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ABSTRACT

RADIO FREQUENCY TOOLBOX FOR DRONE DETECTION
AND CLASSIFICATION

Bello Abdulkabir
Old Dominion University, 2019

Director: Dr. Sachin Shetty

The continuous development of inexpensive embedded sensors has led to rapid

proliferation of new civilian use of unmanned aerial vehicle (UAVs) or drones. It

is now easier for civilians to own drones as the cost falls. As we all know drones

have a variety of important applications and can also be used for negative effects

too. These drones can pose a threat to the security of the population either civilian,

organization or industry. There is a need for Radio Frequency Signal Classification

(RF-Class) toolbox which can monitor, detect, and classify RF signals from drone

communication system. The ability to accurately classify over-the-air radio signals

will provide insights into spectrum utilization, device fingerprinting and protocol

identification. These insights can help the Warfighter to constantly be informed

about adversaries transmitters capabilities without their knowledge. The advantage

of the drone detection and classification toolbox is extracting information about

transmitters and providing receivers information about transmitted signals. The

classification of RF signals will be done based on the modulation scheme, in this case

orthogonal frequency division multiplexing (OFDM). The signal energy and features

from the signals leveraging its orthogonal frequency division multiplexing(OFDM)

parameter information will be used to classify the signal. This classification will

be done using the capabilities of machine learning to train and test the information

collected. The content of this thesis discuss how drone detection and classification can

be achieved using software defined radio. GNU radio and other hardware components

will be used to implement a simulation of the module.
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CHAPTER 1

INTRODUCTION

1.1 UNMANNED AERIAL VEHICLE

Unmanned aerial vehicle (UAS). The first question a person not familiar with the

term will ask is, What is a UAS? In literature and in general, the entire operating

equipment, which is comprised of an aircraft, the control station, and the wireless

link between the aircraft and its control system is described as the UAS. Unmanned

aerial vehicle (UAV) is the designation that is mostly used to define flying objects

for various applications ranging from recreational, civilian, and professional use. The

terms UAS and UAV can be interchangeable in their usages in this thesis but can

be regarded to mean the same thing. Drone seems like the more used term among

hobbyists and is an unmanned or autonomous aircraft which is commonly used in

a military context while it is also used to designate any of the numerous available

classifications or types of aerial unmanned vehicle in the common language. It can

be observed that in recent years there has been a lot of interest and research on the

unmanned aerial vehicle (UAV) due its ubiquities today; the continuous development

of inexpensive embedded sensors has led to rapid proliferation of new civilian use of

unmanned aerial vehicles (UAVs) or drones. [1] highlighted some various applications

of drones in the society with its application ranging from educational and commercial

use. It is now easier for civilians to own drones as the cost falls. As we all know

drones have a variety of important applications and can also be used for negative

effects too. Detection of drone signals presents an interesting challenge to researchers

and hobbyists in general. Some of the challenges are: 1. Drones can operate and

appear in all directions so therefore a detection and monitoring equipment should

also be able to monitor multiple directions at the same time. 2. It is difficult to

effectively distinguish the drone appearance from that of other flying objects such as

kites, birds etc. most especially in a case where the drone is far from the detection

module

3. As an electronic device which still relies on power to work it presents a limita-
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tion to its battery and communication and as a result consumer-grade drown essen-

tially operates a very low altitude. Objects and environment present an obstruction

to the drone usage often.

3. As an electronic device which still relies on power to work it presents a limita-

tion to its battery and communication and as a result consumer-grade drown essen-

tially operates a very low altitude. objects and environment present an obstruction

to the drone usage often.

1.2 DRONE DETECTION METHODS

In literature there exist different methods of drone detection, some notable de-

tection methods are audio, video, thermal, radar and radio frequency detection. [2]

discusses some of the challenges faced in drone detection and presented an approach

to detection using an audio assisted array. [3] implemented a passive radar tech-

nique approach to detection of drone signal. [1] discussed some principles of drone

detection using the radio frequency approach. In [4] a thermal approach to drone

detection was investigated.

1.2.1 AUDIO DETECTION

The approach to audio detection of drone involves the use of an array of micro-

phones in multiple directions to capture the ambient sound from the drones. Most

of the microphones used for detection can pick up sound from 25ft to 30ft. After

the sound waves are recorded, they are then processed and filtered, and the target

frequency is analyzed. It is known that many classes of drones are equipped with

brushless direct current motors which generate a hissing high frequency sound around

40 KHz which are unique for most of the drones. Using digital signal processing, the

specific frequency of interest can be identified, and the presence of a drone nearby

can be determined. The pros of this method are that it works in quieter environ-

ments and will perform badly in urban areas or noisy environments where the signal

to noise ratio is very low.

1.2.2 VIDEO DETECTION

For video detection of drone signals, cameras can see out to about 350ft with a

usable resolution, which is very economical. The challenge to these methods is that
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they have great difficulty in accurately distinguishing birds from drones. Unfortu-

nately, as we have discovered, this notion fails in a place where birds glide.

1.2.3 THERMAL DETECTION

Due to the temperature characteristics, objects warmer than absolute zero emit

infra-red radiation which can be detected by thermal imaging systems.this can be

extended to drone detection.This method of detection works much better on drones

that have a propulsion engine, mostly on fixed wing drones and the performance

can be good for up to a distance of 350ft. Propulsion engines like the turbo-fan or

the turbo-jet engines generate hot gases from the exhaust which makes it easy to

detect. This method performs poorly, however, when the large percentage of drones

body are made of large amount of plastic or radiate less heat, like most plastic quad-

copters with electric motors. In such cases this mechanism is more likely to consider

a birds or other flying object with more heat than a drone. As a result of such

unreliability in detection, this mechanism can be used as an addition with other

detection mechanisms rather than standalone.

1.2.4 RADAR DETECTION

RADAR is very useful in detecting large aircrafts but not as much when the size

is small like a quad-copter. Radars find it difficult to pick up these small, plastic,

electric-powered drones commonly used in the society right now because they were

not primarily designed for this purpose. [3] implemented a passive radar technique

approach to detection of drone signal.

1.2.5 RADIO FREQUENCY DETECTION

Detection of drone signals using its radio frequency (RF) signature is one of

the effective ways for long-range detection of drones. The drones communication

protocol is designed in such a way that the aircraft communicates with the ground

control station (remote controller) and transmits video image over . Due to the

characteristics of a wireless signal, such radio frequency signals can be detected from

a long distance. It will be very difficult to design a drone that can completely

escape RF detection. Although some UAVs with fixed wing propulsion engines can

fly at very high altitude and can escape detection using this technique, mostly the
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detection success rate is highly dependent on the power of the transmitter as well as

the sensitivity of the receiver.

1.3 HOW DRONE WORKS

The drone is made of two fundamental parts which are the remote control and

the aircraft. Both communicate with one another using a radio frequency communi-

cation link. The figure below presents the architecture and architectural design and

components of most drones.

Fig. 1: The Components of a drone.

For our RF classification we will be focusing on the communication between

the ground (remote controller) and air (aircraft). The remote controller can directly

control the drone by means of control, data and video transmission communicate and

send information between each other. The majority of controllers use the 2.4 GHz

spectrum with a proprietary frequency hopping spread spectrum (FHSS) modulation

[6]. FHSS is used to maximize robustness and controlling distance. Both of these

signal modulation types are used in military applications as well as some available

electronic devices such as cell phones. Another important characteristic is they are

very resilient to interference due to the fact that the transmitter and receiver are

paired together. In the military this technology can have an important application

as it can be used for low probability of detection (LPD) to keep the enemy from

knowing that the signal is there to begin with. This characteristic however makes

a drone more difficult to detect. FHSS controllers can be effective against jamming

as well due to the fact that they are not just transmitting informations on a static

frequency but the whole width of the spectrum the drone is hopping in. The remote

controller and the aircraft transmit and receive control, video and other kind of signal
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between them.

Table 1 shows the list of information associated with control signals of some

available drones used by hobbyist, student or researchers

Brand Frequency Modulation Technology

DJI Phantom 2.4Ghz/5.8Ghz FHSS/DSSS FASST/Lightbridge

Futaba 2.4Ghz FHSS/DSSS FASST

Spektrum 2.4Ghz FHSS/DSSS DSMX

JR 2.4Ghz FHSS/DSSS DMSS

Hitec 2.4Ghz FHSS/DSSS AFHSS

Graupner 2.4Ghz FHSS/DSSS HOTT

Yuneec 2.4Ghz DSSS ZigBee

Parrot AR2 OFDM Wi-Fi

TABLE I: Popular controls used by drones, frequencies they operate on and the used

modulation technique and technology.

Table 2 shows some information associated with the communication signal for the

video transmission between the remote controller and the aircraft,

Brand Frequency Modulation Technology

DJI Phantom 2.4Ghz OFDM Lightbridge/Wi-Fi

Immersion 2.4Ghz FM

Yuneec 5.8Ghz OFDM Wi-Fi

Connex 5.8Ghz OFDM

Immersion 5.8Ghz FM

Boscam 5.8Ghz FM

TABLE II: Popular video transmission used by drones, frequencies they operate on

and the used modulation technique and technology .

