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Gadolinium modifies the cell membrane to inhibit 
permeabilization by nanosecond electric pulses

Elena C. Gianulis* and Andrei G. Pakhomov
Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA

Abstract

Lanthanide ions are the only known blockers of permeabilization by electric pulses of nanosecond 

duration (nsEP), but the underlying mechanisms are unknown. We employed timed applications of 

Gd3+ before or after nsEP (600-ns, 20 kV/cm) to investigate the mechanism of inhibition, and 

measured the uptake of the membrane-impermeable YO-PRO-1 (YP) and propidium (Pr) dyes. 

Gd3+ inhibited dye uptake in a concentration-dependent manner. The inhibition of Pr uptake was 

always about 2-fold stronger. Gd3+ was effective when added after nsEP, as well as when it was 

present during nsEP exposure and removed afterwards. Pores formed by nsEP in the presence of 

Gd3+ remained quiescent unless Gd3+ was promptly washed away. Such pores resealed (or 

shrunk) shortly after the wash despite the absence of Gd3+. Finally, a brief (3 s) Gd3+ perfusion 

was equally potent at inhibiting dye uptake when performed either immediately before or after 

nsEP, or early before nsEP. The persistent protective effect of Gd3+ even in its absence proves that 

inhibition by Gd3+ does not result from simple pore obstruction. Instead, Gd3+ causes lasting 

modification of the membrane, occurring promptly and irrespective of pore presence; it makes the 

membrane less prone to permeabilization and/or reduces the stability of electropores.
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Introduction

The phenomenon that high-voltage intense electric pulses of nanosecond duration (nsEP) 

cause cell membrane permeabilization, or electroporation, has been well studied in recent 

decades (1, 2). In addition to plasma membrane permeabilization, nsEP can lead to cell 

swelling and blebbing (3, 4) and activation of necrotic and apoptotic cell death pathways (5–

7). An important quality of pores formed by nsEP is that the diameter is thought to be no 

larger than approximately 1 – 1.5 nm (“nanopores”). This size parameter was determined 

© 2015 Published by Elsevier Inc.
*Corresponding author: Elena C. Gianulis, Ph.D., Frank Reidy Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, 
Suite 300, Norfolk, VA 23508, USA, (757)-683-2234, Fax: (757)-451-1010, egianulis@odu.edu, egianulis@gmail.com. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Arch Biochem Biophys. Author manuscript; available in PMC 2016 March 15.

Published in final edited form as:
Arch Biochem Biophys. 2015 March 15; 570: 1–7. doi:10.1016/j.abb.2015.02.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

~---1 IC~I 



experimentally by the selective uptake of smaller dye molecules, such as YO-PRO-1 (YP) 

and ions (such as Tl+) versus larger dye molecules, such as propidium (Pr) (8, 9), as well as 

by the blockage of cell swelling using solutes that are too large to pass through the pores (3). 

Finally, pores formed by nsEP are stable with a lifetime as long as several minutes (1, 8, 10, 

11).

To date, lanthanide ions, such as gadolinium (Gd3+), are the only known inhibitors of 

electropermeabilization (4, 12). Gd3+ was shown to attenuate the effects of nsEP, reducing 

cell swelling and blebbing, and increased cell survival (12). However, the details and 

mechanism of Gd3+ block of electropermeablization are poorly understood.

Lanthanide ions are well-known nonspecific inhibitors of several types of voltage-gated and 

mechanosensitive ion channels, as well as ion transporters and membrane-bound receptors 

(13–15). Though the mechanism of inhibition by lanthanide ions is not clear, it is thought to 

be due to their similar cationic radii with that of calcium (Ca2+) ions (16). On the other 

hand, there is evidence that lanthanide ions can bind to phospholipids with high affinity and 

affect the physical properties of the lipid bilayer, altering the function of membrane-bound 

proteins (17–19). Therefore, it remains a controversy how lanthanide ions are such potent 

nonspecific inhibitors of ion channels, transporters, and receptors.

