to spherical Bessel and Hankel 
functions respectively).

It is obviously of interest to determine under what
conditions such an infinite set of terms can be
truncated and what the resulting error may be by
so doing. However, it turns out that the number of
terms that must be retained is of the same order
of magnitude as the size parameter β , i.e., up to sev-
eral thousand for the rainbow problem. On the
other hand, the “why is the sky blue?” scattering
problem—Rayleigh scattering—requires only one
term, because the scatterers are molecules much
smaller than a wavelength of light, so the simplest
truncation—retaining only the first term—is per-
fectly adequate. Although in principle the rainbow
problem can be “solved” with enough computer
time and resources, numerical solutions by them-
selves (as Nussenzveig points out [9]) offer little or
no insight into the physics of the phenomenon.

The Watson transform, originally introduced by
Watson in connection with the diffraction of radio
waves around the Earth (and subsequently modi-
fied by Nussenzveig in his studies of the rainbow
problem), is a method for transforming the slowly
converging partial-wave series into a rapidly con-
vergent expression involving an integral in the
complex angular-momentum plane. The Watson
transform is intimately related to the Poisson sum-
mation formula

(2)
∞∑
l=0

g(l + 1
2
, x) =

∞∑
m=−∞

e−imπ
∫∞

0
g(λ, x)e2πimλ dλ

for an “interpolating function” g(λ, x), where x
denotes a set of parameters and λ = l + 1

2 is now
considered to be the complex angular momentum
variable.

1I am grateful to J. D. Jackson, who informed me that “Lud-
vig Lorenz, a Danish theorist, preceded Mie by about fif-
teen years in the treatment of the scattering of electro-
magnetic waves by spheres.” His contributions to
electromagnetic scattering theory and optics are rather
overlooked, probably because his work was published in
Danish (in 1890). Further details of his research, includ-
ing his contributions to applied mathematics, may be
found in reference [5] (the article immediately following
that one on p. 4696 is about Gustav Mie). There is also a
valuable historical account by Logan [6] of other contri-
butions to this branch of (classical) mathematical physics.
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But why angular momentum? Although they
possess zero rest mass, photons have energy
E = hc/η and momentum E/c = h/η, where h is
Planck’s constant and c is the speed of light in
vacuo. Thus for a nonzero impact parameter bi, a
photon will carry an angular momentum bih/η (bi
being the perpendicular distance of the incident ray
from the axis of symmetry of the sun-raindrop
system). Each of these discrete values can be iden-
tified with a term in the partial-wave series ex-
pansion. Furthermore, as the photon undergoes
repeated internal reflections, it can be thought of
as orbiting the center of the raindrop. Why com-
plex angular momentum? This allows the above
transformation to effectively “redistribute” the
contributions to the partial wave series into a few
points in the complex plane—specifically poles
(called Regge poles in elementary particle physics)
and saddle points. Such a decomposition means
that angular momentum, instead of being identi-
fied with certain discrete real numbers, is now 
permitted to move continuously through complex
values. However, despite this modification, the
poles and saddle points have profound physical 
interpretations in the rainbow problem.

In the simplest Cartesian terms, on the illumi-
nated side of the rainbow (in a limiting sense) there
are two rays of light emerging in parallel directions:
at the rainbow angle they coalesce into the ray of
minimum deflection, and on the shadow side, ac-
cording to geometrical optics, they vanish (this is
actually a good definition of a caustic curve or sur-
face). From a study of real and complex rays, it hap-
pens that, mathematically, in the context of the
complex angular momentum plane, a rainbow is the
collision of two real saddle points. But this is not all:
this collision does not result in the mutual anni-
hilation of these saddle points; instead, two com-
plex saddle points are born, one corresponding to
a complex ray on the shadow side of the caustic
curve. This is directly associated with the diffracted
light in Alexander’s dark band.

Lee and Fraser point out that as far as most aspects
of the optical rainbow are concerned, Mie theory is
esoteric overkill; Airy theory is quite sufficient for de-
scribing the outdoor rainbow. I found particularly
valuable the following comment by the authors; it
has implications for mathematical modeling in 
general, not just for the optics of the rainbow. In
their comparison of the less accurate Airy theory of
the rainbow with the more general and powerful 
Mie theory, they write, “Our point here is not that
the exact Mie theory describes the natural rainbow
inadequately, but rather that the approximate Airy
theory can describe it quite well. Thus the suppos-
edly outmoded Airy theory generates a more nat-
ural-looking map of real rainbow colors than Mie
theory does, even though Airy theory makes sub-
stantial errors in describing the scattering of mono-

chromatic light by isolated small drops. As in many
hierarchies of scientific models, the virtues of a 
simpler theory can, under the right circumstances,
outweigh its vices” [emphasis added].