1.3.1 OVERVIEW OF FREQUENCY AND MODULATION TECHNIQUE

USED BY DRONES

As mentioned earlier drones generally work the same as other radio-controlled de-

vices where the controller is the transmitter and the aircraft has a receiver capable of

understanding what the remote controller is sending to it. [7] Normally, the frequency
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band allocated by the FCC for RC drones is either 27MHz or 49MHz.However, the

control frequency for the newer drones are in the 2.4GHz or 5GHz range from the

manufacturer. It is important to note that transmitters and receivers are readily

available in different frequency ranges so a custom-built drone for instance could be

operating on a different frequency than ones listed below. Some other license exempt

spectrum bands that are used by newer drones are the 433 MHz, 868 MHz and the

5.8 GHz. The 2.4 GHz band in most cases are used for control, while the 5.8 is

mostly used for video. The 433MHz and 868 MHz bands are mostly used for teleme-

try, besides the 2.4 GHz. Table 3 shows an overview of the different frequencies and

modulation techniques used by drones

Frequency 433Mhz 868Mhz 2.4Ghz 5Ghz

Control No No DSSS+FHSS/DSSS/OFDM OFDM

Video No No OFDM OFDM, FM

Telemetry Divers OFDM OFDM,DSSS OFDM

TABLE III: Popular video transmission used by drones, frequencies they operate on

and the used modulation technique and technology .

1.3.2 PROBLEM STATEMENT

With the available information on UAV, the major goals of the thesis are to

develop a drone detector system based on RF signal analysis and classify the drones

using a machine learning algorithm. The system will be implemented using a software

defined radio. GNU radio companion as the software component part and HackRF

will be used as the hardware component part. Some questions to answer are:

1. Is it possible to detect drones using RF signal analysis?

2. Which characteristics features of signal can be extracted?

3. What are the best features to extract and use for detection and classification?

4. How accurate is the RF detection module?

5. Can we accurate distinguish between drone from the same or different class

1.3.3 OUR APPROACH

Our approach is based on the concept discussed in [5]. We intend to leverage the
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knowledge of RF detection to achieve the detection, feature extraction, and classi-

fication of drone signals using machine learning. We intend to extract the OFDM

parameters of the drone signal in addition to the energy and other statistics associ-

ated with the received signal. In other to detect the signal we will be implementing

energy detection of a wireless signal. There are other available detection techniques

available in literature and in practice, but we have chosen to use energy detection

because of its simplicity, as it does not employ a lot of computational complexity.

After the features are extracted from the incoming signal of interest, we will carry

out additional processing. This processing involves the labeling and training of the

collected features. This is necessary because we will be using the supervised learning

method of machine learning to classify the drone signals. GNU radio blocks will

be used to implement the detection, extraction, classification and testing. The data

training and processing will be performed using python. After the training is done

in Python, a testing file will be created and loaded into the GNU radio block for real

time testing and analysis.

Fig. 2: The overview of drone detection system: (a) active and (b) passive approaches.

.
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CHAPTER 2

BACKGROUND

2.1 OVERVIEW OF SOFTWARE DEFINED RADIO

There has been an exponential growth in the means by which people to com-

municate, a lot of options exists such voice communication, data communication,

video communication, command and control communications, etc. As such having

an easily modifiable and cost- effective radio device has become very important and

critical business. Software defined radio has various definitions in literature, [8] sim-

ply defined it as ” a radio in which some or all of the physical layer functions are

software defined”

2.2 BACKGROUND OF SDR

Joe Mitola of Mitre is generally credited with being the father of the software

defined radio [9]. Although the history of the SDR can be traced to begin in the mid

1980s. In literature one of the first major developments for SDR was the SpeakEasy,

which basically is a transceiver platform designed by Hazeltine and Motorola, based

on SDR technology for Rome Griffiss Air Force Base. The SpeakEasy was primarily

designed to provide tactical military communications from 2 MHz to 2 GHz and also

to provide interoperability between the different air interface standards of the differ-

ent branches of the armed forces. The SpeakEasy technology utilized many of the

wireless techniques and concepts to provide multi-band, multi-modes of operations.

Many people have made valuable contributions to the development of SDR from then

until what it is today. This history is beyond the scope of my thesis

2.3 BENEFITS OF SOFTWARE DEFINED RADIO

Some of the benefits of software defined radio includes but not limited to the

listed point:

1. Software defined radio provides interoperability as it supports multiple stan-

dard through its multiband and multimode radio capabilities
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2. For users it is cheap to purchase there by reducing ownership cost, requires

less maintenance and easy to deploy.

3. Its sustainable as a result of increased utilization through generic hardware

platforms

4. SDR are adaptable and makes it easier and faster to migrate towards new

standards and technology through programmability and reconfiguration

2.4 ARCHITECTURE OF SOFTWARE DEFINED RADIO

The architecture of SDRs can be broken down into three main sections: the RF

section, the IF section and the Baseband section. The RF signals are received via

antennas and converted to IF signals. The IF signals are then converted to baseband

and the digital signal processing carried out in software [9]. The conversion of RF to

IF signals makes it possible to accommodates the hardware and software speed limit

of Commercial Off-The-Shelf (COTS) components. Digitalization by the ADC also

prepares the signal for further digital signal processing.

Fig. 3: The architecture of software defined radio.

2.5 GNU RADIO CONCEPT

GNU Radio is an open source toolkit which has been one of the frameworks

for SDRs. Its active community support, extensive processing tools library and

versatility are the major advantages that draw academic researchers, commercial

companies and students to use the framework [9]. GNU Radio is also compatible

with all personal computer operating systems (Ubuntu/Linux, Windows and Mac
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OS) although performance varies on different platform. Ubuntu currently has been

noted to perform better as it allows users with more flexibility and access to other

interoperable frameworks. It can be used with the USRP, HackRF, Raspberry Pi and

other hardware components for SDR development [9]. C++ is used as the language

to write the signal processing, Python can also be used to write the signal blocks,

but they are slower in terms of performance than blocks created using C++. Python

generally is the language used for scripting to connect the signal processing blocks.

The C++ and Python modules are glued together by the Simplified Wrapper and

Interface Generator (SWIG). There are a lot of ready-made blocks in the GNU radio

library however enabled by SWIG, blocks can also be created by users as an Out

of tree (OOT) module to achieve custom or desired result. GNU radio recently

has added multi core support to its interface and is able to thread different blocks

unto different processing unit there by taking advantage of the number of multi-core

computers. GNU radio consists of modules that are used in signal processing such

as FFT modules, coding and decoding, modulation, demodulation, equalizers and

signal filters. These modules are connected by data streams to form flowgraphs whic

indicate the data flow direction.

Fig. 4: Generic Flowgraph of GRC

GNU Radio Companion (GRC) is a graphical tool used for creating signal flow

graph and generating flow graph source code, Thanks to a large online community

that works on improving the project GRC is a very intuitive and powerful platform.

Users can construct a graphical representation of a flow graph by inter-connecting

blocks from GNU Radio libraries. These modules in GNU Radio Companion can be
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grouped into three classes:

1. Source Block: These are GRC blocks with output ports only and their primary

function is to inject data into the flow graph. An example is the random source block.

2. Input or Output Block: These GRC blocks receive streams of data from the

input port, convert it and inject back into the flow graph. The output is passed to

the next block through the output port. An example is the throttle block

3. Sink Block: These have input ports only, which receive streams of data or

signals. One example is null sink that stores received data into a file and another

example is a graphical analyzer that converts received data into graphical form.

Figure 4 provides a simple example of a flow graph comprising of a source, input

or output and sink module of GNU Radio companion

2.6 STRUCTURE OF GNU RADIO MODULE

[9] GNU Radio modules come with the following subdirectories: apps, cmake,

docs, lib, swig, python, include and grc These subdirectories have autoconf, libtool

and automake tools that make them compile independently.

Subdirectories Description

apps Consists of complete applications installed in the system as well as

GRC blocks.

Cmake instruction files for autotools,cmake command used to locate

GNU Radio libraries.

docs Consists of instructions to extract documents from the C++ and Python files.

lib storage for source (.cc and .h) files. These are meant for all other

languages except python.

Swig SWIG tool instructions used to build python interfaces used by C++ classes.

Python Used to store all python files.

Include C++ header files are stored in include/ for them to be exported

TABLE IV: Description of GNU Radio module structure .

The choice of using the GNU radio platform depends on the context what we

want to detect. In this case, the drone to be detected is a device that operates

with the characteristics of radio systems. GNU Radio respects in total the radio

system propagation approach because it’s a software platform that implements a

radio system without a dedicated hardware. Additionally, GNU radio is a cheap
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system because it’s open source and the USRP, HackRF and other hardware are low

cost device which can be easily purchased. Probably GNU Radio might be seen as

less efficient than other testbeds, but its performances depend largely in part with

the host computer, so is not easy to compare the computational efficiency of other

testbeds. Its simple architecture allows for a easy utilization also because it has

a functional graphic interface and as stated earlier it’s supported by a lively web

community. GNU Radio is a very versatile system used in many applications, so its

applicability is guaranteed in the future.