Understanding the inhibitory effect of Gd3+ on electropermeabilization can help to uncover 

a broader mechanism of Gd3+’s action on the cell membrane and, in turn, on membrane-

bound proteins. It is unclear whether Gd3+ clogs pores that are formed by nsEP or if it alters 

the plasma membrane to interfere with pore formation and/or stability. In the present study, 

we sought to investigate the inhibitory mechanism of Gd3+ on electropermeabilization. Our 

results revealed a persistent and sustained protection of cells from nsEP by Gd3+, even when 

Gd3+ ions were absent in the solution. These findings prove that Gd3+ does not clog pores 

that are formed by nsEP. Instead, Gd3+ causes a lasting modification of the plasma 

membrane, which occurs independently of pore presence. Thus, the membrane becomes less 

susceptible to permeabilization, and pores that are formed are less stable.

Materials and Methods

Cell Culture

Chinese hamster ovary cells (CHO-K1) cells were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA). Cells were maintained in culture at 37°C, 5% 

CO2 in Ham’s F12K Media supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin. The media and its components were purchased from Mediatech Cellgro 

(Herndon, VA), except for the serum which was purchased from Atlanta Biologicals 

(Norcross, GA). One day prior to experiments, cells were passaged and transferred onto 

glass coverslips (#0 thickness, 12mm diameter) pretreated with poly-L-lysine (Sigma-

Aldrich, St. Louis, MO) to improve cell adhesion.

Cell Imaging and Dye Uptake Measurements

A coverslip with cells was placed in a glass-bottomed chamber (Warner Instruments, 

Hamden, CT) mounted on an Olympus IX71 inverted microscope equipped with an FV 
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1000 confocal laser scanning system (Olympus America, Center Valley, PA). The chamber 

was filled with a physiological solution containing (in mM): 140 NaCl, 5 KCl, 2 MgCl2, 2 

CaCl2, 1 HEPES, 10 Glucose, X GdCl3, (pH 7.4 with NaOH) where X was varied from 0 to 

1 mM. The concentration of HEPES was kept at a minimum to prevent precipitation of Gd3+ 

in the solution. The osmolality of the solution was between 290 and 310 mOsm/kg, as 

measured by a freezing point microosmometer (Advanced Instruments, Inc., Norwood, 

MA). The membrane-impermeable fluorescent dyes YP and Pr iodide were added to the 

solution at 1 μM and 5μg/mL, respectively. These dyes are non-fluorescent when in the 

chamber solution, but once they enter the cell, their emission increases profoundly upon 

binding to intracellular nucleic acids (20). All chemicals were purchased from Sigma-

Aldrich and Life Technologies (Grand Island, NY). Where indicated in the text, the chamber 

was continuously perfused with the physiological solution (including the dyes) during the 

experiment, with a flow rate of 3 mL/min. All experiments were performed at room 

temperature (22 ± 2°C).

Differential-interference contrast (DIC) and fluorescent images were taken with a 40X, NA 

0.95 dry objective as a time series beginning before nsEP exposure and continuing for up to 

7 minutes after it. YP was excited with a blue laser (488 nm) and Pr was excited with a 

green laser (543 nm); the emission of each dye was detected between 505 and 525 nm or 

between 560 and 660 nm, respectively. To avoid “cross-talk” between the dyes, the lasers 

were operated in a line sequence mode. Images were quantified using MetaMorph Advanced 

v.7.7.0.0 (Molecular Devices, Foster City, CA).

Fast-Step Solution Delivery

Direct application of Gd3+ to the cells (Figures 2 and 5) was done using a fast-step SF-77B 

perfusion system connected to a VC-6 valve controller (Warner Instruments, Hamden, CT). 

Briefly, we combined the continual solution flow through the chamber with timed 

application of the solution directly to studied cells via a 3-barrel glass capillary assembly. 

