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Investigating the Numerical Stability of Using an Impedance
Boundary Condition to Model Broadband Noise Scattering

With Acoustic Liners

Michelle E. Rodio∗

Information Technology Infrastructure Branch, NASA Langley Research Center, Hampton, VA 23681, USA

Fang Q. Hu†

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA

Douglas M. Nark‡

Structural Acoustics Branch, NASA Langley Research Center, Hampton, VA 23681, USA

Reducing aircraft noise is a major objective in the field of computational aeroacoustics.
When designing next generation quiet aircraft, it is important to be able to accurately and effi-
ciently predict the acoustic scattering by an aircraft body from a given noise source. Acoustic
liners are an effective tool for achieving aircraft noise reduction and are characterized by a
frequency-dependent impedance value. Converted into the time-domain using Fourier trans-
forms, an impedance boundary condition can be used to simulate the acoustic wave scattering
by geometric bodies treated with acoustic liners. A Broadband Impedance Model will be dis-
cussed in which the liner impedance is specified along a wide range of frequencies. The liner
impedance boundary condition will be derived and coupled with a time-domain boundary inte-
gral equation to model acoustic scattering by a flat plate consisting of both un-lined and lined
surfaces. The scattering solution will be obtained iteratively using both spatial and temporal
basis functions and the stability will be demonstrated through eigenvalue analysis. Stability
will be assessed for its dependence on time step, spatial discretization, as well as temporal basis
function order. Both second- and third-order backward difference Lagrange temporal basis
functions are considered.
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SPACING

Abbreviations

BD2 Second-Order Backward Difference Scheme
BD3 Third-Order Backward Difference Scheme
BEM Boundary Element Method
BIE Boundary Integral Equation
IBC Impedance Boundary Condition
MOT March-On-in-Time
TD-BIE Time-Domain Boundary Integral Equation
SPACING

Greek Letters

α Variable Used in the Green’s Function Solution, along with: β
α` Parameter of Broadband Impedance Model, along with: β` , γ`
∆t Numerical Time Step
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δ Tolerance of Matrix Power Iteration Method
δi j Kronecker Delta Function
λ Eigenvalue
ρ0 Average Fluid Density
φ j Surface Element Basis Function at Node j
ψk Temporal Basis Functions at Time Step Increment k
ω Frequency Variable
SPACING

Roman Letters

A Matrix Used for the March-On-in-Time Scheme
A` Parameter of Broadband Impedance Model, along with: B` , C` , h0, J1, J2
AINT Simplification Used for Burton-Miller Analysis, along with: BINT, CINT
a, b Stability Condition Parameters Used for Burton-Miller
B,C Matrices Used for Burton-Miller Reformulation
c Speed of Sound
D Matrix Used for Impedance Boundary Condition, along with: E, G, J,K, L,M,N, Q
Ej Element on Scattering Body
e Eigenvector
F(ω) Fourier Transform
G0 Variable Used in the Green’s Function Solution, along with: R
G̃ Free-Space Adjoint Green’s Function
I Identity Matrix
i Imaginary Unit where i2 = −1
J, K Variable Used to Denote Finite Number of Time Steps
M Mach Number where M = U/c
Mn Mach Number of Mean Flow Normal to the Scatterer
MT Tangential Component of Mach Number M
Ne, Nt Total Number of Surface Elements, Time Steps
Nx , Ny , Nz Surface Discretization Along the x-, y-, and z-Directions
n Unit Normal Vector Pointing Inward to the Scattering Body
n, ñ Modified Normal Derivative, Combined Normal Derivative
p (r, ω) Acoustic Pressure in the Frequency-Domain
p (r, t) Acoustic Pressure in the Time-Domain
p(0,1,2)j Solution for the Discretized System of Partial Differential Equations
q (r, t) Known Acoustic Source in the Time-Domain
r Arbitrary Point in Three-Dimensional Space where r = r(x, y, z)
r s , r ′s Arbitrary Point, Observer Point on the Scattering Body Surface
rj Collocation Point
S, S0, Sl Acoustic Scattering Surface for Rigid (Un-lined), Soft (Lined) Bodies where S = S0 ∪ Sl
t Time Variable
tk Time at Time Step Increment k
t ′R Retarded Time
U Mean Flow Velocity Vector
uk
j , v

k
j Numerical Solution of p, ∂p/∂n on the j-th Node at Time tk

un, vn Rigid, Soft Body Solution for the Discretized System of Equations
V Volume Exterior of the Scattering Surface
v Acoustic Velocity Vector
v(rs, ω) Volumetric Flow of the Acoustic Wave where v(rs, ω) = v · n
wn Solution for the Coupled March-On-in-Time Scheme
Z(ω) Surface Impedance in Frequency-Domain
0 Zero Matrix
SPACING
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I. Introduction
Reducing aircraft noise is a major objective in the field of computational aeroacoustics. When designing next

generation quiet and environmentally friendly aircraft, it is important to be able to accurately and efficiently predict the
acoustic scattering by an aircraft body from a given noise source [1, 2]. Acoustic scattering problems can be modeled
by reformulating the convective wave equation as a boundary integral equation (BIE) and solved iteratively using
boundary element methods (BEMs) [3–11]. BEMs are beneficial in that they effectively handle singular and infinite
fields, ultimately saving computing memory and maintaining high computational efficiency [1, 3, 12, 13].

Methods for deriving an integral equation for the prediction of acoustic scattering have been studied extensively
in both the frequency- and time-domains [8, 14–24]. Frequency-domain solvers are the most used and researched
within literature; they have a reduced computational cost, allow for modeling time-harmonic fields at a single frequency,
eliminate the growth of Kelvin-Helmholtz instabilities caused by velocity shear of two interacting fluids, and allow for
an impedance boundary condition (IBC) to be imposed more naturally. Despite these benefits, there are several distinct
advantages to using a time-domain solver [1, 25]. Time-domain solvers allow for the simulation and study of broadband
sources and time-dependent transient signals, whereas studying broadband sources in the frequency-domain carry a high
computational cost. Time-domain solvers also allow for the scattering solution at all frequencies to be obtained within
a single computation and avoid needing to invert a large dense linear system as is required in the frequency-domain.
Moreover, a time-domain solution is more naturally coupled with a nonlinear computational fluid dynamics simulation
of noise sources.

Time-domain BIEs (TD-BIEs) have an intrinsic numerical instability [3, 4, 26–33] due to the existence of non-unique
solutions in the interior domain at resonant modes near the frequency of interest. These non-unique solutions yield
an ill-conditioned matrix in the time-domain. Appearing over long run times as exponentially growing oscillations,
the numerical instability can be eliminated using a Burton-Miller-type reformulation of the TD-BIE. This method,
first introduced in 1971 [34], derives a supplementary integral equation resulting in a unique solution for the exterior
problem. The Burton-Miller approach has been studied extensively for eliminating numerical instability [1, 3, 4, 35–39].
This method is computationally expensive to implement and in recent years, numerical techniques for modeling radiative
scattering using Burton-Miller-type TD-BIEs have been under development [1, 36–38]. It has been shown not only that
stability can be achieved but also that both cost and time can be reduced using fast algorithms and high performance
computing.