2.7 HACKRF

HackRF One by Great Scott Gadgets is a transmit and receive capable SDR with

8-Bit ADC, 10 MHz to 6 GHz operating range and up to 20Mhz of bandwidth. It has

a max sample rate of 20 million samples per second which limits its constant viewing

of the spectrum to 20MHz in GNU radio environment. However, there is a limitation

Since the 2.4-2.5Ghz range is 100MHz wide, it could not constantly view the entire

spectrum. Although, it can scan very quickly if the channel set is narrowed down

enough. The drivers for the hardware need to be installed in GNU radio companion

in other to use it for transmitting and receiving signals.

2.8 DETECTION OF DRONE SIGNAL

In literature and research articles there exist some different detection methods.

The detection method should be able to overcome many obstacles that could make the

detection difficult.Among the existing detection methods that have been implemented

so far,not all of them are independent from these factors so they cannot be efficacious.

Some of the factors are that may affect detection are:

1. The typical low signal to noise ratio (SNR) in the transmissions;

2. Multi-path and fading in wireless communications;

3. The instable noise level in the channel;

4. The need for a low sensing time

2.9 DETECTION METHODS

Below some of the most important detection methods are presented and how

these are limited by the negative factors is also explained.
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Fig. 5: HackRF Hardware

2.9.1 MATCHED FILTER

It has been identified that the best way to detect signals with maximum SNR

is to use a matched filter receiver. Its most important characteristics is the low

execution time, but the signal properties to be detected is known before the process

begins. This method includes the demodulation of the signal which means that the

receiver should agree with the source, estimate the channel conditions and to know

the signal nature. This method is mostly useful for dedicated receivers like in TV

transmissions.

2.9.2 ENERGY DETECTION

This is the most basic and common approach to spectrum sensing and detection

due to the fact that it has low computational and execution complexity. Unlike
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matched filter detector, prior knowledge on the transmitted PU signal is not required

in case of energy detector. An energy detector sets a threshold according to the noise

floor and compares it with the energy of the data stream in input. This detector only

requires minimal information, such as the signal bandwidth and carrier frequency.

Digitally, implementation of this method uses the Fast Fourier Transform (FFT),

so the absolute value of the samples is squared and integrated over the observation

band.

Fig. 6: Energy detection diagram.

2.9.3 FEATURE DETECTION

Most signals have statistical properties that vary periodically with time, which

are called cyclostationary features. Hence, more accurate detection can be achieved

by exploiting the inherent periodicity of the autocorrelation function of the signals.

Modulated signals have a SCF with specific and unique characteristics so, compar-

ing them with a database containing list of typical features, the signal detection is

possible. The limitations of this method are that it needs a great computational

complexity and also the knowledge of some signal parameters of the signal under

test like the carrier frequency.

2.9.4 EIGENVALUES DETECTION

The main characteristics of this method is the ratio of the eigenvalues of the

covariance matrix of the received signal. Eigenvalues based method of detection are

of two types: maximum-minimum eigenvalue detection, which compares the ratio of

the maximum eigenvalue and the minimum eigenvalue with a threshold and energy
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with minimum eigenvalue detection, which compares the ratio of the average energy

and the minimum eigenvalue with a threshold. The first method of detection does

not require a prior knowledge of the SNR unlike the second that needs to know

the SNR value. Ideally The maximum-minimum approach can overcome the noise

uncertainty problem and also retains the major advantages of the energy approach.

In this way the method detects signals with unknown source, unknown channel and

unknown noise power. This method requires a lot of complexity to its approach.

2.10 DETECTOR METHOD COMPARISON

A Comparison of each detection method presented has advantages and disadvan-

tages in signal detection. Table 5 presents a brief summary of different aspect that

the methods are compared [21]:

1. Execution time. The ideal signal detector should work in real time so that the

execution time is the shorter possible.

2. Noise rejection. Skill of the method to be immune to the white noise.

3. Knowledge a-priori. How much information the method needs to detect the

signal. In CR this information should be minimum.

4. Computational complexity. Capacity calculation required to detect the signal.

5. Interference rejection. Skill of the method to be immune to the disturbs

different from white noise.

ETime NR PK CC IR

Matched filter GOOD MEDIUM HIGH LOW HIGH

Energy Detection HIGH LOW NONE LOW LOW

Feature detection LOW HIGH MEDIUM HIGH HIGH

Eigenvalues Detection MEDUIUM HIGH NONE MEDIUM LOW

TABLE V: Comparison of methods of different detection methods.

For the table the ET-Execution time, NR-Noise reduction, PK-Prior knowledge,

CC-Computational complexity,IR-interfeerence rejection
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CHAPTER 3

METHODOLOGY

3.1 DETECTING THE DRONE SIGNAL

Energy detection will be implemented and demonstrated using software defined

radio. This will be achieved using two computers with GNU radio companion soft-

ware installed and two HackRf hardware for transmit and receive.

Fig. 7: Flowgraph of Energy Detector on GNU radio.

3.2 DESCRIPTION OF THE FLOWGRAPHS

Fig. 6 shows the receiver flow graph where the energy detection of the signal

transmitted is performed. The Osmocom source is the HackRF where some param-

eters such as sample rate, frequency and bandwidth are configured. The received

signal data is processed in the computer where the GNU radio is installed. The
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throttle block is used to control the CPU usage of the computer. The signal received

is converted into a vector of 1024 points using the stream to vector block. At the

same time, the output is plotted using the QT GUI Sink block for reference purpose.

This has power spectral density (PSD), Waterfall, Time Domain, and Constellation

displays. Following the conversion to 1024 points is the FFT block. The FFT block

performs fast Fourier transform on the incoming stream of data and the output is

sent to complex to mag2. Windowing is also done in this block in order to min-

imize edge effects and prevent spectral leakage in the FFT spectrum. Blackman

Harris window was chosen for windowing purpose. Next is removal of the scaling

made by the FFT block itself. Then, the magnitude of the complex value is squared

(a+−jb => a2 + b2) by the complex to mag2. The output of this block is then sent

to the custom-made Energy− detection− ff block which is where the detection al-

gorithm is implemented. The block allows user to choose the number of samples and

the probability of false alarm to be used for calculation. From the input data, the

block calculates the mean (average) of the received signal, its variance and standard

deviation. This parameter is used to calculate the dynamic threshold for detection.

The log value of signal average and threshold are calculated. The average signal

energy is then compared with the threshold to determine if the signal is present or

not. If the signal energy is greater than the threshold then signal is present, and the

signal energy is sent to the output. The QT GUI Sink block is used to display of the

power of the received signals in the frequency domain for visualization. We use the

formula below to implement averaging in the detector block [10]:

Total power in N samples set

Y =
N∑

n=1

1

N
X(n)2

To make the decision if signal is present or absent, we need to determine the

Threshold,

T = µ+Q−1(pfa)σ

where µ and σ are the mean and standard deviation of the time averaged FFT

points respectively, inverse Q () represents the inverse Q-function and Pfa is the

probability that the detection module chooses H1 while the correct decision is H0.

The decision rule can be defined as

Detection Decision

Y > T → H1(signalpresent)
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and

Y <= T → H0(Signalabsent)

3.3 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

(OFDM

[1] Orthogonal Frequency Division Multiplexing (OFDM) is a basic building

block for many of the current modulation schemes including; 802.11 WLAN, 802.16

WiMAX, and 3GPP LTE. Orthogonal Frequency Division Multiplexing (OFDM) is

a digital multi-carrier modulation scheme that uses multiple subcarriers within the

same single channel. It makes use of a large number of closely spaced orthogonal

subcarriers that are transmitted in parallel. Each of the subcarrier can be modulated

with one of the conventional digital modulation schemes (such as QPSK, 16QAM,

etc.) at a low symbol rate. However, the combination of more than one subcarrier

enables data rates similar to conventional single-carrier modulation schemes within

equivalent bandwidths.

There is a notable difference between OFDM scheme and that of traditional FDM

in the following ways:

1. Multiple carriers (called subcarriers) carry the information stream

2. The subcarriers are orthogonal to each other, and

3. A guard interval is added to each symbol to minimize the channel delay spread

and inter symbol interference.

In the figure shown below, one will get a better understanding of the main con-

cepts of an OFDM signal and the inter-relationship between the frequency and time

domains. In the frequency domain, many adjacent subcarriers or tones are each

independently modulated with complex data. Then an Inverse FFT transform is

performed on the frequency-domain subcarriers so as to produce the OFDM symbol

in the time-domain. After which in the time domain, guard intervals are inserted be-

tween each of the symbols to prevent inter-symbol interference at the receiver which

is caused by multi-path delay spread in the radio channel. It is possible for multiple

symbols to be concatenated and used to create the final OFDM burst signal. At the

receiver an FFT is performed on the OFDM symbols to recover the original data

bits.
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Fig. 8: Representation of OFDM Signal

3.3.1 UNDERSTANDING THE CONCEPT OF ORTHOGONALITY

In the frequency domain of signal processing, each of the transmitted subcarrier

usually results in a sine function spectrum with side lobes that produce overlapping

spectra between subcarriers. This therefore results in subcarrier interference except

at orthogonally spaced frequencies since the individual peaks of subcarriers are all

line up with the nulls of the other subcarriers. In addition, this overlap of spectral

energy in noted to not in any way interfere with the systems ability to recover the

original signal. At the receiver end, the receiver multiplies (i.e., correlates) the in-

coming signal by the known set of sinusoids to recover the original set of bits sent.It

can be noted that the use of orthogonal subcarriers allows more subcarriers per

bandwidth resulting in an increase in spectral efficiency. In a perfect OFDM signal,

orthogonality prevents interference between overlapping carriers. In OFDM systems,

the subcarriers will only interfere with each other if there is a loss of orthogonality.

