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Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by
Application of Cold Atmospheric Gas Plasma

Wayne Heaselgrave,a Gilbert Shama,b Peter W. Andrew,c Michael G. Kongd

University of Wolverhampton, School of Biomedical Science, Wolverhampton, United Kingdoma; University of Loughborough, Department of Chemical Engineering,
Loughborough, Leicestershire, United Kingdomb; University of Leicester, Department of Infection, Immunity and Inflammation, Leicester, United Kingdomc; Old
Dominion University, Frank Reidy Center for Bioelectrics, Norfolk, Virginia, USAd

Currently there are estimated to be approximately 3.7 million contact lens wearers in the United Kingdom and 39.2 million in
North America. Contact lens wear is a major risk factor for developing an infection of the cornea known as keratitis due to poor
lens hygiene practices. While there is an international standard for testing disinfection methods against bacteria and fungi (ISO
14729), no such guidelines exist for the protozoan Acanthamoeba, which causes a potentially blinding keratitis most commonly
seen in contact lens wearers, and as a result, many commercially available disinfecting solutions show incomplete disinfection
after 6 and 24 h of exposure. Challenge test assays based on international standard ISO 14729 were used to determine the antimi-
crobial activity of cold atmospheric gas plasma (CAP) against Pseudomonas aeruginosa, Candida albicans, and trophozoites and
cysts of Acanthamoeba polyphaga and Acanthamoeba castellanii. P. aeruginosa and C. albicans were completely inactivated in
0.5 min and 2 min, respectively, and trophozoites of A. polyphaga and A. castellanii were completely inactivated in 1 min and 2
min, respectively. Furthermore, for the highly resistant cyst stage of both species, complete inactivation was achieved after 4 min
of exposure to CAP. This study demonstrates that the CAP technology is highly effective against bacterial, fungal, and protozoan
pathogens. The further development of this technology has enormous potential, as this approach is able to deliver the complete
inactivation of ocular pathogens in minutes, in contrast to commercial multipurpose disinfecting solutions that require a mini-
mum of 6 h.

Currently there are estimated to be approximately 3.7 million
contact lens wearers in the United Kingdom (1) and 39.2 mil-

lion in North America (2). Contact lens use is a major risk factor
for developing an infection of the cornea known as keratitis (3, 4).
Keratitis associated with contact lenses has been attributed to poor
contact lens hygiene practices, including failure to comply with
the manufacturers’ guidelines, which includes the practice of
“topping off” existing solution with a small amount of fresh solu-
tion in the lens case instead of discarding and using fresh solution
each day (4–6).

The exact number of contact lens wearers developing keratitis
worldwide is not known, but a recent study from the United States
reported that there are estimated to be 930,000 doctors’ appoint-
ments and 58,000 emergency appointments annually for keratitis
in contact lens wearers, costing approximately $175 million in
health care expenditure (7). The range of organisms causing ker-
atitis is wide and includes the herpes simplex virus, bacteria, in-
cluding Pseudomonas aeruginosa, fungi, including Candida albi-
cans, and the protozoan Acanthamoeba, among many others.

Bacterial keratitis is frequently caused by the Gram-negative
bacillus P. aeruginosa, and in a recent study conducted in India,
this organism was found to be the causative agent in 29% of pa-
tients presenting with bacterial keratitis (8). A recent Danish study
(9) implicated C. albicans in 52% of patients presenting with fun-
gal keratitis.

Although bacteria and fungi are considered the main etiologi-
cal agents for keratitis, the free-living protozoan Acanthamoeba
can be an opportunistic pathogen of humans, causing a poten-
tially blinding corneal infection known as Acanthamoeba keratitis
(AK) (10, 11). Acanthamoeba has a virtually ubiquitous distribu-
tion in nature and can be found in most soil and aquatic environ-
ments, including gardens, household dust, heating systems, cool-