The objective of this study is to investigate the feasibility and stability for modeling acoustic wave scattering using a
Burton-Miller-type TD-BIE with an IBC applied on the scattering surface. Acoustic scattering problems are considered
for geometric bodies consisting of both rigid and soft surfaces, the solutions of which are estimated using zeroth-order
spatial and either second- or third-order Lagrange temporal basis functions and solved iteratively with BEMs using a
March-On-in-Time (MOT) scheme. Herein, soft surfaces are defined to be surfaces in which an acoustic liner is applied.
Typically composed of an array of Helmholtz resonators arranged in a honeycomb structure for support and covered
with a perforate face-sheet, acoustic liners are used for dissipating the incident acoustic wave and are very effective at
absorbing sound [25, 40–45]. Liners can used for suppressing jet engine noise by inlet and exhaust ducts [46], e.g., and
work by “inducing vortex shedding at the mouths of resonators” [47].

Impedance, herein denoted by Z(ω), is a complex-valued quantity such that Re(Z) is given to be the acoustic
resistance and Im(Z) is given to be the acoustic reactance [25, 42, 43]. Transformed into the time-domain using Fourier
transforms, an IBC may be coupled with a TD-BIE to model acoustic wave scattering by soft surfaces. Acoustic liners
are characterized by a frequency-dependent impedance value and, when converted into the time-domain, yield a suitable
IBC for acoustically treated surfaces.

Since simulation of TD-BIEs without Burton-Miller-type reformulation is prone to numerical instabilities, it is
necessary to study the integral equation reformulation to ensure stability of the system once coupled with an IBC. In
literature, stability analysis has proven convolution quadrature methods second-order convergent for basis functions
constant in space and linear in time [48], but no theoretical proof has yet been provided for other methods. Eigenvalue
analysis is the current standard for studying the stability of TD-BIEs [29, 49, 50]. Though eigenvalue analysis alone is
not sufficient for proving stability, it is necessary that the numerical scheme has maximum eigenvalues no greater than
unity.

In previous work [2, 51], the authors studied the numerical stability of coupling an IBC with a Burton-Miller-type
TD-BIE to model radiative scattering by an acoustically treated flat plate. Two numerical models were considered for
representing the acoustic liner: the Extended Helmholtz Resonator Model [42] and the Three-Parameter Impedance
Model [47]. In each model, the acoustic liner impedance is specified at a single frequency, educed from experimental
measurements. In the studies, eigenvalue analysis was presented and the authors demonstrated that numerical stability
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Fig. 1 Schematic diagram illustrating the relationship between the mean flow, the surface of the scattering
body, and the surface of the acoustic source.

can be achieved for each model.
Though the Helmholtz and Three-Parameter models were each shown to be stable [2, 51], they are not ideal models

for use in the time-domain considering they are strictly limited a single frequency. One of the key advantages of using
time-domain solvers over frequency-domain solvers is the ability to study and simulate broadband sources. In [41], Li,
Li, and Tam developed a Broadband Impedance Model to represent liner impedance at a wide range of frequencies. The
model was derived from the multipole impedance model in [44] and was further studied in the works of Dragna et.
al. [52] and Troian et. al. [53]. The Broadband model is a physical model satisfying the requirements of causality,
reality, and passivity [41]. The model is derived using recursive combination methods combined with first-order partial
differential equations and is effective when used with high-order numerical schemes. Following previous work [2, 51],
the authors have now studied the Broadband Impedance Model allowing for the investigation of multiple frequencies
simultaneously. Stability results will be discussed in subsequent sections.

The outline of this paper is as follows. In Section II, a derivation is provided for the Burton-Miller-type TD-BIE. All
derivations follow the cited references as they evolved over time, for completeness. In Section III, the time-domain
broadband IBC is derived and discussed. The methodology for conducting the eigenvalue study is presented with all
stability results given in Section IV. Concluding remarks are provided in Section V.

II. Burton-Miller-Type Time-Domain Boundary Integral Equation
Acoustic waves are assumed to be disturbances of small amplitudes. With a uniform mean flow, acoustic disturbances

are governed by the linear convective wave equation [1, 19–22]. Consider the linear convective wave equation with
mean flow U: (

∂

∂t
+ U · ∇

)2
p (r, t) − c2∇2p (r, t) = q (r, t) (1)

and homogeneous initial conditions:

p(r, 0) =
∂p
∂t
(r, 0) = 0, t = 0 (2)

where r is an arbitrary point in three-dimensional space, p(r, t) is the acoustic pressure, q(r, t) is the known acoustic
source, and c is the speed of sound. The solution of (1) with initial conditions (2) is dependent on the applied boundary
conditions on the surface or collection of surfaces, S, for the scattering problem as illustrated in Figure 1.

As demonstrated by the authors in [1, 37, 38, 51, 54], the convective wave equation (1) and initial conditions (2),
along with suitable boundary conditions, can be reformulated into a TD-BIE first by introducing a free-space adjoint
Green’s function G̃(r, t; r ′, t ′) and then by taking the limit as an arbitrary point r ′ approaches a boundary point r ′s . The
Green’s function is defined as:

G̃(r, t; r ′, t ′) =
G0

4πc2 δ

(
t ′ − t + β · (r ′ − r) −

R
cα2

)
(3)

where
R(r, r ′) =

√��M · (r − r ′)
��2 + α2

��r − r ′
��2, G0 =

1
R(r, r ′)

(4)
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in which
M =

U

c
, α =

√
1 − M2, and β =

M

1 − M2 (5)

for Mach number M . Assuming that r ′s is a smooth boundary collocation point, the resulting TD-BIE is given by [51]:

Q(r ′s, t
′) = 2πp(r ′s, t

′) −

∫
S

[
G0

∂p
∂ñ
(r s, t ′R) −

∂G0
∂n

(
p(r s, t ′R) +

R
cα2

∂p
∂t
(r s, t ′R)

)]
dr s (6)

where
Q(r ′s, t

′) =
1
c2

∫
V

G0q(r s, t ′R)dr s

such that V denotes the region of acoustic surfaces and S denotes the scattering surface. Further, t ′R denotes the retarded
time at an arbitrary point and, along with G0, R, and α, is defined by parameters of the Green’s function (3). Moreover,
∂/∂n = ∂/∂n − Mn(M · ∇) = (n − MnM) · ∇ denotes a modified normal derivative and ∂/∂ñ = ∂/∂n − (Mn/c) ∂/∂t
denotes a combined normal derivative assuming an inward normal vector n on the scattering body. Here, Mn = M · n.