Earlier in this review the question, What is a
rainbow? was answered at a basic descriptive 
level. But at an explanatory level a rainbow is 
much, much more than such an answer might
imply. Amongst other things a rainbow is: (1) a 
concentration of light rays corresponding to a 
minimum (for the primary bow) of the deviation 
or scattering angle as a function of the angle 
of incidence; this minimum is identified as the
Descartes or rainbow ray; (2) a caustic, separating
a 2-ray region from a 0-ray (or shadow) region; 
(3) an integral superposition of waves over a (lo-
cally) cubic wavefront (the Airy approximation);
(4) an interference problem (the origin of the 
supernumerary bows); (5) a coalescence of two 
real saddle points; (6) a result of scattering by an
effective potential consisting of a square well and
a centrifugal barrier (a surprising macroscopic
quantum connection); (7) associated with tunnel-
ing in the so-called edge domain [4]; (8) a tangen-
tially polarized circular arc; and (9) a fold 
diffraction catastrophe. These nine topics are 
very much interrelated, and the interested reader
will find many references to them in [1], [4], [9], 
and [10]. The books by Grandy and Nussenzveig 
are excellent: they are primarily written by theo-
retical physicists for theoretical physicists and 
so do not possess the kind of rigor analysts 
seek (such as in the book by Pearson [11]); perhaps
such a transition will be made in the future. But why
not read The Rainbow Bridge first?

A Mathematical Appendix
Some descriptive material has been presented above
concerning complementary explanations of the
rainbow. It is of interest to put some mathemati-
cal flesh on those bones, so to that end a brief sum-
mary is provided of three aspects of the rainbow
problem at the level of geometrical optics, as a
scalar scattering problem, and as a diffraction 
catastrophe. These accounts touch on items (1)–(3),
(5), (6) and (9) in particular, but as noted above it
is difficult to separate them in a precise way.

A rainbow occurs when the the scattering angle
D, as a function of the angle of incidence i, passes
through an extremum (a minimum for the primary
bow; see Figure 3). The “folding back” of the cor-
responding scattered or deviated ray takes place
at this extremal scattering angle (the rainbow angle
Dmin ≡ θR; note that sometimes in the literature the
rainbow angle is defined as the complement of the
deviation, π −Dmin) . Two rays scattered in the
same direction with different angles of incidence
on the illuminated side of the rainbow (θ > θR)
fuse together at the rainbow angle and disappear



1366 NOTICES OF THE AMS VOLUME 49, NUMBER 11

as the dark side (θ < θR) is approached. This is one
of the simplest physical examples of a fold cata-
strophe in the sense of Thom. As is noted below,
rainbows of different orders are associated with so-
called Debye terms of different orders; the primary
and secondary bows correspond to p = 2 and p = 3
respectively. For p − 1 internal reflections, p being
an integer greater than 1, the total deviation is, from
elementary geometry,

Dp−1(i) = 2(i − pr )+ (p − 1)π,

where by Snell’s law the angle of refraction r = r (i)
is also a function of the angle of incidence. Thus
for the primary rainbow (p = 2),

D1(i) = π − 4r + 2i,

and for the secondary rainbow (p = 3),

D2(i) = 2i − 6r

(modulo 2π). Removing the dependence on r , the
angle through which a ray is deviated for p = 2 is

D1(i) = π + 2i − 4 arcsin
(

sin i
n

)
,

where n > 1 is the refractive index of the raindrop.
In general

Dp−1(i) = (p − 1)π + 2i − 2p arcsin
(

sin i
n

)
.

The minimum deviation occurs for p = 2 when

i = ic = arccos

√
n2 − 1

3

and in general when

i = ic = arccos

√
n2 − 1
p2 − 1

.