For example, frequency error will cause the subcarrier frequencies to shift so that the

spectral nulls will no longer be aligned resulting in inter-subcarrier-interference.
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Fig. 9: OFDM Signal Breakdown

3.3.2 SOME KEY PARAMETERS: OFDM MODULATION CLASSIFI-

CATION

OFDM signal classification based on parameters center frequency, OFDM symbol

duration, CP length, and number of subcarriers [2]. Cyclostationary Feature based

OFDM classification [3] considers Frame Preamble Cyclostationary Signature, Pilot

Subcarrier Cyclostationary Signature. Also, IEEE 802.11 Major OFDM physical

layer Parameters Authors of [4] reported that for the classification of OFDM Mod-

ulation the following parameters are chosen number of carriers, symbol duration,

bandwidth and bit rate.

The OFDM system parameters which are used for Modulation Classification

(MIMO OFDM) [15]: Carrier frequency, Total bandwidth, Number of subcarriers,

Subcarrier spacing, Length of cyclic prefix, Sampling period and OFDM Frame du-

ration (CP included). The following parameters can also be considered for OFDM

classification [16]: Uncoded data rate = 390Mbs, Source symbol duration TD =

15.385ns, Transmission symbol duration TS = 12.5ns , Total OFDM symbol dura-

tion TS = 3.60ms, Guard time TG = 0.4ms, Subcarrier spacing FS = 0.3125MHz,

Nyquist bandwidth BN (including pilot and DC subcarriers) = 76.5625MHz

The spectrum of OFDM is considered to be rich in features and can be used to

estimate some OFDM parameters such as number of subcarriers and length of the

CP in an OFDM symbol [17]. These OFDM waveform parameters can be used to
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automatically recognize or classify different OFDM waveforms, which are important

for cognitive radios, coexistence of heterogeneous networks and signal intelligence.

Besides distinguishing of OFDM signal from single carrier, some vital parameters

of OFDM signal should be extracted for further processing [18]. These parameters

include, but not limit to, the number of subcarriers, OFDM symbol duration and

cyclic prefix (CP) duration. A cyclostationarity test is applied to the incoming signal

to detect the OFDM symbol duration Ts. The CAF of an OFDM signal exhibits

peaks atα = c/T and τ = Tu, where Tu = T − Tg is the data duration time,

normalized by the sampling period Ts [19]. In an OFDM signal, these peaks are

introduced by built-in periodicity due to equally spaced sinusoidal carriers, cyclic

prefix and pilot patterns. In fact in a non-cyclostationary signal, such as AWGN,

the CAF does not show any peak for α 6= 0 . The AWGN has a peak only for α = 0

and τ = 0 and we use this feature to distinguish between the presence or absence of

PU signals.

3.3.3 EXAMPLE OF SOME OFDM KEY PARAMETERS

Given that there are different available parameters in literature that researchers

have used as a feature to classify OFDM signal from non OFDM signal.below is an

example of what some of these parameters look like

Number of data subcarriers 48

Number of pilot subcarriers 4

Subcarrier frequency spacing 156.2kHz

Occupied Bandwidth 8.28125MHz

Short training sequence duration 16µs

Long training sequence duration 16µs

Training sequence guard interval 3.2µs

PLCP preamble duration 32µs

Guard interval duration 1.6µs

POFDM Symbol duration 8µs

TABLE VI: Comparison of methods of different detection methods.

In our experiment we make use of four parameter.The OFDM parameter estima-

tion block of the GR-Inspector which estimates these parameters was incorporated

to our already developed energy detection block and the result from the two block



22

merged together to form one block of the signal parameter estimation. Below is a

brief description of the parameters :

Cyclic Prefix Length Determination: The useful symbol length (Tu) is the inverse

of the subcarrier spacing. Then, the CP length is (Tg = G ∗ Tu), where G is

(Tg/Tu) ratio. The choice of G is made according to channel parameters. The

total OFDM symbol length consists of the useful symbol length and the CP length

(TOFDM = Tg + Tu). [20]

1. Number of Subcarriers: it consist of both the pilot and data carriers

2. FFT size: the number can vary from 64, 128, 256, 512 and so on

3. OFDM Symbol duration: This is the Inverse of subcarrier spacing

4. Subcarrier Spacing: spc = 1/Ts, Ts is symbol time

3.3.4 IMPLEMENTATION OF OFDM PARAMETER ESTIMATION

In the OFDM parameter estimation block in the GNUradio, some algorithms

were used to implement the estimation of some OFDM parameters. Below are the

necessary step that were taken to implement the algorithms:

OFDM parameter estimation algorithm steps are as follows:

1. Calculate the autocorrelation function for input vector to estimate subcarriers

length (FFT) using the discrete autocorrelation function

2. Calculate the CAF, the easiest way to describe the CAF (cyclic autocorr func-

tion) is that it is a coefficient in the Fourier series expansion of the time-varying

autocorrelation of a cyclostationary random process (cyclostationary signal). Calcu-

late time variant cyclic correlation function to find cyclic prefix length (CP).

3. Then determine subcarrier spacing = subspc = (samplerate/FFT length)andsymboltime =

symtime = (1/subspc).

3.3.5 IMPLEMENTING OFDM PARAMETER ESTIMATOR IN GNU

RADIO

From the Gr-inspector module which was part of the Google Summer of Code

(GSoC) program 2016, We culled one of the available blocks to suit our experiment.

The Gr-inspector module has a module developed which implements the parameter

estimation in GNU Radio Companion. This GNU Radio module is particularly

developed so as to realize signal analysis abilities in typical block-structure. The

module is capable of the following:
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Fig. 10: Breakdown of OFDM parameter estimation

1. Energy detection of continuous signals

2. Filtering of detected signals

3. OFDM parameter estimation (carrier spacing, symbol time)

4. Blind OFDM synchronization

5. Resampling of signals to constant rate

6. 3D Visualization of FAM data, from gr-specest

7. Using TensorFlow models for AMC

For our problem we are mainly interested in the OFDM parameter estimation

block which performs estimation of four OFDM parameters and output them as a

message block (carrier spacing, symbol time,FFT size,Symbol duration). We incor-

porated this block with the energy detector implementation and combined the output

from both blocks to get the parameter for detection and estimation together as one

unit

3.4 MACHINE LEARNING CLASSIFICATION

What is machine learning? There are different definitions but generally it is a

branch of artificial intelligence that is concerned with the design and development of

algorithms that allow computers to evolve behaviors based on empirical data. The

idea is for machines are able to learn and make predictions without explicitly being

programmed. As intelligence requires knowledge, it is necessary for the computers
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Fig. 11: OFDM estimator in GNURadio

to acquire knowledge. We incorporated a machine learning block to our work by

developing a custom machine learning testing block on GNURadio

Fig. 12: Breakdown of the machine learning module

The estimated parameters are initially used to construct training data and stored

in data library for further processing. The classifier in training mode creates models

based on selected machine learning classification algorithm. Then, testing of the

new signal is done with the selected model from data library. The machine learning

classifiers are discussed below.

3.4.1 MACHINE LEARNING CLASSIFIER

Generally, machine learning algorithm are usually organized into different tax-

onomies which are based on the final outcome. Some of the common algorithm types
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are:

1. Unsupervised learning: in this case it the algorithm models a set of inputs

based on some characteristic. Labelling of the data samples is not available in this

situation

2. Supervised: A set of function is generated by the algorithm that maps the

data inputs to a desired output. The learner in this case is required to learn how to

approximate the behavior of a function which maps an input vector into one of many

classes by cross checking and taking a close look at different input-output examples

of the function. Our experiment is based on this type of algorithm

3. Semi supervised learning: this combines the concept or examples of both

supervised and unsupervised algorithm and generates an appropriate classifier.

4. Reinforcement learning: In this case the algorithm learns a policy of how to

act when given an observation of the world.