Equation (6) is the Kirchhoff integral representation of the acoustic field for a source in a general mean flow. The
solution of (6), p(r ′s, t

′), is related to the direct contribution of the source noise q as well as the surface contribution
involving the retarded time values of p and their normal derivatives. When the pressure p and its derivatives are
calculated on the surface S, (6) predicts the pressure at an arbitrary observer point r ′s exterior to or on the boundary
of the surface S. In this work, it is assumed that the scattering surface is decomposed into rigid and soft surfaces, S0
and Sl , respectively, such that S = S0 ∪ Sl . On rigid surfaces, a Zero Energy Flux boundary condition [1] is imposed:
∂p/∂ñ = 0. On soft surfaces, an IBC is imposed, herein represented by the Broadband Impedance Model and further
discussed in Section III.

TD-BIEs are known to have an intrinsic numerical instability due to resonant frequencies resulting from non-trivial
solutions in the interior domain. Using a Burton-Miller type reformulation of (6), resonant frequencies can be eliminated
and stability achieved. As demonstrated in [1, 37, 38, 51, 54], the reformulation results by taking the derivative of (6) in
the form of:

a
∂

∂t ′
+ bc

∂

∂ñ′

where a and b are arbitrary parameters that must satisfy the stability condition: a/b < 0. Applying the Zero Energy
Flux boundary condition, the resulting Burton-Miller-type TD-BIE is given by:

4πaCs
∂p
∂t ′
(r ′s, t

′) + 4πbcCs
∂p
∂ñ′
(r ′s, t

′) + 4πbc
∂Cs

∂ñ′
p(r ′s, t

′)

= a
∂Q
∂t ′
(r ′s, t

′) + bc
∂Q
∂ñ′
(r ′s, t

′) + a (AINT) + bc (BINT) +
b
α2 (CINT) (7)

where

AINT =

∫
S

G0

(
1 − M2

n

) ∂

∂t

(
∂p
∂n

(
r s, t ′R

) )
dr s −

∫
S

∂G0
∂n

[
∂p
∂t

(
r s, t ′R

)
+

R
cα2

∂2p
∂t2

(
r s, t ′R

) ]
dr s

−

∫
S

MnG0

[
MT · ∇

∂p
∂t

(
r s, t ′R

)
+

1
c
∂2p
∂t2

(
r s, t ′R

) ]
dr s,

BINT =

∫
S

(
1 − M2

n

) [
∂G0
∂ñ′

∂p
∂n

(
r s, t ′R

)
+ G0

∂

∂ñ′

(
∂p
∂n

)] (
r s, t ′R

)
dr s

−

∫
S

∂2G0
∂n∂ñ′

[
p
(
r s, t ′R

)
+

R
cα2

∂p
∂t

(
r s, t ′R

) ]
dr s

−

∫
S

Mn
∂G0
∂ñ′

[
MT · ∇p

(
r s, t ′R

)
+

1
c
∂p
∂t

(
r s, t ′R

) ]
dr s,

5

D
ow

nl
oa

de
d 

by
 O

L
D

 D
O

M
IN

IO
N

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ly

 2
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

25
47

 



CINT = −

∫
S

∂G0
∂n

[ (
M · n′

) ∂p
∂t

(
r s, t ′R

)
+

R
cα2

(
M · n′ −

∂R
∂ñ′

)
∂2p
∂t2

(
r s, t ′R

) ]
dr s

−

∫
S

MnG0

(
M · n′ −

∂R
∂ñ′

) [
MT · ∇

∂p
∂t

(
r s, t ′R

)
+

1
c
∂2p
∂t2

(
r s, t ′R

) ]
dr s,

and where Cs = 0 when r ′s is on the interior of S, Cs = 1 when r ′s is on the exterior of S, and Cs = 1/2 when r ′s is a
smooth point on the boundary of S. In (7), Mn = M · n is the Mach number of mean flow normal to the body surface
such that n points inward to the body, n is the modified normal derivative, ñ is the combined normal derivative, and MT

is the tangential component of M . For the current study, the simple case of M = 0 is considered. Under this condition,
∂p/∂ñ is reduced to ∂p/∂n.

The stable Burton-Miller-type reformulation (7) of the time-domain boundary integral equation (6) is discretized
using collocation methods as detailed in [2, 36]. The surface S is divided into a set of Ne boundary elements
{Ej, j = 1, . . . , Ne} where the collocation point r j is located at the centroid of Ej . The time-domain is divided into Nt

uniform time steps where tk = k∆t. It is further assumed that the scattering surface S is comprised of both rigid and soft
surfaces, denoted herein by S0 and Sl , respectively, such that S = S0 ∪ Sl .

The solution to (7), p(r ′s, t
′), is obtained by approximating terms involving p(r s, t) and ∂p/∂n(r s, t) using surface

element basis functions φ j(r s) and temporal basis functions ψk(t) as follows:

p(r s, t) =
Nt∑
k=0

Ne∑
j=1

uk
j φ j(r s)ψk(t) (8)

and
∂p
∂n
(r s, t) =

Nt∑
k=0

Ne∑
j=1

vkj φ j(r s)ψk(t). (9)

In (8) and (9), uk
j and vkj denote the value of the solution of p(r s, t) and ∂p/∂n(r s, t), respectively, of the j-th node

at time tk . For soft body scattering, the Burton-Miller-type reformulation includes terms involving both p(r s, t) and
∂p/∂n(r s, t) which are approximated using (8) and (9), respectively. For strict rigid body scattering, on the other hand,
vkj ≡ 0 by default, i.e., ∂p/∂n(r s, t) = 0. The Burton-Miller-type reformulation is then reduced to terms involving
p(r s, t) only, the terms which are then approximated using (8).

Following [36], the spatial basis functions (10) are zeroth-order, i.e., constant over each element Ej , and the
integrations are computed by high-order Gauss quadrature on a 6 × 6 grid:

φ j(r s) =

{
1, r s on element Ej that contains node r j
0, other

}
. (10)

For the temporal basis functions
ψk(t) = Ψ

( t − tk
∆t

)
,

both second- and third-order backward difference Lagrange functions are considered as defined by (11) and (12),
respectively:

Ψ(τ) =


1 + 3

2τ +
1
2τ

2, −1 < τ ≤ 0
1 − τ2, 0 < τ ≤ 1
1 − 3

2τ +
1
2τ

2, 1 < τ ≤ 2
0, other


(11)

and

Ψ(τ) =



1 + 11
6 τ + τ

2 + 1
6τ

3, −1 < τ ≤ 0
1 + 1

2τ − τ
2 − 1

2τ
3, 0 < τ ≤ 1

1 − 1
2τ − τ

2 + 1
2τ

3, 1 < τ ≤ 2
1 − 11

6 τ + τ
2 − 1

6τ
3, 2 < τ ≤ 3

0, other


. (12)
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Herein, the second-order temporal functions (11) are denoted as “BD2” and the third-order functions (11) are denoted
as “BD3.” For BD2, the contribution from any node to the solution at collocation point r j and time step tn reduces to a
summation of three terms, i.e., the solution at tn is interpolated using time steps tn−2, tn−1, tn. For BD3, the solution at
collocation point r j and time step tn reduces to a summation of four terms.