For the primary rainbow p = 2, so ic ≈ 59◦ , using
an approximate value for water of n = 4/3; from
this it follows that D(ic ) = Dmin = θR ≈ 138◦. For
the secondary bow p = 3 and ic ≈ 72◦ ;  now
D(ic ) = θR ≈ 231◦ = −129◦. The rainbows each lie
on the surface of a cone, centered at the observer’s
eye, with axis the line from that point to the anti-
solar point (delineated by the shadow of the ob-
server’s head). The cone semiangles are about 42◦

and 51◦ respectively for the primary and secondary
bows. For p = 2, in terms of n alone, D(ic ) = θR (the
rainbow angle) is defined by

D(ic ) = θR = 2 arccos


 1
n2

(
4− n2

3

)3/2

 .

This approach can be thought of as the elemen-
tary classical description. Surprising as it may seem,
there is also a wave mechanical counterpart to the

optical rainbow; indeed, such effects are well known
in atomic, molecular, and nuclear physics [1], [10].
On the way to this, so to speak, there is a “semi-
classical” description. In a primitive sense, the semi-
classical approach is the “geometric mean” between
classical and quantum mechanical descriptions of
phenomena in which interference and diffraction
effects enter the picture. The latter do so via the tran-
sition from geometrical optics to wave optics. A mea-
sure of the scattering (by raindrop or atom) that oc-
curs is the differential scattering cross-section
dσ/dΩ = |f (k,θ)|2 (essentially the relative particle
or wave “density” scattered per unit solid angle at
a given angle θ in cylindrically symmetric geome-
try), where f (k,θ) is the scattering amplitude defined
below; this in turn is expressible as a partial-wave
expansion. The formal relationship between the
latter and the classical differential cross-section is
established using the WKB approximation, and the
principle ofstationary phase is used to evaluate
asymptotically a certain phase integral. A point of
stationary phase can be identified with a classical
trajectory, but if more than one such point is pre-
sent (provided they are well separated and of the
first order), the corresponding expression for
|f (k,θ)|2 will contain interference terms. This is a
distinguishing feature of the “primitive” semiclas-
sical formulation. Indeed, the infinite intensities
predicted by geometrical optics at focal points,
lines, and caustics in general are breeding grounds
for diffraction effects, as are light/shadow bound-
aries for which geometrical optics predicts finite
discontinuities in intensity. Such effects are most
significant when the wavelength is comparable
with (or larger than) the typical length scale for vari-
ation of the physical property of interest (e.g., size
of the scattering object). Thus a scattering object
with a “sharp” boundary (relative to one wave-
length) can give rise to diffractive scattering phe-
nomena [10].

There are critical angular regions where this
semiclassical approximation breaks down and dif-
fraction effects cannot be ignored, although the
angular ranges in which such critical effects be-
come significant get narrower as the wavelength de-
creases. Early work in this field contained transi-
tional asymptotic approximations to the scattering
amplitude in these critical angular domains, but they
have very narrow domains of validity and do not
match smoothly with neighboring noncritical an-
gular domains. It is therefore of considerable im-
portance to seek uniform asymptotic approximations
that by definition do not suffer from these failings.
Fortunately, the problem of plane-wave scattering
by a homogeneous sphere exhibits all of the criti-
cal scattering effects (and it can be solved exactly,
in principle) and is therefore an ideal laboratory in
which to test both the efficacy and accuracy of the
various approximations. Furthermore, it has
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relevance to both quantum mechanics (as a square
well or barrier problem) and optics (Mie scattering);
indeed, it also serves as a model for the scattering
of acoustic and elastic waves and, as noted earlier,
was studied in the early twentieth century as a
model for the diffraction of radio waves around the
surface of the earth. Light waves obviously are
electromagnetic in character, and so the full weight
of that theory is necessary to explain features such
as the polarization of the rainbow, but the essence
of the approach is well captured by the scalar the-
ory.

The essential mathematical problem for scalar
waves can be thought of either in terms of classi-
cal mathematical physics, e.g., the scattering of
sound waves, or in wave-mechanical terms, e.g., the
nonrelativistic scattering of particles by a square
potential well (or barrier) of radius a and depth (or
height) V0. In either case we can consider a scalar
plane wave impinging in the direction θ = 0 on a
penetrable (“transparent”) sphere of radius a. The
wave function ψ(r , θ) satisfies the scalar Helmholtz
equation

(3)
∇2ψ+ n2k2ψ = 0 r ≤ a
∇2ψ+ k2ψ = 0 r ≥ a,

where again k is the wavenumber and n > 1 is the
refractive index of the sphere (a similar problem
can be posed for gas bubbles in a liquid, for which
n < 1). The boundary conditions are that ψ(r , θ)
and ψ′(r , θ) are continuous at the surface. Fur-
thermore, at large distances from the sphere
(r � a) the wave field can be decomposed into an
incident wave + scattered field, i.e.,