5. Learning to learn: in this case the algorithm learns by its own inductive bias

taking into consideration previous experience

Below some of the machine learning classifiers are discussed briefly

Decision Tree

A decision tree has a flowchart-like structure in which each of its internal node

represents a test on an attribute for example in a coin toss scenario, whether a coin

flip comes up heads or tails, each of the branch represents the outcome of the test, and

each leaf node represents a class label which is the decision taken after computing all

attributes. The paths represented from the root to leaves denotes the classification

rules. Typically, a decision tree algorithm consists of three types of nodes:

1. Decision nodes - this are usually represented by squares

2. Chance nodes - usually represented by circles

3. End nodes usually represented by triangles

Support Vector Machine

A Support Vector Machine (SVM) is a classifier, which distinguishes the various

classes of data by the use of a hyper-plane. SVM is modelled with the training data

and it outputs the hyper-plane in the test data. [26]. The SVM model works by trying

to find the space in the matrix of data where different classes of the investigated data

can be widely differentiated and draws a hyper-plane.
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Random Forest Classifier

The random forest machine learning algorithm is a classifier which consist of a col-

lection of different decision trees, whereby each of the tree is constructed by applying

an algorithm A on the training set S and an additional random vector V where V is

the sampled (i.i.d).(independently and identically distributed) from some available

distribution. The prediction of the random forest is obtained by a majority vote over

the predictions of the individual trees [13,255]. Usually the Random Forest algorithm

works in the following steps:

1. Picks random K data points from the training data.

2. Builds a decision tree for these K data points.

3. Chooses the Ntree subset from the trees and performs step 1 and step 2

4. Decides the category or result on the basis of the majority of votes.

The training algorithm for random forests applies the general technique of boot-

strap aggregating, or bagging, to tree learners. Given a training set X = x1, ..., xn

with responses Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample

with replacement of the training set and fits trees to these samples:

For b = 1, ..., B:

1. Sample, with replacement, n training examples from X, Y; call these Xb, Yb.

2. Train a classification or regression tree fb on Xb, Yb.

Nave-Bayes classifier

For this classifier ,when Given a classification scenario with a multinomial event

model for example, a given samples (feature vectors) in this case represent the fre-

quencies of which certain events have been generated by a multinomial (p−1, , p−n)

where p − i is the probability that event i occurs (or K such multinomial in the

multiclass case). A feature vector x = (x− 1, , x− n) is then a histogram, with x− i
counting the number of times event i was observed in a particular instance.

K-Nearest Neighbor classifier

K-nearest Neighbor algorithms are among the simplest of all machine learning algo-

rithms. The idea is to memorize the training set and then to predict the label of any

new instance on the basis of the labels of its closest neighbors in the training set.

The rationale behind such a method is based on the assumption that the features
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that are used to describe the domain points are relevant to their labelling in a way

that makes close-by points likely to have the same label. Furthermore, in some situa-

tions, even when the training set is immense, finding a nearest neighbor can be done

extremely fast.K in the k-nearest neighbor is the number of the data points closest

to the new instance. We can say for example, if k =2 then the algorithm will choose

the nearest two instance or if k = 5, then the algorithm will choose the closest five

neighbor instances and based on these will classify them accordingly.

Logistic Regressionclassifier

it will be easier to begin an explanation of logistic regression with an explanation

of the standard logistic function. The logistic function is a sigmoid function, which

takes any real input t, t ∈ R, and outputs a value between zero and one; for the

logit, this is interpreted as taking input log-odds and having output probability.

3.4.2 MACHINE LEARNING IN GNURADIO

Currently there are no readily available blocks in GNU radio that can perform

machine learning classification. But as we all know machine learning is easily im-

plemented on Python and GNU Radio works well with Python programming. We

developed a custom OOT block in GNU Radio which will be used to perform real

time testing of the incoming input signal to the classification module. Even though

we carry out real time testing on GNU Radio platform the training phase of the

experiment is still done outside of GNU Radio for now.

Fig. 13: Custom Machine learning testing block on GNURadio

3.4.3 TOOLS USED FOR THE MACHINE LEARNING
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In order to carry out training and testing in machine learning there are some

additional libraries which are important in the realization of the task. All of these

too are free and open source which is one of the reasons we chose to use them. Below

are the list of some of the tool and a brief description of each:

1. Python 3.5

2. NumPy 1.11.3

3. Matplotlib 1.5.3

4. Pandas 0.19.1

5. SciPy and Scikit-learn 0.18.1

Python

Python is a high-level general programming language and is very widely used in

all types of disciplines such as general programming, web development, software

development, data analysis, machine learning etc. [2] We choose to use Python for

our project because it is very flexible and also easy to use, there is readily available

documentation and online community support is very large.

NumPy

[23] NumPy is very powerful package that enables us for scientific computing. It

comes fully loaded with a lot of sophisticated functions and is able to perform N-

dimensional array operations, basic and complex algebra and Fourier transform as

in the case of signal processing. NumPy is used very well in image processing, data

analysis and also different other libraries are built above NumPy and NumPy acts

as a base stack for those libraries.

Pandas

Pandas is an open source BSD licensed software which is specially written for python

programming language [24]. It provides a complete set of data analysis tools for

python and is best competitor for R programming language. Different operations

such as reading data-frames, reading csv and excel files, slicing, indexing, merging,

handling missing data and so on, can be easily performed using Pandas. The most

important feature of Pandas is that it can perform time series analysis.
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SciPy

SciPy is a collection of fundamental mathematical functions and is built on the top of

Numpy which was mentioned earlier, while Scikit-learn is widely used popular library

for machine learning, it is third party extension to SciPy [25]. Scikit-learn includes

all the tools and algorithms needed for most if not all the machine learning tasks.

Scikit-learn supports regression, classification, clustering, dimensionality reduction,

and data pre-processing. For our task, Scikit-learn is used because it is based on

Python and can interoperate to NumPy library. It is also very easy to use just like

Python.

3.5 DESCRIPTION OF THE FEATURES USED

For the RF-toolbox implementation in GNU Radio all the blocks are connected

to create a single data segment which will be used for detection and classification.

Below is brief description of the features used in the experiment

3.5.1 ENERGY DETECTOR PARAMETERS

In the detection block two parameters which are among the features were ex-

tracted :

1. Signal power: Average of the input signal magnitude after converting to fre-

quency domain using FFT block.The value of the signal power is important to deter-

mine the presence of activities in the observed spectrum and can also be a factor that

shows how far or close the detected drone is. for example if during the experiment

a signal power of 8dB ± 4dB is observed and in another instance a signal power of

-2dB ± 4 is observed, this shows the the detected drone is at different distance when

the test is done.

2. Threshold/Decision : Threshold is used to make decisions of signal availability,

if signal is greater than the calculated threshold, signal is present and decision is 1.If

less signal is absent and decision is 0. When drone is On and transmitting we expecct

that the decision is 1 since the average signal is greater than the threshold which

represents the base of spectrum occupation. When the decision is 0 we can discern

that either the drone is not transmitting in the immediate environ or the drone is

transmitting from a distance far away to be greater than the threshold

3.5.2 OFDM PARAMETER ESTIMATOR
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In the parameter estimator block, four OFDM parameters were extracted and

used as features:

1. Cyclic Prefix Length: As discussed in earlier section CP which is circular

extension associated with OFDM transmitted signal is one of the key OFDM param-

eters which is used for the purpose of eliminating inter-carrier-intereference (ICI)

and inter-symbol-interference (ISI). Usually OFDM system uses fixed and large CP

length to tolerate poor channel condition and we assume that drone communication

system will be optimized to perform well in different condition hence the adoption

of a method that estimates CP length of an OFDM signal.

2. FFT size: The fast Fourier transform is an algorithm which computes the dis-

crete fourier transform. its essential in the transformation of the digital signal from

the to time domain into frequency domain and this is why FFT is widely used in dig-

ital signal processing and also many other applications for example communications.

This transform is done using different bin sizes 64, 128 ,256 and 1024. The OFDM

parameter does this an the FFT size used will be provided as one of the output.

3. OFDM Symbol time or duration: OFDM symbol consist of the FFT period

and the CP. The symbol duration corresponds to the time for every symbol. The

symbol time is Inverse of subcarrier

4. Subcarrier Spacing: OFDM system break down the available bandwidth into

narrower sub carriers before transmitting the datas in parallel streams spacing of the

subcarriers of the OFDM symbol = 1/Ts , Ts symbol time
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CHAPTER 4

EXPERIMENT AND RESULT

4.1 SETUP AND TESTING

In this chapter, the detection and classification module using GNU radio com-

panion will be discussed. For our experiment, a customized machine learning testing

block, energy detection and parameter estimation block were developed to detect

and classify drone signals using gnu radio companion and hackRF hardware. The

RF signal raw data will be collected after implementing and connecting all the blocks.

In order to carry out the experiment and collect data from the detection module, it

is necessary to be able to ascertain and know for sure the drone transmit frequency.

This way, we can monitor the spectrum and collect data for training and then test

the classification using the custom machine learning testing block. We collected data

for different scenarios that will be used as the base of our classification. First instance

is when the phantom drone is turned ON and is the only signal being transmitted;

the second instance is when the Mavic drone is ON and also is the only signal being

transmitted. From the drone settings, the DJI phantom and Mavic RF transmission

mode was changed from Auto to Custom. The Custom setting allows user to choose

the specific frequency the drone is transmitted on. This makes it easier for us to tune

and monitor the GNU radio companion frequency spectrum during testing. In order

to collect data from the detection block, we need to be able to transmit at a specific

frequency, monitor and collect data for training, and then test the classification

using the custom machine learning testing block. For this experiment, the drone is

transmitting on channel 13 and the receiver module on GNU radio is centered at

2.411Ghz so as to detect the presence of activity on the channel. Table 7 shows the

setup for the experiment.
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S/N Hardware Software

1 DJI phantom 4 GNU Radio-Companion

2 DJI Mavic

3 HackRF

4 Hp Laptop

TABLE VII: Hardware and software needed for the experiment.

