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ABSTRACT 

A DESIGN OF INDUCTIVE COUPLING WIRELESS POWER TRANSFER SYSTEM FOR 
ELECTRIC VEHICLE APPLICATIONS 

 
Daida Sarika Reddy 

Old Dominion University, 2019 
Director: Dr. Yucheng Zhang 

 
 

 
This research focuses on the study of using an inductive-coupled Wireless Power Transfer 

(WPT) system for electric vehicle charging applications in Medium Voltage DC (MVDC) power 

networks. Implementing WPT in Electric Vehicles (EVs) can provide a convenient alternative 

charging option, versus static charging in a station that would take hours. Also, it can prevent the 

potential of electrocution hazards that might occur due to the usage of physical medium like wires 

in EV charging. Even though inductive coupling has been applied in some applications of WPT, 

it is still not efficient enough to transfer high power at the kilowatts level due to weak coupling 

between the transmitter and the receiver. Using optimally-specified resonant circuits along with 

inductive coupling can enhance the coupling and make the system more efficient for practical 

applications.  

This research aims to design and analyze the performance of a 5-KW WPT circuit. The 

optimal specification of a resonant circuit is studied and discussed. Theoretical calculations are 

performed to find the component values in the circuit to reach. The WPT system is firstly verified 

by performing simulation tests in the MATLAB/SIMULINK environment and then on a low power 

hardware testbed.  
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NOMENCLATURE 

 

AC   Alternating Current 

DC   Direct Current 

WPT   Wireless power transfer 

EV   Electric Vehicle 

ICE   Internal Combustion Engine 

MVDC  Medium Voltage Direct Current 

IPT  Inductive Power Transfer 

CPT  Capacitive Power Transfer 

HEV  Hybrid Electric Vehicle 

PHEV  Plug in Hybrid Electric Vehicle 

PWM  Pulse Width Modulation 

MOSFET  Metal oxide semiconductor field effect Transistor 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Since a few decades ago, the use of Electric Vehicles (EVs) has increased due to the 

advantages they possess when compared to Internal Combustion Engine (ICE) vehicles. The 

former have much less carbon emission, which prevents global warming to a considerable extent. 

Since the invention of EVs, they have gone through many stages of transformation in terms of 

their design topology and in-built technology.  The aim of this thesis is to design and analyze an 

inductive coupled wireless power transfer (WPT) topology for EVs to integrate with Medium 

Voltage DC (MVDC) networks. The main focus of the design will be on studying and analyzing 

a resonant circuit topology to apply to the wireless inductive power transfer (IPT) design.  

With the present pace in the development of technology and urbanization, the number of 

personal vehicles is expected to increase. As most of the vehicles being used presently depend on 

fossil fuels, one can estimate the issues the usage of oil can bring to humanity. It can lead to global 

climate change, poor air quality and few political conflicts. Presently, the world is using nearly 85 

million barrels of oil every day. 60% of the total oil is being used for transportation out of which 

25% is consumed by the United States. It is proven that only 1300 billion barrels is available for 

further usage, which can lead to the scarcity of oil after 40 years. In preventing this EVs can play 

a major role as they are clean and secure [1].  

Even though EVs are challenging conventional ICE vehicles in terms of energy efficiency 

and long term sustainability, the usage of physical medium for the transmission of power can 

sometimes be hazardous. In fact, EVs were invented many years ago in 1895, but there were many 
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factors that influenced the EV market that led to the downfall of EVs in 1930. Some of those major 

factors are listed below. 

1) The charging time for EVs was nearly 8 hours or more, which is very long. The cost of 

EVs was 40% more compared to ICE vehicles.  

2) Besides buying an EV, operating and maintenance costs were high compared to ICE 

vehicles.  

3) Even though there was no proof that EVs are less safe compared to ICE vehicles, 

automobile manufacturers hesitated to spend money in research, development and 

manufacturing of EVs as there was a downfall in the market by that time.  

4) In the 1990s lead acid batteries were used in most of EVs which made the vehicle very 

heavy and required a long battery charging time. Also, there was no good infrastructure to 

recharge EVs.   

5) Even the prices of hybrid electric vehicles (HEVs) and Plug in Hybrid Electric Vehicles 

(PHEVs) were higher compared to gasoline based ones.  

Even in recent times, EVs suffer the drawbacks caused due to energy storage technologies. 

Batteries have unsatisfactory energy densities, a shorter lifetime and higher costs. For example, 

the expansion of a traditional transit electric bus is tough because of the battery size and cost. The 

battery in a bus can weigh 26% of the total weight of the bus, and it can cost up to 39% of the total 

cost [2]. Designing a battery with high energy density, high power density, proper safety and 

reliability is not an easy task. Moreover, charging the vehicle a single time may take half an hour 

to many hours, depending on the power level of the charger. To overcome this, batteries with fast 

charging capabilities were proposed, but these batteries need high charge acceptance and are not 

ideal for use in a vehicle. Also, it may lead to increased chances of electric shock in harsh weather 
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conditions. Because of all these disadvantages, EV owners are showing interest towards WPT 

vehicles. Wireless charging can make the task easier and reduce battery size [3,4].  

1.2 MVDC Networks 

Besides AC distribution networks, Medium Voltage DC (MVDC) networks are now 

considered as a new technology capable of increasing power quality and transfer capacity in 

distribution systems. These systems possess a few advantages compared to the ac grid 

infrastructures.  In the MVDC distribution networks, power transmission capacity can be increased 

as no reactive current will be carried. Also, MVDC needs fewer materials and overcomes the 

disadvantage of installing bulky devices like transformers for power conversion. The medium 

voltage level of these systems has lower currents leading to lower conduction losses [5,6]. An 

increased interest is being shown in MVDC systems due to the expansion of the energy market, 

which led to a large number of wind and solar power plant installations. The present expansion 

rate of these technologies in the United States will require a dc integration link to improve 

efficiency and system performance, which can happen with MVDC networks [7]. These 

advantages are making MVDC systems fall into the focus of practical and theoretical research 

projects [8,9]. 

In [10] it is stated that most of the loads that are being served by AC power grids are DC type. 

Nearly 80% of the loads in the commercial sector and residential houses are DC [11], so integrating 

MVDC networks into the power supply systems can reduce DC-AC-DC conversion losses leading 

to low energy consumption in the circuitry. In this thesis model, the integration of EVs to MVDC 

networks can assist the EV model in reducing these losses. The current existing EV charging 

stations, depend on AC chargers that require a two stage AC-DC-AC conversion process on the 
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transmitting side. As the resonant circuit needs high frequencies, conversion of low frequency AC 

supply to DC is done by a rectifier and then DC is converted to AC again with high frequency 

using an inverter. Besides the above mentioned advantages MVDC networks possess, they can 

also eliminate this two stage conversion process in the EV, so having EV systems directly tied to 

the MVDC architecture can improve system efficiency by reducing the power conversion stages.    

1.3 WPT Technologies 

WPT was first introduced by Nikola Tesla who carried out various experiments on WPT in 

Colorado Springs, USA in the 1890s [12]. To carry the energy between the transmitter and 

receiver, air medium is used by WPT which is energized by charged particles. Depending on the 

applications, power ratings and the range of transmission, the energy can be transferred through 

an electric field, a magnetic field or electromagnetic waves. Depending on the distance the WPT 

techniques are divided into near field and far field as shown in Fig 1. When the energy is to be 

transferred through shorter distances, near field methods are used; when it is to be transmitted for 

longer distances far field techniques are used.  

Recently microwave beamforming, one of the methods of the far field technique, was used in 

EVs and PHEVs. In [13], a model was proposed that uses a roadside transmitter to power the EV 

with 80% RF-DC conversion efficiency. In the last 10 years this technique has been used in 

medium power applications, such as recharging portable electronic devices. However, the 

electromagnetic fields involved in the far field technologies are stronger when compared to the 

near field, which makes near field transmission safer for humans [14-16]. Taking this into account, 

the design of this system model adopts Inductive power transfer (IPT) method in WPT which falls 

into the category of near field transmission. Even though near field systems have limitations related 
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to transmission range, lower data rates and sensitivity with respect to the positions of the 

transmitter and receiver, these factors may not affect the performance in existing applications 

which require only low data rates for short distances. A few researchers stated that these systems 

can also be advantageous in terms of attaining security [17]. 

 

 

Fig 1: Examples of energy transfer in near field and far field 

 

Nowadays, due to the advantages WPT possesses, it is used in most mobile devices, electric 

vehicles, home appliances [18]. It is also used in Solar power satellites and defense systems.  

1.4 Inductive power transfer 

In the near field transmission there are two primarily used techniques that are being applied 

in the present practical applications which can be categorized based on the coupling technology 

used in them. These coupling techniques are listed below. 
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1) Inductive coupling 

2) Capacitive coupling. 

Inductive coupling is one of the near field transmission techniques, in which the energy 

transfer is done between the two coils through magnetic fields. The coils will be placed in close 

proximity for transmission from transmitter to receiver. The mutual induction principle is used to 

transfer the energy between the two coils without using any physical medium. When a current is 

passed through the transmitter coil, it will produce a magnetic field in short range. When the 

receiver coil is brought and placed in this field, the current or voltage will be induced in the receiver 

coil. This induced voltage can be used for charging a device which is wireless or a storage system. 

In this way the electrical power is transferred from one coil to the other coil using the magnetic 

field. Because of mutual induction, the energy will be transferred between the coils in inductive 

coupling. A basic outline of inductive coupling is shown in Fig 2.A transformer can be a best 

example to explain how mutual induction works in which there will not be any contact between 

the primary and secondary coils. 