ψ ∼ eikr cosθ + af (k,θ)eikr

r
,

the dimensionless scattering amplitude being de-
fined as

(4) f (k,θ) = 1
2ika

∞∑
l=0

(2l + 1)(Sl(k)− 1)Pl(cosθ),

where Sl is the scattering function for a given l and
Pl is a Legendre polynomial of degree l. For a spher-
ical square well or barrier,

Sl = −
h(2)
l (β)

h(1)
l (β)

{
ln′ h(2)

l (β)− n ln′ jl(α)

ln′ h(1)
l (β)− n ln′ jl(α)

}
,

where ln′ represents the logarithmic derivative op-
erator, jl and hl are spherical Bessel and Hankel
functions respectively, the size parameter β = ka
plays the role of a dimensionless external wavenum-
ber, and α = nβ is the corresponding internal
wavenumber. Sl may be equivalently expressed in
terms of cylindrical Bessel and Hankel functions.
The lth partial wave in the solution is associated

with an impact parameter bl = (l + 1
2 )/k; i.e., only

rays hitting the sphere (bl � a) are significantly
scattered, and the number of terms that must be
retained in the series to get an accurate result is
of order β . As implied earlier, for visible light scat-
tered by water droplets in the atmosphere, β ∼
several thousand. This is why, to quote Arnold
Sommerfeld, “The series converge so slowly that
they become practically useless.” This problem can
be remedied by using the Poisson summation for-
mula (2) above to rewrite f (k,θ) as

(5)
f (β,θ) = i

β

∞∑
m=−∞

(−1)m

×
∫∞

0
[1− S(λ,β)]Pλ− 1

2
(cosθ)e2imπλλdλ.

For fixed β , S(λ,β) is a meromorphic function of
the complex variable λ = l + 1/2, and in particular
in what follows it is the poles of this function that
are of interest. In terms of cylindrical Bessel and
Hankel functions, the poles are defined by the con-
dition

ln′H (1)
λ (β) = n ln′ Jλ(α)

and are called Regge poles in the scattering theory
literature [7], [8]. Typically, they are associated with
surface waves for the impenetrable sphere problem,
but for the transparent sphere two types of Regge
poles arise—one type (Regge-Debye poles) leading
to rapidly convergent residue series, representing
the surface wave (or diffracted or creeping ray) con-
tributions to the scattering amplitude; and the other

virtual front

true front

vir
tu

al 
ca

usti
c

ra
inbow ra

y

Figure 7. Wavefronts in a raindrop. The caustic is
best seen in the virtual rays (projected back from the
final exterior rays), as is the basis of Airy’s analysis.
After the virtual (or Airy) wavefront emerges, the
part which is convex forward continues to expand,
while the concave forward part collapses to a focus
and then expands. This is the reason for the cusped
wavefront at the bottom left of the figure.
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type associated with resonances via the internal
structure of the potential, which is now of course
accessible. They are characterized by an effective
radial wavenumber within the potential well. Many
in this latter group are clustered close to the real
axis, spoiling the rapid convergence of the residue
series. They correspond to different types of res-
onances depending on the value of Re(λj ) . Thus
mathematically these resonances are complex
eigenfrequencies associated with the poles λj of the
scattering function S(λ, k) in the first quadrant of
the complex λ-plane for real values of β . The imag-
inary parts of the poles are directly related to res-
onance widths (and therefore lifetimes). As β in-
creases, the poles λj trace out Regge trajectories
and Imλj tends exponentially to zero. When Reλj
passes close to a “physical” value, λ = l + 1/2, it is
associated with a resonance in the lth partial wave;
the larger the value of β , the sharper the reso-
nance becomes for a given node number j . The
other type of significant points to be considered
in the complex λ-plane are saddle points (which can
be real or complex). In the complex angular mo-
mentum method, contour integral paths are de-
formed to concentrate the dominant contributions
to the poles and saddle points. A real saddle point
is also a point of stationary phase, and stationar-
ity implies that Fermat’s principle is satisfied. Since
the phase in many cases at such points can be ap-
proximated by the WKB phase, the latter can be
identified with the rays of geometrical optics (some-
times called classical paths). The asymptotic con-
tributions from these points are the dominant ones
within geometrically illuminated regions [10].