4.2 HOW IT WORKS

Datas for the two scenarios was collected for over 10 minutes at different condi-

tions so as to have varying instances for each scenario. These collected data were used

for machine learning training to build a class. The Testing block uses data trained

based on support vector machine model of machine learning training to make predic-

tions. The features used for the classification are signal power, decision/threshold for

detection (energy detection) and OFDM parameter (subcarrier space, symbol time,

fft length, cp length). Using different machine learning model to train the features

we expect the decision model to predict Mavic when signal transmitted is from Mavic

and phantom the signal is from the phantom drone in real time

Fig. 14: GNURadio flowgraph for detection and classification.
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4.3 MACHINE LEARNING DATA TRAINING AND TESTING

CASE 1

For our experiment we will be using the supervised method of machine learning

classification to train the models which will be used for detection and classification,

and the data used for classification will be labeled accordingly. The training data

contains parameters which will be used for classification, and same amount of data

for each object to be classified is collected. For the first test of supervised training.

data were collected for 200 samples of when the phantom drone was ON and 200

samples of when Mavic was ON. Both samples were labeled to create the class for

classification purposes. The total sample used for the training data is 400 in total.

We decided to start with smaller training samples and later increase the number of

samples used for training. For the second test, the total sample used for the training

is 3000 in total; 1500 for when Mavic is turned ON and another 1500 for when

phantom is turned ON.

Fig. 15: Sample of collected data used for training

4.3.1 CASE 1 TESTING AND RESULT

Based on the data used for training and testing below is the performance classi-

fication metric in Python after the training data was split into training and testing

for validation.

The figure below shows the chart consisting of the performance metric generated

in Python using the KNN classifier for trainning the data samples.
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We decided to use KNN after performing an accuracy comparison among different

classifiers like decision tree,linear regression and support vector machine

82

84

86
88

90
92

94

96
98

Precision Recall F1-Score

Testing Result

DJI PHANTOM 4

DJI MAVIC

Fig. 16: Experimental Setup.

4.3.2 EXPECTED OUTCOME OF REAL TIME TESTING

After implementing the training model and creating a testing file, we need to

test the performance of the trained model in real time to also determineits accuracy.

When No signal is transmitted, we expect the machine learning result to be:

Fig. 17: Prediction output for mavic drone .

When its a drone signal, we expect the machine learning result to be:

Fig. 18: Prediction output phantom drone .
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The class label during training was done to output phantom for when a phantom

signal is detected and Mavic when a Mavic signal is detected. We decided to use this

label instead of binaries 0 and 1 so that it will be easy to explain to observers what

is really going on during the test.

4.3.3 REAL TIME TESTING

We carried out a real time detection and classification of drone signal on GNU

radio and observed the output of the classification module

Fig. 19: Prediction output a. when phantom is ON and b. when Mavic is ON.

4.3.4 OBSERVATION OF REAL TIME TESTING

As we can see from the above capture in Figure 19, our machine learning testing

block correctly predicts signal presence based on the trained data but not with very

good accuracy. Analysis was carried out to determine the accuracy percentage among

a set of the tested data. Below are our findings in Table VIII and Table IX.

Actual Positive Actual negative

Predicted Positive 2460 390

Predicted negative 863 2168

TABLE VIII: ML Testing Metric 1.
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Recall 0.740294914

Precisionnegative 0.863157895

True Positive rate 0.740294914

False Positive rate 0.152462862

TABLE IX: ML Testing Metric 2.

4.4 DRONE DETECTION SNR TESTING

In order try to evaluate and test the detection capability of the module RF-class

toolbox, we decided to carry out distance analysis test to determine how far away

the drone can be from the detection module and its presence not to being detectable

even when its transmitting.

For this test the Distance between the drone and the detection module was varied

and detection data was collected and used for the further analysis.

Fig. 20: SNR Test Setup.
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4.4.1 RESULT OF DRONE DETECTION SNR TESTING

Row Label Detect Rate No of wrong prediction No of right prediction

Less than 5m 0.9818 91 4909

5m 0.888 560 4440

10m 0.8462 769 4231

20m 0.8134 933 4067

50m 0.7162 1419 581

greater than 50m 0.5604 2198 2802

TABLE X: Hardware and software needed for the experiment.

From the distance test conducted we can observe that the detection probability

decreases as the drone becomes farther from the detection module. The received

signal energy decreases significantly whe the drone is away from the module by a

distance of 60-100metrers. We can conclude that for now due to hardware capabilities

we can only detect the presence of drone under a very good SNR. when the SNR is

low the detection performance also reduces drastically
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Fig. 21: Chart of the detection rate.

Fig. 22: dB plot of the avearage received energy.
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Fig. 23: Energy Detection Output.
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Fig. 24: Histogram plot of the features

Fig. 25: Density distribution of the features
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CHAPTER 5

DISCUSSION

5.1 OVERVIEW OF FINDINGS

From the experiment and results we can conclude that drone signal from different

class or source can be detected and classified by its radio frequency parameters using

machine learning algorithms. This work is still in its early stage, and we hope

with more experiment and testing we can improve the overall classification accuracy.

GNU Radio Companion was used towards the successful implementation of the drone

detection and classification toolbox. We decided to use matlab simulations to validate

some of the results and observations of the RF toolbox. Below are some of the initial

findings.

Fig. 26: Relationship between Detection probability and SNR

There is a correlation between SNR and Probability of detection. Detection

probability will decrease as the SNR level decreases. In a scenerio where the drone is
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very close to the receiver, the SNR will be high and this correlates with the results

which shows that increase in distance will result in a low detection rate.

5.2 RESEARCH LIMITATIONS

In wireless communications there are different factors that affect the propagation

of radio signals from source to destination. In many cases this is from the antenna

transmitting the signal to the receiving antenna. As such for signals to be successfully

transmitted and received from one distance to another some factors play an important

role in the design. A major component is the pathloss, which can be defined as the

reduction in the power levels of electromagnetic waves as it propagates through space.

Simulation for some different pathloss models that can be associated with wireless

signal propagation was done using the matlab tool. Below are some observations.

simulation for some different pathloss model that can be associated with wireless

signal propagation was done using matlab tool.

5.2.1 FREE SPACE PROPAGATION MODEL

Free space propagation model assume the transmitter and receiver are located in

an isolated environment and as such effect of reflection or absorption from obstacles

are not considered in pathloss estimation.

PL = 20 ∗ log10(d) + 20 ∗ log10(f) + 20 ∗ log10((4 ∗ pi)/c);

Where the distance d is 1-100 m, frequency f =2.4Ghz and c is the lightspeed con-

stant. Ideally the model is used mostly in cases where the distance in the prediction

are in kilometers. But for our experiment the distance is less than 100 meters.

5.2.2 TWO - RAY PROPAGATION MODEL

2-ray model uses the assumption of one line of sight path and one ground or

refected wave to estimate path loss

PL = 40 ∗ log10(d)− (10 ∗ log10(gt) + 10 ∗ log10(gr) + 20 ∗ log10(ht) + 20 ∗ log10(hr))

Where the distance d is 1-100 m,gt and gr is the gain of the antenna , ht is transmit

antenna height and hr is the receive antenna height.

5.2.3 EMPIRICAL PROPAGATION MODEL
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In literature some authors have explored and used empirical formular to derive

pathloss model for drones, cellular and wifi technology. [27] proposes a channel model

that is based on the distance d and altitude θ of the drone. The formular is :

PLdrone(d, θ) = L0 + 10nlog10
d

dref
+ A(θ − θ0)exp

(−θ − θ0)
B

+N(µ, σ)

where L0 is the initial path loss and n is expressed by the scalar value of the path

loss. The distance is 0 - 70 m, and the reference distance is 5 m. A is the scalar value

of the path loss, and the slope is 0◦ − 55◦. θ0 is the angle offset, which is the change

in the loss with the angle. B is the scalar value of the altitude angle. N represents a

normal probability distribution, is the mean value, and is the variance.

Below is the pathloss plot for the 3 propagation model considered

Fig. 27: 3 pathloss model comparison

In general it can be observed that the increase in distance will result in weakness

of the signal strength due to the effect of pathloss.
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CHAPTER 6

CONCLUSION

6.1 CONCLUSION

From the experiment and results shown so far, we can successfully classify signals

that are being transmitted from DJI phantom and Mavic drones. Using the ma-

chine learning training and testing we observed that out of the different classification

algorithms, KNN works best and provide the highest accuracy. Our goal is to be able

to improve this accuracy by identifying new features from the test statistics that can

be added to the classification model. So far, we have been able to test the addition

of signal standard deviation and median and even though accuracy increased a little

we think there is still more to be done in this regard. Real time validation of RF

based signal classification using the trained model created from the machine learning

algorithm so far has a prediction accuracy which is not very high at this point. And

as stated earlier, we hope to change this and intend to continue to carry out more

training, testing and analysis so as to increase the prediction of the classification.