Inductive power transfer can handle many kinds of power loads without major problems 

and with greater efficiency, and it is being used in a wide range of near field applications as it can 

retain greater efficiency within a meter [19]. The mutual position and the distance of the transmitter 

and receiver plays a role in deciding the accuracy of transmission.  However, this technique works 

well only for limited, short distances. When the distance is increased between the coils, or the 

secondary coil is placed apart from the primary coil, the amount of power transfer will be 

decreased. The application of inductive coupling for power transmission through longer distances 

is still under development [20]. As in the case of inductive coupling, capacitive coupling is also 

primarily used for shorter distances, but the transfer of power is done through electric fields.  
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Fig 2: Transformer or Inductive coupling. 

 

Even though both of these coupling techniques can be used for power transfer in EVs, this 

model uses inductive coupling due to its advantages compared to capacitive coupling. Some of the 

advantages of inductive coupling over capacitive coupling are: 

1) CPT, although it is developing in small gap applications, is limited to low power level 

transmissions over short distances while IPT can be used for both low power to high power 

levels. CPT is suitable for gaps smaller than 1mm, while IPT is being applied in 

applications that require power transfer in centimeters, like in the case of EVs, factories, 

industrial automotive applications. [20] 

2) As IPT deals with magnetic fields in transferring the power, it is comparatively safer than 

CPT which uses electric fields.  

3) IPT can use broad frequency ranges from 10 kHz to 10 MHz, while CPT can use smaller 

range of frequencies from 100 kHz to 10 MHz.   
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There are other important advantages that play a main role behind using the IPT technique in 

this system: 

1) Environmentally Friendly: IPT can work in harsh environments as it has two 

independently enclosed parts. It is not much affected by dirt, dust or chemicals. It does not 

produce any kind of carbon residues that might have harmful effects on surroundings. One 

concern that was raised in IPT is regarding the magnetic effect on human beings. However, 

some research carried out at the medical school of the University of Auckland shows that 

there are no observable negative biological effects at low frequency ranges [21]. These low 

frequencies usually do not have enough power density to heat the human body cells unlike 

the radio frequencies.  

2) Robustness and Reliability: There is no electrical erosion or wear and tear in these 

systems as there is no direct friction. The electrical components of this system are closed 

completely; thus, it does not encourage any kind of chemical erosion in the conductor parts. 

Thus, there is less maintenance required. 

Although many advantages were mentioned related to IPT, there are few limitations in IPT. 

The power levels of these systems are not suitable for industrial applications. IPT cannot afford 

strong coupling between the transmitter and receiver. Due to this loose coupling, it is next to 

impossible for them to be applied in high power applications. Also, misalignment in the placement 

of the coils might affect the IPT system performance. In [22] it is stated that when the coils are 

placed in 25% of misalignment, efficiency decreases to 92%. Due to these drawbacks, IPT alone 

cannot be used for designing EV systems. In order to overcome the drawbacks of IPT, this system 

adopts resonant systems into the IPT system, which can help IPT in increasing the system 
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performance. The features and advantages of implementation of these resonant circuits will be 

discussed in the following chapter. 

1.5 Objective of this project 

 The aim of this thesis is to design, simulate and analyze a 5KW Resonant Inductive Wireless 

power transfer system for EVs to integrate them with MVDC networks, with advantages like 

improving system performance compared to conventional EV systems. The system designed in 

this thesis can fit commercial electric vehicle applications. Although there are many existing EV 

systems that are integrated with the AC grid, this project integrates EVs with MVDC systems.  

To overcome the disadvantages of IPT, resonant circuits can be integrated into the WPT 

systems with IPT. In resonant circuit, the supply frequency is made equal to the circuit resonant 

frequency and when the system is at resonance, it shows high performance. This model system 

makes use of this advantage and aims at developing a system with improved performance. The 

main circuit is first tested in the simulation and then implemented in the hardware. The values of 

the components are calculated after deriving the equations for each component.  These calculations 

are compared to the simulation and hardware results to verify the practicality of the designed 

model.  

1.6 Thesis Outline 

 Chapter 1 introduces EVs, MVDC networks and their advantages, and integration of EVs with 

MVDC networks. It emphasizes using WPT in EVs and its advantages. It discusses existing WPT 

methods and examines how existing IPT methods in EVs can be improved in performance by using 

resonant systems in this thesis model.   
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 Chapter 2 discusses resonant inductive power transfer and its features. It explains the design 

approach followed in this thesis for a 5KW WPT system. It elaborates on the block diagram and 

parts like the PWM Module containing the controller circuit and driver circuit and the role they 

play in the system’s design. It also discusses the inverter power conversion stage and resonant 

circuits implemented in the design.  

Chapter 3 describes the simulation design and analysis of the main circuit model. It shows the 

derivation and theoretical calculations of the main circuit components used in the model. The 

analysis and simulation results of the system are examined in detail.  

Chapter 4 includes the hardware test results of the proposed system. It examines the comparison 

between the simulation and hardware test results. It reviews the output results for the experiment 

performed at different distances between the transmitter and receiver at different load conditions.  

 Chapter 5 concludes by explaining how the designed system can be verified for practical 

applications. 
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CHAPTER 2 

RESONANT CIRCUITS OF INDUCTIVE WPT SYSTEM 

2.1 Resonant Inductive power transfer 

Early work on integrating WPT with resonance was started by Tesla, who explained the 

advantages of tuning the transmitting and receiving coils at resonance frequency, which is like the 

concept of an oscillation transformer. The oscillation transformer is the main principle behind the 

integration of resonance with WPT [23, 24]. As discussed in chapter 1, resonant circuits are 

implemented along with the IPT in order to increase the coupling and performance of the IPT 

system. Application of resonant circuits can increase the transmitting distance of the IPT systems. 

Resonant circuits are applied to get the resonance frequency, which can improve the rate of energy 

transfer. A resonator consists of a combination of an inductor and capacitor. This technique of 

combining inductive coupling and resonance is known as magnetic resonance coupling. Magnetic 

resonance coupling enables the interactions between two objects very strongly [25-28]. In this 

technology, energy can be transferred from the source to the receiver very efficiently, with very 

little loss of energy. It is highly efficient, with negligible radiation losses and provides great range 

and directionality when compared to the conventional IPT [29]. 

Because of the resonance property, magnetic resonance coupling is immune to the 

neighboring environment.  In an IPT system without resonance, the power transfer between the 

transmitter and receiver can decrease if there is a misalignment in the positions of primary and 

secondary coils, but inclusion of resonant circuits can give flexibility in the orientation between 

the source and load during the operation [30, 31]. One of the most advantageous features of 

magnetic resonance coupling is that it can also be applied between one transmitter and many 



12 
 

 

 

receivers. It can transmit the power even if the multiple load devices have different power 

requirements. This technique is leading in the research field, and because of these advantages it is 

being applied in EVs [25], consumer electronics, biomedical implants, wireless sensor networks, 

and robotics power supplies. 

In an electric circuit, electrical resonance is a phenomenon that occurs at a particular 

frequency known as resonant frequency when the imaginary parts of impedances or admittances 

of the elements of circuit cancel each other out. The response of a circuit is maximized at this 

particular resonant frequency. Resonance can occur in any circuit that has a combination of an 

inductor and a capacitor as both these elements can store the energy [32]. In a resonant circuit, the 

energy will be oscillating between both the inductor and capacitor and the rate of transfer of the 

energy between these two elements depends on the values of L and C. Because of these energy 

transfer oscillations, we will see oscillations in the circuit. If this circuit is ideal, and if there is no 

presence of any kind of resistive elements, these oscillations will continue forever. In reality, 

though, all the circuits will have some resistance involved in them. Because of the presence of this 

resistance, there will be depreciation in these oscillations. To maintain these oscillations, we must 

provide supply from an external source with the same frequency to this LC circuit (which was 

addressed as resonant frequency). This way we can maintain the oscillations. Parallel and series 

RLC circuits are the two main basic resonance circuits. In resonance circuits, the sharpness of the 

resonance can be measured by a term called Quality factor. The Quality factor is given by the 

formula below. 

 

𝑄𝑄 = 2𝜋𝜋 ×  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑 𝑀𝑀𝑒𝑒 𝑠𝑠ℎ𝑒𝑒 𝑐𝑐𝑀𝑀𝑒𝑒𝑐𝑐𝑀𝑀𝑀𝑀𝑠𝑠

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀𝑑𝑑𝑀𝑀𝑠𝑠𝑒𝑒𝑑𝑑 𝑏𝑏𝑒𝑒 𝑠𝑠ℎ𝑒𝑒 𝑐𝑐𝑀𝑀𝑒𝑒𝑐𝑐𝑀𝑀𝑀𝑀𝑠𝑠 𝑀𝑀𝑒𝑒 𝑠𝑠𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑒𝑒𝑀𝑀𝑠𝑠𝑑𝑑 𝑀𝑀𝑠𝑠 𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑀𝑀𝑒𝑒𝑐𝑐𝑒𝑒 
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In a series resonant circuit, this Quality factor is given by equation below. 

𝑄𝑄 = 𝜔𝜔𝑜𝑜𝐿𝐿
𝑅𝑅

= 1
𝜔𝜔𝑂𝑂𝐶𝐶𝑅𝑅

=  1
𝑅𝑅

 �𝐿𝐿
𝐶𝐶
      .                                                 (1) 

Whereas in a parallel resonant circuit, it is given by following equation. 