In [8] it is shown that

(6)

S(λ,β) = H (2)
λ (β)

H (1)
λ (β)

R22(λ,β)

+T21(λ,β)T12(λ,β)
H (1)
λ (α)

H (2)
λ (α)

∞∑
p=1

[ρ(λ,β)]p−1,

where

ρ(λ,β) = R11(λ,β)
H (1)
λ (α)

H (2)
λ (α)

.

This is the Debye expansion, arrived at by expand-
ing the expression [1− ρ(λ,β)]−1 as an infinite geo-
metric series. R22, R11, T21, and T12 are respectively
the external/internal reflection and internal/ex-
ternal transmission coefficients for the problem.
This procedure transforms the interaction of “wave
+ sphere” into a series of surface interactions. In
so doing it unfolds the stationary points of the in-
tegrand so that a given integral in the Poisson sum-
mation contains at most one stationary point. This
permits a ready identification of the many terms
in accordance with ray theory. The first term rep-
resents direct reflection from the surface. The pth

term in the summation represents transmission
into the sphere (via the term T21) subsequently
bouncing back and forth between r = a and r = 0
a total of p times with p − 1 internal reflections at
the surface (this time via the R11 term in ρ). The fi-
nal factor in the second term, T12, corresponds to
transmission to the outside medium. In general,
therefore, the pth term of the Debye expansion
represents the effect of p + 1 surface interactions.
Now f (β,θ) can be expressed as

(7) f (β,θ) = f0(β,θ)+
∞∑
p=1

fp(β,θ),

where

(8)
f0(β,θ) = i

β

∞∑
m=−∞

(−1)m
∫∞

0

(
1− H

(2)
λ (β)

H (1)
λ (β)

R22

)

× Pλ− 1
2
(cosθ) exp(2imπλ)λdλ.

The expression for fp(β,θ) involves a similar
type of integral for p ≥ 1. The application of the
modified Watson transform to the third term
(p = 2) in the Debye expansion of the scattering
amplitude shows that it is this term which is as-
sociated with the phenomena of the primary rain-
bow. Residue contributions also arise from the
Regge-Debye poles. More generally, for a Debye
term of given order p, a rainbow is characterized
in the λ-plane by the occurrence of two real sad-
dle points, λ̄ and λ̄′ , between 0 and β in some do-
main of scattering angles θ, corresponding to the
two scattered rays on the lighted side. As θ → θ+R
the two saddle points move toward each other
along the real axis, merging together at θ = θR. As
θ moves into the dark side, the two saddle points
become complex, moving away from the real axis
in complex conjugate directions. Therefore, from
a mathematical point of view, a rainbow can be de-
fined as a coalescence of two saddle points in the
complex angular momentum plane.

The rainbow light/shadow transition region is
thus associated physically with the confluence of
a pair of geometrical rays and their transformation
into complex rays; mathematically this corresponds
to a pair of real saddle points merging into a com-
plex saddle point. The next problem is to find the
asymptotic expansion of an integral having two sad-
dle points that move toward or away from each
other. The generalization of the standard saddle-
point technique to include such problems was
made by Chester et al. [3]. Using their method,
Nussenzveig was able to find a uniform asymptotic
expansion of the scattering amplitude which was
valid throughout the rainbow region and which
matched smoothly onto results for neighboring
regions [10], [8]. Unsurprisingly perhaps, the low-
est-order approximation in this expansion turns out
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to be the Airy approximation, which, as already
noted, was the best prior approximate treatment.
However, Airy’s theory has a limited range of ap-
plicability as a result of its underlying assump-
tions, e.g., β 	 5000, |θ − θR| � 0.5◦ . By contrast,
the uniform expansion (and more generally the
complex angular momentum theory) is valid over
much larger ranges.

Finally, we examine the rainbow as a diffraction
catastrophe following the account by Berry and
Upstill [2]. Optics is concerned to a great degree
with families of rays filling regions of space; the
singularities of such ray families are caustics. For
optical purposes this level of description is im-
portant for classifying caustics using the concept
of structural stability: this enables one to classify
those caustics whose topology survives perturba-
tion. Structural stability means that if a singular-
ity S1 is produced by a generating function φ1,
and φ1 is perturbed to φ2, the correspondingly
changed S2 is related to S1 by a diffeomorphism of
the control set C (that is, by a smooth reversible
set of control parameters, a smooth deformation).
In the present context this means physically that
distortions of the raindrop shape to incoming wave-
fronts from their “ideal” spherical or planar forms
do not prevent the formation of rainbows, though
there may be some changes in the features. Another
way of expressing this concept is to describe the
system as well posed in the limited sense that
small changes in the input generate correspond-
ingly small changes in the output. For the ele-
mentary catastrophes, structural stability is a
generic property of caustics. Each structurally sta-
ble caustic has a characteristic diffraction pattern,
the wave function of which has an integral repre-
sentation in terms of the standard polynomial de-
scribing that catastrophe. From a mathematical
point of view, these diffraction catastrophes are es-
pecially interesting, because they constitute a new
hierarchy of functions distinct from the special
functions of analysis [2].