Two of the barrels were each filled with the physiological solution including the fluorescent 

dyes, one with 250 μM GdCl3 added and the other containing 0 μM GdCl3. With the 

chamber solution flowing, these capillaries were positioned upstream from the cells so that a 

flow of solution from the barrels, when the valves were open, would go to an area adjacent 

to the cells, but not reaching the cells. The opening of the valves was controlled by a timed 

TTL pulse (see below), allowing the solution to flow down the capillary by gravity at ~ 900 

μL/min. The solution with Gd3+ (or the control solution in the other barrel) was applied to 

the cells precisely 2 s after opening the valve by an abrupt move of the respective barrel with 

a stepping mechanism so that the flow of solution was redirected to the cells. After a 

designated time (3 or 5 s), the barrel was moved back and the valve was closed to cease the 

perfusion from the barrel. The solution flow through the chamber continued for the duration 

of the experiment, thus washing away Gd3+. Hence, the fast-step delivery system allowed 

for application of undiluted Gd3+ directly to the studied cells for precisely and only the 

designated time interval. Control solution was delivered in the same way to determine that 

no mechanical artifacts were produced from this system.
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NsEP Exposure

NsEP were delivered to the cells as previously described (10). Briefly, nearly rectangular 

600 ns pulses were generated in a transmission line-type circuit upon delivery of a TTL 

trigger pulse from pClamp software via a Digidata 1322A output (Molecular Devices). The 

same software and Digidata output were used to synchronize nsEP exposure, image 

acquisition, and chamber and fast-step perfusion. NsEP were delivered to a selected cell or 

small group of cells with a pair of tungsten rod electrodes (100 μm diameter, ~100 μm gap) 

at a rate of 2 pulses/s. Delivery of nsEP to the cells was delayed until 28 s after the 

beginning of the image acquisition sequence so that several baseline images were recorded 

prior to exposure. The electrodes were positioned precisely 30 μm above the coverslip using 

a robotic manipulator (MP-225, Sutter Instruments, Novato, CA) so that the selected cell(s) 

was positioned in the middle of the gap between the electrode tips. The electric field (EF) at 

the cell location between the electrodes was determined by 3D simulations with a finite-

element Maxwell equation solver Amaze 3D (Field Precision, Albuquerque, NM), as 

described previously (10). In all experiments, the EF amplitude was 20 kV/cm. In each 

experiment, the number of pulses ranged from 2 to 10, which resulted in differential dye 

uptake. In turn, the emission detector (photomultiplier tube) sensitivity was adjusted 

accordingly. Therefore, the emission curves from different sets of experiments should not be 

compared as their Y-axes (in arbitrary units, a.u.) are not the same.

Statistical Analysis

Data are presented as mean ± s.e. Statistical analyses were performed using a two-tailed t-

test where p < 0.05 was considered statistically significant.

Results

Gd3+ inhibits nsEP-induced uptake of YP and Pr in a concentration-dependent manner

The first series of experiments investigated the concentration range over which Gd3+ 

protects cells from the effects of nsEP-induced membrane permeabilization. CHO-K1 cells 

were bathed in a physiological solution containing varying concentrations of Gd3+, ranging 

from 0 to 1000 μM. Following nsEP exposure (10 pulses), we observed a significant 

increase in both YP and Pr emission in cells bathed in 0 μM Gd3+ (“control”, Figure 1A & 

B). Incrementally increasing the concentration of Gd3+ up to 1000 μM progressively 

decreased the dye uptake after nsEP exposure. Pr emission was significantly reduced to ~ 50 

% of control by 100 μM Gd3+ (p < 0.05; Figure 1B & C), whereas at the same concentration, 

YP emission was only slightly less than control and not significantly different (p > 0.05) 

(Figure 1A & C). From 250 to 1000 μM Gd3+, the uptake of both YP and Pr after nsEP 

exposure was profoundly reduced with emission ≤ 20 % of control (p < 0.01; Figure 1A-D). 

Interestingly, by 20 seconds after nsEP exposure, the uptake of both YP and Pr reached a 

plateau, indicating dye uptake was stopped and there were no more pores open through 

which the dyes could diffuse. It is unclear whether this was due to Gd3+ clogging the 

existing pores or inducing the formed pores to reseal.