𝑄𝑄 =  𝑅𝑅
𝜔𝜔𝑂𝑂𝐿𝐿

=  𝜔𝜔𝑂𝑂𝑅𝑅𝑅𝑅 = 𝑅𝑅�𝐶𝐶
𝐿𝐿
          .                                          (2) 

By using these concepts of basic resonance circuits, the equations for the main circuit 

model used in this system model are derived, which will be discussed in the next chapter. Another 

main advantage of resonant circuits that makes them suitable for IPT applications is that they can 

boost the voltage and current levels depending on their topology. For example, a series resonant 

circuit can act as a voltage amplifier and a parallel resonant circuit can act as a current amplifier. 

When the circuit applied acts as a voltage amplifier, the voltage produced at the resonant circuit 

will be very high compared to the input supply voltage.  

In a series circuit, at Resonance, the voltage across the inductor can be given by equation 3. 

𝑉𝑉𝐿𝐿 =  𝑉𝑉𝑚𝑚
𝑅𝑅

 𝜔𝜔𝑜𝑜𝐿𝐿                                                               (3)  

We know that,  𝜔𝜔𝑜𝑜𝐿𝐿
𝑅𝑅

 is the Quality factor Q, so in the above equation, if we replace that term with 

Q, we get equation 4. 

𝑉𝑉𝐿𝐿 =  𝑉𝑉𝑚𝑚𝑄𝑄              .                                                            (4) 

From the above equation, it is evident that the voltage across the inductor will be much larger than 

the input supply voltage; hence, this circuit can act as a voltage amplifier. The same concept can 



14 
 

 

 

be applied for the voltage across the capacitor, so by properly designing the values of L and C in 

the resonant circuit, we can acquire higher voltages at higher frequencies. 

2.2 5 KW IPT system design approach: 

The block diagram of the system design used in this model is shown in Fig 3. Any wireless 

power transfer system has two main parts, the transmitter and the receiver. It needs an input power 

which can be given from either an AC or a DC source.  

 

 

Fig 3. 5KW system design approach 

 

In this work, as shown in Fig 3, on the transmitter side, power electronics converters are 

used which transform DC supply to AC with desired frequency. A full bridge inverter topology is 

being used for this purpose. As stated in chapter 1, in many WPT models, a two-stage AC-DC-AC 

conversion process was used, but this whole process needs circuitry involving switching devices. 

The more switching devices there are, the more switching losses there are. To overcome this, in 

[33] a few AC-AC one stage conversion models were discussed, but it is also stated that one stage 
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AC-AC converters with resonant circuits might not be suitable due to the difficulty in control and 

unstable outputs in these converters, so in this model integrating the system with MVDC has an 

advantage of one stage DC-AC conversion. In general, in wireless charging systems for EVs, the 

resonant frequency or the switching frequency of an inverter ranges from 20 KHz to 100 KHz.  

In this model, MOSFETs are used for switching purposes in the inverter. In general, 

MOSFETs have two kinds of losses, known as conduction and switching losses [35, 36]. The 

switching losses occur while turning the switch ON and OFF. The switching losses involved in 

these switches during ON and OFF are given by the formulae below. 

Turn ON power losses:  𝑃𝑃𝑜𝑜𝑜𝑜 =  𝐸𝐸𝑜𝑜𝑜𝑜𝑓𝑓𝑠𝑠𝑠𝑠                                            (5) 

Turn OFF power losses:  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑠𝑠𝑠𝑠                                       (6) 

where, 

 𝐸𝐸𝑜𝑜𝑜𝑜 and 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 are energies dissipated at the switch during ON and OFF, and 𝑓𝑓𝑠𝑠𝑠𝑠 is the switching 

frequency.  

From the above two formulae, it is evident that the switching losses are directly 

proportional to the switching frequency. Choosing higher frequencies can make the system more 

compact, but as shown above, increase in frequency can lead to switching losses. Also, the EMF 

emissions which can be introduced by the high frequencies should also be studied. Decreasing the 

power conversion stages will reduce the switching losses.  
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2.2.1 PWM Module: 

The system consists of a PWM module, which consists of two circuits that generate pulses 

to control the switches in the inverter. These two circuits are: 

1) Controller IC 

2) Driver circuit. 

The controller controls the inverter switches by phase shifting the switching of one half 

bridge with respect to the other, allowing constant frequency pulse width modulation. It provides 

the signals to the driver circuit, which is an interface between the controller and the switches.  

2.2.2 Purpose of gate driver circuit  

In general, MOSFETs have some parasitic capacitance because of their structure. This 

parasitic capacitance can limit the switching speed of MOSFET. Usually, the input parasitic 

capacitance which is the total of gate source capacitance and gate drain capacitance when seen 

from the input, must be charged in order for the MOSFET to turn ON, so this parameter is 

important in practical applications. This parasitic capacitance at the input must be charged at least 

to the minimum gate voltage required for the MOSFET to operate. To turn OFF the transistor, this 

capacitance should be discharged. 

 Also, when the MOSFET is switched on or off, it might not start conducting immediately 

and might conduct high current. The gate current that is applied to MOSFET to turn it ON, can 

produce a certain amount of heat which might even damage the MOSFET in a few cases, so in 

order to decrease the switching losses, decreasing the switching time might be necessary, but the 

decrease in switching time might requires more current to charge the gate. The control signal that 
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is generated from the microcontroller is limited to current whose magnitude is in the range of a 

few milli amperes. 

With this small amount of current, the MOSFET will turn ON very slowly producing 

considerable switching losses. Also, the parasitic capacitance mentioned before might draw current 

very fast, which might lead to excess current draw causing damage to the hardware involved. The 

usage of gate drivers might prevent all this damage from happening. The gate driver can produce 

a high current input for the MOSFET gate. This can reduce the switching time and the switching 

losses. In this way, the gate driver prevents the switches from damage and acts as an interface 

between the controller and power switches. 

2.3 Main circuit of 5KW system 

The main circuit diagram of this system model is shown in Fig 4. In the main circuit diagram, 

we can see two main parts on the transmitting side: 

1) Inverter circuit 

2) Resonant circuit. 
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Fig 4: Main circuit diagram of the 5KW proposed model 

 

2.3.1 Inverter of 5KW main circuit: 

The inverter of the proposed main circuit converts the DC supply to AC and feeds it to the 

resonant circuit. In general, there are many inverter resonant circuit topologies currently being 

used in practical WPT applications. In [33], a few resonant inverter topologies are explained and 

a few are listed below. 

1) Class E resonant inverter 

2) Class D resonant inverter 

3) Class DE resonant inverter 

Even though there are many more topologies, in [33] it is stated that the class D and full bridge 

class D resonant inverters are most popular in practical applications of WPT due to easy system 
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parameter design. The full bridge class D type is a H bridge inverter connected to the resonant 

circuit. The same topology is used for the inverter design in this system model. The peak-peak 

voltage across the switch in full bridge Class D is twice as high as the DC supply voltage. Thus, 

this topology can produce a higher voltage to feed the LC resonant circuit, compared to the Class 

D half bridge type, making it more suitable for low DC supply applications. The switching 

frequency for this system is chosen to be 50kHz.  

In the two half bridges in this inverter circuit, only one of them will be ON at a time. The 

switches are run complementary to get the desired output. There are four total combinations that 

are valid for a full bridge inverter. If the input voltage being supplied is referred to as Vin, the 

different stages of the full bridge inverter are shown in table 1. 

 

Table 1: Different stages of full bridge inverter. 

 

 

S1 

 

S2 

 

S3 

 

S4 

Vo (Inverter 

output voltage) 

ON ON OFF OFF Vin 

ON OFF ON OFF Zero 

OFF OFF ON ON -Vin 

OFF ON OFF ON Zero 

 

 

From the above table, one can understand the output of the inverter according to the 

different switching actions of the switches.  
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2.3.2 Resonant circuit 

From Fig 4, the capacitor and inductor named Cr and Lr are resonant capacitor and resonant 

inductor, respectively. As stated before, these two components play a major role in the circuit 

design, as they are crucial in creating the resonance condition and improving the performance of 

the IPT system. The values of these components are calculated using a few equations that are 

derived and discussed in the following chapter.  

This system model uses the full bridge inverter design due to its simple and easy to 

implement topology compared to the other inverter topologies and its ability to produce higher 

voltages at the output. Also, the inductive coupling despite the limited transmission range, the 

charging power can be high when the transmission distance is less than the coil diameter. However, 

resonant systems are used to improve the transferring ability and the usage of magnetic resonant 

systems are proved to increase the inductive power transfer systems’ performance by attaining 

90% efficiency when the transmitting distance is up to a meter [34]. Using these different modules 

with the stated advantages can increase the performance of this system model. 
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CHAPTER 3 

CALCULATIONS AND SIMULATION RESULTS 

3.1 Derivation of Equations 

A few equations are derived to calculate the theoretical values of the main circuit. In the 

main circuit diagram, there is a load 𝑅𝑅𝑙𝑙 on the secondary side of the transformer.  

To simply the calculation, the transformer can be eliminated by referring the load resistor 

onto the primary side as shown in Fig 5. The resistor that is referred to the primary side is addressed 

as 𝑅𝑅𝑙𝑙′.  

 

 

Fig 5: Main circuit with load resistor referred to the primary side 
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By following the basic concepts of a resonant circuit, the equations of the main circuit can 

be derived as shown below. 

We know that in a circuit, at resonance condition, the imaginary components of the 

complex impedance or admittance are zero, so by calculating the total impedance of the circuit 

and equating the imaginary part to zero, we can solve for the circuit parameters at the resonance 

condition.  