Different approach will be employed in collecting and testing the data.
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APPENDIX A

CODES FOR PARAMETER ESTIMATION AND

CLASSIFICATION

/∗ −∗− c++ −∗− ∗/
/∗
∗ Copyright 2018 gr−ofdm param estim author .

∗
∗ This i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or

modify

∗ i t under the terms o f the GNU General Publ ic L i cense as

pub l i shed by

∗ the Free Software Foundation ; e i t h e r v e r s i on 3 , or ( at

your opt ion )

∗ any l a t e r v e r s i on .

∗
∗ This so f tware i s d i s t r i b u t e d in the hope that i t w i l l be

u se fu l ,

∗ but WITHOUT ANY WARRANTY; without even the impl i ed

warranty o f

∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

∗ GNU General Publ ic L i cense f o r more d e t a i l s .

∗
∗ You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense

∗ along with t h i s so f tware ; s e e the f i l e COPYING. I f not ,

wr i t e to

∗ the Free Software Foundation , Inc . , 51 Frankl in Street ,

∗ Boston , MA 02110−1301 , USA.

∗/
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#i f d e f HAVE CONFIG H

#inc lude ” c o n f i g . h”

#e n d i f

#inc lude <gnuradio / i o s i g n a t u r e . h>

#inc lude ” ofdm param est imat ion c impl . h”

#inc lude <complex>

#inc lude <volk / volk . h>

namespace gr {
namespace ofdm param estim {

ofdm param est imat ion c : : sp t r

o fdm param est imat ion c : : make( double samp rate , i n t

s i gna l , i n t min items , const std : : vector<int> &typ len

, const std : : vector<int> &typ cp )

{
r e turn gnuradio : : g e t i n i t i a l s p t r

(new ofdm param est imat ion c impl ( samp rate , s i gna l ,

min items , typ len , typ cp ) ) ;

}

/∗
∗ The p r i v a t e con s t ruc to r

∗/
ofdm param est imat ion c impl : :

o fdm param est imat ion c impl ( double samp rate , i n t

s i gna l , i n t min items , const std : : vector<int> &typ len

, const std : : vector<int> &typ cp )

: gr : : sync b lock (” ofdm param est imat ion c ” ,

gr : : i o s i g n a t u r e : : make (1 , 1 , s i z e o f ( gr complex )

) ,
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gr : : i o s i g n a t u r e : : make (0 , 0 , 0) ) //no output

stream

// gr : : i o s i g n a t u r e : : make (1 , 1 , s i z e o f ( f l o a t ) ) )

{
// read the argument l i s t i n to l o c a l v a r i a b l e s

d samp rate = samp rate ;

d s i g n a l = s i g n a l ;

d min items = min items ;

d typ l en = typ l en ;

d typ cp = typ cp ;

d f f t = new f f t : : f f t c omp l ex (1024 , t rue ) ;

// d e f i n e a s i n g l e output message port

m e s s a g e p o r t r e g i s t e r o u t (pmt : : s t r i n g t o s y m b o l (”

ofdm out ”) ) ; // message pas s ing from output

//// Set up input message por t s :

m e s s a g e p o r t r e g i s t e r i n (pmt : : mp(” in ED ”) ) ; //

message input from Energy Detector

se t msg hand le r (pmt : : mp(” in ED ”) , boost : : bind(&

ofdm param est imat ion c impl : : message handler ED ,

th i s , 1 ) ) ;

}

/∗
∗ Our v i r t u a l d e s t r u c t o r .

∗/
ofdm param est imat ion c impl : : ˜

o fdm param est imat ion c impl ( )

{
d e l e t e d f f t ;

}

// Input message handler

void o fdm param est imat ion c impl : : message handler ED (pmt

: : pmt t ed msg )
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{
i f (pmt : : i s t u p l e ( ed msg ) ) {

i f (pmt : : l ength ( ed msg ) != 2) {
GR LOG ALERT( d logger , boost : : format (” Error

whi l e unpacking command PMT: %s ”) %

ed msg ) ;

r e turn ;

}
d s igna lAvg = pmt : : to doub le (pmt : : t u p l e r e f (

ed msg , 0) ) ;

d Threshold = pmt : : to doub le (pmt : : t u p l e r e f (

ed msg , 1) ) ;

}
}

// Normalized a u t o c o r r e l a t i o n func t i on o f g iven vec to r

std : : vector<f l o a t>

ofdm param est imat ion c impl : : autocor r ( const gr complex ∗
in , i n t l en ) {

std : : vector<f l o a t> ac f ;

i f ( l en == 0) {
r e turn ac f ;

}
GR VLA( gr complex , Rxx , l en ) ; // v a r i a b l e l ength array

to hold in te rmed ia t e c a l c u l a t i o n

gr complex acf temp ;

f o r ( unsigned i n t k = 0 ; k < d typ l en . back ( ) ; k++) {
acf temp = 0 ;

v o l k 3 2 f c x 2 m u l t i p l y c o n j u g a t e 3 2 f c (Rxx , in , &in [ k ] ,

len−k ) ; // save ( x ∗ conj ( x ) ) to Rxx output

// summation o f a l l Rxx array e lements

f o r ( unsigned i n t i = 0 ; i < len−k ; i++) {
acf temp += Rxx [ i ] ;

}
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ac f . push back ( std : : abs ( acf temp / gr complex ( ( len−k ) ,0 )

) ) ; // push the normal ized r e s u l t to a c f

}

r e turn ac f ;

}

// Se t t i ng the sample ra t e func t i on

void ofdm param est imat ion c impl : : s e t samp rate ( double

d samp rate ) {
ofdm param est imat ion c impl : : d samp rate = d samp rate

;

}

// c a l c u l a t e time var i an t a u t o c o r r e l a t i o n f o r f i x e d s h i f t

gr complex∗
ofdm param est imat ion c impl : : t v au to co r r ( const

gr complex ∗ in , i n t len , i n t s h i f t ) {
GR VLA( gr complex , corr temp , l en ) ; // Def ine a

v a r i a b l e l ength array

gr complex ∗Rxx = ( gr complex ∗) vo lk ma l l o c ( l en ∗ s i z e o f (

gr complex ) , vo l k ge t a l i gnment ( ) ) ;

gr complex R = gr complex (0 , 0 ) ;

v o l k 3 2 f c x 2 m u l t i p l y c o n j u g a t e 3 2 f c ( corr temp , in , &in

[ s h i f t ] , l en ) ;

i n t k = 0 ;

// begin at back and summarize up to f r o n t

f o r ( i n t i = len −1; i >= 0 ; i−−) {
R ∗= k ;

R += corr temp [ i ] ;

R ∗= 1 .0/ ( k+1.0) ;

Rxx [ k ] = R;

k++;

}
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re turn Rxx ;

}

// round value to nea r e s t l i s t entry

i n t

o fdm param est imat ion c impl : : r o u n d t o l i s t ( i n t val , s td

: : vector<int> ∗ l i s t ) {
i n t r e s u l t = −1;

i n t d i f f = 99999 ; // ” high value ”

f o r ( unsigned i n t i = 0 ; i < l i s t −>s i z e ( ) ; i++) {
i f ( s td : : abs ( l i s t −>at ( i ) − va l ) < d i f f ) {

d i f f = std : : abs ( l i s t −>at ( i ) − va l ) ;

r e s u l t = l i s t −>at ( i ) ;

}
}
r e turn r e s u l t ;

}

void

ofdm param est imat ion c impl : : r e s i z e f f t ( i n t s i z e ) {
d e l e t e d f f t ;

d f f t = new f f t : : f f t c omp l ex ( s i z e , t rue ) ;

}

// GUI message

pmt : : pmt t

o fdm param est imat ion c impl : : pack message ( f l o a t subc ,

f l o a t time , i n t f f t , i n t cp , double s i g avg , double

th r e sho ld ) {
//pmt : : pmt t i d e n t i f i e r = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (” S igna l ”) , pmt : : f rom uint64 (

d s i g n a l ) ) ;

//pmt : : pmt t o fdm info = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (”OFDM”) , pmt : : f r o m f l o a t (1 ) ) ;
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pmt : : pmt t subcarr = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (” Subc . space ”) , pmt : : f r o m f l o a t (

subc ) ) ;

pmt : : pmt t symtime = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (”Sym time ”) , pmt : : f r o m f l o a t ( time ) )

;

pmt : : pmt t f f t s i z e = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (” S u b c a r r i e r s ”) , pmt : : f r o m f l o a t ( f f t

) ) ;

pmt : : pmt t c y c l p r e = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (”CP len ”) , pmt : : f r o m f l o a t ( cp ) ) ;

pmt : : pmt t sigAvg = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (” S igna l Average ”) , pmt : : f rom double

( s i g a v g ) ) ;

pmt : : pmt t th r e s = pmt : : make tuple (pmt : :

s t r i n g t o s y m b o l (” Threshold ”) , pmt : : f rom double (

th r e sho ld ) ) ;