In addition to reducing dye uptake, we observed a significant effect of Gd3+ on cell 

morphological changes following nsEP (Figure 1D). Cells that were bathed in 250 μM Gd3+ 
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exhibited noticeably less swelling than those that were in 0 μM Gd3+, consistent with our 

previous findings (4, 12). Altogether, these data confirm that Gd3+ is a strong inhibitor of 

dye uptake and cell swelling induced by nsEP. Further, we show that the uptake of Pr is 

more strongly reduced than that of YP, which may be due to the slightly larger size of the Pr 

molecule. Therefore, it is possible that Gd3+ has a greater inhibitory effect on the transport 

of larger molecules. However, from these results we still cannot distinguish whether Gd3+ is 

clogging nsEP-induced pores or is somehow altering the plasma membrane.

Brief exposure of cells to Gd3+ profoundly reduces nsEP-induced uptake of YP and Pr

We next asked whether the inhibitory effect of Gd3+ on dye uptake requires Gd3+ to be 

present at the time of nsEP exposure, and if it can inhibit molecular transport through 

already formed electropores. Cells were exposed to a train of 4 nsEP at 28 s (dashed line in 

Figure 2), followed from 31 to 36 s by a fast-step perfusion with the solution containing 

either 250 or 0 μM Gd3+ (red arrow in Figure 2). We decreased the number of pulses from 

the previous experiment, as we determined that a lower dose was sufficient to 

electropermeabilize the membrane. We found that this transient application of Gd3+ resulted 

in a significant (p < 0.001) reduction in both YP and Pr uptake. Notably, Pr emission was 

reduced by ~ 9-fold at 300 s, versus a ~ 3.5-fold reduction in YP emission at 300 s. We 

asked whether this reduction in emission was simply due to the “missed” dye uptake during 

the 5 second period when Gd3+ was delivered to the cells. By 300 s, the uptake of YP and Pr 

was reduced by ~ 486 and ~ 87 a.u., respectively, which was much greater than the “missed” 

uptake during the period of Gd3+ perfusion (~ 70 and ~ 5 a.u., respectively). Thus, the 

reduction in emission was not due to the “missed” uptake. Rather, Gd3+ caused continued 

inhibition of dye uptake despite being washed away, suggesting that either Gd3+ had enough 

time to clog and/or reseal the pores during the brief perfusion, or that it was not fully washed 

away. These data indicate that the inhibitory effect of Gd3+ does not depend on its presence 

at the time of nsEP exposure, and it is sustained even after its removal. Finally, since Pr is 

slightly larger than YP, the greater inhibition of Pr transport may be indicative of the 

reduction of the mean diameter of nsEP-opened pores by Gd3+.

The presence of Gd3+ does not prevent pore formation by nsEP, but the pores remain 
quiescent

The previous experiments prompted us to ask 1) if Gd3+ prevents pore formation by nsEP 

and 2) if pores are formed, whether molecular transport through the permeabilized 

membrane can be restored upon removing Gd3+? Cells were bathed in physiological solution 

containing either 0 or 250 μM Gd3+ and exposed to 4 nsEP at 28 s. Beginning at either 31 or 

51 s, the chamber bath perfusion was activated so that the solution containing 0 μM Gd3+ 

was flowing, thus washing away Gd3+. We observed a modest recovery in uptake of both 

YP and Pr when the wash began immediately following nsEP (at 31 s), which was ~ 2.5 – 3-

fold greater than when the wash was delayed for 20 s (Figure 3). However, even with this 

modest recovery, the emission of YP and Pr was still significantly reduced (~ 2.6-fold and 5-

fold less than 0 Gd3+ at 300 s, respectively), indicating that the inhibitory effect of Gd3+ 

persisted after it had been washed away. Inhibition of Pr uptake was always ~ 2-fold greater 

than YP regardless of whether the wash was immediate or delayed for 20 s. Notably, by 100 

s, the emission for both YP and Pr reached a plateau, indicating there was no additional dye 
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uptake through the pores. This plateau is similar to that seen in Figure 1, except in this case, 

it was well after Gd3+ had been washed out of the bath. Because Gd3+ was washed away by 

this time, the plateau of dye uptake was clearly not due to Gd3+ clogging pores, but rather 

indicates a rapid shrinking and/or resealing of pores as a delayed effect of Gd3+. It is 

possible that there may be some Gd3+ bound to the membrane that did not get washed away. 