As shown in Fig 5, inductor Lr and the resistor 𝑅𝑅𝑙𝑙′ are parallel to each other. Total 

Impedance Z is calculated by adding the impedance of Cr and impedance of parallel combination 

of Lr and 𝑅𝑅𝑙𝑙′. 

Thus, the impedance of the parallel combination of Lr and 𝑅𝑅𝑙𝑙′ is given by following equation. 

𝑍𝑍𝐿𝐿−𝑅𝑅′ =  
𝑅𝑅′ (𝑗𝑗𝜔𝜔𝐿𝐿)
𝑅𝑅′ + 𝑗𝑗𝜔𝜔𝐿𝐿

 

Total Impedance is given by equation below. 

𝑍𝑍 =  1
𝑗𝑗𝜔𝜔𝐶𝐶

+ 𝑅𝑅
′ (𝑗𝑗𝜔𝜔𝐿𝐿)
𝑅𝑅′+𝑗𝑗𝜔𝜔𝐿𝐿

 

𝑍𝑍 =  1
𝑗𝑗𝜔𝜔𝐶𝐶

+ 𝑅𝑅
′ (𝑗𝑗𝜔𝜔𝐿𝐿)
𝑅𝑅′+𝑗𝑗𝜔𝜔𝐿𝐿

 (𝑅𝑅′−𝑗𝑗𝜔𝜔𝐿𝐿)
((𝑅𝑅′−𝑗𝑗𝜔𝜔𝐿𝐿)

 

By simplifying the above equation, we get the following equation. 

𝑍𝑍 =  1
𝑗𝑗𝜔𝜔𝐶𝐶

+ (𝑅𝑅
′)2 (𝑗𝑗𝜔𝜔𝐿𝐿)+𝑅𝑅′(𝜔𝜔𝐿𝐿)2 

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2
  

Now, by separating the real part and the imaginary part, we get the equation below. 

𝑍𝑍 =  −𝑗𝑗
𝜔𝜔𝐶𝐶

+  (𝑗𝑗𝜔𝜔𝐿𝐿)(𝑅𝑅′)2 
(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2 + (𝜔𝜔𝐿𝐿)2 𝑅𝑅′

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2  
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𝑍𝑍 =   (𝜔𝜔𝐿𝐿)2𝑅𝑅′ 
(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2 + (𝑗𝑗𝜔𝜔𝐿𝐿)(𝑅𝑅′)2 

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2 −  𝑗𝑗
𝜔𝜔𝐶𝐶

 

𝑍𝑍 =   (𝜔𝜔𝐿𝐿)2𝑅𝑅′ 
(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2 + 𝑗𝑗( (𝜔𝜔𝐿𝐿)(𝑅𝑅′)2 

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2 −  1
𝜔𝜔𝐶𝐶

) 

From the above equation, if we equate the imaginary component to zero, we get the following 

equation. 

�
(𝜔𝜔𝐿𝐿)(𝑅𝑅′)2 

(𝑅𝑅′)2 +  (𝜔𝜔𝐿𝐿)2 −  
1
𝜔𝜔𝑅𝑅

� = 0 

From the above equation the resonant frequency is obtained as follows: 

(𝜔𝜔𝐿𝐿)(𝑅𝑅′)2 
(𝑅𝑅′)2 +  (𝜔𝜔𝐿𝐿)2 =  

1
𝜔𝜔𝑅𝑅

 

𝜔𝜔2𝐿𝐿𝑅𝑅(𝑅𝑅′)2 = (𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2 

𝜔𝜔2𝐿𝐿𝑅𝑅(𝑅𝑅′)2 - (𝜔𝜔𝐿𝐿)2 =  (𝑅𝑅′)2 

𝜔𝜔2(𝐿𝐿𝑅𝑅(𝑅𝑅′)2 - 𝐿𝐿2) =  (𝑅𝑅′)2 

𝜔𝜔2 =  
(𝑅𝑅′)2

𝐿𝐿𝑅𝑅(𝑅𝑅′)2 − 𝐿𝐿2
 

𝜔𝜔2 =  
1

𝐿𝐿𝑅𝑅 − 𝐿𝐿2
(𝑅𝑅′)2

 

From the above equation, we can solve for 𝜔𝜔 and get the equation as below. 

𝜔𝜔 =  1

�𝐿𝐿𝐶𝐶− 𝐿𝐿2

(𝑅𝑅′)2

                                                               (7) 

From the above equation, by solving for capacitance, we get the final equation as shown below. 
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𝑅𝑅 =  1
𝐿𝐿𝜔𝜔2 + 𝐿𝐿

(𝑅𝑅′)2
                                                             (8) 

From the above equation, we can find the value of capacitance by plugging in all the values of the 

variables in the equation. If the input voltage is given by 𝑉𝑉𝑖𝑖𝑜𝑜, at resonance the relation between 

voltage and current is given by the equation below. 

𝑉𝑉𝑖𝑖𝑜𝑜 = 𝐼𝐼 [ (𝜔𝜔𝐿𝐿)2𝑅𝑅′

(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2
]                                                      (9)   

Thus, at resonance, the voltage drop in the resonant circuit will be only due to the real part of the 

total circuit impedance.  

3.1.1 Input current 

From equation 7, the equation for the input current at resonance will be,  

𝐼𝐼 = 𝑉𝑉𝑖𝑖𝑜𝑜 �
(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
�                                                           (10) 

 

3.1.2 Quality Factor 

The quality factor for this circuit can be found by transforming the circuit into an 

equivalent series RLC circuit as shown in Fig 6. 
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Fig 6: Transforming to equivalent series RLC circuit 

 

Now by transforming the main circuit into the form of a series RLC circuit, the Quality factor can 

be derived as follows. 

From Fig 6, 

1
1
𝑗𝑗𝜔𝜔𝐿𝐿 + 1

𝑅𝑅′
= 𝑗𝑗𝜔𝜔𝐿𝐿′ + 𝑅𝑅" 

Now, to simplify, the numerator and denominator are multiplied by 𝑅𝑅′ − 𝑗𝑗𝜔𝜔𝐿𝐿 

𝑗𝑗𝜔𝜔𝐿𝐿𝑅𝑅′

𝑗𝑗𝜔𝜔𝐿𝐿+𝑅𝑅′
× 𝑅𝑅′−𝑗𝑗𝜔𝜔𝐿𝐿

𝑅𝑅′−𝑗𝑗𝜔𝜔𝐿𝐿
 = 𝑗𝑗𝜔𝜔𝐿𝐿′ +  𝑅𝑅"  

𝑗𝑗𝜔𝜔𝐿𝐿𝑅𝑅′(𝑅𝑅′−𝑗𝑗𝜔𝜔𝐿𝐿)
(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2

 =  𝑗𝑗𝜔𝜔𝐿𝐿′ +  𝑅𝑅"  

𝑗𝑗𝜔𝜔𝐿𝐿(𝑅𝑅′)2

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2
 + (𝜔𝜔𝐿𝐿)2𝑅𝑅′

(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2
 = 𝑗𝑗𝜔𝜔𝐿𝐿′ +  𝑅𝑅" 

By comparing LHS and RHS, we get, 
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𝑅𝑅" =  (𝜔𝜔𝐿𝐿)2𝑅𝑅′

(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2                                                                (11) 

𝐿𝐿′ =  𝐿𝐿(𝑅𝑅′)2

(𝑅𝑅′)2+ (𝜔𝜔𝐿𝐿)2
                                                              (12) 

For a series RLC circuit, the quality factor is given by,  

𝑄𝑄 =  
𝜔𝜔𝐿𝐿′

𝑅𝑅′′
 

By substituting 𝐿𝐿′ and 𝑅𝑅" in the above equation, we get, 

𝑄𝑄 =  𝜔𝜔 
𝐿𝐿(𝑅𝑅′)2

(𝑅𝑅′)2 +  (𝜔𝜔𝐿𝐿)2
 ×  

(𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
  

By solving the above equation, we get the equation for the quality factor as, 

𝑄𝑄 =  𝑅𝑅
′

𝜔𝜔𝐿𝐿
                                                               (13) 

The above equation of Quality factor is in terms of inductance. Another equation can also be 

derived which is in terms of the Quality factor and capacitance. For series RLC circuit, the 

Quality factor in terms of capacitance is given by, 

𝑄𝑄 =  
1

𝜔𝜔𝑅𝑅𝑅𝑅" 

In the above equation, by substituting 𝑅𝑅" we get, 

Q = 1

𝜔𝜔𝐶𝐶( 𝜔𝜔2𝐿𝐿2𝑅𝑅′

�𝑅𝑅′�
2
+𝜔𝜔2𝐿𝐿2

)
 

𝑄𝑄 =  
(𝑅𝑅′)2 + 𝜔𝜔2𝐿𝐿2

𝜔𝜔𝑅𝑅 [𝜔𝜔2𝐿𝐿2𝑅𝑅′]
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𝑄𝑄 =  
(𝑅𝑅′)2
𝜔𝜔2𝐿𝐿2 + 1

𝜔𝜔𝑅𝑅𝑅𝑅′
  

𝑄𝑄 =  
𝑄𝑄2 + 1
𝜔𝜔𝑅𝑅𝑅𝑅′

  

𝑄𝑄
𝑄𝑄2+1

=  1
𝜔𝜔𝐶𝐶𝑅𝑅′

                                                              (14) 

Both equations 6 and 12 can be solved to find the value of Capacitance. 

3.1.3 Voltage across Capacitor 

The voltage across the capacitance can be calculated as shown below. 