By evaluating the discretized Burton-Miller-type reformulation at collocation points r j on elements Ej, j = 1, . . . , Ne

and at time step tn using basis functions (10), (11), and (12), (7) is cast into the following system of equations:

B0u
n + C0v

n = qn − B1u
n−1 − C1v

n−1 − B2u
n−2 − C2v

n−2 − ... − BJu
n−J − CJ v

n−J (13)

where uk and vk denote the vector that contains all unknowns
{
uk
j , j = 1, ..., Ne

}
and

{
vkj , j = 1, ..., Ne

}
, respectively, at

time level tk . Due to the limited temporal stencil width of (11) and (12), the B and C matrices are sparse. Additionally,
the index J denotes the maximum time history of the solution required for (13) and is dependent on the dimensions of
the scattering surface and the mean flow [54]. The non-zero entries for both B and C are given in [51].

Assuming rigid body scattering only, vk is equivalently zero thereby reducing (13) to:

B0u
n = qn − B1u

n−1 − B2u
n−2 − ... − BJu

n−J,

the solution of which is easily obtained through an iterative process. Assuming both rigid and soft body scattering, a
second system of equations is needed to couple with (13) for obtaining solutions of both uk and vk . As demonstrated by
the authors in [51] and [2], this system results from applying an IBC as discussed in Section III.

III. Broadband Impedance Boundary Condition and March-On-in-Time Scheme
Acoustic scattering of a sound field from a given noise source is predicted for objects in a stationary medium, i.e.,

assuming a model with no mean flow U . With no mean flow, the acoustic pressure in the frequency-domain p(rs, ω) is
defined [47, 55, 56] as:

p(rs, ω) = Z(ω)v(rs, ω) (14)
where v(rs, ω) = v · n is the volumetric flow of the acoustic wave, v is the acoustic velocity vector, n is the inward
normal vector on the scattering body, and Z(ω) is the surface impedance. In the frequency-domain, v is defined [7] as:

v(rs, ω) =
1

ρ0(iω)
∂p
∂n
(rs, ω) (15)

where ∂p/∂n(rs, ω) is the normal derivative of acoustic pressure, ρ0 is the average fluid density, and i is the imaginary
unit (i2 = −1). Given the definitions (14) and (15), the acoustic pressure is related to frequency-domain impedance by:

ρ0(iω)p(rs, ω) =
∂p
∂n
(rs, ω)Z(ω). (16)

In the Broadband Impedance Model [41, 52, 53], the frequency-domain surface impedance is defined to be:

Z(ω) = (−iω)h0 + R0 +

J1∑̀
=1

A`

γ` − iω
+

1
2

J2∑̀
=1

[
B` + iC`

α` + iβ` − iω
+

B` − iC`

α` − iβ` − iω

]
, (17)

where causality, passivity, and stability lead to h0, R0 > 0, γk > 0 for all ` = 1, . . . , J1, and αk > 0 for all ` = 1, . . . , J2.
The impedance Z(ω) is non-dimensionalized by ρ0c where ρ0 is the average fluid density and c is the speed of sound.
Rearranging (17) yields:

Z(ω) = (−iω)h0 + R0 +

J1∑̀
=1

A`

[
1

γ` − iω

]
+

J2∑̀
=1

B`

[
α` − iω

(α` − iω)2 + β2
`

]
+

J2∑̀
=1

C`

[
β`

(α` − iω)2 + β2
`

]
. (18)

Substituting (18) into (16) yields:

ρ0(iω)p(rs, ω) = (−iω)h0
∂p
∂n
(rs, ω) + R0

∂p
∂n
(rs, ω) +

J1∑̀
=1

A`

[
1

γ` − iω
∂p
∂n
(rs, ω)

]
(19)

+

J2∑̀
=1

B`

[
α` − iω

(α` − iω)2 + β2
`

∂p
∂n
(rs, ω)

]
+

J2∑̀
=1

C`

[
β`

(α` − iω)2 + β2
`

∂p
∂n
(rs, ω)

]
.
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To facilitate the conversion of (18) to the time-domain, the following frequency-domain terms are defined:

p(0)
`
(r s, ω) =

1
γ` − iω

∂p
∂n
(r s, ω) for all ` = 1, . . . , J1, (20)

p(1)
`
(r s, ω) =

α` − iω
(α` − iω)2 + β2

`

∂p
∂n
(rs, ω) for all ` = 1, . . . , J2, and (21)

p(2)
`
(r s, ω) =

β`

(α` − iω)2 + β2
`

∂p
∂n
(rs, ω) for all ` = 1, . . . , J2. (22)

Substituting (20), (21), and (22) into (19) yields:

ρ0(iω)p(rs, ω) = (−iω)h0
∂p
∂n
(rs, ω) + R0

∂p
∂n
(rs, ω) +

J1∑̀
=1

A`p(0)
`
(r s, ω) +

J2∑̀
=1

B`p(1)
`
(r s, ω) +

J2∑̀
=1

C`p(2)
`
(r s, ω). (23)

For time-domain analysis, (20) through (23) must be transformed from the frequency-domain to the time-domain
using Fourier transforms. Define the Fourier transform F(ω) as:

F(ω) =
1

2π

∫ ∞

−∞

f (t)eiωtdt. (24)

With this definition, the inverse Fourier transform of (−iω)nF(ω) is equal to dn f (t)/dtn. Taking the inverse Fourier
transform of (23) using (24) yields a time-domain broadband IBC for soft surfaces:

0 = ρ0
∂p
∂t
(rs, t) + h0

∂

∂t

(
∂p
∂n
(rs, t)

)
+ R0

∂p
∂n
(rs, t) +

J1∑̀
=1

A`p(0)
`
(r s, t) +

J2∑̀
=1

B`p(1)
`
(r s, t) +

J2∑̀
=1

C`p(2)
`
(r s, t). (25)

Moreover, taking the inverse Fourier transform of (20) using (24) yields the following time-domain partial-differential
equation given by (26). For all ` = 1, . . . , J1:

∂p
∂n
(rs, t) −

∂p(0)
`

∂t
(rs, t) − γ`p(0)

`
(rs, t) = 0. (26)

Then, adding (α` − iω) × p(1)
`

to β` × p(2)
`

using (21) and (22) and taking the inverse Fourier transform using (24) yields
a second time-domain partial-differential equation given by (27). For all ` = 1, . . . , J2 yields:

∂p
∂n
(rs, t) −

∂p(1)
`

∂t
(r s, t) − α`p(1)

`
(r s, t) − β`p(2)

`
(r s, t) = 0. (27)

Finally, substituting (22) into (21) and taking the inverse Fourier transform using (24) yields a third time-domain
partial-differential equation given by (27). For all ` = 1, . . . , J2 yields:

β`p(1)
`
(r s, t) −

∂p(2)
`

∂t
(r s, t) − α`p(2)

`
(r s, t) = 0. (28)

The time-domain broadband IBC (25) and subsequent partial differential equations (26) through (28) are discretized
by approximating terms involving p(r s, t) and ∂p/∂n(r s, t) using surface element basis functions φ j(r s) and temporal
basis functions ψk(t) defined by (10) through (12), and by approximating terms involving p(m)

`
(r s, t) by:

p(m)
`
(r s, t) =

Nt∑
k=0

Ne∑
j=1

(
p(m)
`

)k
j
φ j(r s)ψk(t),m = 0, 1, 2.