However, this membrane-bound Gd3+ would be unavailable to clog pores due to tight 

binding, and the concentration of any remaining Gd3+ in the solution would be far less than 

the 100 μM concentration needed to inhibit dye uptake (see Figure 1). Therefore, these data 

indicate that 1) pores do form in the presence of Gd3+, 2) Gd3+ provides sustained inhibition 

of molecular transport, and 3) Gd3+ has delayed effects long after it has been removed 

inducing pores to shrink or reseal. These results suggest that Gd3+ is not clogging pores, but 

rather is somehow modifying the plasma membrane so that membrane permeability is 

profoundly reduced.

To test this notion, we conducted a similar experiment in which cells bathed in physiological 

solution containing either 0 or 250 μM Gd3+ were exposed to a pair of nsEP at 28 s (“2p”, 

first dashed line, Figure 4), followed by a wash with 0 μM Gd3+ beginning at 30 s. Then, 3 

minutes after the first nsEP exposure, a second pair of nsEP were delivered (“2p+2p”, 

second dashed line, Figure 4) to measure the formation of new pores with Gd3+ absent. 

Thus, the total number of nsEP delivered in the 2p+2p group was a split fraction of the nsEP 

train from the previous experiment.

We found when cells not treated with Gd3+ (0 Gd3+) were exposed to two trains of nsEP, the 

second nsEP exposure elicited a much stronger effect (Figure 4). Emission of both YP and 

Pr were increased by ~ 2-fold and ~ 4-fold, respectively, relative to a single exposure of 

nsEP. This is consistent with what we previously reported (21, 22), in which cells exposed 

to nsEP become electrosensitized to subsequent nsEP, thereby eliciting an overall enhanced 

effect. In contrast, cells that were bathed in Gd3+ at the beginning of the experiment 

exhibited an increase in both YP and Pr emission after the second nsEP exposure, indicating 

new pores had been formed. However, the magnitude of YP and Pr uptake induced by the 

second nsEP exposure was ~ 2.7-fold and ~ 11-fold less than the 0 Gd3+ group, respectively. 

These data demonstrate that Gd3+ has a sustained inhibitory effect, reducing the effects of 

subsequent nsEP exposures even in its absence. Furthermore, the greater inhibition of 

transport of the slightly larger Pr molecule after the second nsEP exposure is consistent with 

the notion that Gd3+ is limiting the mean diameter of the electropores. Thus, these findings 

support the proposed mechanism that Gd3+ is modifying the physical properties of the 

plasma membrane which is sustained even in its absence.

Gd3+ causes lasting modification the plasma membrane irrespective of the presence of 
electropores

If the mechanism of Gd3+ inhibition of nsEP-induced dye uptake is indeed long-lasting 

modification of the plasma membrane, then one might presume that treatment of cells with 

Gd3+ at any point before or after nsEP exposure would result in a reduction in membrane 

permeability. To test this, we transiently applied a solution containing either 0 or 250 μM 

Gd3+ to the cells via fast-step perfusion for varying times (see Materials and Methods) – 
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from 3–6 s (A), 25–28 s (B), 31–34 s (C), or 91–94 s (D; red arrows in Figure 5) – before or 

after nsEP exposure at 28 s (4 pulses; dashed lines in Figure 5).

Brief perfusion of Gd3+ immediately before (from 25–28 s; Figure 5B) or after nsEP (from 

31–34 s; Figure 5C), as well as early before nsEP (from 3–6 s; Figure 5A), all resulted in a 

robust reduction in uptake of both YP and Pr. Pr uptake was more strongly inhibited than 

YP, with an average ~ 6-fold reduction in Pr emission compared to an average ~ 2-fold 

reduction in YP emission. Most notably, each dyes’ emission was reduced by the same 

magnitude compared to their respective controls regardless of whether Gd3+ was transiently 

applied from 3–6 s, 25–28 s, or 31–34 s. Because no pores had been formed at the delivery 

times that preceded nsEP, this indicates that Gd3+ does not clog nsEP-induced pores to 

inhibit membrane permeability. Rather, this finding demonstrates that Gd3+ causes lasting 

modification of the plasma membrane that inhibits later nsEP-induced dye uptake. 