The voltage across capacitor can be given by, 

𝑉𝑉𝐶𝐶 = 𝐼𝐼𝑋𝑋𝐶𝐶 

𝑉𝑉𝐶𝐶 =  𝑉𝑉𝑖𝑖𝑜𝑜(
(𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
) (

1
𝜔𝜔𝑅𝑅

) 

From the above equation, the magnitude of the Voltage across the capacitor is given by, 

𝑉𝑉𝐶𝐶 =  𝑉𝑉𝑖𝑖𝑜𝑜(
(𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
) (

1
𝜔𝜔

)(
𝐿𝐿𝜔𝜔2(𝑅𝑅′)2

(𝑅𝑅′)2 + 𝐿𝐿2𝜔𝜔2) 

𝑉𝑉𝐶𝐶 =  𝑉𝑉𝑖𝑖𝑜𝑜 �
𝐿𝐿𝜔𝜔(𝑅𝑅′)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
� 

|𝑉𝑉𝐶𝐶| =  𝑉𝑉𝑖𝑖𝑜𝑜(
𝑅𝑅′

𝜔𝜔𝐿𝐿
) 

In the above equation, the term 𝑅𝑅
′

𝜔𝜔𝐿𝐿
 is nothing but the Quality factor Q. 

If we replace that term with Q, we get the equation for voltage across the capacitor as, 
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|𝑉𝑉𝐶𝐶| =  𝑉𝑉𝑖𝑖𝑜𝑜𝑄𝑄                                                               (15) 

3.1.4 Voltage across Inductor 

The voltage across the inductor can be calculated as shown below. 

Here, in the main circuit when the secondary side resistor is referred on to the primary side, 

inductor and resistor are in parallel. 

Fig 7. shows the phasor diagram for the parallel combination of inductor and resistor. From 

this Fig 7. the total current through the circuit can be calculated by the resultant of the vectors of 

inductor current and resistor current. 

 

 

Fig7: Phasor diagram for parallel LR circuit 

 

From equation 8, we know that at resonance the total current is given by, 

𝐼𝐼 = 𝑉𝑉𝑖𝑖𝑜𝑜[(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
] 
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The total current obtained from the resultant of the two vectors is equal to the above current 

equation, so 

�(𝐼𝐼𝑅𝑅′)2 + (𝐼𝐼𝐿𝐿)2 =  𝑉𝑉𝑖𝑖𝑜𝑜[(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
] 

 �(𝑉𝑉𝐿𝐿
𝑅𝑅′

)2 + (𝑉𝑉𝐿𝐿
𝑋𝑋𝐿𝐿

)2 =  𝑉𝑉𝑖𝑖𝑜𝑜
(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
 

𝑉𝑉𝐿𝐿�(
1
𝑅𝑅′

)2 + (
1
𝜔𝜔𝐿𝐿

)2 =   𝑉𝑉𝑖𝑖𝑜𝑜
(𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
 

𝑅𝑅′𝑉𝑉𝐿𝐿�(
1
𝑅𝑅′

)2 + (
1
𝜔𝜔𝐿𝐿

)2 =   𝑉𝑉𝑖𝑖𝑜𝑜
(𝑅𝑅′)2 + (𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2
 

By replacing 𝑅𝑅′
𝜔𝜔𝐿𝐿

 by Q, we get, 

𝑉𝑉𝐿𝐿�1 + 𝑄𝑄2 =  𝑉𝑉𝑖𝑖𝑜𝑜(𝑄𝑄2 + 1) 

|𝑉𝑉𝐿𝐿| =  𝑉𝑉𝑖𝑖𝑜𝑜�1 + 𝑄𝑄2                                                              (16) 

3.1.5 Inductor Current 

The current through the inductor can be calculated by  

𝐼𝐼𝐿𝐿 =  𝑉𝑉𝐿𝐿
𝐿𝐿×𝜔𝜔

                                                                           (17) 

The current through the capacitor will be the same as the total current of the circuit. 

3.2 Theoretical Calculations for 5KW circuit 

The calculations of the circuit are done using the equations derived in the previous 

section. The specifications for the 5KW system are shown in table 2. 
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Table 2: Specifications of 5KW system. 

Parameter Value 

Input Voltage 120 V 

Power Rating 5KW 

Operating Frequency 50kHz 

Quality Factor 5 

Output voltage 400 V 

Turns ratio 2.5 

 

 

Voltage across the Capacitor 

The voltage across the capacitor is given by, 

|𝑉𝑉𝐶𝐶| =  𝑉𝑉𝑖𝑖𝑜𝑜𝑄𝑄 

By substituting 𝑉𝑉𝑖𝑖𝑜𝑜 = 120𝑉𝑉  and Q = 5, we get, 

                                               |𝑉𝑉𝐶𝐶| = 600 V (rms) = 848.528 V(peak) 

 

Voltage across the Inductor 

The voltage across the inductor is given by, 

|𝑉𝑉𝐿𝐿| =  𝑉𝑉𝑖𝑖𝑜𝑜�1 + 𝑄𝑄2 
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|𝑉𝑉𝐿𝐿| =  120�1 + 52 

|𝑉𝑉𝐿𝐿| = 611.88 V (rms) = 865.3323 V (peak) 

Value of Inductance 

In the equation = 𝑅𝑅′

𝜔𝜔𝐿𝐿
 , 𝜔𝜔 = 2𝜋𝜋𝑓𝑓 where f = 50KHz, as 𝑅𝑅′ is the load resistor referred to the 

primary side, 𝑅𝑅′ is given by, 

𝑅𝑅′ = 𝑅𝑅(
𝑁𝑁1
𝑁𝑁2

)2 

In order to find the value of 𝑅𝑅′, the value of R should be known. 

The output voltage across the secondary terminals is calculated by, 

𝑉𝑉𝐿𝐿
𝑉𝑉𝑂𝑂

=  
𝑁𝑁1
𝑁𝑁2

 

where 𝑉𝑉𝑂𝑂 is the output voltage across the secondary terminals and 𝑉𝑉𝐿𝐿 is the voltage across the 

inductor.  

By substituting the value of  𝑉𝑉𝐿𝐿= 611.88 V and 𝑁𝑁1
𝑁𝑁2

 = 2.5, 𝑉𝑉𝑂𝑂 is obtained as, 

𝑉𝑉𝑂𝑂 = 244.7529 V (rms) = 346.1328 V (peak) 

As the output voltage is 244.7529 V and the power is 5KW, we can find the load resistor value 

by, 

𝑅𝑅 =
(𝑉𝑉𝑂𝑂)2

𝑃𝑃
=

(244.7529)2

5000
= 11.98 Ω 

By substituting the values of 𝑅𝑅 and 𝑁𝑁1
𝑁𝑁2

, 𝑅𝑅′is obtained as, 

𝑅𝑅′ = (11.98)(2.5)2 = 74.875 Ω 
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Now the value of inductance can be found from the Quality factor. 

We know that the Quality factor is given by, 

𝑄𝑄 =
𝑅𝑅′

𝜔𝜔𝐿𝐿
 

By bringing L on to the LHS we get, 

𝐿𝐿 =
𝑅𝑅′

𝜔𝜔𝑄𝑄
 

 where 𝜔𝜔 = 2𝜋𝜋𝑓𝑓 = 2𝜋𝜋 × 50,000 

By substituting the value of 𝑅𝑅′ = 74.875 Ω,𝜔𝜔 = 2𝜋𝜋 × 50,000 and 𝑄𝑄 = 5, the value of L is 

obtained as, 

𝐿𝐿 = 74.875
5×2𝜋𝜋×50,000

 = 4.76669 e- 05 Henry 

Value of capacitance 

The capacitance value can be found from the equation, 

𝑄𝑄
𝑄𝑄2 + 1

=  
1

𝜔𝜔𝑅𝑅𝑅𝑅′
 

𝑅𝑅
1

=  
𝑄𝑄2 + 1
𝜔𝜔𝑄𝑄𝑅𝑅′

 

However, substituting all the values on the right hand side in the above equation, the value of 

capacitance is found to be, 

𝑅𝑅 =  26
5×2𝜋𝜋×50,000×74.875

 = 2.2106e-07 Farad 
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Total Input current 

The total current through the circuit at resonance can be found from the formula, 

𝐼𝐼 = 𝑉𝑉𝑖𝑖𝑜𝑜[(𝑅𝑅′)2+(𝜔𝜔𝐿𝐿)2

(𝜔𝜔𝐿𝐿)2𝑅𝑅′
] 

𝐼𝐼 = 𝑉𝑉𝑖𝑖𝑜𝑜[ 𝑄𝑄
𝜔𝜔𝐿𝐿

+ 1
𝑅𝑅′

] 

𝐼𝐼 =  5
2𝜋𝜋×50,000×4.76669×10−5

+ 1
74.875

  

𝐼𝐼 = 41.669 Amperes 

Current through the Inductor 

The current through the inductor can be found from the formula,  

𝐼𝐼𝐿𝐿 =  
𝑉𝑉𝐿𝐿

𝐿𝐿 × 𝜔𝜔
  

𝐼𝐼𝐿𝐿 =  
611.88

4.76669 × 10−5 × 2𝜋𝜋 × 50,000
  

𝐼𝐼𝐿𝐿 = 40.86 Amperes 

 

Current through the Capacitor 

The current through the capacitor is equal to the input current through the circuit, 

𝐼𝐼𝐶𝐶 = 𝐼𝐼 = 41.669 Amperes 

The summarized table for the calculated values of the main circuit model is shown below. 
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Table 3: Calculated values of 5KW system. 