As noted above, at the level of geometrical optics
the scattering deviation angle D has an extremum
corresponding to the rainbow angle (or Descartes
ray) when considered as a function of the angle of
incidence i. This extremum is a minimum for the
primary rainbow. Clearly the point (i,D(i)) corre-
sponding to this minimum is a singular point (ap-
proximately (59◦,138◦)) insofar as it separates a
two-ray region (D > Dmin = θR) from a zero-ray re-
gion (D < θR ) at this level of description. This is a
singularity or caustic point. The rays form a direc-
tional caustic at this point; this is a fold catastro-
phe, the simplest example of a catastrophe. It is the
only stable singularity with codimension one (the
dimensionality of the control space (one) minus the
dimensionality of the singularity itself (zero)). In

physical space the caustic surface is asymptotic to
a cone with semiangle 42◦ .

Diffraction is discussed in terms of the scalar
Helmholtz equation (3) at the point R for the com-
plex scalar wavefunction ψ(R). The concern in cat-
astrophe optics is to study the asymptotic behav-
ior of wave fields near caustics in the short-wave
limit k→∞ (semiclassical theory). In a standard
manner, ψ(R) is expressed as

ψ(R) = A(R)eiκχ(R),

where the modulus A and the phase κχ are both
real quantities. The integral representation for ψ
is

(9)
ψ(R) = e−iNπ/4

( κ
2π

)N/2

×
∫
· · ·

∫
b(s;R) exp[ikφ(s;R)]dNs,

where N is the number of state (or behavior) vari-
ables s and b is a weight function. According to the
principle of stationary phase, the main contribu-
tions to the above integral for given R come from
the stationary points, i.e., those points si for which
the gradient map ∂φ/∂si vanishes; caustics are sin-
gularities of this map, where two or more station-
ary points coalesce. Because k→∞ , the integrand
is a rapidly oscillating function of s , so other than
near the points si , destructive interference occurs
and the corresponding contributions are negligible.
The stationary points are well separated provided
R is not near a caustic; the simplest form of sta-
tionary phase can then be applied and yields a se-
ries of terms of the form

ψ(R) ≈
∑
µ
Aµ exp[igµ(k,R)],

where the details of the gµ need not concern us
here. Near a caustic, however, two or more of the
stationary points are close (in some appropriate
sense), and their contributions cannot be sepa-
rated without a reformulation of the stationary
phase principle to accommodate this or by using
diffraction catastrophes. The problem is that the
ray contributions can no longer be considered sep-
arately; when the stationary points approach closer
than a distance O(k−1/2) , the contributions are not
separated by a region in which destructive inter-
ference occurs. When such points coalesce, φ(s;R)
is stationary to higher than first order and quadratic
terms as well as linear terms in s − sµ vanish. This
implies the existence of a set of displacements dsi ,
away from the extrema sµ, for which the gradient
map ∂φ/∂si still vanishes, i.e., for which∑

i

∂2φ
∂si∂sj

dsi = 0.---
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The condition for this homogeneous system of equa-
tions to have a solution (i.e., for the set of control
parameters C to lie on a caustic) is that the Hess-
ian

H(φ) ≡ det(
∂2φ
∂si∂sj

) = 0

at points sµ(C) where ∂φ/∂si = 0. The caustic de-
fined by H = 0 determines the bifurcation set for
which at least two stationary points coalesce (in the
present circumstance this is just the rainbow angle).
In view of this discussion there are two other ways
of expressing this: (i) rays coalesce on caustics,
and (ii) caustics correspond to singularities of gra-
dient maps.