Furthermore, these findings reveal that the mechanism of Gd3+ inhibition does not depend 

on the presence of electropores in order for it to impose its effects on the plasma membrane. 

Therefore, this suggests that Gd3+ makes the membrane less susceptible to permeabilization, 

and reduces the size and/or permeability of formed electropores.

Finally, brief application of Gd3+ to the cells well after nsEP exposure (from 91–94 s) 

resulted in an immediate slowing in the rate of dye uptake for both YP and Pr (Figure 5D). 

Interestingly, the rate of dye uptake after perfusion of Gd3+ from 91–94 s is similar to the 

rate of uptake when it was applied from 3–6 s, 25–28 s, or 31–34 s. This finding indicates 

that the inhibitory effect of Gd3+ is the same regardless of when it is applied.

Discussion

In this study, we investigated how Gd3+ protects cells from the effects of nsEP-induced 

permeabilization. Does Gd3+ clog nsEP-induced pores formed in the plasma membrane? Or 

does it modify the plasma membrane to interfere with pore formation and/or stability? Here 

we show that Gd3+ inhibits uptake of both YP and Pr in a dose-dependent manner, with a ~ 

2-fold greater inhibition of Pr uptake. We found that Gd3+ inhibition of dye uptake is 

persistant, being sustained even when Gd3+ is absent in the solution. Finally, transient 

application of Gd3+ either immediately before or after nsEP, as well as early before nsEP, 

reduced dye uptake to a similar extent. From our results, we can conclude that the inhibitory 

effect of Gd3+ is not by clogging nsEP-induced pores. Rather, Gd3+ causes lasting 

modification of the plasma membrane that occurs rapidly and irrespective of pore presence. 

Thus, Gd3+ makes the plasma membrane less susceptible to electropermeabilization and 

decreases pore size and/or lifetime.

Our findings prompted us to ask how Gd3+ may be modifying the plasma membrane to 

inhibit electropermeabilization. There is a great deal of evidence that polyvalent cations 

(including La3+, Gd3+, Tb3+, Cd2+, Be2+, Ca2+, Mn2+, Ba2+, Sr2+, and Mg2+) increase the 

surface tension of the lipid bilayer (17–19, 23–31). This occurs by penetration of the 

polyvalent cations deep within the hydrophilic region of the bilayer due to their high affinity 

binding to charged phospholipids, such as phosphatidylserine (23, 25, 29, 32), as well as to 

zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine (18, 
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28, 30, 33). The cations subsequently dehydrate the phospholipid headgroups, making the 

membrane surface more hydrophobic (23, 26, 28, 29, 34). Consequently, Akuzawa-

Tateyama, et al. suggested that the increased membrane hydrophobicity caused by La3+ may 

accelerate electropore closure (35). In support of this idea, molecular dynamics simulations 

show that Ca2+ decreases both the size and lifetime of electropores, presumably by forming 

a Ca2+-lipid complex (36). In this study, we found that Gd3+ induces electropores to rapidly 

reseal or shrink (see Figures 1 and 3). Furthermore, we show that Gd3+ is equally potent at 

inhibiting dye uptake regardless of whether it was transiently applied early before, 

immediately before, or immediately after nsEP (Figure 5), indicating that the effect of Gd3+ 

on the plasma membrane is independent of the presence of electropores. Therefore, the 

results from our study suggest that Gd3+ may inhibit electropermeabilization by increasing 

membrane tension due to high affinity binding to phospholipids, consistent with previously 

reported effects of polyvalent cations on the plasma membrane (17–19, 23–31). We can 

surmise that this increased tension would result in fewer nsEP-induced pores overall in the 

membrane and/or decreased stability of the pores that are formed. Additionally, this may 

result in an overall reduction in the mean diameter of electropores, thus explaining the 

differential inhibition of transport between YP and the slightly larger Pr molecule that we 

observed.