ing towers, lakes, rivers, and tap water (12–17). Acanthamoeba is a
dimorphic organism that has two distinct life cycle stages: the
motile feeding trophozoite stage and the dormant and highly re-
sistant cyst stage (18). Acanthamoeba transforms into the cyst
stage in response to adverse environmental conditions, including
nutrient deprivation, exposure to various chemical agents, and
changes in osmolarity (19–21). The cyst stage is highly resistant to
both chemical disinfection and desiccation and remains viable
and pathogenic even after decades in storage (22–24). There are
currently no licensed drugs for treating AK, but unlicensed treat-
ment does exist and consists of the application of a biguanide
disinfectant— usually polyhexamethylene biguanide (PHMB) or
chlorhexidine—and a diamidine directly to the eye. However,
treatment times are long, and treatment failure is common (25).

The transformation of trophozoites into highly resistant cysts
in response to adversity poses greater challenges to disinfection by
multipurpose solutions (MPSs). This is due to the fact that great
variability in the disinfecting efficacy against Acanthamoeba spp.
has been reported between different commercially available
MPSs, with many solutions delivering less than a 0.5-log reduc-
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tion in viability of the cyst stage (26–28). This lack of efficacy
might be attributed to the current ISO guidelines, which outline
the microbiological requirements and test methods for products
and regimens for hygienic management of contact lenses but do
not include efficacy testing standards against Acanthamoeba spp.
(29). However, a standardized method has recently been proposed
for assessing the biocidal efficacy of contact lens care solutions
against cysts and trophozoites of Acanthamoeba (26). Despite this,
many of the commercially available solutions lack any activity
against Acanthamoeba cysts even after 6 h of exposure, which is the
recommended disinfection time for most lens solutions.

Cold atmospheric gas plasmas (CAPs) are gas discharges at
ambient pressure and at temperatures close to those of ambient
conditions (30, 31). Treatment is usually defined in terms of time
of exposure and the electrical power used to sustain the gas dis-
charge. Their biological effects are attributed to the generation of
a wide range of reactive oxygen species (ROS) and reactive nitro-
gen species (RNS). Gas plasmas have been shown to be capable of
inactivating a wide range of microorganisms, including viruses,
bacteria, and fungi (30, 31). However, protozoans have received
little attention in this regard, and what studies have been con-
ducted have focused on inactivation of the waterborne pathogen
Cryptosporidium (32, 33). Therefore, we report here on the capa-
bility of a cold gas plasma against Acanthamoeba polyphaga and
Acanthamoeba castellanii, in addition to the bacterial and fungal
ocular pathogens Pseudomonas aeruginosa and Candida albicans,
in order to establish whether its use could ultimately constitute the
basis of a method for treating contact lenses.

MATERIALS AND METHODS
Chemicals. All chemicals were obtained from Sigma Chemical Company,
Ltd. (Poole, United Kingdom), unless otherwise stated.

Test organisms and culture. Pseudomonas aeruginosa (ATCC 9027)
and Candida albicans (ATCC 10231) were obtained from the American
Type Culture Collection (LGC Standards, Teddington, United King-
dom). P. aeruginosa was cultured on tryptone soy agar and C. albicans on
Sabouraud dextrose agar (Oxoid, Basingstoke, United Kingdom) for 24 h
at 32°C to allow for colony formation. After incubation, suspensions of
bacteria and fungi were prepared in 1/4-strength Ringer’s solution to a
concentration of 1 � 107 to 1 � 108 CFU/ml.

Acanthamoeba polyphaga (Puschkarew) Volkonsky (1931) (CCAP
1501/3g) was obtained from the Culture Collection of Algae and Protozoa
(CCAP; Oban, United Kingdom). This is a clinical isolate obtained from a
patient undergoing a keratoplasty in the United States in 1974. Acantham-
oeba castellanii (Douglas) Page (ATCC 50370) was obtained from the

American Type Culture Collection (LGC Standards, Teddington, United
Kingdom). This is a clinical isolate obtained from a keratitis patient in
New York in 1978. Trophozoites of both species were adapted to growth
in tissue culture flasks (Nunc Life Technologies, Paisley, United King-
dom) at 32°C in a semidefined axenic culture medium as described pre-
viously (34). Cysts were prepared from late-log-phase cultures using
Neff’s chemically defined encystment medium (35). Cysts were counted
using a modified Fuchs Rosenthal hemocytometer, adjusted to 5 � 106/
ml, and stored at 4°C for use within 2 weeks.