//pmt : : pmt t msg = pmt : : make tuple ( i d e n t i f i e r ,

o fdm info , subcarr , symtime , f f t s i z e , c y c l p r e ) ;

pmt : : pmt t msg = pmt : : make tuple ( subcarr , symtime ,

f f t s i z e , cyc lpre , sigAvg , th r e s ) ;

r e turn msg ;

}

i n t

o fdm param est imat ion c impl : : work ( i n t noutput items ,

g r v e c t o r c o n s t v o i d s t a r &input i tems ,

g r v e c t o r v o i d s t a r &output i tems )

{
const gr complex ∗ in = ( const gr complex ∗) input i t ems

[ 0 ] ;
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//FILE ∗MLData = fopen (”/home/ c s sd r / Datasets /

MLTraining . dat ” , ”a+”) ;

// f o r t h i s b lock we don ’ t need any output stream

//<+OTYPE+> ∗out = (<+OTYPE+> ∗) output i tems [ 0 ] ;

// const f l o a t ∗out = ( const f l o a t ∗) output i tems [ 0 ] ;

i f ( noutput i tems <= d min items ) {
r e turn 0 ;

}

// Estimate FFT length

//argmax (sum( x ∗ conj ( x ) ) )

// Ca lcu la te a u t o c o r r e l a t i o n func t i on o f input vec to r

std : : vector<f l o a t> ac f = autocor r ( in , noutput i tems ) ;

//Find argmax

i n t f f t l e n = std : : d i s t anc e ( a c f . begin ( ) ,

s td : : max element ( a c f . begin ( )+d typ l en . f r o n t ( ) , a c f

. end ( ) ) ) ;

f f t l e n = r o u n d t o l i s t ( f f t l e n , &d typ l en ) ; //

round to p o s s i b l e va lue s

// c a l c u l a t e time var i an t autocor r and c y c l i c

c o r r e l a t i o n func t i on

// and est imate CP length

i n t s h i f t e d f f t l e n = noutput items− f f t l e n ; //

l ength o f a l l f o l l o w i n g ve c t o r s because o f s h i f t

f f t l e n

r e s i z e f f t ( s h i f t e d f f t l e n ) ; // r e s i z e FFT

gr complex ∗Rxx ;

Rxx = tv auto co r r ( in , s h i f t e d f f t l e n , f f t l e n ) ; //

c a l c time vara in t autocor r
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// FFT to get CCF ( c y c l i c c o r r e l a t i o n func t i on )

memcpy( d f f t−>g e t i n b u f ( ) , Rxx , s i z e o f ( gr complex )∗
s h i f t e d f f t l e n ) ;

d f f t−>execute ( ) ;

v o l k f r e e (Rxx) ;

GR VLA( f l o a t , r e s u l t , s h i f t e d f f t l e n ) ; // magnitude

o f CCF

vo lk 32 f c magn i tude 32 f ( r e s u l t , d f f t−>ge t outbu f ( ) ,

s h i f t e d f f t l e n ) ;

// f f t s h i f t

d tmpbuflen = s t a t i c c a s t <unsigned int >( std : : f l o o r ( (

s h i f t e d f f t l e n ) / 2 . 0 ) ) ;

GR VLA( f l o a t , d tmpbuf , s h i f t e d f f t l e n / 2) ;

memcpy( d tmpbuf , &r e s u l t [ 0 ] , s i z e o f ( f l o a t ) ∗ (

d tmpbuflen + 1) ) ;

memcpy(& r e s u l t [ 0 ] , &r e s u l t [ s h i f t e d f f t l e n −
d tmpbuflen ] ,

s i z e o f ( f l o a t ) ∗ ( d tmpbuflen ) ) ;

memcpy(& r e s u l t [ d tmpbuflen ] , d tmpbuf ,

s i z e o f ( f l o a t ) ∗ ( d tmpbuflen + 1) ) ;

// only use p o s i t i v e f r e q u e n c i e s

std : : vector<f l o a t> Cxx( r e s u l t +( s h i f t e d f f t l e n ) /2 ,

r e s u l t+s h i f t e d f f t l e n ) ;

// search f o r peak in p o s s i b l e area

long cp l en = std : : d i s t ance (Cxx . begin ( ) , s td : :

max element (

Cxx . begin ( ) +( i n t ) ( s h i f t e d f f t l e n /( f f t l e n+

d typ cp . back ( ) ) ) ,

Cxx . begin ( ) +( i n t ) ( s h i f t e d f f t l e n /( f f t l e n+

d typ cp . f r o n t ( ) ) ) ) ) ;
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cp l en = s h i f t e d f f t l e n / cp l en ; // convert peak to

l ength value

cp l en = cp len− f f t l e n ; // c a l c u l a t e CP len from t o t a l

l en

cp l en = r o u n d t o l i s t ( cp len , &d typ cp ) ; // round to

p o s s i b l e va lue

// c a l c u l a t e subcarr spac ing and symbol time and pub

message

f l o a t subspc = d samp rate / f f t l e n ;

f l o a t symtime = 1/ subspc ;

pmt : : pmt t msg = pack message ( subspc , symtime , f f t l e n ,

cp len , d s ignalAvg , d Threshold ) ;

message port pub (pmt : : i n t e r n (” ofdm out ”) , msg) ;

// message p r i n t i n g

// p r i n t f (”%f , %f , %d , %d ,% f , %f ” , subspc , symtime ,

f f t l e n , cp len , d s ignalAvg , d Threshold ) ;

// p r i n t f (”\n”) ;

// p r i n t f (”%f , %f , %d , %ld ” , subspc , symtime , f f t l e n ,

cp l en ) ;

// p r i n t f (”%f , %f , %f , %f ” , subspc , symtime , f l o a t (

f f t l e n ) , f l o a t ( cp l en ) ) ;

// p r i n t f (”\n”) ;

// Te l l runtime system how many output items we

produced .

r e turn noutput i tems ;

}

} /∗ namespace ofdm param estim ∗/
} /∗ namespace gr ∗/
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APPENDIX B

CODES FOR ENERGY DETECTION

#!/ usr / bin /env python

# −∗− coding : utf−8 −∗−
#

# Copyright 2018 gr−EnergyDetector author .

#

# This i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or

modify

# i t under the terms o f the GNU General Publ ic L i cense as

pub l i shed by

# the Free Software Foundation ; e i t h e r v e r s i on 3 , or ( at your

opt ion )

# any l a t e r v e r s i on .

#

# This so f tware i s d i s t r i b u t e d in the hope that i t w i l l be

u se fu l ,

# but WITHOUT ANY WARRANTY; without even the impl i ed warranty

o f

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the

# GNU General Publ ic L i cense f o r more d e t a i l s .

#

# You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense

# along with t h i s so f tware ; s e e the f i l e COPYING. I f not ,

wr i t e to

# the Free Software Foundation , Inc . , 51 Frankl in Street ,

# Boston , MA 02110−1301 , USA.

#
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import s c ipy

import s c ipy . s p e c i a l as s c s

import numpy

from gnuradio import gr

import pmt

c l a s s Ene rgy Det e c to r f f ( gr . dec im block ) :

”””

d oc s t r i ng f o r b lock Ene rgy Det e c to r f f

”””

de f i n i t ( s e l f , samples , Pfa ) :

s e l f . samples = samples

gr . dec im block . i n i t ( s e l f ,

name=”Ene rgy Det e c to r f f ” ,

i n s i g =[numpy . f l o a t32 , numpy . f l o a t 3 2 ] ,

o u t s i g =[numpy . f l o a t 3 2 ] , decim = s e l f . samples )

s e l f . Pfa = Pfa

s e l f . m e s s a g e p o r t r e g i s t e r o u t (pmt . i n t e r n (” ED out ”) )

de f work ( s e l f , input i tems , output i tems ) :

in0 = input i t ems [ 0 ]

in1 = input i t ems [ 1 ]

out = output i tems [ 0 ]

# <+s i g n a l p r o c e s s i n g here+>

Avg = sc ipy . mean( in0 )

s ignalAvg = round (Avg , 8 )

NoisePower = in1 ∗∗2
NoiseAvg = sc ipy . mean( NoisePower )

var = sc ipy . var ( NoisePower )

stdev = sc ipy . s q r t ( var )

Qinv = sc ipy . s q r t (2 ) ∗ s c s . e r f i n v (1 − 2∗ s e l f . Pfa )

Threshold = round ( ( NoiseAvg + Qinv∗ stdev ) ,8 )

i f s ignalAvg > Threshold :
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out [ : ] = signalAvg

#pr in t (” s i g n a l i s p re sent ” , s ignalAvg )

d e t e c t i o n = 1

e l s e :

out [ : ] = Threshold

d e t e c t i o n = 0

#pr in t (” s i g n a l i s absent ” , s ignalAvg )

msg = pmt . make tuple (pmt . from double ( s ignalAvg ) , pmt .

from double ( d e t e c t i o n ) )

s e l f . message port pub (pmt . i n t e r n (” ED out ”) , msg) ;

r e turn l en ( output i tems [ 0 ] )
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