To remedy this problem, the function φ is re-
placed by a simpler “normal form” Φ with the same
stationary-point structure, and the resulting dif-
fraction integral is evaluated exactly. This is where
the property of structural stability is so impor-
tant, because if the caustic is structurally stable, it
must be equivalent to one of the catastrophes (in
the diffeomorphic sense described above). The re-
sult is a generic diffraction integral which will
occur in many different contexts. The basic dif-
fraction catastrophe integrals (one for each cata-
strophe) may be reduced to the form

(10) Ψ (C) = 1
(2π )N/2

∫
· · ·

∫
exp[iΦ(s;C)]dNs,

where s represents the state variables and C the
control parameters (for the case of the rainbow

there is only one of each, so N = 1). These integrals
stably represent the wave patterns near caustics.
For the fold,

(11) Φ(s;C) = 1
3
s3 + Cs.

The diffraction catastrophes Ψ (C) provide transi-
tional approximations, valid close to the caustic and
for short waves but increasingly inaccurate far
from the caustic. By substituting the cubic term (11)
into the integral (10), we obtain

(12) Ψ (C) = 1√
2π

∫∞
−∞

exp[i(s3/3+ Cs)]ds,

which is closely related to the Airy integral Ai(C)
(equation (1), with s = 31/3t).

Let us now end where we began: at the rainbow
bridge, but this time accompanied by a quotation
from H. M. Nussenzveig [9] which aptly summarizes
much of the subject matter addressed in this arti-
cle.

The rainbow is a bridge between two
cultures: poets and scientists alike have
long been challenged to describe it. The
scientific description is often supposed
to be a simple problem in geometrical
optics.… This is not so; a satisfactory
quantitative theory of the rainbow has
been developed only in the past few
years. Moreover, that theory involves
much more than geometrical optics; it
draws on all we know of the nature of
light.…

Some of the most powerful tools of
mathematical physics were devised ex-
plicitly to deal with the problem of the
rainbow and with closely related prob-
lems. Indeed, the rainbow has served as
a touchstone for testing theories of op-
tics. With the more successful of those
theories it is now possible to describe
the rainbow mathematically, that is, to
predict the distribution of light in the
sky. The same methods can also be ap-
plied to related phenomena, such as
the bright ring of color called the glory,
and even to other kinds of rainbows,
such as atomic and nuclear ones.
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size of the drops in the particular rainbow at
the top indicated by the slice. Smaller drop radii
are at the left, and the slice corresponds to a
radius of about a quarter of a millimetre.

The significance, perhaps even the reality, of
these ‘extra’ bows was not appreciated for a long
time, quite likely since they were not some-
thing Newton’s theory could account for. Even
today, few people seem to be aware of them.
They are faint, but not difficult to observe if one
looks carefully.

Alistair Fraser tells us that the historical role
played by such bows in motivating the devel-
opment of the wave theory of light is greater
than usually suggested in physics books. He
also points out that in nature rain drops are
rarely homogeneous in size or shape, and that
this has the effect that supernumerary bows are
seen only in the top of the bow, where inter-
ference arising from the variety of drops does
not cancel. He says further, “As supernumerary
bows are an interference pattern strongly de-
pendent upon drop size, and as rain showers
have a wide range of drop sizes, one would not
expect these bows to be seen in showers. They
are, nonetheless, seen. Curiously, not all drops
contribute equally—through a mixture of the
physical optics of small drops and the non-
spherical shape of large drops, a narrow band-
pass filter is produced which eliminates the su-
pernumerary bows produced by all but a small
range of sizes.”

The color map is that produced by the the-
ory of George Biddell Airy, dating from roughly
1825. The book includes also a similar map
(figure 10-29) deduced from the more exact Mie
theory, but emphasizes that the fine detail this
predicts, although confirmed under laboratory
conditions, is imperceptible in nature, where
perturbations blur it.

—Bill Casselman
(covers@ams.org)

About the Cover

Supernumerary Bows along with Airy’s
Explanation
This month’s cover accompanies John Adam’s
review of The Rainbow Bridge. Both images are
taken from the book (figures 8-3 and 8-11). The
top photograph was taken in 1979 near Koote-
nay Lake, British Columbia, by Alistair Fraser,
one of the book’s authors. It is one of hundreds
of rainbow photographs he has taken in his
life, and shows well a set of supernumerary
bows. At the bottom is a plot of rainbow color
configurations versus rain drop size, with the

http://cl.fisica.unile.it/~anni/Rainbow/Rainbow.htm
http://cl.fisica.unile.it/~anni/Rainbow/Rainbow.htm
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