The CAP-generating apparatus. The CAP system used in the present
study was an ambient air plasma confined to the surface of a sheet elec-
trode of metallic mesh used as the ground electrode (36). A solid polymer
plate was used to separate the ground electrode from the powered sheet
electrode, and the electrode unit was powered at an electrical power den-
sity of 50 mW/cm2 and at 20 kHz. With the ground electrode facing the
microbial sample (described below), the electrode unit was suspended
above the sample as shown in Fig. 1. Dominant ROS and RNS impinging
on the sample included O3, excited O2, HO2, H2O2, N2O/HNO2, NO3/
HNO3, HNO2, N2O, and N2O5 (37).

Acanthamoeba CAP assays. Trophozoites from a late-log-phase sus-
pension or cysts were counted using a modified Fuchs Rosenthal hemo-
cytometer and adjusted to 5 � 104 cells in 20 ml of 1/4-strength Ringer’s
solution. The suspension containing the cysts or trophozoites was then
poured into a filtration cup (Sartorius, Epsom, United Kingdom) that was
attached to a manifold unit (Sartorius, Epsom, United Kingdom). The
suspension was passed through a cellulose acetate filter with a 0.2-�m
pore size (Pall, Portsmouth, United Kingdom). The purpose of the filtra-
tion step was to allow the organisms to settle onto the surface of the
membrane and to be evenly distributed. The suction pressure was pro-
vided using a hand pump and was kept below 10 cm Hg to prevent excess
suction stress and to prevent deformation and damage to the microorgan-
isms. Once the filtration was complete, the cellulose acetate filter was
removed aseptically from the suction cup using forceps and placed in the
middle of the surface of an agar plate containing 2.5% (wt/vol) nonnutri-
ent agar (NNA) no. 1 (Lab M, Bury, United Kingdom). The purpose of the
agar was both to provide some moisture to prevent excess drying of the
filter and to provide structural support to stop the filter from curling.
Furthermore, the CAP-generating electrode had been fastened onto a pe-
tri dish lid and so fitted closely to the agar plates. The filters on the agar
surface containing the microorganisms were exposed to the CAP-gener-
ating electrode for 0, 0.25, 0.5, 1, 2, 4, and 8 min. Each of the time points
was performed using a separate filter in triplicate. The CAP apparatus was
used in cycles of 30 s on and then 30 s off to prevent overheating, but the
exposure time only relates to the time when the electrode was on. For
example, a 1-min exposure was achieved by 30 s on, followed by 30 s off,
followed by a further 30 s on.

After exposure to the CAP electrode for the specified time, the filter
was removed from the surface of the agar and placed in a 50-ml centrifuge

FIG 1 Schematic of the cold atmospheric gas plasma (CAP) apparatus in ambient air. The plasma is largely confined to the meshed ground electrode, and its
reactive species are then transported, mostly through diffusion, to the downstream microbial sample.
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tube containing 10 ml of 1/4-strength Ringer’s solution, before being
swabbed with a sterile cotton-tipped applicator (Puritan, Guilford, ME)
to remove any adherent cells into the 1/4-strength Ringer’s solution. The
viability of the organisms was then determined using the previously pub-
lished Spearman-Karber method, with minor modifications (34). Briefly,
this involved transferring 200-�l aliquots of the Acanthamoeba suspen-
sion to the wells of a 96-well microtiter plate in quadruplet before per-
forming three 10-fold serial dilutions of each. From the original concen-
tration of cells, the serially diluted wells (100, 101, 102, and 103) would
have contained approximately 1,000 cells, 100 cells, 10 cells, and 1 cell,
respectively. The plates were examined microscopically for the presence of
excysted trophozoites and/or trophozoite replication. The reduction in
viable cysts or trophozoites was plotted as the change in log viability for
each time point compared to zero time viability. All experiments were
performed in triplicate.