Evaluating at collocation points r i, i = 1, . . . , Ne and time step tn yields the following discretized broadband IBC and
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subsequent partial differential equations:

0 =
Nt∑
k=0

Ne∑
j=1

δi j

[
uk
j ρ0ψ

′
k(tn) + v

k
j

(
h0ψ

′
k(tn) + R0ψk(tn)

) ]
(29)

+

Nt∑
k=0

Ne∑
j=1

δi j

[
J1∑̀
=1

(
p(0)
`

)k
j

A`ψk(tn) +
J2∑̀
=1

(
p(1)
`

)k
j

B`ψk(tn) +
J2∑̀
=1

(
p(2)
`

)k
j

C`ψk(tn)

]
0 =

Nt∑
k=0

Ne∑
j=1

δi j

[
vkj ψk(tn) −

J1∑̀
=1

(
p(0)
`

)k
j

(
ψ ′k(tn) + γ`ψk(tn)

) ]
, (30)

0 =
Nt∑
k=0

Ne∑
j=1

δi j

[
vkj ψk(tn) −

J2∑̀
=1

(
p(1)
`

)k
j

(
ψ ′k(tn) + α`ψk(tn)

)
−

J2∑̀
=1

(
p(2)
`

)k
j
β`ψk(tn)

]
, and (31)

0 =
Nt∑
k=0

Ne∑
j=1

δi j

[
J2∑̀
=1

(
p(1)
`

)k
j
β`ψk(tn) −

J2∑̀
=1

(
p(2)
`

)k
j

(
ψ ′k(tn) + α`ψk(tn)

) ]
. (32)

The series solutions (29) through (32) are equivalent to the results of discretizing (25) through (28) by an implicit
backward difference scheme [57].

The following vectors are additionally defined:

P(0) = [p
(0)
1 p(0)2 · · · p

(0)
J1
]T , P(1) = [p

(1)
1 p(1)2 · · · p

(1)
J1
]T , and P(2) = [p

(2)
1 p(2)2 · · · p

(2)
J1
]T (33)

where p(0)j , p
(1,2)
j denote the vectors that contain auxiliary variables from all points where the IBC is applied. Using (33),

the discretizations (29) through (32) are then written as the following system of equations with a finite number of K
time steps:

D0u
n + E0v

n + F0P
n
(0) + G0P

n
(1) + H0P

n
(2) = 0 − D1u

n−1 − E1v
n−1 − F1P

n−1
(0) − G1P

n−1
(1) − H1P

n−1
(2) − · · · −

− DK u
n−K − EK v

n−K − FKP
n−K
(0) − GKP

n−K
(1) − HKP

n−K
(2)

(34)

J0v
n +K0P

n
(0) = 0 −J1v

n−1 −K1P
n−1
(0) − · · · −JK v

n−K −KKP
n−K
(0) (35)

L0v
n +M0P

n
(1) +N0P

n
(2) = 0 −L1v

n−1 −M1P
n−1
(1) −N1P

n−1
(2) − · · · −LK v

n−K −MKP
n−K
(1) −NKP

n−K
(2) (36)

P0P
n
(1) +Q0P

n
(2) = 0 −P1P

n−1
(1) −Q1P

n−1
(2) − · · · −PKP

n−K
(1) −QKP

n−K
(2) (37)

where uk and vk denote the vector that contains all unknowns
{
uk
j , j = 1, ..., Ne

}
and

{
vkj , j = 1, ..., Ne

}
, respectively,

at time level tk . For Ne total surface elements, the non-zero entries of (34) are given by:

Dk =
[
{Dk }i j

]
Ne×Ne

and {Dk }i j = δi j ρ0ψ
′
n−k(tn)

Ek =
[
{Ek }i j

]
Ne×Ne

and {Ek }i j = δi j
(
h0ψ

′
n−k(tn) + R0ψn−k(tn)

)
Fk =

[{
FA1
k

}
i j
· · ·

{
F

AJ1
k

}
i j

]
Ne×J1Ne

and
{
FA`

k

}
i j
= δi j A`ψn−k(tn)

Gk =
[{
GB1

k

}
i j
· · ·

{
G

BJ2
k

}
i j

]
Ne×J2Ne

and
{
GB`

k

}
i j
= δi jB`ψn−k(tn)

Hk =
[{
HC1

k

}
i j
· · ·

{
H

CJ2
k

}
i j

]
Ne×J2Ne

and
{
HC`

k

}
i j
= δi jC`ψn−k(tn)

where all matrices are diagonal.
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Similarly, the non-zero entries of (35), (36), and (37) are given by:

Jk =


{Jk }i j

0
...

0

J1Ne×Ne

and {Jk }i j = δi jψn−k(tn)

Kk =


{
Kγ1

k

}
i j

. . . {
KγJ1

k

}
i j

J1Ne×J1Ne

and
{
Kγ`

k

}
i j
= −δi j

(
ψ ′n−k(tn) + γ`ψn−k(tn)

)

Lk =


{Lk }i j

0
...

0

J2Ne×Ne

and {Lk }i j = δi jψn−k(tn)

Mk =


{
Mα1

k

}
i j

. . . {
MαJ2

k

}
i j

J2Ne×J2Ne

and
{
Mα`

k

}
i j
= −δi j

(
ψ ′n−k(tn) + α`ψn−k(tn)

)

Nk =



{
Nβ1

k

}
i j

. . . {
NβJ2

k

}
i j

J2Ne×J2Ne

and
{
Nβ`

k

}
i j
= −δi j β`ψn−k(tn)

Pk =



{
Pβ1
k

}
i j

. . . {
PβJ2
k

}
i j

J2Ne×J2Ne

and
{
Pβ`

k

}
i j
= δi j β`ψn−k(tn)

Qk =


{
Qα1

k

}
i j

. . . {
QαJ2

k

}
i j

J2Ne×J2Ne

and
{
Qα`

k

}
i j
= −δi j

(
ψ ′n−k(tn) + α`ψn−k(tn)

)
where all matrices are diagonal. Further, in Jk , there are (J1 − 1) zero matrices 0 each with size Ne × Ne and, in Lk ,
there are (J2 − 1) zero matrices 0 each with size Ne × Ne.