The effect of polyvalent cations on the lipid bilayer goes beyond the bilayer itself, but also 

affects membrane-bound proteins that are modulated by membrane fluidity and surface 

potential. Lanthanide ions, such as Gd3+, are known inhibitors of several types of ion 

channels, including voltage-gated calcium channels, stretch-activated ion channels, as well 

as Ca2+- and Mg2+-ATPases and the Na+/Ca2+-exchanger (13, 15, 16, 19, 37–39). Though 

the mechanism of inhibition by lanthanide ions is not completely clear, it is thought to be 

due to their similar cationic radii with Ca2+ ions, and competing with the permeant ions for a 

binding site in the selectivity filter of the channel (40–42). However, a competing theory 

suggests that compaction of the phospholipids in the plasma membrane by Gd3+ produces 

lateral pressure on the membrane-bound ion channels, thus shifting their equilibrium to the 

closed state (17, 19). Our work here reveals an effect of Gd3+ on the plasma membrane, 

which we propose is by an increase in membrane tension. Our results, coupled with previous 

findings, support the latter theory of modification of the plasma membrane as the primary 

mechanism of lanthanide inhibition of ion channels. Furthermore, given the broad range of 

cations that modify the lipid bilayer (17, 19, 23, 25) and have been shown to decrease 

channel conductance (17, 19), it is reasonable to think that this may be a universal 

mechanism of inhibition of ion channels by a number of multivalent cations.

In this study, we used high-intensity nsEP to permeabilize the plasma membrane. Another 

method of electropermeabilizing the cell is to impose an EF using voltage-clamp commands 

to hyperpolarize the membrane (35, 43–45). Interestingly, the pores created by 

hyperpolarization have similar conductive properties to nsEP-induced pores (10), including 

an inward current, voltage sensitivity, and ion selectivity. The hyperpolarization-induced 

inward currents (Iep) were inhibited by lanthanum ions (La3+) in the concentration range of 

0.1 to 0.5 mM La3+ (35, 43–45). This effective concentration range of La3+ inhibition of Iep 

is in good agreement with what we observed previously (4, 12) and in the present study, in 

which Gd3+ concentrations from 0.1 mM to 1 mM inhibited nsEP-induced permeabilization. 
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Thus, these similarities suggest that the pores created in the cell membrane by high-intensity 

EFs from either nsEP or hyperpolarizing voltage-clamp commands may in fact be the same 

entity, and may both be inhibited by lanthanide ions via the same mechanism.

In summary, we conclude that Gd3+ inhibits nsEP-induced permeabilization not by clogging 

electropores. Rather, it causes lasting modification of the plasma membrane, which occurs 

promptly and irrespective of electropore presence. This modification makes the membrane 

less prone to electroporation and decreases the permeability and/or stability of electropores 

that are formed. Our conclusions can have a broader application on our understanding of the 

effects of polyvalent cations on the plasma membrane and membrane-bound proteins. 

Finally, previous studies have shown cytoprotection by lanthanide ions in the liver from 

toxic products of xenobiotic biotransformation (16). Together with our findings, this 

suggests that lanthanide ions may have a broader protective effect in other cell membrane 

injury models.
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Highlights

• Gd3+ causes a lasting modification of the cell membrane to inhibit 

electroporation.

• Gd3+ does not clog electropores.

• Modification by Gd3+ occurs promptly and independently of electropore 

presence.

• Gd3+ makes the plasma membrane less prone to electropermeabilization.