Bacterial and fungal assays. The bacteria and fungi were tested ac-
cording to the internationally recognized ISO 14729 method used for the
evaluation of contact lens solutions against ocular pathogens (29), with
modifications. Briefly, the organisms were cultured as stipulated in the
ISO guidelines, and viable bacteria and fungi at a concentration of 1 � 107

were resuspended in 10 ml of 1/4-strength Ringer’s solution. As for the
Acanthamoeba assays, the suspensions were placed into the filter unit, and
suction was applied to allow the organisms to settle onto the surface of the
filter paper. The filter paper was then transferred to the surface of an agar
plate for support and then exposed to the plasma.

After exposure to the plasma, the filters were removed from the agar
and placed in a tube containing 10 ml 1/4-strength Ringer’s solution. The
surface of the cellulose acetate filter was swabbed aseptically to remove
adherent organisms and then vortexed to bring about detachment of cells.
To determine viability, the suspensions were serially diluted, and 50 �l of
suspension for each dilution was cultured on the appropriate agar me-
dium using the method of Miles and Misra (38). The reduction in viable
cells was plotted as change in log viability for each time point compared to
zero time viability, as described previously (39).

Acanthamoeba CAP contact lens assay. For the contact lens assay, a
Polymacon contact lens was placed convex side up on the surface of an
NNA plate for support. The suspension of A. castellanii cysts was adjusted
to 5 � 104 cells in 100 �l of 1/4-strength Ringer’s solution. This suspen-
sion was then applied to the convex side of a Polymacon contact lens
before exposure to plasma. The viability was then determined using the
same method described for the Acanthamoeba CAP assay described above.

Data analysis. Statistical analysis was performed using one-way anal-
ysis of variance (ANOVA) of data from triplicate experiments on the
InStat statistical software package (GraphPad, La Jolla, CA).

RESULTS
Bacterial and fungal assays. The effect of CAP against Pseudomo-
nas aeruginosa and Candida albicans is shown in Table 1. CAP
caused the complete inactivation (�7-log reduction in viability)

of P. aeruginosa within 0.5 min of exposure, and with C. albicans,
complete inactivation (6.85-log reduction in viability) was
achieved after 2 min. Under control conditions in the absence of
the plasma, a �0.06-log reduction in viability was observed for
both organisms (Table 1). The log reductions observed with the
CAP at complete inactivation for both organisms compared to the
controls at the same time point were highly statistically significant
(P � 0.001).

Acanthamoeba trophozoite assays. The effect of CAP against
trophozoites of A. polyphaga (CCAP 1501/3g) and A. castellanii
(ATCC 50370) is shown in Table 2. CAP resulted in the complete
inactivation (�3.5-log reduction in viability) of A. polyphaga
within 1 min, and with A. castellanii, this was achieved after 2 min
of exposure. In control experiments in the absence of the plasma,
a �0.08-log reduction in viability was observed for both strains of
Acanthamoeba (Table 2). The log reductions observed with the
CAP at complete inactivation for both organisms compared to the
controls at the same time point were highly statistically significant
(P � 0.001).

Acanthamoeba cyst assays. The effect of CAP against cysts of
A. polyphaga (CCAP 1501/3g) and A. castellanii (ATCC 50370) is
shown in Table 3 and Fig. 2. CAP produced complete inactivation
(�3.5-log reduction in viability) of A. polyphaga within 4 min,
and with A. castellanii, this was achieved after 2 min of exposure.
For control experiments, a �0.08-log reduction in viability was
observed for both strains of Acanthamoeba (Table 3). The log re-
ductions observed with the CAP at complete inactivation for both
organisms compared to the controls at the same time point were
highly statistically significant (P � 0.001). The inactivation data
from Table 3 for A. castellanii cysts have been plotted in Fig. 2 to

TABLE 1 Efficacy of cold atmospheric gas plasma against Pseudomonas
aeruginosa and Candida albicans

Pathogen Conditiona

Log10 reduction in viability with
exposure forb:

0.25 min 0.5 min 1 min 2 min

P. aeruginosa ATCC
9027

CAP 4.86 7.64* 7.64* 7.64*
Control 0.06 0.06 0.06 0.06

C. albicans ATCC
10231

CAP 2.86 3.03 3.55 6.85*
Control 0.00 0.01 0.01 0.02

a CAP, cold atmospheric gas plasma. Control experiments were performed in 1/4-
strength Ringer’s solution.
b Asterisks indicate complete inactivation.