Coupling (34) through (32) with (13) forms a MOT scheme for the Burton-Miller-type TD-BIE using a broadband
IBC. This coupled system has dimension Ne(2 + J1 + 2J2) × Ne(2 + J1 + 2J2) and is expressed as shown in (38). When
solved iteratively, (38) provides solutions for uk and vk on rigid and soft surfaces.
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

B0 C0 0 0 0
D0 E0 F0 G0 H0

0 J0 K0 0 0
0 L0 0 M0 N0

0 0 0 P0 Q0





un

vn

Pn
(0)

Pn
(1)

Pn
(2)


=



qn

0
0
0
0


−



B1 C1 0 0 0
D1 E1 F1 G1 H1

0 J1 K1 0 0
0 L1 0 M1 N1

0 0 0 P1 Q1





un−1

vn−1

Pn−1
(0)

Pn−1
(1)

Pn−1
(2)


−



B2 C2 0 0 0
D2 E2 F2 G2 H2

0 J2 K2 0 0
0 L2 0 M2 N2

0 0 0 P2 Q2





un−2

vn−2

Pn−2
(0)

Pn−2
(1)

Pn−2
(2)


(38)

− · · · −



BK CK 0 0 0
DK EK FK GK HK

0 JK KK 0 0
0 LK 0 MK NK

0 0 0 PK QK





un−K

vn−K

Pn−K
(0)

Pn−K
(1)

Pn−K
(2)


− · · · −



BJ CJ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





un−J

vn−J

Pn−J
(0)

Pn−J
(1)

Pn−J
(2)


IV. Numerical Eigenvalue Study and Stability Analysis

The solution of the MOT scheme (38) provides a prediction of the acoustic scattering around a body from a given
noise source. To assess the stability this system, a numerical eigenvalue study is conducted. Denote (38) by:

A0w
n = qn0 − A1w

n−1 − A2w
n−2 − ... − AKw

n−K − ... − AJw
n−J (39)

where

Ak =



BK CK 0 0 0
DK EK FK GK HK

0 JK KK 0 0
0 LK 0 MK NK

0 0 0 PK QK

k=0,...,K

, Ak =



BK 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

k=K+1,...,J

, wn =



un

vn

Pn
(0)

Pn
(1)

Pn
(2)


, qn0 =



qn

0
0
0
0


.

For the stability study, the eigenvalue analyses is concerned only with the homogeneous system. The homogeneous
system is representative of when the source, or incident wave, has traveled far beyond the scattering body and it is often
when numerical instability occurs. Seeking solutions of the form wn = λne0 to the corresponding homogeneous system
(39), a polynomial eigenvalue problem is obtained:[

A0λ
J + A1λ

J−1 + A2λ
J−2 + · · · + AJ−1λ + AJ

]
e0 = 0. (40)

Equation (40) is cast into a generalized eigenvalue problem with eigenvectors e j = λ
j e0 = λe j−1. The largest

eigenvalue λmax of the generalized eigenvalue problem is then calculated by using a matrix power iteration method as
detailed in Appendix A. The matrix power method is run using code written in Matlab and is repeated until the iterative
scheme has converged to the largest eigenvalue, |λ |max, i.e., when |λ(k) − λ(k−1) |/|λ(k) | < δ for a given tolerance δ as
detailed in Appendix A. If the numerical scheme given by (39) is stable, it is necessary that |λmax | ≤ 1 for all λ in (40)
[2, 29, 49–51].

The stability of the numerical algorithm is investigated by considering the scattering of an acoustic point source by a
flat plate with dimension [−0.5, 0.5] × [−0.5, 0.5] × [−0.1, 0.1]. The acoustic point source, located at x = (0, 0, 1), is
centered directly above the body as illustrated in Figure 2. The surface of the flat plate is discretized in the x-, y-, and z-
directions with Nx , Ny , and Nz elements, respectively, giving a total number of Ne = 2(NxNy + NyNz + NxNz) surface
elements. Three problem sizes of Nx × Ny × Nz are considered: 5 × 5 × 1 (Ne = 70 elements), 10 × 10 × 2 (Ne = 280
elements), and 20 × 20 × 4 (Ne = 1, 120 elements) as illustrated in Figures 3a through 3c.
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Fig. 2 Illustration of the radiative scattering by a flat plate.

(a) 5 × 5 × 1 (b) 10 × 10 × 2

(c) 20 × 20 × 4

Fig. 3 Schematic diagrams illustrating the respective discretization for the flat platewith dimension [−0.5, 0.5]×
[−0.5, 0.5] × [−0.1, 0.1] used for modeling the acoustic scattering of a point source located at (x, y, z) = (0, 0, 1).

In [51], the authors considered time steps of ∆t = π/1000 and ∆t = 1/24 for discretizations 10 × 10 × 2 through
30 × 30 × 6 when studying the Extended Helmholtz Resonator Model with third-order temporal basis functions (12).
Further, when using Burton-Miller-type reformulation with (12), stability has been demonstrated using as little as 22
points per wave period [36], translating to a minimum time step of ∆t ≈ ∆x. Wanting to ensure large enough time steps
for the given basis functions (12), the authors then considered time steps of ∆t = 1/12 and ∆t = 1/24 for discretizations
10 × 10 × 2 through 30 × 30 × 6 when studying both the Extended Helmholtz Resonator Model and the Broadband
Impedance Model in [2]. It was found that the stability tends to improve as the spatial grid is refined indicating that a
spatial resolution of Nx = 30 is sufficiently fine for the third-order temporal basis functions, and that for the coarser
grids, Nx = 10 and Nx = 20, a larger time step may be required to ensure ∆t ≈ ∆x, at a minimum. Following from
these previous analyses, the authors now consider coarser grids (Nx = 5, 10, 20 rather than Nx = 10, 20, 30) with time
steps of ∆t = 1/12 and ∆t = 1/24 for modeling the Broadband Impedance Model liner boundary condition with both a
second-order and third-order implicit backward difference temporal scheme, BD2 and BD3. Considering both time
steps ensures that the scattering problem provides solutions over a wide range of frequencies as is desired for broadband
noise prediction, allows for the ability to assess the dependence of time step on stability, and further allows for the
consideration of a coarser grid than was studied in both [51] and [2]: 5 × 5 × 1.