Parameter Value 

Voltage across the Capacitor 600 V (rms) , 848.528 V(peak) 

Voltage across the Inductor 611.88 V (rms) , 865.3323 V (peak) 

Value of Inductance 0.0476669 mH 

Value of Capacitance 0.22106 µF 

Total Input Current 41.669 A(rms) 

Current through the Inductor 40.86 A(rms) 

Current through the Capacitor 41.669 A(rms) 

 

 

3.3 The effect of frequency on the circuit parameters 

The operating frequency or the resonance frequency value can vary the parameters of the 

circuit. As mentioned in the previous chapter, the increase in frequency can make the circuit more 

compact. However, too high frequency ranges can increase the losses in the system. 

To check the frequency effect theoretically, the circuit parameters are calculated for three 

different frequencies, 20kHz, 30kHz and 50kHz. It is observed that for each frequency value, the 

values of Inductance and Capacitance have changed.  

The values of L and C for different values of the mentioned frequencies are shown in table 

4.  
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Table 4. L and C values for different frequencies 

Frequency Value of Inductance Value of Capacitance 

20kHz 0.11916 mH 0.552658 µF 

30kHz 0.0794448 mH 0.368438 µF 

50kHz 0.0476669 mH 0.22106 µF 

 

 

The graphs below show the change in L and C values with respect to the operating frequency. 

 

 

Fig 8: Frequency v/s Inductance 
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Fig 9: Frequency v/s Capacitance 

 

From Fig 8 and Fig 9 it is evident that with the increase in frequency, there is a decrease in 

the values of L and C. This means that at higher frequencies the system can be designed with lower 

value components that make the system smaller. As the frequency decreases, the system becomes 

bulkier, so in this system, a higher frequency of 50kHz is used. Selecting higher frequencies can 

make the system compact, but the switching power losses and the effects of the magnetic fields 

should be taken care of.  

3.4 Selection of the turns ratio for system design 

 The most suitable turns ratio should be selected and fixed to the system according to the system 

parameters. For this system, a turns ratio of 2.5 is selected due to the various observations made 

after analyzing the system parameters. The following analysis explains how fixing this turns the 
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ratio to 2.5. In this system, for turns ratio of 2.5, the output voltage obtained on the secondary side 

is 244.7529 V. Since the rated output voltage of the system is 400V DC, the voltage obtained on 

the secondary side can be converted to 400V DC, by using a DC-DC converter, after rectifying it. 

In order to reduce the power losses in the DC-DC stage, the value of the conversion ratio is 

maintained in the range [0.4,0.6].  

A full wave rectifier can be used for the purpose of converting the AC voltage to DC, as 

the average DC output voltage of the full wave rectifier is higher when compared to the half wave 

rectifier. Firstly, in order to fix the turns ratio, the different outputs possible for the system should 

be determined. The system behavior is examined for four feasible different turns ratios, 1, 1.5 2 

and 2.5. For the given specifications of the system, the possible output voltages for the system for 

different turns ratios are shown in the table below.  

 

Table 5. Output voltages for different turns ratios 

Turns Ratio Output Voltage  

1 611.8823 V (rms) 

1.5 407.921 V (rms) 

2 305.94117 V (rms) 

2.5 244.7529 V (rms) 
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Case 1 (When turns ratio=1): For turns ratio =1, the output voltage obtained at the secondary 

side is 611.8823. For this case, as the output voltage on the secondary side is greater than 400 V, 

a buck converter can be used in the DC-DC stage. For a buck converter, the duty cycle is given 

by, 

𝐷𝐷 = 𝑉𝑉𝑜𝑜
𝑉𝑉𝑖𝑖

                                                                   (18) 

The voltage 𝑉𝑉𝑖𝑖 is the input voltage to the DC-DC converter that is obtained from the rectifier 

output. The voltage 𝑉𝑉𝑜𝑜 is the final output voltage at the DC-DC converter, which is 400V. If the 

conversion ratio is maintained between [0.4,0.6], the voltage input for the DC-DC converter should 

be in the range [400/0.6, 400/0.4], which is equal to [666.66V, 1000V]. To find the input voltage 

that is fed to the DC-DC converter, the average DC output voltage obtained from the rectifier 

should be calculated. For a full bridge rectifier, the equation for finding the value of the average 

DC output voltage is given by, 

𝑉𝑉𝑑𝑑𝑑𝑑 =  
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋

= 0.637 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9𝑉𝑉𝑟𝑟𝑚𝑚𝑠𝑠 

where 𝑉𝑉𝑟𝑟𝑚𝑚𝑠𝑠 is the rms voltage of the ac input to the rectifier, so from the above formula the average 

DC voltage that will be obtained from the rectifier is obtained as, 

𝑉𝑉𝑑𝑑𝑑𝑑 = 0.9( 611.8823) = 550.69407 𝑉𝑉  

This voltage does not fall into the voltage conversion ratio range of DC-DC converter, so using 

turns ratio of 1 may lead to more losses in the system.  

Case 2 (When turns ratio=1.5): For turns ratio = 1.5, the output voltage obtained at the secondary 

side is 407.92 V. At the output of the rectifier, the average DC voltage obtained will be, 
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𝑉𝑉𝑑𝑑𝑑𝑑 =  0.9(407.92) = 376.128 𝑉𝑉 

As this voltage is less than 400V, a boost converter can be used. For a boost converter, the duty 

cycle is given by, 

𝐷𝐷 = 1 − 𝑉𝑉𝑖𝑖
𝑉𝑉𝑜𝑜

                                                              (19) 

If the conversion ratio is maintained between [0.4,0.6], the voltage input for the DC-DC boost 

converter should be in the range [240V, 160V] , but the average DC voltage obtained does not fall 

into this range, eliminating 1.5 as the turns ratio. 

Case 3 (When turns ratio=2): For turns ratio = 2, the output voltage obtained at the secondary 

side is 305.94117 V. At the output of the rectifier, the average DC voltage obtained will be, 

𝑉𝑉𝑑𝑑𝑑𝑑 =  0.9(305.94117) = 275.247 𝑉𝑉 

As in the previous case, the voltage does not fall into the DC-DC conversion ratio range, so this 

turns ratio would not be suitable for this system design. 

Case 4 (When turns ratio=2.5): For turns ratio = 2.5, the output voltage obtained at the secondary 

side is 244.7529 V. At the output of the rectifier, the average DC voltage obtained will be, 

𝑉𝑉𝑑𝑑𝑑𝑑 =  0.9(244.7529) = 220.277 𝑉𝑉 

In this case, it is evident that, the DC voltage falls into the desired range of [240V, 160V] of DC-

DC stage, so compared to the previous compared cases, using the turns ratio of 2.5 would be a 

preferable option that can lead to fewer losses in the system. In this way, the most suitable output 

voltage on the secondary side and the turns ratio of the system are fixed. However, a few other 

constraints are examined to complete the system analysis in the following sections of this chapter. 



40 
 

 

 

3.5 System Parameter analysis for different turns ratios 

For four different turns ratios mentioned in the previous section, the variations in the other 

system parameters like Quality factor, Voltages and Currents of Inductor and Capacitor, 

Inductance and Capacitance values are examined for the output voltage of 244.7529 V on the 

secondary side. 

Variation of Quality factor:  

The Quality factor is observed to be varying by change in the turns ratio of the system. 

When the turns ratio is decreased, it is observed that there is a decrease in the Quality factor.  

The quality factors obtained for different turns ratios, are shown in the table below. 

 

Table 6. Quality factors for different turns ratios 

Turns ratio Quality factor 

1 1.777 

1.5 2.891 

2 3.954 

2.5 5 

 

 

As the Quality factor decreases, the performance of the system decreases. Good Quality 

factors can increase the system performance by allowing improvement in the power transfer 

distance. However, for near field WPT methods, usually Quality factors are selected below 10. In 
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[37], it is stated that the quality factor is selected low because for high values of quality factors, 

the transferred power attenuates. Based on the industry standards, this system is designed at the 

Quality factor of 5.  

Fig 10 shows the variation of the Quality factor with respect to the turns ratios. As shown 

in Fig 10, for turns ratio less than 2.5, the Quality factor of the system decreased, which is not 

desirable, so the turns ratio of this system is maintained at 2.5 

 

 

Fig 10: Variation of Quality factor with turns ratio 
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Variation of Inductance and Capacitance: 

The change in the values of L and C are examined with the change in turns ratio. Table 7 and table 

8 show the L and C values respectively, for different turns ratios. 

 

Table 7. Inductance for different turns ratios 

Turns ratio Inductance 

1 2.146e-05 H 

1.5 2.9678e-05 H 

2 3.8577e-05 H 

2.5 4.76669e-05 H 

 

 

Table 8. Capacitance for different turns ratios 

Turns ratio Capacitance 

1 6.2167e-07 F 

1.5 3.822e-07 F 

2 2.7944e-07 F 

2.5 2.2106e-07 F 
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Fig 11 and Fig 12 show the variation of Inductance and Capacitance for different values of 

turns ratios respectively. 

 

 

Fig 11: Variation of Inductance with turns ratio 
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Fig 12: Variation of Capacitance with turns ratio 

 

From Fig 11 and Fig 12 it is evident that even though there is a decrease in the inductance 

value with a decrease in the turns ratio, there is a considerable increase in the capacitance value. 

This increment can avoid the scope of decreasing the cost and weight of the system.  