TABLE 2 Efficacy of cold atmospheric gas plasma against trophozoites
of Acanthamoeba polyphaga and Acanthamoeba castellanii

Pathogen Conditiona

Log10 reduction in viability with
exposure forb:

0.5 min 1 min 2 min 4 min

A. polyphaga CCAP
1501/3g

CAP 3.02 3.67* 3.67* 3.67*
Control 0.00 0.00 0.00 0.00

A. castellanii ATCC
50370

CAP 2.00 3.51 3.67* 3.67*
Control 0.00 0.00 0.02 0.08

a CAP, cold atmospheric gas plasma. Control experiments were performed in 1/4-
strength Ringer’s solution.
b Asterisks indicate complete inactivation.

TABLE 3 Efficacy of cold atmospheric gas plasma against cysts of
Acanthamoeba polyphaga and Acanthamoeba castellanii

Pathogen Conditiona

Log10 reduction in viability with
exposure forb:

0.5 min 1 min 2 min 4 min

A. polyphaga CCAP
1501/3g

CAP 0.00 1.50 3.59 3.75*
Control 0.00 0.00 0.00 0.01

A. castellanii ATCC
50370

CAP 0.50 2.34 4.26 4.42*
Control 0.00 0.02 0.03 0.06

a CAP, cold atmospheric gas plasma. Control experiments were performed in 1/4-
strength Ringer’s solution.
b Asterisks indicate complete inactivation.

Cold Atmospheric Gas Plasma Disinfection
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reveal the form of the inactivation curve: a short “shoulder” oc-
curs at low treatment times and is followed by a phase of rapid
decline leading to complete inactivation.

Acanthamoeba contact lens assay. The effect of CAP against
cysts of A. castellanii (ATCC 50370) on the surface of a Polymacon
contact lens is shown in Table 4. CAP produced complete inacti-
vation (�3.5-log reduction in viability) of A. castellanii cysts after
12 min of exposure. The log reduction observed with the CAP at
complete inactivation compared to that of the controls at the same
time point was highly statistically significant (P � 0.001).

DISCUSSION

This study reveals that CAP can bring about the complete inacti-
vation of all commonly encountered contact lens pathogens
tested, including highly resistant cysts of Acanthamoeba. The pre-
dominant mechanism by which CAP brings about microbial in-
activation is through the generation of both reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS), including O3,
excited O2, HO2, H2O2, N2O/HNO2, NO3/HNO3, HNO2, N2O,
and N2O5 (37). The ocular pathogens investigated here included

the protozoans A. polyphaga and A. castellanii, the bacterium P.
aeruginosa, and the yeast C. albicans. Treatment by the methods
described here resulted in the complete inactivation of P. aerugi-
nosa and C albicans in 0.5 min and 2 min, respectively. With tro-
phozoites of A. polyphaga and A. castellanii, we were able to
achieve complete inactivation in 1 min and 2 min, respectively.
Furthermore, for the highly resistant cyst stage of both species,
complete inactivation was achieved after 4 min of exposure to
CAP.