• Gd3+ reduces the size and/or lifetime of formed electropores.
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Figure 1. Gd3+ inhibits nsEP-induced uptake of YP and Pr in a concentration-dependent 
manner
CHO-K1 cells bathed with Gd3+ at the indicated concentration were subjected to 10, 600-ns, 

20 kV/cm pulses at 28 s (dashed line). Sham-exposed cells were not exposed to nsEP and 

were bathed without Gd3+. The emission curves of YP and Pr are shown in panels (A) and 

(B), respectively. Panel (C) presents the dye emission measurements by the end of 

experiment (300 s) in percent (%) to the 0 Gd3+ group. Mean values +/− s.e. for 4–10 cells 

in each group. * p < 0.05, ** p < 0.01 vs. 0 μM Gd3+; control; # p < 0.01 Pr vs. YP at the 

same concentration of Gd3+. For clarity, error bars are shown in one direction only. (D): 

Representative DIC and fluorescence images of cells before and after nsEP treatment in the 

absence (left panels) or presence (right panels) of Gd3+.
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Figure 2. A brief perfusion of Gd3+ after nsEP exposure inhibits YP and Pr uptake
Intact cells were exposed to 4, 600-ns, 20 kV/cm pulses at 28 s (dashed line), followed at 31 

s by a 5-s perfusion (red triangle) using a fast-step system (see Methods). The emission 

curves of YP and Pr are shown in the left and right panels, respectively. Labels next to 

emission curves indicate which solution was delivered (“0 Gd3+” is the same solution as in 

the bath, in order to control for possible mechanical artifacts, and “Gd3+” is the bath solution 

with 250 μM Gd3+) and the time of perfusion (31 to 36 s). Mean +/− s.e. for 25–32 cells in 

each group. Error bars may be not visible when they are smaller than the central symbol. 

The inhibitory effect of Gd3+ is significant at p < 0.01.
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Figure 3. Gd3+ present in the solution during nsEP exposure does not prevent pore formation, 
but the pores remain quiescent
Cells were bathed in the physiological solution with either 0 or 250 μM Gd3+. The vertical 

dashed line shows the onset of nsEP exposure (4 pulse, 600 ns, 20 kV/cm). In the latter 

groups, Gd3+ was present until immediately after the exposure (0–31s) or until 20 s after the 

exposure (0–51 s), at which time the wash by the bath perfusion with Gd3+-free 

physiological solution began and continued until the end of the experiment. Mean +/− s.e. 

for 19–24 cells per group. Differences between all groups are significant at p < 0.01. Note 

the cessation of dye uptake in Gd3+-treated cells at about 100 s into the experiment, despite 

the absence of Gd3+ in the solution.
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Figure 4. Cells pre-incubated with Gd3+ are less vulnerable to permeabilization by subsequent 
nsEP
Left and right panels show the time course of YP and Pr uptake, respectively. Vertical 

dashed lines identify the exposures to a pair of 600-ns, 20 kV/cm pulses. Cells were exposed 

only to the first pair of pulses (2p, filled symbols), or to both pairs (2p+2p groups, open 

symbols). Gd3+ (0–30 s): 250 μM Gd3+ were in the solution until after the first nsEP 

exposure, followed by a wash with Gd3+-free physiological solution until the end of the 

experiment. 0 Gd3+: control cells not treated with Gd3+ at any time. Mean +/− s.e. for 18–23 

cells per group. Error bars are shown in one direction only for clarity. Differences between 

all groups are significant at p < 0.01. Note the reduced response to the second nsEP 

exposure in Gd3+-treated cells, despite the absence of Gd3+ in the solution.
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Figure 5. The role of timing of Gd3+ perfusion for inhibition of cell permeabilization by nsEP
Top and bottom panels show the time course of YP and Pr uptake, respectively. Vertical 

dashed lines identify the exposure to 4, 600-ns, 20 kV/cm pulses at 28 s. Cells were treated 

with physiological solution containing either 0 or 250 μM Gd3+ by a brief 3-s perfusion 

using a fast step system from A) 3–6 s, B) 25–28 s, C) 31–34 s, or D) 91–94 s (identified by 

the red arrows over the abscissa). See Figure 2 for more details. Sham exposed cells (shown 

in A only) were not exposed to either nsEP or Gd3+. Mean +/− s.e. for 13–23 cells per 

group. The inhibitory effect of Gd3+ is significant at p < 0.01 in all groups except D. 

However, note that the difference in the extent of inhibition between panels A, B, and C is 

not significant.
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