Variation of voltage across Inductor and Capacitor 

The values of the voltages across the Inductor and Capacitor with respect to different turns 

ratios are shown in table 9 and table 10 respectively.  
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Table 9. Voltage across Inductor for different turns ratio 

Turns Ratio Voltage across the Inductor 

1 244.686 V (rms) 

1.5 367.0878 V (rms) 

2 489.419 V (rms) 

2.5 611.88 V (rms) 

 

 

Table 10. Voltage across capacitor for different turns ratio 

Turns Ratio Voltage across the Capacitor 

1 213.24 V (rms) 

1.5 346.92 V (rms) 

2 474.48 V (rms) 

2.5 600 V (rms) 

 

 

The variation of voltages across the inductor and capacitor can change the system capacity 

in transferring the power to the load. Fig 13 and Fig 14 show the variation of voltages across 

inductor and capacitor with turns ratios. 
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Fig 13. Variation of Inductor Voltage with turns ratio 

 

 

Fig 14: Variation of Capacitor Voltage with turns ratio 
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At resonance, as the voltage drop in the circuit will be only across the resistive component, 

the sum of the voltages across the reactive components will cancel out. From tables 9 and 10 in 

this model it is evident that the magnitudes of voltage drop across Inductor and Capacitor are 

almost equal, and the voltages across these reactive components in the circuit altogether will 

become zero. As the turns ratio is reduced, the voltages across these elements are also reduced 

almost proportionally.  

In this system, in order to transfer the energy from the primary side to the secondary side, 

the transformer takes the input from the resonant inductor, as it is connected across it, making the 

voltage across the inductor and primary windings equal. If the voltage across the inductor is 

decreased, for fixed output voltage, both the Quality factor of the circuit and the voltage across the 

primary windings are decreasing. With this, the ability of the system to transfer sufficient energy 

onto the secondary side decreases. This decrease in voltage also limits the range of distance 

between the primary and secondary coils to transfer the energy, which leads to poor system 

performance.  

Variation of Current through Inductor 

In this model, it is observed that as the turns ratio decreased, the value of current through 

the inductor decreased. Table 11 shows different magnitudes of current through the inductor for 

different turns ratios. 

 

 

 



48 
 

 

 

Table 11. Currents through the Inductor for different turns ratio 

Turns ratio Current through Inductor 

1 36.294 A (rms) 

1.5 39.3718 A (rms) 

2 40.383 A (rms) 

2.5 40.86 A (rms) 

 

 

Fig 15 shows the variation of voltages across Inductor and capacitor with turns ratios. 

 

 

Fig 15: Variation of Inductor Current with turns ratio 
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In Fig 15 we can see that as the turns ratio is decreased, the current through the inductor 

decreased. In this system model, the total input current through the circuit is divided between the 

inductor and the primary windings of the transformer. However, with the increase in the turns 

ratio, most of the current is flowing through the inductor. Compared to the current through the 

inductor, very little current flows through the primary windings. The total input current of the 

circuit will be the same irrespective of the turns ratio, so the decrease in the current through the 

inductor leads to an increase in the flow of the remaining current through the primary windings of 

the transformer.  

From Fig 15, it is observed that there is considerable decrease in the current through 

inductor for every 0.5 decrease in the turns ratio. When the remaining current that flows through 

the primary winding of the transformer increases, the losses in the system increase. In a practical 

transformer, there are two types of losses, the core and the copper losses. The copper losses occur 

due to the power wasted in the form of  𝐼𝐼2𝑅𝑅 loss due to the resistances of the transformer windings. 

The copper losses of these windings is given by, 

𝑃𝑃𝑑𝑑𝑐𝑐 =  𝐼𝐼2𝑅𝑅 

From the above equation, it is evident that the copper losses are directly proportional to the 

square of current flowing through the windings, so the decrease in turns ratio might lead to an 

increase in the current flow through the transformer windings, leading to the increase in copper 

losses. In the case of the capacitor, as the current through the capacitor is equal to the input current, 

there will not be any change in capacitor current with the change in turns ratio.  

The analysis done on all the system parameters with respect to the change in turns ratio 

show that at turns ratio = 2.5, the system performance is better compared to the other turns ratios.  
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3.6 Simulation Results for 5KW system 

Fig 16 shows the simulation implementation of the main circuit design. The simulation is 

implemented in the MATLAB/SIMULINK platform. As shown in the simulation model, the gate 

signals for the inverter are given using a PWM generator. The output of the inverter feeds the 

resonant circuit, and the energy transfer from primary side to the secondary side takes place 

through the transformer, whose primary windings are connected across the resonant inductor. The 

calculations performed in the previous sections are implemented to the circuit in the simulation, 

and the outputs obtained are verified with the theoretical calculations. 

 

 

Fig 16: Simulation model of the 5KW main circuit  

 

 

Fig 17 shows the whole image of the simulation system implementation of 5KW circuit. 
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Fig 17: Simulation system of 5KW circuit 

 

The output waveforms obtained in the simulation model are shown below in the following 

figures. 

 

Output of inverter 

 

Fig 18: Full bridge Inverter Simulation result of 5KW circuit 



52 
 

 

 

From Fig 18, it is evident that the 120V DC input voltage is changed to 120V AC voltage by the 

full bridge inverter.  

 

Output of voltage across capacitor 

Fig 19: Simulation result of voltage across Capacitor for 5KW circuit 

 

Output of Voltage across Inductor 

 
Fig 20: Simulation result of voltage across inductor for 5KW circuit 
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Input current 

 
 Fig 21: Simulation result of Input Current for 5KW circuit 

 

 

 

Current through Inductor 

 
Fig 22: Simulation result of Inductor Current for 5KW circuit  
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Output Voltage across secondary winding 

 
Fig 23: Simulation result of output Voltage across secondary winding for 5KW circuit 

 

 

In the simulation results, it is observed that, the values from simulation are close enough 

to verify the theoretical calculations. Table 12 shows the comparison of the calculated values and 

the values obtained from the simulation. 
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Table 12: Comparison of theoretically calculated values and Simulation results 

Parameter Theoretically Calculated 

Value 

Value obtained from the 

simulation 

Voltage across Inductor 611.88 V (rms) 

865.3323 V (peak) 

867.5 V (peak) 

Voltage across Capacitor 600 V (rms) 

848.528 V (peak) 

770.5 V (peak) 

Input Current 41.669 A (rms) 

58.928 A (peak) 

52.25 A (peak) 

Current through Inductor 40.86 A (rms) 

57.78 A (peak) 

49.95 A (peak) 

Output Voltage on the 

secondary side 

244.75 V (rms) 

346.13 V (peak) 

327 V (peak) 

 

 

           The same turns ratio of 2.5 is considered for this simulation model to verify the analysis 

done in this chapter previously. From the above table, it is evident that the calculated values are 

close to the simulation results for all the system parameters.  Hence, from the simulation results, 

it is proved that the system design is verified by the simulation for 2.5 turns ratio. The hardware 

implementation to verify the calculated results is performed, which will be discussed in the 

following chapter.  
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CHAPTER 4 

HARDWARE EXPERIMENTAL RESULTS 

 

4.1 Hardware Test bed setup 

For any system, hardware implementation is important to bring it into practicality. The 

validation of the obtained theoretical results is done by the hardware implementation. The design 

of the control circuit and the driver circuit used in the hardware are shown in the appendix. The 

control part, driver part and the inverter part are built and tested individually step by step before 

integrating all of them into a single whole system. In every stage, the parameters of the system are 

tested to make sure they are working according to the desired output. The hardware setup of the 

experiment is shown in Fig 24. 

 

 

Fig 24: Hardware circuit 
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The hardware testing is done for the main circuit model with a low power rating. Before 

implementing the hardware, a simulation is done for a low power rated circuit. The specifications 

for low power test bed simulation are shown in table 13 below. 

 

Table 13: Specifications for the hardware test bed 

Parameter Value 

Input Voltage 12 V 

Power Rating 6.25 W 

Operating Frequency 20kHz 

Quality Factor 5 

Output voltage 24.475 V 

Turns ratio 2.5 

 

 

The controller and driver used for the hardware are UC-3875 Phase Shift Resonant 

Controller and IR2125 current limiting single channel driver respectively. UC 3875 consists of an 

oscillator which can operate at high frequencies and in practical applications; frequencies up to 

1MHz are possible. The advantages of this controller include its protective features. It will 

maintain all of its outputs in active low state until a supply above 10.75 V is given.  

It can also provide over current protection by latching the outputs to OFF states within 

70nsec of occurrence of a fault. In this thesis, a 12 V of DC supply is given in order to energize 
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this controller. The controller has four outputs ABCD, out of which A, C will be in one phase and 

the B, D will be in a different phase. These signals from the controller are fed to the IR2125 driver 

circuits. There are four driver circuits in which each of the drivers sends the gate control signals 

for one of the four switches in the inverter.  The IR2125 is a high speed MOSFET and IGBT driver, 

which has inbuilt over current limiting protection circuit. It is advantageous to use a driver circuit 

to protect the hardware involved in the system.  

Using the specifications in table 13, the theoretical values for the test bed are calculated. 

The same equations used for calculating the system parameters in 5KW model are used for the low 

power circuit calculations. All the calculated values obtained for the hardware set up are shown in 

table 14.  

 

Table 14: Calculated values for the hardware test bed 

Parameter Value 

Voltage across the Capacitor 60 V (rms), 84.85 V (Peak) 

Voltage across the Inductor 61.188 V (rms), 86.533 V (peak) 

Value of Inductance 0.95 mH 

Value of Capacitance 0.069 µF 

Total Input Current 0.5226 A (rms) , 0.739 (peak) 

Current through the Inductor 0.512 A (rms) , 0.724 A (peak) 

Current through the Capacitor 0.5226 A (rms) , 0.739 (peak) 
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4.2 Simulation test results for hardware specifications 

Fig 25 shows the whole image of the simulation system implementation of low power circuit. 