For the Broadband Impedance Model, the liner boundary condition is modeled using experimental data. Two
acoustic liners, named CT57 and GE03, were tested in the Grazing Flow Impedance Tube at the NASA Langley Research
Center Liner Technology Facility [58]. During the tests [59], impedance values were measured along a wide range of
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frequencies. Using the measured data, five different numerical models were generated using least squares regression
giving values for the parameters which define the surface impedance (17): h0, R0, J1, A`, γ`, J2, B`,C`, α` , β` . In each of
the numerical models, herein referred to as Cases 1 through 5, the parameters yield Re(Z) > 0, thus preserving causality
and stability. This representation is not unique and merely represents five different possible options. Table 1 lists all of
the constants generated for this model, and Figures 4a and 4b illustrate two such examples: Cases 1 and 4. Figure 4a
depicts experimental data from the CT57 liner and Figure 4b depicts experimental data from the GE03. In each figure,
the experimental data is graphed using solid circles and the numerical model is graphed with a dotted line. The CT57
liner is modeled using Cases 1, 2, and 3. The GE03 liner is modeled using Cases 4 and 5.

Table 1 Constants used for the Broadband Impedance Model.

Case h0 R0 J1
A` γ` J2

B` C` α` β`

` = 1, . . . , J1 ` = 1, . . . , J2

1 (CT57) 0.010873 0.177655 1 18.467174 0.985273 2
43.919202
23.611034

-0.571804
-8.511097

4.887694
7.670216

37.631479
-66.460858

2 (CT57) 0 0 1 18.422293 1.091586 2
98.624933
44.048396

-3.063868
-0.696846

6.641055
4.871120

81.958998
37.450376

3 (CT57) 0 0.068743 1 18.421975 1.075243 2
99.855347
44.089363

-9.968384
-0.709128

7.952528
4.879110

82.203159
37.451098

4 (GE03) 0.011775 0.001514 1 32.573728 1.896347 2
0.001101
75.213211

-9.910991
-9.915633

22.599229
7.374808

16.476064
82.791519

5 (GE03) 0 0 1 27.493859 0.470593 3
99.686994
99.672009
1.066955

1.823551
-9.863166
0.959000

10.638159
0.080378
1.137323

96.074097
97.146410
7.645146

(a) Broadband Case 1 (b) Broadband Case 4

Fig. 4 Illustration of the generated Broadband Impedance Model impedance curves using least squares regres-
sion. The experimental data is graphed using solid circles and the numerical model is graphed with a dotted
line. The left graph is of the CT57 liner and the right graph is of the GE03 liner.
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For the stability assessment, two different applications of an acoustic liner are considered. First, it is assumed that
the acoustic liner is installed on all scattering surfaces. Herein referred to as “soft,” this configuration is illustrated in
Figure 5a. It is further assumed that is acoustic liner is installed on the top-surface of the flat plate nearest the point
source (refer to Figure 2). Herein referred to as “mixed,” this configuration is illustrated in Figure 5b. For reference, the
flat plates illustrated in Figure 3 are for rigid body scattering, i.e., no acoustic liner. Using the rigid body as a baseline,
the stability of the numerical algorithm is tested assuming no liner boundary condition on any scattering surface. Then,
both soft and mixed body liner applications are assessed for their stability in solving the system (39). With no liner
installed on the scattering surface, all baseline cases are expected to yield eigenvalues no greater than unity. For the
baseline assessment, all matrices associated with the liner boundary condition are equivalently set equal to zero.

(a) Soft Body (b) Mixed Body

Fig. 5 Schematic diagrams illustrating a comparison between a fully-lined and a partially-lined scattering body
for a flat plate with discretization 5 × 5 × 1.

The values of the maximum eigenvalue for the rigid, soft, and mixed bodies are calculated using a code written
in Matlab. All soft eigenvalue results are listed in Table 2. All mixed eigenvalue results are listed in Table 3. The
rigid body results are not listed in table form because, as expected, all baseline cases yield a maximum eigenvalue of
1.000000 for all discretizations 5× 5× 1, 10× 10× 2, and 20× 20× 4, time steps ∆t = 1/12 and ∆t = 1/24, and temporal
basis functions BD2 and BD3. Since |λmax | ≤ 1 for all λ, the baseline study validates that the Burton-Miller-type
reformulation of the TD-BIE provides numerical stability by successfully eliminating resonant frequencies.

All eigenvalues in Tables 2 and 3 converge to a tolerance δ < 10−9 within 5, 000 iterations (refer to Appendix A).
Any eigenvalues greater than unity are listed in bold. For soft body scattering, Table 2, the analysis demonstrates
stability in three out of five numerical models. Apart from Cases 4 and 5, all analyses yield a maximum eigenvalue no
greater than unity. For mixed body scattering, Table 3, the analysis demonstrates stability in four out of five numerical
models. Apart from Case 4, all analyses yield a maximum eigenvalue no greater than unity. Moreover, it is also worth
mentioning that in all of the unstable cases, the maximum eigenvalue is only slightly larger than unity.

In both the soft and mixed body analyses, Case 4 is largely unstable providing maximum eigenvalues greater than
unity for most assessments. The results indicate that stability can be realized when both the time step is small and
the discretization is fine. Case 5 further demonstrates that stability can be realized as the discretization is refined for
fully-lined bodies. These results are consistent with previous work [2, 51] where it was found that the stability tends to
improve as the spatial grid is refined and that, for the coarser grids, a larger time step may be required to ensure ∆t ≈ ∆x,
at a minimum. Comparing the order of the temporal basis functions, there is little difference between BD2 and BD3 for
fully-lined bodies. There is also little difference for partially-lined bodies with a larger time step, but for partially-lined
bodies with a smaller time step, BD3 is more stable than BD2. However, though the choice of time step, discretization,
and temporal order affect the stability, it is more likely that stability is dependent on the specific numerical parameters
developed from the experimental data. Of the two numerical models developed for the GE03 liner, e.g., Cases 4 and 5,
one is largely stable whereas the other is not.

From the results shown Tables 2 and 3, it can be concluded that the Broadband model is sufficient for predicting
scattering by bodies with lined surfaces. This assessment demonstrates that eigenvalue analysis, though not a sufficient
condition for stability, is necessary. Thus, if additional acoustic liners are tested experimentally and numerical models
developed, it is pertinent that each case is assessed for its stability prior to predicting the acoustic wave scattering using
the Broadband Impedance Model while noting that for stability, it is required that resistance is a positive value.
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Table 2 Maximum eigenvalues calculated for the Broadband Impedance Model assuming the liner installed on
all scattering surfaces (soft body scattering).

Basis
Function

Broadband
Model

∆t = 1/12 ∆t = 1/24
5 × 5 × 1 10 × 10 × 2 20 × 20 × 4 5 × 5 × 1 10 × 10 × 2 20 × 20 × 4

BD2

Case 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 3 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 4 0.999990 1.000276 1.000165 1.000069 1.000024 0.999990
Case 5 1.000000 1.000000 1.000000 1.000004 1.000000 1.000000

BD3

Case 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 3 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 4 0.999976 1.000231 1.000116 1.000017 0.999965 0.999967
Case 5 1.000006 1.000000 1.000000 1.000026 1.000000 1.000000

Table 3 Maximum eigenvalues calculated for the Broadband Impedance Model assuming the liner installed on
the top-most scattering surfaces (mixed body scattering).