CAP technology offers a significant performance advantage
over current chemical disinfection methods, as supported by the
finding in this study that complete disinfection of the test organ-
isms was achieved in less than 4 min. In a recent study in which a
number of commercial multipurpose solutions (MPSs) were
tested against P. aeruginosa and Fusarium solani, a fungus in-
cluded in the ISO testing guidelines (29), a �5-log reduction was
obtained for both organisms with the commercial products ReNu
MultiPlus (Bausch & Lomb, Rochester, NY) and OptiFree Express
(Alcon, Ft. Worth, TX) that was achieved after the minimum dis-
infection times for these products of 4 and 6 h, respectively (40). In
another recent study in which the efficacies of ReNu MultiPlus
(Bausch & Lomb, Rochester, NY) and OptiFree RepleniSH (Al-
con, Ft. Worth, TX) against A. polyphaga and A. castellanii were
investigated, less than a 1-log reduction with cyst preparations
even after 6 and 24 h of exposure to the solutions was achieved
(26).

A number of disinfection methods for contact lenses that do
not rely on the use of chemical compounds have been proposed in
recent years. These include microwave treatment, sonication, and
UV light treatment. Low-power microwave treatment was found
to inactivate P. aeruginosa, Staphylococcus aureus, and S. epidermi-

FIG 2 Inactivation of A. castellanii cysts with cold atmospheric gas plasma (CAP). Error bars represent the standard error of the mean from triplicate
experiments. Control experiments used 1/4-strength Ringer’s solution alone.

TABLE 4 Efficacy of cold atmospheric gas plasma against cysts of
Acanthamoeba castellanii on a Polymacon contact lens

Pathogen Conditiona

Log10 reduction in viability with exposure
forb:

2 min 4 min 6 min 8 min 10 min 12 min

A. castellanii ATCC
50370

CAP 1.25 1.33 1.33 1.50 3.52 3.84*
Control 0.00 0.00 0.02 0.04 0.06 0.08

a CAP, cold atmospheric gas plasma. Control experiments were performed in 1/4-
strength Ringer’s solution.
b An asterisk indicates complete inactivation.
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dis after 15 min (41). Microwave treatment was also shown to be
effective in inactivating Acanthamoeba present on contact lens
cases (42).

Although sonication has been proposed as a disinfection strat-
egy (43), it has attracted relatively little interest. With reference to
UV treatment, in a recent study from Johnson and Johnson Vision
Care (Jacksonville, FL), reductions in viability of Acanthamoeba
cysts were obtained that are comparable to those reported here
(44). However, the times required to achieve a 3.8- to 4-log reduc-
tion in viability of the cysts using UV ranged from 18 to 21 min.

The possible effects of CAP treatment on the material of the
contact lenses themselves lay outside the scope of the present
study but constitute an important consideration that warrants
future investigation. However, CAP may hold other benefits in
addition to that of purely achieving disinfection. Lipids and other
deposits from the eye are known to form on contact lenses and can
impair cleanability as well as causing discomfort to wearers (45). It
has been demonstrated that CAP proved superior to ultrasonic
cleaning in removing stearic acid from polymer films (46). More-
over, it was reported in the same study that CAP treatment im-
proved the wettability of the polymer—a factor that has been
shown to be important in contact lens care (45).

In the present study, we restricted investigation to the direct
exposure of the contact lenses to the plasma discharge, but this is
not the only means by which treatment might be effected. In par-
ticular, it has been shown that certain plasma species survive in
water sufficiently long enough to constitute an alternative way of
achieving disinfection through contact with the plasma-treated
water (47). In a completely different departure from the potential
that CAPs possess for the disinfection of contact lenses, it was
recently demonstrated that the application of CAP to the surface
of the eye is able to bring about the rapid disinfection of bacteria
and fungi from the ocular surface without causing damage to the
corneal epithelium and stroma (48).

Further work would need to be undertaken to establish the
precise configuration that a personalized CAP-based device for
treating contact lenses would take. However, the availability of
battery-powered CAP devices is at least a testament to the concept
being feasible (49).

In conclusion, this study has demonstrated that the CAP tech-
nology is highly effective against the bacterial, fungal, and proto-
zoan pathogens tested. The further development of this technol-
ogy has considerable potential as this approach is able to deliver
the complete inactivation of ocular pathogens in minutes com-
pared to commercial multipurpose disinfecting solutions, which
show variable and often incomplete activity after 6 and 24 h.
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