 

 

Fig 25: Simulation system for low power circuit 

 

The simulation output waveforms for the implemented hardware model are shown below 

in the following figures. 
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Output of inverter 

 

Fig 26:  Inverter simulation result of low power circuit  

 

 

Capacitor Voltage 

 

Fig 27: Simulation result of voltage across Capacitor for low power circuit 
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Inductor Voltage 

 

Fig 28: Simulation result of voltage across Inductor for low power circuit 

 

 

Input Current 

 

Fig 29: Simulation result of Input Current for low power circuit 
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Inductor Current 

 

Fig 30: Simulation result of Inductor Current for low power circuit 

 

 

Output Voltage across secondary Winding 

 

Fig 31: Simulation result of output voltage across secondary winding for low power circuit 
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The simulation results are observed to be close to the theoretical calculations. Table 15 

shows the comparison of the theoretical calculations and the simulation results for the low power 

test bed specifications.  

 

Table 15. Comparison of calculated values and simulation results for low power test bed 

 

Parameter Theoretically Calculated 

Value 

Value obtained from the 

simulation 

Voltage across Inductor 61.188 V (rms) 

86.53 V (peak) 

87.5 V (peak) 

Voltage across Capacitor 60 V (rms) 

84.85 V (peak) 

77.1 V (peak) 

Input Current 0.5226 A (rms) 

0.739 A (peak) 

0.704 A (peak) 

Current through Inductor 0.512 A (rms) 

0.724 A (peak) 

0.643 A (peak) 

Output Voltage on the 

secondary side 

24.475 V (rms) 

34.613 V (peak) 

34.44 V (peak) 

 

 

From the above results we can conclude that the theoretical calculations are verified by the 

simulation results for the low power test bed.  
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Further, the experiment is performed for the main circuit with a 6.5 W power rating. The 

control circuit and the driver circuit are given 12 volts supply to energize them. The main circuit 

is supplied with 12V, and the outputs are verified with the theoretical calculations. In the 

theoretical calculations, the peak voltages across the resonant capacitor and the resonant inductor 

for the hardware circuit are obtained as 84.45 V and 86.53 V respectively. Fig 30 and Fig 31 show 

the hardware experiment output waveforms for the voltage across the resonant inductor and 

voltage across the resonant capacitor respectively.  

 

 

Fig 32: Hardware output for voltage across Capacitor without transmission core 

 

 

Fig 33: Hardware output for voltage across inductor without transmission core 
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Through the hardware, the peak voltages across the capacitor and inductor are obtained as 

68 V and 84 V respectively, which are close to the theoretical values. This proves that the resonant 

capacitor and the resonant inductor in the hardware are validating the outputs obtained from the 

theoretical calculations. The test for the hardware is performed for turns ratios of 2.5 and 1. For 

both cases, no load test, 10% load test, 30% load test and 50% load test are performed. The distance 

between the transmitter and receiver is varied from 0cm to 8cm and the variation of the output 

voltage is noted. The results for different load tests and the output voltage variations are shown in 

the following section. The output voltage values for different distances are listed in the tables. 

Graphs are plotted between the output voltage and the distance between the transmitter and 

receiver to examine the variation of the output voltage with respect to the change in distance 

between the transmitter and receiver. 
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Case 1: No load test for turns ratio = 1: 

Table 16: Output voltages for 1 turns ratio at no load 

No load test, turns ratio = 1 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V)(peak) 

0 
 

38  

1 
 

6  

2 
 

3.5 

3 
 

1.75  

4 
 

1  

5 
 

0.5  

6 
 

0.4  

7 
 

0.3  

8 
 

0.2  

 

 

Fig 34: Graph across output voltage and distance for turns ratio = 1, at no load 
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Case 2: 10% load test for turns ratio = 1: 

Table 17: Output voltages for 1 turns ratio at 10% load 

10% load test, turns ratio = 1 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V)(peak) 

0 
 

45 

1 
 

 6.5 

2 
 

3.75 

3 
 

 2 

4 
 

 1 

5 
 

 0.6 

6 
 

 0.4 

7 
 

 0.3 

8 
 

 0.2 

 

 

Fig 35: Graph across output voltage and distance for turns ratio = 1, at 10% load 
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Case 3: 30% load test for turns ratio = 1: 

Table 18: Output voltages for 1 turns ratio at 30% load   

30% load test, turns ratio = 1 
 
Distance between transmitter and receiver in 

cm 
 

Output Voltage (V)(peak) 

0 
 

44 

1 
 

6.5 

2 
 

3.5 

3 
 

 1.5 

4 
 

 1 

5 
 

 0.6 

6 
 

 0.4 

7 
 

 0.25 

8 
 

 0.2 

 

 

Fig 36: Graph across output voltage and distance for turns ratio = 1, at 30% load 
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Case 4: 50% load test for turns ratio = 1: 

Table 19: Output voltages for 1 turns ratio at 50% load 

50% load test, turns ratio = 1 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V)(peak) 

0 
 

38 

1 
 

6 

2 
 

3 

3 
 

 1.5 

4 
 

 1 

5 
 

 0.6 

6 
 

 0.4 

7 
 

 0.2 

8 
 

 0.15 

 

 

Fig 37: Graph across output voltage and distance for turns ratio = 1, at 50% load 
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Case 5: no load test for turns ratio = 2.5: 

Table 20: Output voltages for 2.5 turns ratio at no load   

No load test, turns ratio = 2.5 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V)(peak) 

0 
 

12 

1 
 

 2.5 

2 
 

1.5 

3 
 

 0.7 

4 
 

 0.35 

5 
 

 0.2 

6 
 

 0.12 

7 
 

 0.1 

8 
 

 0.08 

 

 

Fig 38: Graph across output voltage and distance for turns ratio = 2.5, at no load 
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Case 6: 10% load test for turns ratio = 2.5: 

Table 21: Output voltages for 2.5 turns ratio at 10% load  

10% load test, turns ratio = 2.5 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V)(peak) 

0 
 

15 

1 
 

3 

2 
 

1.75 

3 
 

 0.7 

4 
 

 0.4 

5 
 

 0.2 

6 
 

 0.15 

7 
 

 0.1 

8 
 

 0.07 

 

 

Fig 39: Graph across output voltage and distance for turns ratio = 2.5, at 10% load 
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Case 7: 30% load test for turns ratio = 2.5: 

Table 22: Output voltages for 2.5 turns ratio at 30% load  

30% load test, turns ratio = 2.5 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V) 

0 
 

15 

1 
 

3 

2 
 

1.5 

3 
 

 0.75 

4 
 

 0.4 

5 
 

 0.25 

6 
 

 0.15 

7 
 

 0.1 

8 
 

 0.08 

 

 

Fig 40: Graph across output voltage and distance for turns ratio = 2.5, at 30% load 
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Case 7: 50% load test for turns ratio = 2.5: 

Table 23: Output voltages for 2.5 turns ratio at 50% load 

50% load test turns ratio = 2.5 
 

Distance between transmitter and receiver in 
cm 

 

Output Voltage (V) 

0 
 

13 

1 
 

2.5 

2 
 

1.25 

3 
 

 0.6 

4 
 

 0.4 

5 
 

 0.25 

6 
 

 0.15 

7 
 

 0.1 

8 
 

 0.075 

 

 

Fig 41: Graph across output voltage and distance for turns ratio = 2.5, at 50% load 
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From the above figures it can be seen that the system worked well at the different load 

conditions. Although the output voltage on the secondary side decreased with an increase in the 

coupling distance, there was considerable output induced across the secondary terminals at all the 

load conditions. When the primary and secondary are placed close to each other, and the load is 

increased gradually, there was no significant drastic drop observed in the output voltage on the 

secondary side. The voltage obtained across the primary terminals or across the resonant inductor 

is observed to be very close to the theoretical calculations and simulation results of the low power 

circuit. Hence, the hardware results validated the results obtained from the theory and simulations.  

4.3 Hard ware limitation: 

For all the tests performed at different load conditions, even though the system 

performance was satisfactory, the voltages on the secondary side are observed to be reduced to 

nearly half of the desired value obtained in the theoretical calculations. Also, a drastic drop in the 

output voltage was observed in all the cases when the distance between the coils is varied from 

0cm to 3cm. Although the voltages obtained on the secondary side are not very close to the desired 

values, the output of this system can be increased further if the hardware test bed is implemented 

on the PCB (printed circuit board). PCB implementation can help produce results with fewer losses 

and less damage caused due to wiring issues. This can also help in reducing the troubleshooting 

time by further improving system performance.
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 A 5KW Inductive power transfer system for electric vehicle applications in MVDC networks 

is designed and analyzed. According to the specifications of the system, the design is observed to 

show good performance at a turns ratio of 2.5.  When the turns ratio is decreased beyond 2.5, the 

Quality factor of the system fell below the desired value. Also, the voltage across the resonant 

Inductor and Capacitor declined. If the Quality factor of the system and the voltage on the 

transmitting side decreases, the performance of the system drops as the transmitter’s ability to 

transfer energy onto the secondary side also drops. The coupling distance also cannot be varied to 

a long range with a decrease in performance. Hence, it can be concluded that this proposed system, 

when designed with a turns ratio of 2.5, produced the desired results validated by simulation 

results, so this system is useful for practical applications.  

6.2 Future Work 

Since hardware tests were done on a low-power test bed, future work should focus on 

implementing the high-power hardware testbed and testing its performance.  
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APPENDIX 

UC-3875 (Controller) 

  

Fig 42: Controller Circuit 
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IR2125 (Driver Circuit) 

  

 

Fig 43: Driver Circuit 
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