Basis
Function

Broadband
Model

∆t = 1/12 ∆t = 1/24
5 × 5 × 1 10 × 10 × 2 20 × 20 × 4 5 × 5 × 1 10 × 10 × 2 20 × 20 × 4

BD2

Case 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 3 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 4 1.000505 1.000218 1.000101 1.000123 1.000052 1.000003
Case 5 1.000000 1.000000 1.000000 1.000000 1.000000 0.996639

BD3

Case 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 3 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Case 4 1.000148 1.000173 1.000073 0.999999 0.999981 0.999991
Case 5 1.000000 0.993455 1.000000 1.000000 1.000000 0.996639

V. Concluding Remarks
Reducing aircraft noise is a major objective in the field of computational aeroacoustics. When designing next

generation quiet aircraft, it is important to be able to accurately and efficiently predict the acoustic scattering by an
aircraft body from a given noise source. Acoustic scattering problems can be modeled using BEMs by reformulating
the linear convective wave equation as a TD-BIE, both in the frequency-domain and the time-domain. Time-domain
solvers allow for the simulation and study of broadband sources and time-dependent transient signals, for the scattering
solutions at all frequencies to be obtained within a single computation, and for the ability to more naturally coupled with
a nonlinear computational fluid dynamics simulation of noise sources.

TD-BIEs unfortunately have an intrinsic numerical instability. This instability is observed across multiple disciplines
and is a result of internal modes of resonance corresponding to time harmonic solutions of the integral equation [32].
These resonant modes yield an ill-conditioned matrix in the frequency-domain due to the existence of non-unique
solutions which results in numerical instability in the time-domain [4, 33]. In recent years, numerical techniques for
modeling acoustic wave scattering using TD-BIEs have been under development [1, 36–38]. It has been shown that
stability can be realized through implementing a Burton-Miller-type reformulation of the TD-BIE and both computational
cost and computational time can be reduced using fast algorithms and high performance computing.
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The objective of this study was to investigate the feasibility and stability for modeling acoustic wave scattering using a
Burton-Miller-type TD-BIE with IBC. In Section II, the derivation of a TD-BIE, stabilized through a Burton-Miller-type
reformulation, was presented and in Section III, the IBC was derived and the Broadband Impedance Model was
introduced. This model is a numerical representation of the impedance provided by an acoustic liner. Typically
composed of an array of Helmholtz resonators, acoustic liners are installed on the surfaces of scattering bodies and are
incredibly effective at suppressing noise.

In Section IV, the stability of the Burton-Miller-type TD-BIE coupled with a liner boundary condition was assessed.
In literature, stability analysis has proven convolution quadrature methods second-order convergent for basis functions
constant in space and linear in time [48], but no theoretical proof has yet been provided for other methods. Eigenvalue
analysis is the current standard for studying the stability of TD-BIEs [29, 49, 50]. In this work, eigenvalue analysis was
conducted for the Broadband model assuming both fully- and partially-lined bodies. Though not a sufficient condition
for proving stability, it is necessary that the magnitude of all eigenvalues is no greater than unity for stability to be
achieved.

The Broadband Impedance Model eigenvalue analyses demonstrated stability for both the fully- and partially-lined
bodies in most cases. In both the soft and mixed body analyses, Case 4 is largely unstable. The results indicate that
stability can be realized when both the time step is small and the discretization is fine. Case 5 further demonstrated that
stability can be realized as the discretization is refined for fully-lined bodies. These results are consistent with previous
work [2, 51] where two different single frequency impedance models were considered for representing the acoustic liner:
the Extended Helmholtz Resonator Model and the Three-Parameter Impedance Model. The Broadband results also
indicated little dependence on the order of the temporal basis function except for partially-lined bodies with a smaller
time step where it was demonstrated that BD3 was more stable than BD2.

The Broadband results further indicate that it is more likely that stability is dependent on the specific numerical
parameters developed from the experimental data. These results reinforce that eigenvalue analysis is necessary to fully
assess the stability of a numerical scheme. Understanding the stability of such a model improves the capabilities of
designing next generation quieter aircraft.
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Appendix A: Matrix Power Iteration Method
In this appendix, the methodology for solving a polynomial eigenvalue problem using a matrix power iteration

method is discussed. Seeking solutions of the form wn = λne0 to the corresponding homogeneous system (39) yields
the polynomial eigenvalue problem given by (40) in Section IV:[

A0λ
J + A1λ

J−1 + A2λ
J−2 + · · · + AJ−1λ + AJ

]
e0 = 0

where e j = λ j e0 = λe j−1 for all j = 1, . . . , J, i.e.,

A0λeJ−1 + A1eJ−1 + A2eJ−2 + · · · + AJ−1e1 + AJ e0 = 0. (41)

Equation (41) is then cast into a generalized eigenvalue problem:

λ



A0 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
. . .

...

0 0 0 · · · I 0
0 0 0 · · · 0 I





eJ−1

eJ−2

eJ−3
...

e1

e0


=



−A1 −A2 · · · −AJ−2 −AJ−1 −AJ

I 0 · · · 0 0 0
0 I · · · 0 0 0
...

. . .
...

...

0 0 · · · I 0 0
0 0 · · · 0 I 0





eJ−1

eJ−2
...

e2

e1

e0


.
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Simplifying gives:

λ



eJ−1

eJ−2

eJ−3
...

e1

e0


=



−A0
−1A1 −A0

−1A2 · · · −A0
−1AJ−2 −A0

−1AJ−1 −A0
−1AJ

I 0 · · · 0 0 0
0 I · · · 0 0 0
...

. . .
...

...

0 0 · · · I 0 0
0 0 · · · 0 I 0





eJ−1

eJ−2
...

e2

e1

e0


,

which can then be written as
Ae = λe. (42)

The matrix power iteration method is then used to find the largest eigenvalue of (42). The method proceeds as follows:
Step 1) Define an arbitrary unit vector to be ξ (0).
Step 2) For k = 1, 2, . . . , calculate

e(k) = Aξ (k−1), q(k) =
e(k)

| |e(k) | |2
, and λ(k) =

[
ξ (k)

]T
Aξ (k) =

[
ξ (k)

]T
e(k+1).

Step 3) Calculate the difference between consecutive eigenvalues, |λ(k) − λ(k−1) | .
Step 4) Repeat until the iterative scheme has converged to the largest eigenvalue, |λ |max, i.e., when |λ(k)−λ(k−1) |/|λ(k) | < δ
for a given tolerance δ.

Herein, the following limitations are set for the tolerance δ in order to ensure that the matrix power iteration method
returns a converged solution within a reasonable amount of iterations: if iterations < 5, 000 then δ = 10−9 and if
iterations ≥ 5, 000 then the solution is considered non-convergent.
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